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Internodal excitonic state in a Weyl semimetal in a strong magnetic field
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The simplest Weyl semimetal with broken time-reversal symmetry consists of a pair of Weyl nodes located at
wave vectors Kτ = τb in momentum space with τ = ±1 the node index and chirality. The electronic dispersion
in a small wave-vector region near each node is linear and isotropic. In a magnetic field B = B̂z, this band
structure is modified into a series of positive and negative energy Landau levels n = ±1, ±2, . . . which disperse
along the direction of the magnetic field, and a chiral Landau level n = 0, with a linear dispersion given by
eτ,n=0(kz ) = −τ h̄vF kz, where kz is the component of the electron wave vector k along the direction of the
magnetic field and vF is the Fermi velocity. In the extreme quantum limit and for a small doping, the Fermi level
is in the chiral levels near the Dirac point. It has been shown before that, when Coulomb interaction is considered,
a Weyl semimetal may be unstable towards the formation of a condensate of internodal electron-hole pairs which
gives rise in real space to an excitonic charge-density wave. This new state of matter is usually studied by using
a short-range interaction between the electrons. In this paper we use the full long-range Coulomb interaction
and the self-consistent Hartree-Fock approximation to generate the condensed state. We study its stability with
respect to a change in the Fermi velocity, doping, and strength of the Coulomb interaction and also consider
the situation where the Weyl nodes have a higher Chern number C = 2, 3 and more complex excitonic states
are possible. We derive the response functions and collective excitations of the excitonic state working in the
generalized random-phase approximation (GRPA). We show that, in the mean-field gap induced by the internodal
coherence, there is, in the excitonic response function, a series of bound electron-hole states (excitons) with a
binding energy that decreases until the renormalized Hartree-Fock energy gap is reached. In addition, there is a
collective mode gapped at exactly the plasmon frequency. By contrast, the plasmon mode is the only excitation
present in the density and current response functions. Despite the U(1) symmetry of the excitonic state, there
is no gapless mode in the GRPA excitonic response. Indeed, the gapless mode present in the proper excitonic
response function is pushed to the plasmon frequency by the long-range Coulomb interaction.

DOI: 10.1103/PhysRevB.110.035162

I. INTRODUCTION

The simplest model of a Weyl semimetal (WSM) with bro-
ken time-reversal symmetry consists of two Weyl nodes with
opposite topological charges C = ±1 located in the Brillouin
zone at the wave vectors Kτ = τb, where τ = ±1 is the node
index. Near each node, the dispersion is linear and isotropic,
i.e., Es = sh̄vF |k|, where the wave vector k is measured with
respect to the Weyl points and s = ±1 is the band index
[1]. In the presence of an external magnetic field B directed
along the z axis, the band structure is transformed into a set
of positive (n > 1) and negative (n < 1) Landau levels that
disperse along the direction of the magnetic field according
to eτ,n �=0(kz ) = h̄vF

�
sgn(n)

√
k2

z �
2 + 2|n|, where kz is the com-

ponent of the wave vector k parallel to the magnetic field, vF

is the Fermi velocity, and � = √
h̄/eB is the magnetic length.

In addition, there is a single chiral n = 0 Landau level at each
node that disperses linearly along the direction of the magnetic
field according to eτ,n=0(kz ) = −τ h̄vF kz.

In the extreme quantum limit at zero temperature and
in the absence of doping, the Fermi level is at the Dirac
point in the chiral levels. It has been shown [2] that, in
this situation, the internodal Coulomb exchange interaction
can couple electrons and holes with different chiralities.
This spontaneously hybridizes the two nodes of opposite

chiralities and opens a gap in the chiral levels. The re-
sulting state from this chiral symmetry breaking is an
internodal condensate of electron-hole pairs that is charac-
terized by a complex order parameter of the form 〈ρ−,+〉 =
(1/Nϕ )

∑
kz,X

〈c†
kz,X,−ckz,X,+〉 = |〈ρ−,+〉|eiϕ, where X is the

guiding-center index in the Landau gauge, Nϕ = S/2π�2 is
the Landau-level degeneracy (with S the area of the WSM per-
pendicular to the magnetic field), the operators ckz,X,τ (c†

kz,X,τ
)

destroy (create) an electron in state kz, X, τ and 〈. . . 〉 denotes
a ground-state average. These electron-hole pairs are loosely
called excitons although they are not bound states but elec-
trons and holes paired by the internodal exchange interaction
and then condensed. The energy of this excitonic state is
independent of the phase ϕ of its order parameter and so one
would expect a Goldstone mode to be associated with this
U(1) symmetry.

This excitonic state has been extensively studied in the lit-
erature (see, for example, Refs. [2–19]). In real space, the ex-
citonic condensate leads to the formation of a charge-density
wave (CDW) with density 〈n(z)〉 ∼ |〈ρ−,+〉| cos(2bzz + ϕ)
and so to nonlinear transport properties. The sliding motion
of this incommensurate CDW (the phason), after depinning
from the impurities, is the Goldstone mode associated with
fluctuations in the phase ϕ. Fluctuations in the amplitude of
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the order parameter are expected to be gapped. One important
property of the excitonic CDW state is that its coupling with
the electromagnetic field leads to an extra magnetoelectric
axionic term in the action. The CDW is thus an example of
an axionic state of matter [9] with the phason being an axion,
a hypothetical particle first proposed in high-energy physics
[20,21]. The formation of the excitonic condensate can occur
with or without the presence of a magnetic field. Excitonic
states with more complex order parameters are possible when
B = 0 involving either internodal or intranodal electron-hole
pairings.

In this paper, we study the spontaneous internodal exci-
tonic state that can occur between the two chiral n = 0 Landau
levels in the strong magnetic field limit where the Fermi
level lies near the Dirac point and the upper Landau levels
are empty. Contrary to most previous papers where the gap
equation for the excitonic state is derived using a contact
interaction, we use the full long-range Coulomb interaction.
We solve the self-consistent Hartree-Fock equations for the
single-particle Green’s function numerically using an iterative
method. We study how the internodal coherence 〈ρ−,+〉 =
〈ρ+,−〉∗ depends on the Fermi velocity, Chern number C =
1, 2, 3, doping and strength of the Coulomb interaction us-
ing realistic values for these parameters. For higher Chern
numbers C = 2, 3, there are, respectively, two and three
degenerate chiral levels at each node and more complex exci-
tonic states are possible involving internodal and/or interlevel
coherences. We find that a change in the Fermi velocity vF

can produce a phase transition between two different excitonic
states.

We also study the response functions and collective exci-
tations in the excitonic state for the specific case of C = 1.
We derive these responses in the generalized random-phase
approximation (GRPA). As far as we know, this has not been
made before for the excitonic phase of a WSM in the strong
magnetic field limit. A similar calculation has been done for
a Dirac semimetal [22] but the band structure was different
and internodal coherence was not considered. For C = 1, one
can define 16 basic response functions and the internodal
coherence couples them all so that they have to be calculated
numerically. From these 16 response functions, we obtain the
density, current, and excitonic responses (they are defined
in Sec. VI). Because of a cancellation between self-energy
and vertex corrections, the only collective excitation in the
current χ j j and density χnn responses is the plasmon whose
frequency is slightly modified, in the excitonic state, from its

known value [23] ωp(Q) =
√

e3vF B
2π2ε0 h̄2 + v2

F Q2 in an incoherent

(normal) state. Because of the linear dispersion of the chiral
states, there is no continuum of electron-hole excitations in
these two responses as it is transformed into the plasmon
mode.

A more interesting function is the excitonic response χexc

since it contains excitations related to the fluctuations in
the amplitude and phase of the complex order parameter
〈ρ−,+〉. When only the ladder diagrams are considered in the
GRPA (i.e., the “proper” response), we find in χexc a series
of electron-hole bound states (excitons) with binding energy
eB,n where n = 1, 2, 3, . . . . The energy of these resonances
increases until a continuum of electron-hole scattering states

is reached at an energy Econti, which is the Hartree-Fock
energy gap redshifted by the vertex corrections. The ladder
diagrams in χexc(ω, Q) and the coupling between the differ-
ent response functions caused by the internodal coherence
produce a gapless collective mode with frequency ω = vF Q.

When the bubble diagrams (the long-range Coulomb inter-
action) are considered in the calculation, i.e., within the full
GRPA, the binding energy of the excitonic states is only
slightly modified but the gapless mode is transformed into the
gapped plasmon mode present also in the density and current
responses. There is no remaining gapless collective excitation
in the GRPA collective mode spectrum of the excitonic state.
Similar results are obtained when the GRPA is applied to the
study of collective excitations in superconductors [24,25].

This paper is organized as follows: In Sec. II, we present
the Hartree-Fock description of the excitonic phase for a
WSM where only the chiral levels in each node are consid-
ered. Numerical results for this phase are given in Sec. III for
Chern number C = 1 and in Sec. IV for C = 2, 3. The GRPA
approach for the response functions in the coherent phase is
described in Sec. V. We define the current, density, and exci-
tonic response functions χ j j, χnn, and χexc in Sec. VI. Exact
analytical results are obtained for χ j j and χnn but χexc has
to be calculated numerically. Our numerical results for these
response functions are presented in Secs. VII and VIII for the
incoherent and coherent phases, respectively. We conclude in
Sec. IX. The general Hartree-Fock formalism for Weyl nodes
with an arbitrary number of Landau levels is described in Ap-
pendix A. The precise forms of the exchange interactions that
intervene in the Hartree-Fock formalism for Chern numbers
C = 1, 2, 3 are listed in Appendix B.

II. HARTREE-FOCK DESCRIPTION
OF THE EXCITONIC PHASE

We consider a simple model of a Weyl semimetal (WSM)
with broken time-reversal symmetry consisting of two nodes,
with Chern number C, centered at wave vectors b = −τ b̂z and
with opposite chiralities τ = ±1. The noninteracting Hamil-
tonian for each node, written in the basis of the two bands that
cross, is given in the absence of a magnetic field by

hτ (k) = τ h̄vF

(
kz β(kx − iky)C

β(kx + iky)C −kz

)
, (1)

where vF is the Fermi velocity, k is a wave vector measured
from the position of each Weyl node in momentum space, β is
a material-dependent anisotropy factor, and C = 1, 2, 3 is the
Chern number.

The derivation of the Landau levels in a magnetic field
B = ∇ × A = B̂z and of the Hartree-Fock Hamiltonian and
equation of motion for the single-particle Green’s function is
given in Appendix A. We present there the general case where
an arbitrary number of Landau levels are kept and all types of
coherence are considered (inter-Landau-level, internodal, and
complete entanglement). In this section we adapt these results
to the simplest case where only the C chiral levels in each
node are kept in the Hilbert space. These levels are degenerate
and have the dispersion

eτ (k) = −τ h̄vF kz. (2)
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The corresponding eigenvectors are independent of τ and
given by

wn,kz,X (r⊥, z) = 1√
Lz

eikzz

(
0

hn,X (r⊥)

)
, (3)

with the integer n taking the values n = 0 to C − 1. In
the Landau gauge, with the vector potential A = (0, Bx, 0),
the wave functions of the two-dimensional electron gas are
given by hn,X (r⊥) = ϕn(x − X )e−iXy/�2

/
√

Ly, where X is the
guiding-center index and ϕn(x) the wave functions of the
one-dimensional harmonic oscillator. Each state (n, kz, τ ) has
degeneracy Nϕ = S/2π�2, where S = LxLy is the area of
the WSM perpendicular to the magnetic field, � = √

h̄/eB
is the magnetic length, and r⊥ is a two-dimensional vector in
the plane perpendicular to the magnetic field. The dimensions
of the WSM are Lx × Ly × Lz. Since we keep only the chiral
levels, we approximate the electron field operator by

�τ (r) ≈
∑

n,kz,X

wn,kz,X (r⊥)cn,kz,X,τ , (4)

where cn,kz,X,τ annihilates an electron in state (n, kz, X, τ ). To
simplify the notation, we will write k instead of kz hereafter.

For the many-body Hamiltonian of the electron gas, we
take

H =
∑

τ

∫
d3r �†

τ (r)hτ (r)�τ (r)

+ 1

2

∑
τ,τ ′

∫
d3r

∫
d3r′�†

τ (r)�†
τ ′ (r′)

× V (r − r′)�τ ′ (r′)�τ (r), (5)

where the long-range Coulomb interaction is given by (εr is
the relative dielectric constant of the WSM)

V (r) = 1

V

∑
q

e2

εrε0

∣∣q2
⊥ + q2

z

∣∣eiq⊥·r⊥eiqzz. (6)

We have kept in H only one combination of field operators
that conserves the number of electrons at each node. A second
but weaker combination is discussed in Appendix A.

To fully characterize a particular phase of the electron
gas in the WSM, we use the set of ground-state averages
{〈ρ (τ,τ ′ )

n,n′ (k)〉} where the operators

ρ
(τ,τ ′ )
n,n′ (k) = 1

Nϕ

∑
X

c†
n,k,X,τ

cn′,k,X,τ ′ . (7)

In terms of these operators, the Hartree-Fock Hamiltonian, for
a phase that is not modulated spatially, is given by

HHF = Nϕ

∑
n,k,τ

eτ (k)ρ (τ,τ )
n,n (k)

− Nϕ

Lz

∑
τ,τ ′

∑
k1,k2

∑
n1,...,n4

Xn1,n2,n3,n4 (k2 − k1)

× 〈
ρ (τ,τ ′ )

n1,n4
(k1)

〉
ρ (τ ′,τ )

n3,n2
(k2), (8)

where the Fock interactions Xn1,n2,n3,n4 (k) are defined in
Eq. (A50). They are nonzero for n1 − n2 + n3 − n4 = 0 only
so that there are 1, 6, and 19 nonzero interactions of which

1, 4, and 10 are different for C = 1, 2, 3, respectively. The
Hartree term is absent from HHF since it is canceled by the
positive background of the WSM.

The diagonal components 〈ρ (τ,τ )
n,n (k)〉 give the occupation

ν ∈ [0, 1] of the state (n, k, τ ). The operator c†
nX,k,τ

cn′X,k,−τ

creates an electron-hole pairing between the states n, X, k, τ

and n′, X, k,−τ, so that a nonzero value of 〈ρ (τ,−τ )
n,n (k)〉 sig-

nals a condensate of internodal electron-hole pairs in Landau
level n, while 〈ρ (τ,τ )

n,n′ �=n(k)〉 signals a condensate of inter-
Landau-level electron hole pairs in node τ . The general case
〈ρ (τ,−τ )

n,n′ (k)〉 with n �= n′ represents a full entanglement be-
tween the paired electron and hole. We loosely speak of these
pairs as “excitons” although they are not bound states. We use
the words excitonic state or coherent state to refer to the state
where some type of coherence is nonzero. As we show below,
such states are favored by the exchange part (the Fock pairing
in HHF) of the Coulomb interaction.

We explain in the Appendix A how the 〈ρ (τ,τ ′ )
n,n′ (k)〉’s are

obtained by solving the equation of motion for the single-
particle Matsubara Green’s function

G(τ,τ ′ )
n,n′ (k, τ ) = − 1

Nφ

∑
X

〈Tτ0 cn,k,X,τ (τ0)c†
n′,k,X,τ ′ (0)〉, (9)

where Tτ0 is the imaginary-time ordering operator and τ0 in
the parentheses is the imaginary time (not to be confused with
the node index). When τ0 = 0−, we have〈

ρ
(τ ′,τ )
n′,n (k)

〉 = G(τ,τ ′ )
n,n′ (k, τ0 = 0−)

= 1

β h̄

∑
iωn

e−iωn0−
G(τ,τ ′ )

n,n′ (k, iωn), (10)

where the fermionic Matsubara frequencies ωn are defined by
ωn = (2n + 1)π/β h̄ with n = 0,±1,±2, . . . and where β =
1/kBT with T the temperature and kB the Boltzmann constant.

The equation of motion is given by[
iωn − 1

h̄
[eτ (k) − μ]

]
G(τ,τ ′ )

n,n′ (k, iωn)

− 1

h̄

∑
τ ′′,n′′

�
(τ,τ ′′ )
n,n′′ (k)G(τ ′′,τ ′ )

n′′,n′ (k, iωn) = δτ,τ ′δn,n′ , (11)

where the Fock self-energies are defined as

�
(τ,τ ′ )
n,n′ (k) = − 1

Lz

∑
k1

∑
n1,n2

Xn1,n′,n,n2 (k − k1)
〈
ρ (τ ′,τ )

n1,n2
(k1)

〉
(12)

and μ is the chemical potential. Equation (11) is solved in the
manner explained in the Appendix A. The ground-state energy
per volume EHF is then given by

EHF = 1

2π�2Lz

∑
n,k,τ

eτ (k)
〈
ρ (τ,τ )

n,n (k)
〉

− 1

4π�2L2
z

∑
τ,τ ′

∑
k1,k2

∑
n1,...,n4

Xn1,n2,n3,n4 (k2 − k1)

× 〈
ρ (τ,τ ′ )

n1,n4
(k1)

〉〈
ρ (τ ′,τ )

n3,n2
(k2)

〉
. (13)

035162-3



CÔTÉ, DUCHESNE, AND LOPEZ PHYSICAL REVIEW B 110, 035162 (2024)

When C = 1, there are then only two states to consider:
(n = 0, τ = +) and (n = 0, τ = −) and we can obtain some
manageable analytical results. Dropping the n = 0 index, we
write in this case the Green’s function matrix as

G(k, iωn) =
(

G+,+(k, iωn) G+,−(k, iωn)

G−,+(k, iωn) G−,−(k, iωn)

)
. (14)

It satisfies the equation of motion (in matrix form)

[I (ih̄ωn + μ) − F (k)]G(k, iωn) = h̄I2×2, (15)

where I2×2 is the 2 × 2 unit matrix and the matrix F (k) is
defined by

F (k) =
(

e+(k) + �+,+(k) �+,−(k)

�−,+(k) e−(k) + �−,−(k)

)
. (16)

The self-energies are given by (i, j = ±)

�i, j (k) = − 1

Lz

∑
k1

X (k − k1)〈ρ j,i(k1)〉 (17)

and the interaction

X (x) = X0,0,0,0(x) = e2

2πε0εr

1

2
�

(
0,

x2

2

)
e

x2

2 , (18)

where �(0, x) is the incomplete gamma function. To avoid the
divergence at x = k = 0 of this interaction, we add a very
small screening parameter η to the Coulomb interaction in
Eq. (6), i.e., y2 → y2 + η2.

The Hermitian matrix F (k) can be diagonalized for each
value of k by solving the equation

F (k)U (k) = U (k)D(k), (19)

where U (k) is the matrix of the eigenvectors and D(k) the
diagonal matrix of the eigenvalues. The Green’s function is
then obtained from

Gi, j (k, iωn) =
∑
a=±

Ui,a(k)U †
a, j (k)

iωn − [Ea(k) − μ]/h̄
(20)

and, at T = 0 K, the order parameters are given by

〈ρ j,i(k)〉 =
∑
a=±

Ui,a(k)U −1
a, j (k)�[eF − Ea(k)], (21)

where eF is the Fermi level which can be positive (electron
doping) or negative (hole doping) and �(x) is the Heaviside
function. We consider that the doping, if present, is the same
in both nodes. Equations (16)–(21) constitute a self-consistent
system of equations that must be solved numerically.

The band structure in the coherent phase consists of two
bands with dispersion

E±(k) = 1
2 [�+(k) + �−(k)] ± 1

2ζ (k), (22)

where

ζ (k) =
√

[2e(k) − �+(k) + �−(k)]2 + 4|�(k)|2 (23)

and

e(k) = h̄vF k. (24)

The analytical expressions for the order parameters are, for
each wave vector k,

〈ρ±,±〉 = ∓ 1

2ζ
(�+ − �− − 2e ∓ ζ )�(eF − E−)

± 1

2ζ
(�+ − �− − 2e ± ζ )�(eF − E+), (25)

〈ρ−,+〉 = −�

ζ
[�(eF − E−) − �(eF − E+)] (26)

and 〈ρ+,−(k)〉 = 〈ρ−,+(k)〉∗. The following sum rules follow
from the equation of motion:

|〈ρi,i(k)〉|2 + |〈ρi,−i(k)〉|2 = 〈ρi,i(k)〉 (27)

and ∑
j=±

〈ρ j, j (k)〉 =
∑

j

�[eF − Ej (k)]. (28)

If we write the coherence factor as 〈ρ+,−(k1)〉 =
|〈ρ+,−(k1)〉|eiϕ(k1 ), then the internode part of the Fock term
in EHF can be written as

− 1

4π�2L2
z

∑
k1,k2

X (k2 − k1)|〈ρ+,−(k1)〉|

× |〈ρ−,+(k2)〉| cos [ϕ(k1) − ϕ(k2)]. (29)

The other terms in the Hartree-Fock energy do not depend
on the choice of the phase ϕ(k) and so it is clear that in the
coherent state, the phase ϕ(k) must be a constant independent
of k to minimize the energy, i.e., the internodal excitonic
ground state has a U(1) symmetry.

III. EXCITONIC STATE WITH C = 1

In our numerical calculation for C = 1, we choose a cutoff
kc� = 15 for the wave vector along the z direction so that
the dimensionless wave vector k� ∈ [−15, 15] in each node.
We discretize this interval into 2Np + 1 points, taking Np =
1000. We solve the self-consistent system of equations (25)
and (26) using an iterative method. We find that very good
convergence is obtained after only 100 iterations if we start
the first iteration with the seed 〈ρ±,±(k)〉 = �(±k + kF ) and
〈ρ+,−(±kF )〉 = 〈ρ−,+(±kF )〉∗ = 1, where the Fermi wave
vector kF � = 4π2�3ne is determined by the amount of doping,
i.e., the density of added electrons ne.

To allow coherence in the state k = 0 in the absence of
doping, we remove 1

2 electron at k = 0 in each node. In order
for the excitonic phase to be the ground state, the cohesive
energy Ecohe = EHF − EN must be negative, where EN is the
energy of the normal phase (defined as the state with Coulomb
interaction but without coherence). We study the effect of
three parameters on the excitonic phase: the Fermi velocity
vF , the dielectric constant εr , and the doping level kF �.

Figure 1 shows the band structure E±(k) in the coherent
(blue lines) and incoherent (black lines) states in the absence
of doping. We have removed a global energy shift �+(k) +
�−(k) = − 1

Lz

∑
k1

X (k1) [see Eq. (17)] in both curves to force
them to coincide at k = 0. The dashed blue and black lines
give the position of the Fermi level for the corresponding
state. For this figure, vF /c = 0.001 and εr = 1 (c is the speed
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FIG. 1. Band structure in the undoped coherent and incoherent
states. The blue (black) lines give the electronic dispersion E±(k) in
the coherent (incoherent) states while the position of the Fermi level
in each case is given by the dashed line of the corresponding color.
A global energy shift has been removed in both cases to make all the
curves centered at energy E = 0. The green lines show the nonin-
teracting band structure. Parameters are kF � = 0, vF /c = 0.001, and
εr = 1.

of light in vacuum). All energies are in units of h̄vF /� =
7. 69

√
BvF /c eV. The noninteracting band structure (green

lines) is modified by the self-energies �±(k) in both the coher-
ent and incoherent states. The internodal coherence introduces
a gap in the band structure. Since there is only one electron
at k� = 0 in the undoped coherent state, the Fermi level is
at the top of the bottom band and the system is insulating.
In the original band structure, the two chiral levels would be
separated by the wave vector 2b. However, since b does not
enter our calculation, we are at liberty to set the origin of both
levels at k = 0 in all the figures.

The corresponding occupations and coherences for the
coherent state of Fig. 1 are shown in Fig. 2. They can be
compared with the occupation of the k states in the incoherent
state which is 〈ρ±,±(k)〉 = �(∓k) = 1 and 〈ρ+,−(k)〉 = 0.

Internodal coherence leads to a modification of the occupa-
tion of the states near k = 0 where the coherence reaches its
maximum value 〈ρ+,−(0)〉 = 1

2 and, as required by the sum
rules, 〈ρ±,±(0)〉 = 1

2 . As expected in a two-level system, the
coherence decreases when the difference in the noninteracting
energy |e+(k) − e−(k)| increases and so it is maximal at k = 0
where the two noninteracting states are degenerate.

We use the integral 〈ρ−,+〉 = ∫
dk �〈ρ−,+(k�)〉 as an order

parameter for the internodal excitonic state. The phase of
〈ρ−,+(k�)〉 being arbitrary, 〈ρ−,+〉 can be chosen real with-
out any loss of generality. Figure 3 shows how this quantity
depends on the Fermi velocity vF /c and relative dielectric
constant εr . Clearly, the coherence decreases rapidly when
either one of these parameters is increased. Indeed, an increase
in εr decreases the strength of the Coulomb interaction and
an increase in vF increases the separation in energy of the
two levels at k thus decreasing the coherence. When vF or
εr increases, Ecohe → 0 and 〈ρ−,+〉 → 0.

FIG. 2. Occupations and coherences 〈ρi, j (k)〉 in the undoped
coherent phase. Parameters are kF � = 0, vF /c = 0.001, and εr = 1
with the exception of the green curve where εr = 10 and vF /c =
0.002.

We now consider the effect of doping which can be con-
trolled by electric gating in a WSM. For a single chiral level,
the density of states is a constant given by g(ε) = 1/4π2�2h̄vF

so that the Fermi wave vector kF is related to the density of
added electrons per node by kF � = 4π2�3ne. For kF � = 0.25,

the electronic density is ne = 3.75 × 1020B
3
2 e/m3, a value

that is not atypical in WSMs.
Figure 4 shows the band structure for kF � = 0.2 with

vF /c = 0.001 and εr = 1. The Fermi level is indicated by the
dashed line. The energy gap at k = 0 is still present, but the
system is now metallic. The corresponding occupations and
coherences are plotted in Fig. 5. No coherence is possible
when a k state is fully occupied in both nodes so that the oc-
cupations are modified only near ±kF � and coherence occurs
only for |k�| > kF �.

FIG. 3. Behavior of the order parameter 〈ρ−,+〉 with the Fermi
velocity in the undoped coherent phase for two different values of
the dielectric constants: εr = 1, 10.
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FIG. 4. Band structure of the doped coherent state. Parameters
are kF � = 0.2, vF /c = 0.001, and εr = 1. The position of the Fermi
level is indicated by the dashed line.

Figure 6 shows how the order parameter 〈ρ−,+〉 depends
on the doping level. An increase in kF � means that coher-
ence has to be established between two noninteracting levels
with higher energy separation and is consequently weaker.
By electron-hole symmetry of the original band structure, the
same results are obtained for hole doping.

The results of this section show that the excitonic state
can be realized with realistic values of the Fermi velocity,
dielectric constant, and doping. However, it is fragile and
disappears rapidly as these parameters are increased.

At this point, we must say a word about the validity of our
approximations. In order to restrict the Hilbert space to the
chiral levels, we need the Coulomb interaction to be small
with respect to the energy gap between the n = 0 and ±1
Landau levels of the noninteracting electron gas. That is,
we must ensure that e2/4πε0εr� <

√
2h̄vF /�, i.e., α/εrvF �√

2, where α = e2/4πε0 h̄c is the fine-structure constant and
vF = vF /c. Since εr can be large in a WSM, this condition can

FIG. 5. Occupations and coherences 〈ρi, j (k)〉 in the doped coher-
ent state. Parameters are kF � = 0.2, vF /c = 0.001, and εr = 1.
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FIG. 6. Behavior of the order parameter 〈ρ−,+〉 with electronic
doping kF � in the coherent phase (bottom axis) and with the bias b0

(top axis). Parameters are vF /c = 0.001 and εr = 1.

be satisfied in principle. However, as our calculation shows,
the coherence 〈ρ−,+〉 decreases rapidly with the product εrvF .

Nevertheless, Fig. 3 shows that there are a range of values
of εrvF where this condition is satisfied and coherence is
possible.

The calculation of the self-energy implies integration over
the wave vector k and so we must ensure that the cutoff wave
vector kc is such that the energy in the chiral band is lower than
that of the n = 1 Landau level which implies kc� <

√
2. This

requires that the modification of the occupations from their
noninteracting value be negligible for k� >

√
2. As Fig. 2

shows, this is not the case for εr = 1 and vF = 0.001 but the
condition is satisfied for εr = 10 and vF = 0.002 (the green
curve).

When doping is considered, the Fermi level must also be
below the n = 1 Landau band. This condition is satisfied
in our numerical calculation since, as shown in Fig. 6, the
coherence 〈ρ−,+〉 decreases to zero well before kF � = √

2 is
reached.

Our calculation assumes T = 0 K. In the absence of dop-
ing and for the set of parameters vF /c = 0.001, εr = 1, and
B = 10 T, the difference in the energy per electron between
the coherent and incoherent states (the cohesive energy) is
approximately 4 K while for vF /c = 0.002, εr = 10, and
B = 10 T, where the coherence is much smaller (see Fig. 3),
this difference decreases to 4 mK. If we use these figures to
approximate the melting temperature for the coherent state,
then we can conclude that the coherence should survive at
finite, but small, temperature.

Although the discovery of a WSM with a single pair of
Weyl nodes, Eu3In2As4, has been reported recently [26] (and
others should exist according to ab init io calculations), most
WSMs have more than two Weyl points. Because the intern-
odal coherence occurs in momentum space and not in real
space, we believe that it should remain possible in WSMs with
more pairs of nodes. That is, if their Dirac points are at the
same energy. If they are not, then the doping of the different
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nodes will be different and the coherence will probably be
lost. To verify this, we calculated the effect of adding an elec-
trical bias that shifts the energy of the two nodes. In our model,
this is done by adding the term −τ h̄b0 to the single-particle
energy in Eq. (2) and the term h̄b0 to e(k) in Eq. (24). In
the incoherent state, 〈ρ+,+(k)〉 = 1 for k� ∈ [−2 b0�

vF
, kc�] and

〈ρ−,−(k)〉 = 1 for k� ∈ [−kc�, 0] so that there is a difference
in density of added electrons given by �ne = b0/2π2vF �2

between the two nodes. Coherence cannot be established in
the region k� ∈ [−2 b0�

vF
, 0] where the two chiral levels are

occupied. It can only occur in the flanks of this region which is
indeed what we find numerically. The blue line in Fig. 6 shows
how the order parameter decreases with b0. As expected, the
coherence decreases with the electrical bias. For B = 10 T
and vF /c = 0.001, it vanishes for h̄b0 � 6.3 meV. Note that
we assume that the two nodes are at equilibrium so that they
share the same Fermi level.

In concluding this section, we remark that the excitonic
state in our description is uniform spatially since we consider
the two nodes as separate systems and write the total density
as n(r, z) = ∑

τ �†
τ (r, z)�τ (r, z). But, when the two nodes

are considered as one system, the density should be written as
n(r, z) = �†(r, z)�(r, z) with the field operator defined by

�(r, z) = w0,k,X (r⊥, z)e−ibzck,X,− + w0,k,X (r⊥, z)eibzck,X,+,

(30)

where the summation over k is restricted to the small-
momentum region near each node where the dispersion is
linear. Performing an integration over r⊥, we have for the av-
erage density along the z direction apart from an unimportant
constant

〈n(z)〉 ∼ S

2π2�3
cos (2bz + ϕ)〈ρ−,+〉, (31)

where ϕ is the U(1) phase of the complex order parame-
ter 〈ρ−,+〉. In this description, the excitonic phase is also a
charge-density wave state which is modulated by the axion
wave vector b and whose amplitude depends on the magnetic
field and order parameter.

IV. EXCITONIC STATES FOR CHERN
NUMBERS C = 2 AND 3

For Weyl nodes with Chern number C = 2, 3, there are,
respectively, 4 and 6 quantum states to consider. We denote
them by the superindices I, J = (n, τ ) = 1, 2, . . . , 6 with the
correspondence

1 = (0,+); 2 = (0,−),

3 = (1,+); 4 = (1,−), (32)

5 = (2,+); 6 = (2,−).

We solve the equation of motion for the Green’s function
given in Eq. (A37). The components of the F matrix are
defined by

FI,J (k) = 1

h̄
[(−τ h̄vF k − μ)δI,J − �I,J (k)], (33)

where the self-energies for C = 1, 2 are given by

�(τ,τ ′ )
n,n (k) = − 1

Lz

∑
k1

∑
n1

Xn1,n,n,n1 (k − k1)
〈
ρ (τ,τ ′ )

n1,n1
(k1)

〉
(34)

and

�
(τ,τ ′ )
n,n′ �=n(k) = − 1

Lz

∑
k1

Xn′,n′,n,n(k − k1)
〈
ρ

(τ ′,τ )
n′,n (k1)

〉
. (35)

For C = 3, however, there are four additional contributions to
some of the self-energies �

(τ,τ ′ )
n,n′ �=n(k) which are given by

�
(τ,τ ′ )
0,1 (k) → − 1

Lz

∑
k1

X2,1,0,1(k − k1)
〈
ρ

(τ ′,τ )
2,1 (k1)

〉
, (36)

�
(τ,τ ′ )
1,0 (k) → − 1

Lz

∑
k1

X1,0,1,2(k − k1)
〈
ρ

(τ ′,τ )
1,2 (k1)

〉
(37)

and

�
(τ,τ ′ )
1,2 (k) → − 1

Lz

∑
k1

X1,2,1,0(k − k1)
〈
ρ

(τ ′,τ )
1,0 (k1)

〉
, (38)

�
(τ,τ ′ )
2,1 (k) → − 1

Lz

∑
k1

X0,1,2,1(k − k1)
〈
ρ

(τ ′,τ )
0,1 (k1)

〉
. (39)

Figure 7(a) shows the occupations and coherences and
Fig. 7(b) the corresponding band structure for C = 2 in the
excitonic state for vF /c = 0.001 and εr = 1. The band struc-
ture in the absence of coherence but with interaction is shown
in the inset of Fig. 7(b) for C = 2. The n = 0, 1 bands have
different self-energies. They are thus shifted differently in
energy creating many degeneracy points. As with C = 1, the
coherences gap the whole band structure. For Fermi velocity
vF /c ∈ [0.001, 0.1], only internodal coherence in the same
band is present. It decreases with vF /c as shown in the inset
of Fig. 7(d) and, at vF /c ≈ 0.011, it drops abruptly to zero
where it is replaced by entanglement between states (1, 4) and
(2, 3) as shown in Fig. 7(c). The corresponding band structure
after this phase transition is shown in Fig. 7(d). It is modified
from the interacting but incoherent band structure shown in
the inset of Fig. 7(b) but only in a very small range of wave
vector k�.

Figure 8(a) shows the occupations and coherences and
Fig. 8(b) the corresponding band structure for C = 3 in the
excitonic state for vF /c = 0.001 and εr = 1. As for C = 2,

only internodal coherence in the same band is present at this
Fermi velocity and the band structure is gapped. We find that
this ground state persists up to vF /c ≈ 0.006 where there is a
transition to a different type of coherent state that we were not
able to identify completely, the number of such states being
quite large for C = 3.
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FIG. 7. Excitonic state for C = 2. (a) Occupations and coherences and (b) band structure for vF /c = 0.001. (c), (d) Show the same but
for vF /c = 0.01. The inset in (b) shows the gapless band structure in the absence of coherence and that in (d) shows the behavior of the
coherences with vF /c [the lines legend is as in (c)]. The blue lines in (b) and (d) indicate the position of the Fermi level. Parameters are kF � = 0
and εr = 1.

When only internodal coherence in the same level is present, the ground-state energy per volume V is given by

EHF

V
= 1

2π�2

1

Lz

∑
n,k,τ

eτ (k)
〈
ρ (τ,τ )

n,n (k)
〉 − 1

2π�2

1

L2
z

∑
τ

∑
k1,k2

∑
n1,n2

Xn1,n2,n2,n1 (k2 − k1)
〈
ρ (τ,τ )

n1,n1
(k1)

〉〈
ρ (τ,τ )

n2,n2
(k2)

〉
− 2

2π�2

1

L2
z

∑
k1,k2

∑
n1

Xn1,n1,n1,n1 (k2 − k1)|〈ρ (+,−)
n1,n1

(k1)〉||〈ρ (−,+)
n1,n1

(k2)〉| cos[ϕn1 (k1) − ϕn1 (k2)]

− 2

2π�2

1

L2
z

∑
k1,k2

∑
n1,n2 �=n1

Xn1,n2,n2,n1 (k2 − k1)|〈ρ (+,−)
n1,n1

(k1)〉||〈ρ (−,+)
n2,n2

(k2)〉| cos[ϕn1 (k1) − ϕn2 (k2)], (40)

with the phases defined by 〈ρ (+,−)
n,n (k)〉 = |〈ρ (+,−)

n,n (k)〉|eiϕn (k).

The energy is minimized when ϕn1 (k1) = ϕn1 (k2) and
ϕn1 (k1) = ϕn2 (k2). Thus, all internodal coherent states for C =
1, 2, 3 are invariant with respect to one global phase.

V. GENERAL EQUATION FOR THE RESPONSE
FUNCTIONS

In order to derive the response functions in the exci-
tonic state we compute the two-particle Matsubara Green’s
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FIG. 8. Excitonic state for C = 3. (a) Occupations and coher-
ences and (b) band structure. The blue line in (b) indicates the
position of the Fermi level. Parameters are vF /c = 0.001, kF � = 0,
and εr = 1.

functions

La,b,c,d (1, 2, 3, 4) = −〈T �†
a (1)�b(2)�†

c (3)�d (4)〉
+ Gb,a(2, 1)Gd,c(4, 3), (41)

where the single-particle Matsubara Green’s function is de-
fined by

Ga,b(1, 2) = −〈T �a(1)�†
b (2)〉. (42)

The numbers refer to the position vector and imaginary
time, i.e., 1 = (u1, τ1), the integral

∫
d1 = ∫ β h̄

0 dτ1
∫

d3r1

and a, b, c, d are node indices.
The single-particle Green’s function introduced in the

previous section was computed in the Hartree-Fock approx-
imation which is defined by

Ga,b(1, 2) = G0
a,b(1, 2) +

∑
c,d

∫
d3 G0

a,c(1, 3)�HF
c,d (3, 4)

× Gd,b(4, 2), (43)

where G0
a,c is a noninteracting Green’s function and the

Hartree-Fock self-energy is defined by

�c,d (5, 6) = 1

h̄
δc,d

∫
d7 δ(5 − 6)V (5 − 7)Gg,g(7, 7

+
)

− 1

h̄
V (5 − 6)Gc,d (5, 6), (44)

where V (1 − 2) = V (u1 − u2)δ(τ1 − τ2) is the Coulomb in-
teraction which is independent of the node index. The two
terms on the right-hand side of Eq. (44) are, respectively, the
Hartree and Fock self-energies.

We derive the two-particle Green’s function in the gener-
alized random-phase approximation (GRPA) which consists
in the summation of bubble and ladder diagrams. The GRPA
is obtained by a functional derivative of the single-particle
Green’s function and is a conserving approximation [27].
More precisely, it is defined by the equation

La,b,c,d (1, 2, 3, 4) = Gb,c(2, 3)Gd,a(4, 1) +
∑
e,g

1

h̄

∫
d5

∫
d6 Gb,e(2, 5)Ge,a(5, 1)V (5 − 6)Lg,g,c,d (6+, 6, 3, 4)

−
∑
e, f

1

h̄

∫
d5

∫
d6 Gb,e(2, 5)G f ,a(6, 1)V (5 − 6)L f ,e,c,d (6, 5, 3, 4). (45)

This equation couples all 16 Green’s functions together and we can extract from it the two-particle Green’s functions

Pτa,τb,τc,τd
k1,k2,k3,k4

(q⊥, q′
⊥; τ ) = −Nϕ〈T ρτa,τb (q⊥, k1, k2; τ )ρτc,τd (−q′

⊥, k3, k4; 0)〉, (46)

where the operators ρτa,τb (q⊥,k, k′; τ ) now depend on imaginary time and are defined by

ρτa,τb (q⊥,k, k′; τ ) = 1

Nϕ

∑
X

e−iqxX eiqxqy�
2/2c†

k,X,τa
(τ )ck′,X−qy�2,τb

(τ ). (47)

We calculate the two-particle Green’s function in the
uniform state so that only the occupation and coherences

〈ρτa,τb (q⊥ = 0,k, k)〉 = 〈ρτa,τb (k)〉 are nonzero. Moreover, we
restrict our analysis to response functions with wave vectors
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along the direction of the magnetic field, i.e., take q⊥ = q′
⊥ =

0 in Pτa,τb,τc,τd
k1,k2,k3,k4

(q⊥, q′
⊥; τ ).

One of us (R.C.) has given in Appendix A of Ref. [28]
a detailed derivation of the GRPA equation of motion
for La,b,c,d (1, 2, 3, 4) and Pτa,τb,τc,τd

k1,k2,k3,k4
(0, 0; i�n), where �n =

2nπ/β h̄ with n = 0,±1,±2, . . . is a bosonic Matsubara fre-
quency. We refer the reader to this Appendix and give here
only the main results.

Hereafter, we restrict our analysis to nodes with Chern
number C = 1 in order for the size of the matrices that are

involved in the calculation to be manageable numerically. We
first define a matrix containing the 16 response functions

PI,J
k+Q,k (ω) =

∑
k′

PI,J
k+Q,k,k′,k′+Q(ω), (48)

where the superindices I, J = 1, 2, 3, 4 are defined
in the following way: for the rows I = (τa, τb) =
(+,+), (+,−), (−,+), (−,−) and, for the columns
J = (τc, τd ) = (+,+), (−,+), (+,−), (−,−). We also
define the matrices

E (k, Q) = 1

h̄

⎛⎜⎜⎜⎝
[e+(k) − e+(k + Q)] 0 0 0

0 e−(k) − e+(k + Q) 0 0

0 0 e+(k) − e−(k + Q) 0

0 0 0 e−(k) − e−(k + Q)

⎞⎟⎟⎟⎠ (49)

and

�(k, Q) = 1

h̄

⎛⎜⎜⎜⎝
[�+(k) − �+(k + Q)] �(k) −�(k + Q) 0

�(k) �−(k) − �(k + Q) 0 −�(k + Q)

−�(k + Q) 0 �+(k) − �−(k + Q) �(k)

0 −�(k + Q) �(k) �−(k) − �−(k + Q)

⎞⎟⎟⎟⎠ (50)

and

B(k, Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈ρ+,+(k + Q)〉
−〈ρ+,+(k)〉 −〈ρ−,+(k)〉 〈ρ+,−(k + Q)〉 0

−〈ρ+,−(k)〉 〈ρ+,+(k + Q)〉
−〈ρ−,−(k)〉 0 〈ρ+,−(k + Q)〉

〈ρ−,+(k + Q)〉 0
〈ρ−,−(k + Q)〉
−〈ρ+,+(k)〉 −〈ρ−,+(k)〉

0 〈ρ−,+(k + Q)〉 −〈ρ+,−(k)〉 〈ρ−,−(k + Q)〉
−〈ρ−,−(k)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(51)

and these other matrices

H (Q) = e2

ε0h̄

⎛⎜⎜⎜⎝
H (Q) 0 0 H (Q)

0 0 0 0

0 0 0 0

H (Q) 0 0 H (Q)

⎞⎟⎟⎟⎠ (52)

and

X (k) = e2

ε0 h̄

⎛⎜⎜⎜⎝
X (k) 0 0 0

0 X (k) 0 0

0 0 X (k) 0

0 0 0 X (k)

⎞⎟⎟⎟⎠, (53)

where

H (Q) = 1

2π

1

(Q�)2 , (54)

X (k) = 1

4π
e

(k�)2

2 �

(
0,

(k�)2

2

)
. (55)

We can then write the GRPA system of equations for the
response function in the compact matrix form

[I (i�n) − E (k, Q) − �(k, Q)]Pk+Q,k (i�n)

= B(k, Q) + B(k, Q)H (Q)
1

Lz

∑
k′

Pk′+Q,k′ (i�n)

− 1

Lz

∑
k′

B(k, Q)X (k − k′)Pk′+Q,k′ (i�n). (56)

Once all the elements of the matrix Pk+Q,k (ω) have been
calculated, we obtain the retarded responses by making the
analytic continuation i�n → ω + iδ and then summing over
k, i.e.,

P(ω, Q) = Nϕ

SLz

∑
k

Pk+Q,k (ω). (57)

We also use below the proper response functions

P̃k+Q,k (i�n), which are defined by the summation of the
connected diagrams only, i.e., by setting H (Q) in Eq. (56)
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so that

1

Lz

∑
k′

[(I (i�n) − E (k, Q) − �(k, Q))Lzδk,k′

+ B(k, Q)X (k − k′)]P̃k′+Q,k′ (i�n) = B(k, Q). (58)

In terms of the proper response functions, the GRPA equa-
tion can be written as

Pk+Q,k (i�n) = P̃k+Q,k (i�n) + P̃k+Q,k (i�n)H (Q)

× 1

Lz

∑
k′

Pk′+Q,k′ (ω). (59)

VI. DENSITY, CURRENT,
AND EXCITONIC RESPONSE FUNCTIONS

In this section, we define the density, current, and excitonic
response functions. The Fourier transform n(q⊥, qz ) of the
second-quantized charge-density operator is given by

n(0, Q) = −e
∑

τ

∫
du �†

τ (u)e−iQz�τ (u)

= −eNϕ

∑
τ,k

ρτ,τ (q⊥ = 0, k, k + Q), (60)

while, with the current operator given by jz,τ = −eτvF σz, the
second-quantized form Jz,τ (q⊥, qz ) is

Jz,τ (0, Q) =
∫

du �†
τ (u)e−iQz jz,τ�τ (u)

= evF Nϕ

∑
τ,k

τρτ,τ (q⊥ = 0, k, k + Q). (61)

Thus, the density χnn and current χ j j response functions are
given in the GRPA by

χnn(ω, Q) = e2[P1,1(ω, Q) + P1,4(ω, Q)]

+ e2[P4,1(ω, Q) + P4,4(ω, Q)] (62)

and

χ j j (ω, Q) = e2v2
F [P1,1(ω, Q) − P1,4(ω, Q)]

+ e2v2
F [−P4,1(ω, Q) + P4,4(ω, Q)], (63)

respectively. We define an excitonic response function by

χexc(ω, Q) = P2,2(ω, Q) + P3,3(ω, Q) (64)

because P2,2(ω, Q) and P3,3(ω, Q) involve operators that
create or destroy internodal electron-hole pairs.

If we sum over k in the GRPA equation, we get

I (ω + iδ)P(ω, Q) − 1

Lz

∑
k

[E (k, Q) + �(k)]Pk+Q,k (ω)

− 1

Lz

∑
k

B(k)H (Q)P(ω, Q)

+ 1

Lz

∑
k′

[
1

Lz

∑
k

B(k)X (k − k′)

]
Pk′+Q,k′ (ω)

= 1

Lz

∑
k

B(k). (65)

But, by the definition of the self-energy, we have the result

1

Lz

∑
k

B(k)X (k − k′) = �(k′). (66)

Thus, when performing a summation over k, the self-energies
in the equation for P(ω, Q) are exactly canceled by the
vertex corrections due to the ladder diagrams. Moreover,
since e±(k) − e±(k + Q) = ±h̄vF Q does not involve k, the
summation over k gives directly (apart from a multiplica-
tive constant), the responses χnn(ω, Q) and χ j j (ω, Q). The
same procedure cannot be applied to the excitonic response
since e±(k) − e∓(k + Q) = (∓2k ∓ Q)h̄vF which is not just
a function of Q. This cancellation is an example of a Ward
identity and it occurs here because the noninteracting elec-
tronic dispersion is linear and the current operator has the
special form jz,τ = −eτvF σz which is independent of k. We
are thus left, for the components PI,J (ω, Q), with I, J = 1, 4,

(for C = 1) with the equation⎛⎜⎜⎜⎝
ω + iδ − vzQ

−a+(Q)H (Q)
−a+(Q)H (Q)

−a−(Q)H (Q)
ω + iδ + vzQ

−a−(Q)H (Q)

⎞⎟⎟⎟⎠
×

(
P1,1(ω, Q) P1,4(ω, Q)

P4,1(ω, Q) P4,4(ω, Q)

)

=
(

a+(Q) 0

0 a−(Q)

)
, (67)

where we have defined

a±(Q) = 1

2π�

∫ +kc�

−kc�

dk �[〈ρ±,±(k + Q)〉 − 〈ρ±,±(k)〉].
(68)

Note that, by symmetry,

a+(Q) = −a−(Q) = a(Q). (69)

Solving Eq. (68) analytically, we arrive at the following results
for the density and current responses:

χnn(ω, Q) = 2e2vF a(Q)Q

(ω + iδ)2 − a(Q)
Q�

vF
�

e2

ε0π h̄ − v2
F Q2

(70)
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and

χ j j (ω, Q) = e2v2
F

a2(Q)
Q2�2

2e2

πε0 h̄ + 2vF a(Q)Q

(ω + iδ)2 − a(Q)
Q�

vF
�

e2

ε0π h̄ − v2
F Q2

. (71)

Both functions have a single pole at the plasmon frequency ωp

given by

ωp =
√

a(Q)

Q�

vF

�

e2

ε0π h̄
+ v2

F Q2. (72)

In contrast, the proper responses χ̃nn(ω, Q) and χ̃ j j (ω, Q)
have a single pole at the intranodal electron-hole excitation
e±(k) − e±(k + Q) = ±h̄vF Q of the noninteracting electron
gas. This pole is transformed into the plasmon mode at a finite
frequency by the Hartree term in the GRPA.

As we mentioned, the cancellation of the self-energy by the
ladder diagrams does not occur for the excitonic response and
we are thus forced to compute the full GRPA matrix equa-
tion numerically. This we do by discretizing the wave vector
k in the exact same way as when solving the Hartree-Fock
equation for the single-particle Green’s function. We obtain a
matrix equation that has the form

[I (ω + iδ) − ϒ (k)]Pk+Q,k (ω) = B(k), (73)

where ϒ (k) is a 4(2Np + 1) × 4(2Np + 1) matrix, with 2Np +
1 the number of k values used in the HFA calculation.

VII. RESPONSE FUNCTIONS IN THE INCOHERENT
STATE

In the incoherent but interacting ground state (doped or
undoped), the function

a(Q) = Q

2π
(74)

so that the plasmon frequency is given exactly by

ωp =
√

e3vF B

2π2ε0 h̄2 + v2
F Q2 (75)

which is the well-known result [23]. It does not depend on
doping, nor on self-energy and vertex corrections. The density
and current responses are exactly given by

χnn(ω, Q) = e2vF Q2/π

(ω + iδ)2 − ω2
p

(76)

and

χ j j (ω, Q) = e2v2
F

e3B
2π3ε0 h̄2 + vF Q2

π

(ω + iδ)2 − ω2
p

, (77)

respectively. They have a single pole at the plasmon fre-
quency. As Q → 0, the density response goes to zero but the
current response remains finite. The coherences enter these re-
sponse functions and the plasmon frequency only through the
modification of the function a(Q). Note that the continuum of
excitations at ω = vF Q has been transformed into the plasmon
mode by the Hartree term (bubble diagrams) in the GRPA.

FIG. 9. Imaginary part of the excitonic and current response
functions for Q� = 0.15 and vF /c = 0.001 in the undoped coherent
state. The full lines are the GRPA results while the dashed line are
the proper responses. The vertical lines indicate the onset of the
internodal continuum of electron-hole excitations (brown line) and
the Hartree-Fock gap at k = 0 (orange line). The dielectric constant
εr = 1.

In the absence of interaction and for Q = 0, the excitonic
response χ (0)

exc is given by

Im
[−χ (0)

exc(ω, Q = 0)
]

= 1

2vF
�(2vF kF − ω) − 1

2vF
�(2vF kF + ω) (78)

and there is only a continuum of electron-hole pair excitations.
With interaction but in the incoherent state where 〈ρ−,+(k)〉 =
0, the density and current responses are uncoupled from the
excitonic response χexc(ω, Q). Moreover, the bubble diagrams
do not contribute to χexc(ω, Q) in this case. The excitonic
response is thus solution of the equation

{(ω + iδ) − [̃e∓(k) − ẽ±(k + Q)]/h̄}P±
k+Q,k (ω)

+ e2

ε0 h̄
b±(k, Q)

1

Lz

∑
q

X (k − q)P±
q+Q,q(ω)

= b±(k, Q), (79)

where we have defined

b±(k, Q) = 〈ρ±,±(k + Q)〉 − 〈ρ∓,∓(k)〉 (80)

and

ẽτ (k) = eτ (k) + �τ (k). (81)

The excitonic response in the GRPA is found by first solving
Eq. (80) where the upper (lower) sign is for P22(P33) and then
summing over k.

VIII. EXCITONIC RESPONSE
IN THE COHERENT STATE WITH C = 1

Figure 9 shows the imaginary part of the excitonic and
current response functions for Q� = 0.15 and vF /c = 0.001
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for nodes with Chern number C = 1. The full (dashed) line is
the GRPA (proper) response. Since, in the current response,
the ladder diagrams cancel the self-energies in Eq. (65), the
proper responses χ̃ j j (ω, Q) and χ̃nn(ω, Q) have only one pole
which is at a frequency ω = [e+(k) − e+(k + Q)]/h̄ = vF Q
for ω � 0. In the coherent phase, however, all response func-
tions are coupled by the internodal coherence and so this mode
also appears in χ̃exc(ω, Q) (the first peak in the green dashed
line). The other peaks in χ̃exc(ω, Q) at energies En (with
n = 1, 2, . . . ) are electron-hole bound states (excitons). Their
energy increases with n until the energy of the electron-hole
internodal continuum whose onset is Econti(Q) is reached (this
onset is indicated by the vertical brown line in Fig. 9). The
bound-state energies for Q → 0 are approximately given by
eB,n = [Econti(Q) − E1]/nx where the exponent x depends on
the Fermi velocity. Because of the vertex (ladder) corrections,
the onset energy Econti(Q) is slightly redshifted with respect
to the Hartree-Fock gap �HF(Q) = E+(Q) − E−(0) indicated
by the orange line in Fig. 9.

The gapless mode at ω = vF Q is not a pole of χ̃exc(ω, Q) as
calculated in the incoherent state using Eq. (80). It appears in
χ̃exc(ω, Q) only in the coherent state. It is present in χ̃ j j (ω, Q)
and χ̃nn(ω, Q) as an intraband single-particle excitation but
since it shows up in χ̃exc(ω, Q) as a gapless mode, we assume
that it is also the collective mode related to the fluctuations
of the global phase ϕ of the complex order parameter 〈ρ−+〉.
The series of excitonic bound states could then be associated
with fluctuations in the amplitude of the order parameter.
When the Hartree term is considered in calculating the GRPA
response, this gapless mode is strongly renormalized and be-
comes gapped at the plasmon frequency given by Eq. (73).
This frequency is slightly modified by the internodal coher-
ence from its value in the incoherent phase which is given by
Eq. (76). In contrast, the frequency of the excitonic peaks (the
bound states) are almost unchanged when the Hartree term
is switched on. In consequence, there is no gapless (Gold-
stone) mode in the GRPA spectrum of collective excitations
for χexc(ω, Q) but there is one in the proper response. Similar
results are obtained when the GRPA is applied to the study of
collective excitations in superconductors [24,25].

Figure 10 shows the GRPA response functions χ j j (ω, Q)
(blue line) and χexc(ω, Q) (black line) for vF /c = 0.002 and
Q� = 0.015. Again the plasmon appears as an extra pole in
χexc(ω, Q) which is now in-between two bound states. As
vF /c increases and the Hartree-Fock gap decreases, the plas-
mon pole eventually ends up in the continuum of electron-hole
internodal excitations.

Figure 11 shows χ j j (ω, Q) (blue line) and χexc(ω, Q)
(black line) for vF /c = 0.001 and Q� = 0.15 in the pres-
ence of electron doping. The Fermi wave vector is kF � =
0.1. The excitonic response shows two bound states be-
fore the continuum of internodal electron-node excitations
whose onset, indicated by the vertical brown line, would be
at ω = [E+(kF ) − E−(kF − Q)]/h̄ if vertex corrections were
neglected but is actually increased by them. As in the un-
doped case, the excitonic response has an extra peak at the
plasmon frequency. The series of peaks at low frequency
in χexc(ω, Q) is the continuum of electron-hole excitations
in the upper Hartree-Fock band (see Fig. 4) which extends
from ω = [E+(kF ) − E+(kF − Q)]/h̄ to ω = [E+(kF + Q) −
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FIG. 10. Imaginary part of the GRPA excitonic (black curve)
and current (blue curve) response functions for Q� = 0.015 and
vF /c = 0.002 in the undoped coherent phase. The vertical lines indi-
cate the onset of the internodal electron-hole continuum (brown) and
the Hartree-Fock gap at k = 0 (orange line). The dielectric constant
εr = 1.

E+(kF )]/h̄. As already noted, there is no continuum of excita-
tions in χ j j (ω, Q) which has only the plasmon pole. For both
continua in χexc(ω, Q), the peaks are due to our discretization
of the wave vector k which is needed to solve the GRPA
equations numerically.

IX. CONCLUSION

We have studied the effect of the long-range Coulomb
interaction on the internodal coherence in a simple model of
a two-node Weyl semimetal in the extreme quantum limit.
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FIG. 11. Imaginary part of the GRPA excitonic and current re-
sponse functions for Q� = 0.15 and vF /c = 0.002 in the doped
coherent state with Fermi wave vector kF � = 0.1. The vertical brown
line indicates the onset of the internode electron-hole continuum. The
dielectric constant εr = 1.
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We have considered Weyl nodes with Chern number C =
1, 2, 3. As our numerical calculations show, it is possible
to find values of the Fermi velocity vF , dielectric constant,
and the doping level kF where an excitonic condensate is
possible and where the assumptions made to justify our model
are satisfied. Nevertheless, the order parameter of the exci-
tonic state decreases rapidly with the increase in all three
parameters.

At the mean-field level, the main effect of the internodal
electron-hole pairing is the opening of a gap in the chiral
Landau levels making the system insulating. Our calculation
assumes that the two nodes are two distinct systems and so this
gap does not show up in the current or density response func-
tion where only a plasmon pole is present whose frequency
is only slightly affected by the internodal coherence. If the
two nodes are viewed as one system, then the excitonic state
manifests itself as a charge-density wave in real space. The
gap and the sliding motion of the CDW should then change the
conductivity of the Weyl semimetal in several ways and cause
anomalous magnetoelectric transport effects as discussed ex-
tensively in the literature (see Refs. [2–16]). At the moment
of writing this paper, a few papers reported the experimental
observation of an axionic CDW in the quasi-one-dimensional
Weyl semimetal (TaSe4)2I at zero magnetic field [15,29].
These claims are, however, under an active debate [30,31].

In our calculation, the excitonic response function shows
a series of excitonic peaks in the gap opened by the in-
ternodal coherence. Their binding energy decreases until the
electron-hole (internodal) continuum is reached. Because of
the coupling between the different 16 response functions in
the GRPA, an extra gapped mode also appears as a peak in the
excitonic response function. In the proper excitonic response
(ladder diagrams only), this peak is at the frequency ω =
[e±(k) − e±(k + Q)]/h̄ = ±vF Q corresponding to a sim-
ple noninteracting intranodal electron-hole excitation. This
frequency is pushed to the plasmon frequency when the full
GRPA is computed by adding the bubble diagrams.

The presence of a magnetic field modifies profoundly the
excitonic state with respect to its counterpart at zero mag-
netic field. The plasmon mode, the density modulation, and
the Hartree-Fock gap (including its dependence on doping),
which are in principle measurable quantities, all depend on
the strength of the magnetic field. Equation (31) shows that
the order parameter (and so the phase diagram) of the exci-
tonic phase can be obtained from the amplitude of the density
modulation. Another measurable observable of the coherent
state is its magneto-optical spectrum. The optical absorption
is related to the conductivity and to the proper part of the
current response function: σzz(ω) = iχ̃zz(ω, q = 0)/ω. At the
level of approximation made in our paper (keeping only the
n = 0 chiral levels), there is no signature of the coherent state
in absorption. More Landau levels need to be added to our
model in order to see how the inter-Landau-level transitions
are modified when coherence is present. This is not an easy
task since more Landau levels also means more types of co-
herence such as internodal and/or inter-Landau-level. The size
of the matrix that needs to be diagonalized in the calculation
of the current response becomes rapidly out of hand. We leave
this calculation for further work.
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APPENDIX A: HARTREE-FOCK FORMALISM FOR THE
CALCULATION OF THE SINGLE-PARTICLE GREEN’S

FUNCTION IN A COHERENT STATE

We give in this Appendix a summary of the Hartree-Fock
formalism for the calculation of single-particle Green’s func-
tion of a Weyl semimetal in a magnetic field and in the
coherent state. We present the general case where an arbitrary
number of Landau levels are considered and the Weyl nodes
can have a Chern number C = 1, 2, 3. We allow for all types
of coherence: internodal, inter-Landau-level, and complete
entanglement

We consider a simple model of a Weyl semimetal (WSM)
with broken time-reversal symmetry consisting of two nodes
with Chern number C centered at wave vectors b = −τ b̂z in
momentum space and with opposite chiralities τ = ±1. The
noninteracting Hamiltonian for each node, written in the basis
of the two bands that cross, is given by

hτ (k) = τ h̄vF

(
kz β(kx − iky)C

β(kx + iky)C −kz

)
, (A1)

where β is a material-dependent anisotropy factor, vF is the
Fermi velocity, and the wave vector k is restricted to a small
region around each node.

We consider the WSM to be in a magnetic field B = ∇ ×
A =B̂z. After making the Peierls substitution k → k + eA/h̄
and working in the Landau gauge A = (0, Bx, 0), we can
write

hτ (k) = τvF

(
h̄kz β

(√
2h̄
�

a
)C

β
(√

2h̄
�

a†
)C −h̄kz

)
, (A2)

where the ladder operators a, a†, which obey the commutation
relation [a, a†] = 1, are defined by

a = �√
2h̄

(Px − iPy), (A3)

a† = �√
2h̄

(Px + iPy), (A4)

and where P = h̄k + eA with −e the electron charge.
We denote the different Landau levels by the set of indices

(n, s, τ ) where n = 0, 1, 2, 3, . . . and s = ±1 for the positive
and negative energy levels. For the chiral (linearly dispersing
levels), s = +1 only. For the nonchiral levels, the Landau-
level dispersions are given by (to simplify the notation, we
write k instead of kz hereafter, the dispersion being along kz

only)

En>0,s,k,τ = s
h̄vF

�

√
k2�2 + 2n,
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En>1,s,k,τ = s
h̄vF

�

√
k2�2 + 4β2

(
h̄

�

)2

n(n − 1),

En>2,s,k,τ = s
h̄vF

�

√
k2�2 + 8β2

(
h̄

�

)4

n(n − 1)(n − 2),

(A5)

for C = 1, 2, 3, respectively, and the corresponding eigenvec-
tors are given by

wn,s,k,X,τ (r,z) = 1√
Lz

(
un,s,k,τ hn−C,X (r⊥)

vn,s,k,τ hn,X (r⊥)

)
eikz, (A6)

where the factors

(
un,s,k,τ

vn,s,k,τ

)
= 1√

2

⎛⎜⎝sτ (−i)C
√

1 + h̄τvF k
En,s,k,τ√

1 − h̄τvF k
En,s,k,τ

⎞⎟⎠. (A7)

In these equations, X is the guiding-center index in the Lan-
dau gauge, r⊥ is a vector in the plane perpendicular to the
magnetic field, and the factors and the functions hn,X (r⊥) are
defined by

hn,X (r⊥) = ϕn(x − X )e−iXy/�2
/
√

Ly, (A8)

where ϕn(x) is a wave function of the one-dimensional har-
monic oscillator.

There are C degenerate chiral levels at each node which
we denote by the integer n ranging from n = 0 to C − 1. They
have the dispersion

eτ (k) = −τ
h̄vF

�
k�. (A9)

The corresponding eigenvectors are given by

wn,s,k,X,τ (r) = 1√
Lz

(
0

hn,X (r⊥)

)
eikz. (A10)

They are the same for both nodes. Since the Landau-level
energy is independent of the quantum number X, each state
(n, s, k, τ ) has degeneracy Nϕ = S/2π�2 where S = LxLy is
the area of the WSM perpendicular to the magnetic field. The
volume of the WSM is LxLyLz.

We write the field operator for each node in the basis of
these eigenvectors so that

�τ (r) = 1√
Lz

∑
n,s,k,X

(
un,s,k,τ hn−C,X (r⊥)

vn,s,k,τ hn,X (r⊥)

)
eikzcn,s,k,X,τ ,

(A11)

where cn,s,k,X,τ is the destruction operator for an electron in
state (n, s, k, X, τ ). The many-body Hamiltonian is then

H =
∑

τ

∫
d3r �†

τ (r)hτ (r)�τ (r)

+ 1

2

∑
τ,τ ′

∫
d3r

∫
d3r′�†

τ (r)�†
τ ′ (r′)

× V (r − r′)�τ ′ (r′)�τ (r), (A12)

where the Coulomb interaction (in S. I. units)

V (r) = 1

V

∑
q

e2

εrε0

∣∣q2
⊥ + q2

z

∣∣eiq⊥·r⊥eiqzz, (A13)

where the vector q⊥ = qxx̂ + qŷy and εr is the dielectric
constant of the WSM. We remark that writing e−i(±b+k)z in-
stead eikz in the field operators would make no change to
H so that the internodal separation 2b does not enter our
calculation. More precisely, we consider the two nodes as
distinct systems. Another sequence for the field operators,
namely, �†

τ (u)�†
τ ′ (u′)�−τ ′ (u′)�−τ (u) with τ �= τ ′ could also

be considered as it conserves the number of particles in each
node. However, it leads to Fourier components of Coulomb in-
teraction of the form e2/[εrε0(q2

⊥ + (qz ± 2b)2)]. We assume
that b is sufficiently large for these terms to be negligible in
comparison with those that we keep.

In the (n, s, k, X, τ ) basis, the Hamiltonian is given by

H =
∑

t,k,X,τ

Et,k,τ c†
t,k,X,τ

ct,k,X,τ + 1

2LzS

∑
q

e2

ε0εr
(
q2

⊥ + q2
z

) ∑
τ,τ ′

∑
k1,k2

∑
t1,...,t4

∑
X1,...,X4

×
∫

d2r⊥w
†
t1,k1,X1,τ

(r⊥)eiq⊥·r⊥wt4,k1+qz,X4,τ (r⊥)
∫

d2r′
⊥w

†
t2,k2,X2,τ ′ (r′

⊥)e−iq⊥·r′
⊥wt3,k2−qz,X3,τ ′ (r′

⊥)

× c†
t1,k1,X1,τ

c†
t2,k2,X2,τ ′ct3,k2−qz,X3,τ ′ct4,k1+qz,X4,τ , (A14)

where we have defined the superindex t = (n, s) to lighten the notation. The matrix elements∫
d2r⊥w

†
t1,k1,X1,τ

(r⊥)e±iq⊥·r⊥wt2,k2,X2,τ (r⊥) = e± i
2 qx (X1+X2 )�

(τ )
t1,k1;t2,k2

(±q⊥)δX1,X2∓qy�2 , (A15)

where we have defined

�
(τ )
t1,k1;t2,k2

(q⊥) = u∗
t1,k1,τ

ut2,k2,τ Fn1−1,n2−1(q⊥) + v∗
t1,k1,τ

vt2,k2,τ Fn1,n2 (q⊥), if n1, n2 � C

�
(τ )
t1,k1;t2,k2

(q⊥) = v∗
t1,k1,τ

Fn1,n2 (q⊥), if n1 � C and n2 < C

�
(τ )
t1,k1;t2,k2

(q⊥) = vt2,k2,τ Fn1,n2 (q⊥), if n2 � C and n1 < C

�
(τ )
t1,k1;t2,k2

(q⊥) = Fn1,n2 (q⊥), if n1, n2 < C (A16)
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and the function

Fn1,n2 (q⊥) =
√

Min(n1, n2)!

Max(n1, n2)!

(
iq⊥�√

2

)|n1−n2|
e−i(n1−n2 )θL|n1−n2|

Min(n1,n2 )

(
q2

⊥�2

2

)
e− q2⊥�2

4 , (A17)

where θ is the angle between the vector q⊥ and the x axis and Lm
n (x) is a generalized Laguerre polynomial.

At this point, we define the operators

ρt,k,τ ;t ′,k′,τ ′ (q⊥) ≡ 1

Nϕ

∑
X,X ′

e− i
2 qx (X+X ′ )δX,X ′+qy�2 c†

t,k,X,τ
ct ′,k′,X ′,τ ′ . (A18)

The set of averages {〈ρt,k,τ ;t ′,k′,τ ′ (q⊥)〉} define any phase of the electron gas in the WSM whether uniform or modulated spatially
and with any type of coherences: internodal, inter-Landau-level, or complete entanglement.

After making the Hartree-Fock pairing of the operators in the interacting Hamiltonian, we get

HHF = Nϕ

∑
t,k,τ

Et,k,τ ρt,k,τ ;t,k,τ (0) + N2
ϕ

Lz

∑
q

∑
τ,τ ′

∑
k1,k2

∑
t1,...,t4

H (τ,τ ′ )
t1,k1;t4,k1+qz ;t2,k2;t3,k2−qz

(q)〈ρt1,k1,τ ;t4,k1+qz,τ (−q⊥)〉ρt2,k2,τ ′;t3,k2−qz,τ ′ (q⊥)

− Nϕ

Lz

∑
q

∑
τ,τ ′

∑
k1,k2

∑
t1,...,t4

X (τ,τ ′ )
t1,k1;t4,k1+qz ;t2,k2;t3,k2−qz

(q)〈ρt1,k1,τ ;t3,k2−qz,τ ′ (−q⊥)〉ρt2,k2,τ ′;t4,k1+qz,τ (q⊥), (A19)

where t⊥ = txx̂ + tŷy and the Hartree and Fock interactions are given by

H (τ,τ ′ )
t1,k1;t2,k2;t3,k3;t4,k4

(q) = 1

S
�

(τ )
t1,k1;t2k2

(q⊥)V (q)�(τ ′ )
t3k3;t4,k4

(−q⊥), (A20)

X (τ,τ ′ )
t1,k1;t2,k2;t3,k3;t4,k4

(q) = 1

S

∑
t⊥

e−it⊥×q⊥�2
�

(τ )
t1,k1;t2,k2

(t⊥)V (t⊥, qz )�(τ ′ )
t3,k3;t4,k4

(−t⊥). (A21)

To compute the 〈ρt,k,τ ;t ′,k′,τ ′ (q⊥)〉’s, we define the single-particle Matsubara Green’s function

Gt,k,τ ;t ′,k′,τ ′ (q⊥; τ0) = 1

Nϕ

∑
X,X ′

e− i
2 qx (X+X ′ )δX,X ′−qy�2 Gt,k,τ ;t ′,k′,τ ′ (X, X ′; τ0), (A22)

where the imaginary-time Green’s function is defined as

Gt,k,τ ;t ′,k′,τ ′ (X, X ′; τ0) = −〈Tτ0 ct,k,X,τ (τ0)c†
t ′,k′,X ′,τ ′ (0)〉, (A23)

with Tτ0 the imaginary-time ordering operator and τ0 the imaginary time (not to be confused with the node index). When τ0 = 0−,

Gt,k,τ ;t ′,k′,τ ′ (q⊥; τ0 = 0−) = 〈ρt ′,k′,τ ′;t,k,τ (q⊥)〉. (A24)

Now, using the Fourier transform

Gt,k,τ ;t ′,k′,τ ′ (q⊥,iωm) =
∫ β h̄

0
dτ0eiωmτ0 Gt,k,τ ;t ′,k′,τ ′ (q⊥, τ0), (A25)

with the Matsubara fermionic frequencies

ωm = (2m + 1)π

β h̄
, m = 0,±1,±2, . . . (A26)

and β = 1/kBT with T the temperature and kB the Boltzmann constant, we finally obtain the sought averages by performing the
Matsubara frequency sum

〈ρt ′,k′,τ ′;t,k,τ (q⊥)〉 = 1

β h̄

∑
iωm

e−iωm0−
Gt,k,τ ;t ′,k′,τ ′ (q⊥, iωm). (A27)

It remains to derive the Hartree-Fock equation for the Green’s function Gt,k,τ ;t ′,k′,τ ′ (q⊥, iωm). This is done by using the
Heisenberg equation of motion

h̄
∂

∂τ0
(. . .) = [H − μNe, (. . .)], (A28)

where μ is the chemical potential and Ne the electron-number operator. After a long calculation, we get[
iωn − 1

h̄
(Et,k,τ − μ)

]
Gt,k,τ ;t ′,k′,τ ′ (q⊥, iωn)
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= δτ,τ ′δt,t ′δk,k′δq⊥,0 + Nϕ

h̄Lz

∑
q′

∑
τ ′′

∑
k1

∑
t1,t3,t4

H (τ ′′,τ )
t1,k1;t4,k1+q′

z ;t,k;t3,k−q′
z
(q′

⊥ − q⊥, q′
z )〈ρt1,k1,τ ′′;t4,k1+q′

z,τ
′′ (q⊥ − q′

⊥)〉

× e− i
2 (q⊥×q′

⊥)�2 ·̂zGt3,k−q′
z,τ ;t ′,k′,τ ′ (q′

⊥; ωn)

− 1

h̄Lz

∑
q′

∑
τ ′′

∑
k1

∑
t1,t3,t4

X (τ ′′,τ )
t1,k1;t4,k1+q′

z ;t,k;t3,k−q′
z
(q′

⊥ − q⊥, q′
z )〈ρt1,k1,τ ′′;t3,k−q′

z,τ
(q⊥ − q′

⊥)〉

× e− i
2 (q⊥×q′

⊥)�2 ·̂zGt4,k1+q′
z,τ

′′;t ′,k′,τ ′ (q′
⊥; ωn). (A29)

The average of the electronic density is given by

〈ne(q)〉 =
∑

τ

∫
d3r〈�†

τ (r)e−iq·r�τ (r)〉 = Nϕ

∑
τ,t,t ′,k

�
(τ )
t,k;t ′,k+qz

(−q⊥)〈ρt,k,τ ;t ′,k+qz,τ (q⊥)〉 (A30)

an so in the particular case where the electron gas is not modulated spatially, we must have 〈ne(q)〉 �= 0 for q = 0 only which
implies that

〈ρt ′,k′,τ ′;t,k,τ (q⊥)〉 = 〈ρt ′,k,τ ′;t,k,τ (0)〉δk,k′δq⊥,0. (A31)

This condition simplifies the Hamiltonian which becomes

HHF = Nϕ

∑
t,k,τ

Et,k,τ ρ
(τ,τ )
t,t (k) − Nϕ

Lz

∑
τ,τ ′

∑
k1,k2

∑
t1,...,t4

X (τ,τ ′ )
t1,k1;t4,k2;t2,k2;t3,k1

(qz = k2 − k1)
〈
ρ

(τ,τ ′ )
t1,t3 (k1)

〉
ρ

(τ ′,τ )
t2,t4 (k2) (A32)

and the equation for the single-particle Green’s function also simplifies to[
iωn − 1

h̄
(Et,τ (k) − μ)

]
G(τ,τ ′ )

t,t ′ (k, iωn) − 1

h̄

∑
τ ′′,t ′′

�
(τ,τ ′′ )
t,t ′′ (k)G(τ ′′,τ ′ )

t ′′,t ′ (k, iωn) = δτ,τ ′δt,t ′ , (A33)

where we have defined the Fock self-energy

�
(τ,τ ′ )
t,t ′ (k) = − 1

Lz

∑
k1

∑
t1,t2

X (τ ′,τ )
t1,k1;t ′,k;t,k;t2,k1

(0, k − k1)
〈
ρ

(τ ′,τ )
t1,t2 (k1)

〉
(A34)

and simplified the notation to

G(τ,τ ′ )
t,t ′ (k, iωn) = Gt,k,τ ;t ′,k,τ ′ (q⊥ = 0, iωn), (A35)〈

ρ
(τ,τ ′ )
t,t ′ (k)

〉 = 〈ρt,k,τ ;t ′,k,τ ′ (q⊥ = 0)〉. (A36)

In a uniform state, the Hartree term is canceled by the
positive ionic background of the WSM and so there is no
Hartree self-energy. The Hartree-Fock equation of motion
for G(τ,τ ′ )

t,t ′ (k, iωn) is a self-consistent equation since the self-
energy contains the very averages that we want to compute.

Defining the superindices I, J, K = (t, τ ) = 1, 2, 3, . . . , N
where N is the total number of levels considered, Eq. (A33)
can be written as∑

K

[iωnδI,K − FI,K (k)]GK,J (k, iωn) = δI,J , (A37)

where the matrix

FI,J (k) = 1

h̄
{[Et,τ (k) − μ]δI,J − �I,J (k)}. (A38)

Because of the symmetry relations

〈ρI,J (k)〉 = 〈ρJ,I (k)〉∗, (A39)

Fn,n′ (q⊥) = [Fn′,n(−q⊥)]∗, (A40)

�
(τ )
t,k;t ′k′ (q⊥) = [

�
(τ )
t ′,k′;t,k (−q⊥)

]∗
, (A41)

it follows that

H (τ,τ ′ )
t1,k1;t2,k2;t3,k3;t4,k4

(q) = [
H (τ ′,τ )

t4,k4;t3,k3;t2,k2;t1,k1
(−q)

]∗
,

X (τ,τ ′ )
t1,k1;t2,k2;t3,k3;t4,k4

(q) = [
X (τ ′,τ )

t4,k4;t3,k3;t2,k2;t1,k1
(−q)

]∗
(A42)

and for the self-energies

�
(τ,τ ′ )
t,t ′ (k) = [

�
(τ ′,τ )
t ′,t (k)

]∗
. (A43)

Thus, FI,J (k) is a Hermitian matrix that can be diagonalized
by a unitary transformation. In matrix form,

F (k) = U (k)D(k)U †(k), (A44)

where U (k) is the matrix of the eigenvectors of F (k) and D(k)
the diagonal matrix of its real eigenvalues dm(k) where m =
1, 2, . . . , N. The Green’s functions are given by

GI,J (k, iωn) =
N∑

m=1

UI,m(k)[U †(k)]m,J

iωn + μ/h̄ − dm(k)
. (A45)

Performing the Matsubara frequency sum, we get, at T =
0 K, that the ground-state averages are given by

〈ρJ,I (k)〉 =
N∑

m=1

UI,m(k)[U †(k)]m,J�[eF − dm(k)], (A46)

where eF is the Fermi level which is determined by the rela-
tion∑

I

∑
k

〈ρI,I (k)〉 =
∑

k

N∑
m=1

�[eF − dm(k))] = Ne, (A47)

where Ne is the number of electrons in the two nodes.
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In the approximation where we consider only the chiral
levels in the Hilbert space and where the state is uniform
spatially, we have the simplification

�
(τ )
t1,k1;t2,k2

(q⊥) = Fn1,n2 (q⊥), (A48)

with the integers n1, n2 ranging from 0 to C − 1 and with t1 =
n1, t2 = n2 since s1 = s2 = 1. The interactions are then given
by

X (τ,τ ′ )
n1,n2,n3,n4

(q⊥ = 0, qz ) = e2

ε0εr

∫ +∞

0

dt⊥�

(2π )2

t⊥�

t2
⊥�2 + q2

z �
2

×
∫ 2π

0
dθ Fn1,n2 (t⊥�)Fn3,n4 (−t⊥�),

(A49)

where θ is the angle between the vector t⊥ and the x axis.
They do not depend on the chirality index nor on the vectors
k1, . . . , k4. The angular part is

∫ 2π

0 dθ e−i(n1−n2+n3−n4 )θ and is
finite only if n1 − n2 + n3 − n4 = 0. The nonzero interactions

are thus given by

Xn1,n2,n3,n4 (x) = e2

2πε0εr

√
Min(n1, n2)!

Max(n1, n2)!

√
Min(n3, n4)!

Max(n3, n4)!

×
∫ +∞

0
dy

y

y2 + x2

(
y√
2

)|n1−n2|+|n3−n4|

× i|n1−n2|−|n3−n4|L|n1−n2|
Min(n1,n2 )

(
y2

2

)
L|n3−n4|

Min(n3,n4 )

×
(

y2

2

)
e− y2

2 . (A50)

They have the form Xn1,n2,n2,n1 or Xn1,n1,n2,n2 for C = 1, 2.

For C = 3, one must add to these terms the four terms
X2,1,0,1, X1,2,1,0, X0,1,2,1, X1,0,1,2. Thus, there are 1, 6, and 19
nonzero interactions for C = 1, 2, 3, respectively. They are,
however, not all different as shown in Appendix B.

APPENDIX B: FOCK INTERACTIONS FOR C = 1, 2, 3

The nonzero Fock interactions, defined in Eq. (A50), are given by (x = k� and α = e2/2πε0εr) the following.

1. C = 1

X0,0,0,0(x) = α
1

2
e

x2

2 �

(
0,

x2

2

)
. (B1)

2. C = 2

The above result and

X1,1,1,1(x) = α
1

8
(2 + x2)

[
−2 + (2 + x2)e

x2

2 �

(
0,

x2

2

)]
, (B2)

X0,0,1,1(x) = X1,1,0,0(x) = α
1

4

[
−2 + (2 + x2)e

x2

2 �

(
0,

x2

2

)]
, (B3)

X0,1,1,0(x) = X1,0,0,1(x) = α
1

2

[
1 − 1

2
x2e

x2

2 �

(
0,

x2

2

)]
. (B4)

3. C = 3

All of the above results and

X0,0,2,2(x) = X2,2,0,0(x) = α
1

16

[
−12 − 2x2 + (8 + 8x2 + x4)e

x2

2 �

(
0,

x2

2

)]
, (B5)

X1,1,2,2(x) = X2,2,1,1(x) = α
1

32
(2 + x2)

[
−12 − 2x2 + (8 + 8x2 + x4)e

x2

2 �

(
0,

x2

2

)]
,

X2,2,2,2(x) = α
1

128
(8 + 8x2 + x4)

[
−12 − 2x2 + (8 + 8x2 + x4)e

x2

2 �

(
0,

x2

2

)]
, (B6)

and

X0,2,2,0(x) = X2,0,0,2(x) = α
1

16

[
4 − 2x2 + x4e

x2

2 �

(
0,

x2

2

)]
, (B7)

X1,2,2,1(x) = X2,1,1,2(x) = α
1

32
(4 + x2)

[
4 + 2x2 − (4x2 + x4)e

x2

2 �

(
0,

x2

2

)]
, (B8)
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and

X2,1,0,1(x) = X1,2,1,0(x) = X0,1,2,1(x) = X1,0,1,2(x)

= α
1

8
√

2

[
4 + 2x2 − (4x2 + x4)e

x2

2 �

(
0,

x2

2

)]
. (B9)
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