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Orbital doublet driven even-spin Chern insulators
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Quantum spin Hall insulators hosting edge spin currents hold great potential for low-power spintronic devices.
In this paper, we present a universal approach to achieve a high and near-quantized spin Hall conductance
plateau within a sizable bulk gap. Using a nonmagnetic four-band model Hamiltonian, we demonstrate that
an even-spin Chern (ESC) insulator can be accessed by tuning the sign of spin-orbit coupling (SOC) within a
crystal symmetry-enforced orbital doublet. With the assistance of a high-spin Chern number of CS = −2 and spin
U (1) quasisymmetry, this orbital doublet driven ESC phase is endowed with the near double quantized spin Hall
conductance. We identify 12 crystallographic point groups supporting such a sign-tunable SOC. Furthermore, we
apply our theory to realistic examples, and show the phase transition from a trivial insulator governed by positive
SOC in the RuI3 monolayer to an ESC insulator dominated by negative SOC in the RuBr3 monolayer. This
orbital doublet driven ESC insulator, RuBr3, showcases nontrivial characteristics including helical edge states,
near double quantized spin Hall conductance, and robust corner states. Our work provides different pathways in
the pursuit of the long-sought quantum spin Hall insulators.
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I. INTRODUCTION

Two-dimensional (2D) quantum spin Hall (QSH) insu-
lators have garnered significant interest for their promising
applications in spintronics and magnetoelectronics [1–4].
They manifest topologically protected helical edge states
where the spin is locked to the momentum through spin-orbit
coupling (SOC) and time-reversal symmetry (TRS), providing
dissipationless spin transports ideal for low-power magnetic
memory devices. The first predictions of realistic QSH insu-
lators identified graphene [1] and the HgTe quantum well [2]
as candidates, each characterized by a SOC-induced inverted
bulk gap along with a pair of helical edge states within this
gap. This topological phase is generally characterized by the
topological invariant Z2 = 1, which also serves as the symme-
try indicator for TRS-preserved systems [5]. Over the years,
this Z2 = 1 topological phase has been observed in several
quantum wells [6–8] and pristine 2D materials such as WTe2,
bismuthene, Na3Bi, and germanene [9–14].

In addition to the Z2 index, the spin Chern number CS , also
established as a topological invariant, is directly related to the
number of pairs of helical edge states [15]. In particular, when
the real-spin component Sz remains preserved, CS defines
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the quantized spin Hall conductance (SHC) as σ S
xy = CS

e
2π

.
These two invariants are related by Z2 = mod(CS, 2). There-
fore, QSH insulators with two pairs of helical edge states
in the |CS| = 2 regime are considered to be trivial within
conventional Z2 classification. However, experiments have ob-
served near double quantized conductance in twisted bilayers
WSe2 and MoTe2 [16,17], demonstrating that QSH effects
can indeed manifest in even-spin Chern (ESC) insulators.
Regarding the absence of spin U (1) symmetry in realistic
materials and the consequent lack of exact quantization of
SHC [5,15,18], we have recently emphasized the pivotal role
of spin U (1) quasisymmetry for the near quantization of SHC
in TRS-preserved Z2 = 1 or such Z2 = 0 systems, as well
as TRS-broken cases [19]. Beyond theoretical predictions of
magnetic high-spin Chern insulators [20], and the ESC phase
in monolayer α-Sb/Bi [21–23] and the magnetic Fe2BrMgP
monolayer and TiTe bilayer [24], we have predicted near-
double-quantized SHC in twisted bilayer transition metal
dichalcogenides and monolayer RuBr3 [19] protected by spin
U (1) quasisymmetry. In this paper, we will present a general
approach to realize an ESC phase with a symmetry-protected
near double quantized SHC within a large bulk gap, which
would be an ideal platform for observing QSH effects and
further promote applications of QSH insulators.

First, using a nonmagnetic four-band model Hamilto-
nian, we demonstrate that an ESC phase with CS = −2
can be accessed by tuning the sign of SOC within a
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FIG. 1. Schematic for designing ESC insulators with CS = −2:
By tuning the sign of SOC within an orbital doublet from positive to
negative, a phase transition from CS = 0 to CS = −2 can be realized.

crystal symmetry-enforced orbital doublet, as shown in
Fig. 1. Such an orbital doublet driven ESC phase is endowed
with two notable features: (i) a sizable bulk gap opened by
first-order spin-preserved SOC; (ii) a high near-quantized
SHC approaching −2 (in unit of e/2π ) protected by spin
U (1) quasisymmetry. Thereafter, we enumerate 12 crystal-
lographic point groups supporting the orbital doublets with
sign-alterable SOC effects. Furthermore, we present realistic
examples to demonstrate our theory. As shown below, a trivial
insulator driven by positive SOC transforms into a nontriv-
ial ESC insulator induced by negative SOC, as observed in
the transition from monolayer RuI3 to RuBr3. In addition to
the topologically nontrivial features such as the near double
quantized SHC and two pairs of helical edge states, we further
show robust in-gap corner states that is associated with the
slightly gapped edge states in RuBr3.

II. COMPUTATIONAL DETAILS

Density functional theory calculations are performed us-
ing the full-potential augmented plane wave plus the local
orbital code (WIEN2K) [25]. The optimized lattice constants
of RuI3, RuBr3, RuCl3, and RuF3 monolayers are a = b =
6.667, 6.159, 5.747, and 4.827 Å, respectively. A vacuum
slab of 15 Å is set along the c axis for both systems. The
muffin-tin sphere radii are chosen to be 2.2, 2.4, 2.1, and
1.5 bohrs for Ru, I/Br, Cl, and F atoms, respectively. The
cutoff energy of 14 Ry is set for plane-wave expansions of
interstitial wave functions. We use the 11 × 11 × 1 k mesh
for integration over the Brillouin zone. SOC is included by
the second variational method with scalar relativistic wave
functions. The electron correlation of Ru 4d electrons is taken
into account by adopting a typical Hubbard U of 2 eV and
a Hund’s exchange of 0.5 eV [26]. The Wannier functions
of Ru 4d , I 5p, and Br 4p orbitals are constructed using
WIEN2WANNIER [27] and WANNIER90 [28] without performing
maximally localized procedures. The topological edge states
and SHC are calculated by the iterative Green’s function and

the Kubo formula [29], respectively, as implemented in the
WANNIERTOOLS package [30]. Since the RuCl3 monolayer ex-
hibits electronic structures and topological characters similar
to those of RuBr3, and the metallic RuF3 monolayer is be-
yond our interests, we present the results for RuI3 and RuBr3

monolayers in the main text, and those for RuCl3 and RuF3

monolayers in Fig. 7 in the Appendix B.

III. RESULTS

A. Symmetry and model of even-spin Chern phase

To begin with, we will show that a nontrivial ESC phase
can be realized within a nonmagnetic four-band model Hamil-
tonian based on an orbital doublet that is characterized by
a 2D irreducible representation (irrep). We consider a typ-
ical doublet formed by px and py orbitals as p± = (px ±
ipy)/

√
2, where the subscript +/− denotes orbital angular

momentum lz = +1/ − 1. To generate a 2D irrep furnished
by the p± doublet, here we consider a D6h point group, of
which the generators are threefold rotation symmetry C3z

along the z axis, twofold rotation symmetry C2z/C2y along
the z/y axis, and space inversion symmetry I . In the basis
of {|p+,↑〉, |p−,↑〉, |p+,↓〉, |p−,↓〉}, the representation of
symmetry operations is given by C3z = ei π

3 σz ⊗ ei 2π
3 τz , C2z =

ei π
2 σz ⊗ −τ0, C2y = ei π

2 σy ⊗ −τx, I = I2×2 ⊗ −I2×2, and TRS
T = K · iσy ⊗ τx, where K is the complex conjugation opera-
tor, I2×2 is a 2 × 2 identity matrix, and σx,y,z and τx,y,z are Pauli
matrices for spin and orbital degrees of freedom, respectively.
By imposing those symmetries, we derive the generic form of
the effective Hamiltonian as follows,

H (k) = ε0(k)I4×4 + C
[(

k2
x − k2

y

)
σ0 ⊗ τx + 2kxkyσ0 ⊗ τy

]
+ D

(
k2

x + k2
y

)
σz ⊗ τz + Eσz ⊗ τz, (1)

with ε0(k) = A − B(k2
x + k2

y ). Note that the symmetry pre-
serves the term Eσz ⊗ τz which is contributed by the
first-order spin-preserved SOC. The resulting electronic struc-
ture consists of two sets of doubly degenerate bands protected
by I and T symmetry, yielding an energy gap 2E . This
bulk gap 2E , primarily opened by first-order SOC, can reach
∼100 meV to against thermal fluctuation and local disorder.
Furthermore, the change of the sign of E from positive to neg-
ative marks a phase transition accompanied by band inversion,
as shown in Fig. 2. Note that such band inversion does not
change the Z2 index of the system because the wave functions
of the lowest conduction band and the highest valence band
at � share the same parity. However, we find that such a
band inversion signifies a topological phase transition from
a trivial insulator to a nontrivial ESC insulator characterized
by CS = −2 (see Appendix A).

We note that such a topological phase transition, driven
by altering the sign of the SOC within orbital doublets, can
be achieved by orbital engineering. Specifically, some d-
orbital doublets, undergoing transformations identical to the
p± doublet but with an opposite lz, can contribute negative
SOC in contrast to the positive one within p±. We identify
12 crystallographic point groups that can support the sign-
alterable SOC within specific orbital doublets, as listed in
Table I. For instance, the orbital doublet d±2 = |lz = ±2〉 is
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FIG. 2. Band structures of the model Hamiltonian in Eq. (1)
with the parameters A = B = 0, C = D = 0.3: From (a) E = 0.1 to
(b) E = −0.1, the band inversion marks a phase transition from a
trivial insulator to an ESC insulator with CS = −2.

supported by (C3h, D3h,C6,C6v,C6h, D6, D6h) point groups.
Under the rotational symmetries that can distinguish the two
states in an orbital doublet, the d−2 state transform as p+,
and d+2 transforms as p−, e.g., the symmetry operation C3z

introduces a phase factor e−i 2π
3 τz to d±2 but an opposite phase

factor ei 2π
3 τz to p±. Therefore, the d±2 doublet will yield

a negative splitting when SOC emerges, in contrast to the
positive SOC splitting in p±. Similarly, the e′

± doublet sup-
ported by (C3,C3v, D3, D3d , S6) point groups is formulated as
e′
± = ± cos α|lz = ±2〉 − sin α|lz = ∓1〉, where sin2 α varies

from 0 to 1/3 depending on local d-orbital environments [31].
The e′

± transforms as p∓, and thus also provides a neg-
ative SOC. Note that two other d-orbital doublets listed
in Table I, specifically d± = |lz = ±1〉 and e′

g± = sin α|lz =
∓2〉 ∓ cos α|lz = ±1〉, both yield the positive SOC just as that
in p±.

We emphasize that among the 12 crystallographic point
groups in Table I, while lowering symmetries from the highest
symmetric point group D6h [Eq. (1)] may introduce additional
terms, the low-energy physics at the � point remains intact.
For instance, in point group D3d , the term F [(k2

x − k2
y )σx ⊗

τz + 2kxkyσy ⊗ τz] emerges [19], serving as spin-mixing per-
turbations. More notably, within the eigenspace of the model
Hamiltonian in Eq. (1), which is spanned by an orbital dou-
blet combined with electron spin, spin U (1) quasisymmetry
is present to eliminate the first-order spin-mixing pertur-
bation [19,32]. Such a symmetry plays a pivotal role for
protecting QSH effects in realistic materials. Consequently,
despite a trivial Z2 index, the ESC systems described by our
model can exhibit a near double quantized SHC plateau within
a sizable bulk gap. In addition, the edge state would open
a small gap by spin-mixing perturbation. These features are

TABLE I. Crystallographic point groups that permit orbital dou-
blets with a sign-tunable SOC (both positive and negative).

Point groups Doublets SOC sign

C3h, D3h,C6,C6v,C6h, D6, D6h p±, d± +
d±2 −

C3,C3v, D3, D3d , S6 p±, e′
g± +

e′
± −

FIG. 3. (a) Crystal structure of RuI3 and RuBr3 monolayers with
Ru and I/Br atoms represented by red and gray balls, respectively.
In the bottom panel, the 1a, 2c, and 3 f maximal Wyckoff positions
within the c = 0 plane are denoted. (b) Band structures of RuI3

monolayer without SOC. The Fermi level is set at the zero energy.

further confirmed by realistic 2D examples presented in the
following section.

B. Realistic materials with tunable SOC

We take the RuI3 and RuBr3 monolayers as examples to
demonstrate an ESC phase that is accessible through tuning
the sign of SOC. The three-dimensional form of RuI3 has been
crystallized in a rhombohedral structure with space group
R3̄ [33], and its 2D counterpart is in the space group P3̄1m,
providing the little point group D3d at the � point, which is
included in Table I. Recent studies have shown that, due to
intricate SOC effects combined with strong Ru-I hybridiza-
tion, RuI3 exhibits paramagnetic behavior and undergoes a
metal-to-insulator transition from bulk to monolayer [33–37].
Therefore, the RuI3 monolayer would be a great platform
for investigating SOC effects on topological characteristics.
Moreover, the RuBr3 monolayer is also of interest for the
variation of the relative importance of the SOC at the Ru
and ligand Br/I sites, and for the possibly new topological
properties.

We first present the band structures of the RuI3 monolayer
in the absence of SOC. Figure 3(b) illustrates that, without
SOC, two isolated bands around the Fermi level form cross-
ings at � and K points. This band degeneracy is protected by
the crystal symmetry and can be lifted by SOC. As shown in
Figs. 4 and 5(a), a bulk gap is opened when SOC emerges,
signifying the RuI3 monolayer as a band insulator [individual
I and Ru SOC effect in Figs. 4(a) and 4(c), and a joint one in
Fig. 5(a)]. To characterize the topological phase of the RuI3

monolayer, we calculate the Z2 index by computing the parity
eigenvalues of valence bands at two time-reversal-invariant
momenta [38], namely � and M. The same parity at � and
M yields a Z2 = 0. As a result, we find that RuI3 monolayer
is a Z2 trivial insulator.

It is worth noting that within the category of topologically
trivial insulators, there exists a special subgroup known as
obstructed atomic insulators (OAIs), as proposed based on
topological quantum chemistry (TQC) theory [39–43]. Within
the TQC framework, for topologically trivial insulators, the
band representation (BR) of all occupied bands is a sum of
elementary band representations (EBRs) induced from atomic
orbitals at maximal Wyckoff positions. And OAI refers to
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FIG. 4. Band structures of the RuI3 monolayer with (a) only I
SOC active and (c) only Ru SOC active. Combined with electron
spin, the orbital doublets (b) p± of I 5p states and (d) e′

± of Ru 4d-
t2g states form the coirreps around the Fermi level at the � point,
undergoing positive and negative SOC splitting, respectively.

the situation that some of those Wyckoff positions are empty
sites without atoms occupied. By calculating the BR of va-
lence bands, we find that the BR decompositions of the RuI3

monolayer have to include an EBR at the empty Wyckoff
position 1a, i.e., the center of the honeycomb lattice [see
Fig. 3(a)]. Therefore, the RuI3 monolayer falls into the cat-
egory of OAIs. This is also captured by the emergence of
obstructed metallic edge states, as shown in Fig. 5(c), which
appear when one cuts the edge containing the obstructed 1a
site.

We now take a close look at SOC effects. As shown above,
SOC splitting is responsible for the band gap of the RuI3

monolayer. When we examine the individual contributions of
SOC from Ru and I elements, we find that the band splitting in
RuI3 is primarily driven by I SOC, as evidenced by the same
coirrep feature of the lowest conduction bands and highest
valence bands, i.e., (�−

5 ⊕ �−
6 ) over �−

4 , for both Figs. 4(a)
and 5(a). In contrast, when Ru SOC is considered indepen-
dently, as shown in Fig. 4(c), the band gap at the � point
is inverted, yielding a negative splitting �−

4 over (�−
5 ⊕ �−

6 ).
Such SOC sign change behavior is well predicted as the case
of D3d in Table I.

Despite the fact that either positive or negative SOC split-
ting of the orbital doublet does not change Z2, the model
Hamiltonian in Eq. (1) predicts that the SOC sign change trig-
gers a topological phase transition between the trivial CS = 0
phase and the nontrivial CS = −2 phase. To provide a realistic
material candidate for the latter case, we naturally move to
RuBr3, taking into account the reduced SOC strength associ-
ated with Br 4p electrons and their weaker hybridization with

FIG. 5. (a) Band structures with SOC, (c) edge spectrum and
SHC, and (e) spin components of the edge states for the RuI3 mono-
layer; (b), (d), and (f) corresponding results for the RuBr3 monolayer.

Ru 4d states as compared to I 5p electrons. As anticipated,
our results show a band inversion from RuI3 to RuBr3, as
evidenced by the SOC-induced splitting at � shifting from a
positive (�−

5 ⊕ �−
6 )-over-�−

4 configuration to a negative �−
4 -

over-(�−
5 ⊕ �−

6 ) one [see Figs. 5(a) and 5(b)].

C. Nontrivial features in ESC insulator

Despite both RuI3 and RuBr3 belonging to the Z2 = 0
phase, their distinct topological features are evident in the
edge and SHC behaviors. In stark contrast to RuI3, RuBr3

exhibits four metallic edge states and two Dirac-like edge
crossings [see Figs. 5(c)–5(f)]. A closer examination of
these edge crossings reveals a small gap of 3 meV, which
is opened by spin-mixing perturbations. Moreover, unlike
the absent SHC in RuI3, RuBr3 exhibits a SHC plateau
within a large bulk gap of 130 meV, and the SHC value
of −1.93 closely approaches the quantized value of −2.
As discussed above, the transition from RuI3 to RuBr3 in-
volves a weakening of the positive SOC from the ligands
p orbitals, with the Ru negative SOC become dominant in
RuBr3, giving rise to the topological phase transition from
a trivial insulator with CS = 0 to an ESC insulator with
CS = −2. Note that these topologically nontrivial features
in RuBr3 are protected by a nonzero CS and spin U (1)
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FIG. 6. Spatial distributions of the state at the Fermi level for
(a) hexagonal-, (b) triangular-, and (c) rhomboid-shaped nanodisks
of RuBr3.

quasisymmetry [19]. Thus, our findings highlight the orbital
doublet driven ESC insulators, as described by our nonmag-
netic four-band model Hamiltonian, as an ideal platform for
realizing QSH effects.

In addition, we note that Ref. [44] has predicted that in
ESC insulators, general spin-mixing interactions that open the
edge gap introduce a mass term on the edges, accompanied
by a phase difference between the mass terms on adjacent
edges. Such an edge mass kink [45] would give rise to corner
localized charge and thus the in-gap corner modes, indepen-
dent of the specific symmetry indicators or the geometry of
nanodisks. Here, the ESC insulator RuBr3 with a spin-mixing
induced edge gap closely conforms to the case in Ref. [44]. To
check the existence of corner states, we construct nanodisks
with hexagonal, triangular, and rhomboid shapes for RuBr3

and plot the real-space distributions of the state at the Fermi
level, which is determined by valence electron counting and
resides within the energy range of the edge gap. As shown
in Fig. 6, we find that the in-gap states are well localized at
the corners, independent of the geometry. Our results are in
accordance with theoretical predictions about robust corner
states in TRS-preserved |CS| = 2 systems [44]. As a result,
manifold nontrivial characteristics embedded in the orbital
doublet driven ESC insulators, including helical edge states,

high near-quantized SHC, and robust in-gap corner modes,
enrich their potential applications spanning various fields.

IV. SUMMARY

To summarize, we develop a nonmagnetic four-band model
Hamiltonian based on a crystal symmetry-enforced orbital
doublet. We propose a generic approach to realize a nontrivial
ESC phase with CS = −2 by tuning the sign of SOC within or-
bital doublets, which can be supported in 12 crystallographic
point groups. Realistic 2D examples, specifically the evolu-
tion from the RuI3 monolayer to RuBr3, demonstrate that a
trivial CS = 0 insulator governed by positive SOC transforms
into a nontrivial CS = −2 insulator dominated by negative
SOC. Moreover, we show that such orbital doublet driven ESC
insulators manifest nontrivial features, including two pairs
of helical edge states, high near-quantized SHC, and robust
in-gap corner modes. Our work presents a universal strategy to
design ESC insulators featuring a near double quantized SHC
plateau within a large bulk gap, offering different insights into
the exploration of QSH insulators.
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APPENDIX A: SPIN CHERN NUMBER FOR NONMAGNETIC FOUR-BAND MODEL

The low-energy effective Hamiltonian under a D6h point group [Eq. (1)] does not include spin-mixing terms, so we could
separate the spin-up and spin-down channels for simplicity. Then the Hamiltonian for the spin-up channel is as follows,

H (k) = ε0(k)τ0 + C
[(

k2
x − k2

y

)
τx + 2kxkyτy

] + [
E + D

(
k2

x + k2
y

)]
τz, (A1)

where ε0(k) = A − B(k2
x + k2

y ). By substituting kx = k cos φ and ky = k sin φ, Eq. (A1) can be rewritten as

H (k) =
(

ε0(k) + cos θ sin θe−i2φ

sin θei2φ ε0(k) − cos θ

)
, (A2)

where cos θ = E+Dk2

[C2k4+(E+Dk2 )2]
1
2

and sin θ = Ck2

[C2k4+(E+Dk2 )2]
1
2

. The wave functions are given by

|−〉 =
(

e−i2φ sin θ
2

− cos θ
2

)
and |+〉 =

(
e−i2φ cos θ

2

sin θ
2

)
, (A3)

with corresponding energies E± = ε0(k) ∓
√

C2k4 + (E + Dk2)2. For the lower band |−〉, the Berry curvature 
−
kφ

is


−
kφ = 
−

θφ

∂ (θ, φ)

∂ (k, φ)
=

(
∂A−

φ

∂θ
− ∂A−

θ

∂φ

)
∂ (θ, φ)

∂ (k, φ)
= 2EC2k3

[C2k4 + (E + Dk2)2]3/2
. (A4)
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The Chern number of this spin-up band is

C↑ = 1

2π

∫ ∞

0

−

kφdk
∫ 2π

0
dφ = sgn(E ) − D√

C2 + D2
. (A5)

Therefore, for the continuous model of Eq. (1), the spin Chern number CS is

CS = 1

2
(C↑ − C↓) = sgn(E ) − D√

C2 + D2
. (A6)

We note that continuous models involving the limit of infinite momentum may yield noninteger and thus nonphysical spin
Chern numbers. This can be resolved by introducing higher-order k terms (such as a quadratic correction in the modified
Dirac equation) or by mapping the continuous model onto a lattice tight-binding model [46,47]. For the first option, with
respecting D6h symmetry operations, we include the k terms in Eq. (1) up to quartic, P(k2

x + k2
y )2σz ⊗ τz, and to sextic,

P(k2
x + k2

y )2σz ⊗ τz + Q(k2
x + k2

y )3σz ⊗ τz. The derived spin Chern numbers are dependent on the highest order of the k terms
added, with CS = sgn(E ) − sgn(P) for the quartic order and CS = sgn(E ) − sgn(Q) for the sextic order. One may note that the
sign of E consistently contributes to the spin Chern number.

Considering the second approach, i.e., mapping the continuous model to a tight-binding model, a four-band Hamiltonian with
the p± orbitals on a triangular lattice is constructed as

H (k) = λ0σz ⊗ τz + 2

[
cos(ky) + 2 cos

(√
3kx

2

)
cos

(
ky

2

)]
[(tpσ1 + tpπ1) · σ0 ⊗ τ0 + λ1 · σz ⊗ τz]

+ 2(tpσ1 − tpπ1)

[
− cos(ky) + cos

(√
3kx

2

)
cos

(
ky

2

)]
σ0 ⊗ τx − 2

√
3(tpσ1 − tpπ1) sin

(√
3kx

2

)
sin

(
ky

2

)
· σ0 ⊗ τy

+ 2

[
cos(

√
3kx ) + 2 cos

(√
3kx

2

)
cos

(
3ky

2

)]
[(tpσ2 + tpπ2) · σ0 ⊗ τ0 + λ2 · σz ⊗ τz]

+ 2(tpσ2− tpπ2)

[
cos(

√
3kx )− cos

(√
3kx

2

)
cos

(
3ky

2

)]
σ0 ⊗ τx − 2

√
3(tpσ2− tpπ2) sin

(√
3kx

2

)
sin

(
3ky

2

)
· σ0 ⊗ τy,

(A7)

where the σ and τ represent the Pauli matrices for spin and orbital degrees of freedom, respectively, as in Eq. (1). tpσ1,pπ1 and
tpσ2,pπ2 represent the first- and second-nearest-neighbor hopping parameters, respectively. λ0 denotes the on-site SOC. λ1 and
λ1 denote the first- and second-nearest-neighbor SOC, respectively. This lattice model is effectively mapped to the continuous
model in Eq. (1) as A = 6(tpσ1 + tpπ1 + tpσ2 + tpπ2), B = 3

2 (tpσ1 + tpπ1 + 3tpσ2 + 3tpπ2), C = 3
4 (−tpσ1 + tpπ1 − 3tpσ2 + 3tpπ2),

D = 3
2 (−λ1 − 3λ2), and E = λ0 + 6λ1 + 6λ2. The calculations of the CS for the valence bands in Eq. (A7) reference the code

implemented in the PYTHTB package [48]. Integration of the Berry curvature is performed using a dense 101 × 101 k mesh. We
test several sets of λ0, λ1, and λ2, and find that as the sign of E changes from positive to negative, the CS shifts from 0 to −2. As
a result, the effective Hamiltonian in Eq. (1) serves as a simplified and generalized model, capturing the essential relationship
between the sign of E and the topological phase transition.

APPENDIX B: BAND STRUCTURES OF RuF3 AND RuCl3

See Fig. 7 for the band structures of RuF3 and RuCl3.

FIG. 7. The band structures of monolayers (a) RuF3 and (b) RuCl3 in the nonmagnetic state. The monolayer RuF3 exhibits metallic
behavior, while RuCl3, similar to RuBr3 discussed in the main text, is an even-spin Chern insulator. As shown in the (c) edge spectrum and
SHC and (d) the spin components of edge states, RuCl3 has two pairs of helical edge states, and its spin Hall conductance plateau within the
bulk gap reaches a near-quantized value of −1.97.
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