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In metals containing magnetic impurities, conduction electrons screen the magnetic impurities and induce
the Kondo effect, i.e., the enhancement of the electrical resistance at low temperatures. Motivated by recent
advances in manipulating quantum materials by cavity confinement, we study how the ultrastrong light-matter
coupling can affect the Kondo effect. We show that the ultrastrong coupling can enhance the Kondo temperature
and give rise to several notable phenomena, including universal scalings of the cavity-modified Kondo effect,
the photon occupation number, and the entanglement entropy between the cavity and electrons. The origin
of the cavity enhancement can be understood from the mass renormalization due to the cavity-mediated
nonlocal electron-electron interaction, which is akin to the polaronic mass enhancement. We combine the unitary
transformations and the Gaussian variational states to analyze the quantum impurity system confined in the
cavity. Our nonperturbative framework can be applied to a variety of quantum impurity problems influenced by
structured quantum electromagnetic environment.
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I. INTRODUCTION

The Kondo effect is arguably one of the most fundamental
themes in condensed matter physics [1–3]. When a localized
impurity spin is embedded in a Fermi gas, an antiferromag-
netic exchange interaction occurs between the impurity and
the conduction electrons. This interaction causes nonmono-
tonic temperature dependence in transport, leading to the
minimum in electrical resistivity around the Kondo temper-
ature TK [1,4,5]. At low temperatures T < TK, the impurity
spin is screened by the surrounding electrons through the
antiferromagnetic exchange interaction. The effective inter-
action strength diverges in the low-energy limit, which gives
rise to the singlet ground state called the Kondo singlet state
[6–10]. The size of the screening cloud around the impurity,
the Kondo cloud, is characterized by the Kondo length ξK,
which is typically an order of micrometer [11] and can be
related to the Kondo temperature by ξK = h̄vF/kBTK with the
Fermi velocity vF.

Understanding of the Kondo effect has played a central role
in many areas of solid-state physics, such as heavy fermions
[2], mesoscopic physics [12–15], and dynamical mean-field
theory [16]. In particular, the internal structures of the Kondo
cloud, such as the quantum correlations or entanglement
therein, are still under investigations in both theory [17–20]
and experiments [11,21,22]. Controlling and emulating the
Kondo effect have also been widely explored in a variety of
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setups, including tunable quantum dot systems with an exter-
nal magnetic field [12] or finite-volume confinement called
the Kondo box [23,24], defects in a graphene [25,26], period-
ically driven materials [27–34], and ultracold atoms [35–41].

On another front, the field of cavity quantum electrody-
namics (QED) has long played an important role in quantum
technology and quantum information. Cavity QED has tradi-
tionally strived to study interaction between electromagnetic
fields and matter mainly in few-body regimes. Recently, there
have been significant efforts in understanding the possibility
of employing the idea of cavity QED to control quantum
many-body systems in a stable manner without any external
driving [42–45]. Instead of using electromagnetic fields as
classical external field, this emerging area of research, cav-
ity QED materials, aims to exploit strong couplings between
materials and vacuum fluctuations of the quantized electro-
magnetic field in the cavity.

So far, a number of experiments have realized the so-called
ultrastrong coupling regime in a variety of setups [46–49],
where the light-matter coupling strength is comparable to ele-
mentary excitation energies. Previous studies have explored
the possibility of employing such ultrastrong light-matter
coupling to control excitations [50–62] and certain material
properties, such as superconductivity [63–66], ferroelectric-
ity [67–70], band topology [71–76], transport [71,77], and
chemical reactivity [78–81]. There, excited states and even
ground-state electronic properties can be modified due to vir-
tual processes in which both matter and cavity photons are ex-
cited. At terahertz frequencies, which are typically relevant to
excitations in real materials, the ultrastrong coupling regime
has been so far achieved with the collective enhancement,
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FIG. 1. Schematic figure of the Kondo singlet confined in a
cavity. A metal including the magnetic impurity is embedded in
the cavity, and the quantized electromagnetic field at frequency ωc

couples to the conduction electrons, where the coupling strength is
denoted by g. The magnetic impurity is screened by the conduction
electrons through the exchange interaction J and forms the Kondo
screening cloud.

where the light-matter coupling is enhanced by a factor
√

N
with N being the number of elements coupled to the cavity
mode. In such regime, common simplifications in cavity QED
fail, rendering theoretical analysis challenging. For instance,
rotating wave approximations and/or an effective description
based on projection onto low-energy manifold, such as the
two-level approximation and a tight-binding description, can
in general no longer be justified. Thus, to accurately analyze
cavity QED materials in the ultrastrong coupling regime, one
needs to employ a nonperturbative method that does not rely
on uncontrolled simplifications.

Motivated by these developments, in this paper we study
how the Kondo effect can be influenced by the ultrastrong
coupling to the quantum electromagnetic field confined in
the cavity (Fig. 1). To analyze the problem in an efficient
and accurate way, we employ the two unitary transformations
to first asymptotically decouple the electronic system from
cavity photons [82,83] and second completely disentangle the
localized impurity and the conduction electrons [38,84,85].
We then obtain an effective model that can capture low-energy
physics of the cavity Kondo effect, where the leading contri-
bution due to the cavity confinement emerges as the nonlocal
electron-electron interaction mediated by cavity photons. We
analyze the ground-state properties of this effective model
by using fermionic Gaussian variational states. The results
indicate that the nonlocal interaction effectively increases
the density of states near the Fermi sea, thus enhancing the
Kondo temperature TK, which is akin to the polaronic mass
enhancement. We also find that the ultrastrong coupling leads
to universal scalings of the cavity-modified Kondo temper-
ature, the photon occupation number, and the entanglement
entropy between the cavity and electrons as a function of the
light-matter coupling strength g scaled by TK.

We note that our study makes a contrast to existing studies
on the related topics. The effect of cavity confinement has
been discussed in the setup of a quantum dot connected with
external reservoirs [86]. There, the cavity field does not couple
to conduction electrons, but only couples to impurity sites in
the quantum dot. It has been argued that the cavity field, which

directly perturbs the localized impurity, inhibits the formation
of the Kondo state and suppresses the Kondo effect in this
case. In contrast, our work focuses on the setup relevant to
recent experiments of cavity QED materials, namely, solid-
state material embedded in, e.g, the plasmonic cavity, where
the cavity field couples to conduction electrons in bulk. In the
present case, the cavity confinement is shown to induce the
opposite behavior, i.e., it enhances the Kondo effect. Mean-
while, Ref. [87] has discussed the possibility of controlling the
Yu-Shiba-Rusinov state by the coupling to a bosonic mode on
the basis of the Peierls substitution. The results suggest that
the coupling to a bosonic mode can modify the strength of the
exchange interaction of the magnetic impurity embedded in a
conventional superconductor. Our analysis is complementary
to this previous work in the sense that we consider the mag-
netic impurity embedded in a normal metal, and we treat the
light-matter coupling nonperturbatively without resorting to
uncontrolled approximations such as the Peierls substitution,
which can break down in the ultrastrong coupling regime [75].

The rest of the paper is organized as follows. In Sec. II,
we introduce a model for the magnetic impurity in a metal
confined in the cavity and use the unitary transformations
to derive an effective single-impurity model to describe the
low-energy physics. We also explain the non-Gaussian vari-
ational method that can be used to study the ground-state
properties of the model. In Sec. III, we present the variational
results that indicate the cavity-enhanced Kondo effect. We
also discuss the emergence of new types of universal relations
in the cavity-enhanced Kondo effect. Finally, in Sec. IV, we
discuss the understanding of the cavity-enhanced Kondo ef-
fect using poor person’s scaling and summarize the results.
This section also discusses future perspectives and possible
experimental relevance.

II. MODEL AND METHOD

A. Magnetic impurity embedded in cavity

We derive an effective low-energy model of the Kondo
effect in the presence of the ultrastrong light-matter coupling.
To this end, we start from the single-impurity Anderson model
with light-matter interaction. Specifically, we assume the
long-wave approximation, i.e., neglect the spatial dependence
of the cavity field, and consider the following light-matter
Hamiltonian in the Coulomb gauge

Ĥ = Ĥe + Ĥimp + Ĥcavity, (1)

where Ĥcavity = h̄ωcâ†â describes the energy of the single-
mode cavity photon with the cavity frequency ωc, and the
photon annihilation (creation) operator â (â†) satisfies the
canonical commutation relation [â, â†] = 1. The first term Ĥe

represents a one-dimensional electron system with the light-
matter coupling,

Ĥe =
∑

σ

∫
dx ψ̂†

σ (x)
( p̂ + eÂ)2

2m
ψ̂σ (x), (2)

with Â = A(â + â†) being the vector potential and

ψ̂σ (x) = 1√
L

∑
k

eikxĉkσ , (3)
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where L is the system size and ĉkσ (ĉ†
kσ

) is the electron
annihilation (creation) operator with momentum k and spin
σ ∈ {↑,↓}, while p̂ = −ih̄∂x is the momentum operator.
We impose the periodic boundary conditions such that
kn = 2πn/L, n = 0,±1,±2, . . . ,±N� with a cutoff integer
number N�. The constant m is an effective electron mass,
e is the elementary charge, and Ne is the total number of
conduction electrons. The impurity Hamiltonian is

Ĥimp =
∑

σ

εd d̂†
σ d̂σ + Un̂d↑n̂d↓

+ V0√
Ne

∑
k,σ

(d̂†
σ ĉkσ + ĉ†

kσ
d̂σ ), (4)

where εd is the impurity energy, d̂σ (d̂†
σ ) annihilates (creates)

an electron at the localized impurity site with spin σ , and
U denotes the Coulomb repulsion at the impurity site with
the number operator n̂dσ = d̂†

σ d̂σ . We note that the fermion
operators ĉkσ and d̂σ satisfy the canonical anticommutation
relations

{ĉkσ , ĉ†
k′σ ′ } = δkk′δσσ ′, {d̂σ , d̂†

σ ′ } = δσσ ′ . (5)

The last term in Eq. (4) is the hybridization term between the
impurity and the conduction electrons with the hybridization
strength V0. To obtain the Kondo interaction, which describes
the effective spin-exchange interaction between the impurity
and the conduction electrons, we consider the Kondo limit
U � V0 and U � h̄�. In this limit, the direct interaction
between the cavity photon and the impurity is negligible
compared to the impurity energy scale U ∼ εd � h̄� and
thus not included in Ĥimp. When necessary, a possible en-
ergy shift caused by the direct impurity-photon interaction
can be included as renormalization of εd . Consequently, the
light-matter interaction with the bulk electrons is dominant.
We note that this makes contrast to the setup considered in
Ref. [86], where the cavity is only coupled to the impurity
site.

To obtain a low-energy effective model, we first use the
Bogoliubov transformation to diagonalize the photon-only
part of the total Hamiltonian, which includes Ĥcavity and the
Â2 term in Ĥe, thereby introducing another boson operator b̂
as (

b̂
b̂†

)
=

(
cosh r sinh r
sinh r cosh r

)(
â
â†

)
, (6)

r = log

[√
α + 1

2
+

√
α − 1

2

]
, (7)

α = ωc

�

(
1 + Ne

e2A2

mh̄ωc

)
, (8)

where

� = ωc

√
1 + 2Ne

g2

ω2
c

(9)

is the renormalized photon frequency, g = eA
√

ωc/(mh̄) is the
strength of the light-matter coupling.

In the Coulomb gauge, an analysis of cavity QED materials
becomes challenging in the ultrastrong coupling regime due

to the strong electron-photon entanglement; the latter leads
to the need of including high-energy levels of elementary
excitations, such as the high electron bands and bosonic Fock
states with large photon occupation numbers [57,82,88]. To
overcome such difficulty, we utilize the asymptotically decou-
pling (AD) unitary transformation [82,83],

ÛAD = e−iξg
P̂e
h̄ ·i(b̂†−b̂), (10)

ξg =
√

h̄

mωc

g

ωc
(
1 + 2Ne

g2

ω2
c

) 3
4

, (11)

where P̂e = ∑
k,σ h̄kĉ†

kσ
ĉkσ represents the total momentum

operator of the conduction electrons. After the transforma-
tion, the length scale ξg characterizes the effective coupling
strength in the new reference of frame as shown below.
This transformation can mitigate the entanglement between
electrons and the cavity field and, in particular, completely
disentangle them in the strong-coupling limit because ξg van-
ishes when g → ∞. Since ξg ∝ g at weak g, the coefficient ξg

remains small over the whole range of g, which allows us to
perform the perturbative analysis with respect to the term ξgk.

The resulting Hamiltonian after the unitary transformation
is

ĤAD = Û †
ADĤÛAD

=
∑
k,σ

εk ĉ†
kσ

ĉkσ + h̄�b̂†b̂ − h̄2g2

m�2
P̂2

e +
∑

σ

εd d̂†
σ d̂σ

+ Un̂d↑n̂d↓ + V0√
Ne

∑
k,σ

(eξgk(b̂†−b̂)d̂†
σ ĉkσ + H.c.),

(12)

where εk = h̄2k2

2m is the electron dispersion. In the limit U � V0

and U � h̄�, we arrive at an effective model of the cavity
Kondo effect (see Appendix A for the derivation),

ĤcK =
∑
k,σ

εk ĉ†
kσ

ĉkσ + J�s(0) · �Simp − h̄2g2

m�2
P̂2

e , (13)

where J = 4V 2
0 /U is the Kondo exchange interaction. Here,

�Simp = �σimp/2 is the spin- 1
2 operator of the magnetic impu-

rity and �s(0) = ∑
k ĉ†

kσ
(�σ )σσ ′

ĉk′σ ′/2 is the electron spin at
x = 0 with a vector of the Pauli matrices �σ = (σ x, σ y, σ z ).
We emphasize that this Hamiltonian no longer contains cavity
photons, and the leading contribution from the light-matter in-
teraction appears as the nonlocal electron-electron interaction
proportional to P̂2

e , which is mediated by the cavity field. Said
differently, in this transformed frame, the ground state can be
given by a product state of the photon vacuum and the many-
electron ground state of ĤcK. The cavity-mediated nonlocal
interaction effectively increases the mass of the electrons,
where the electrons are dressed by a cloud of virtual photons
[75,82] in a manner akin to the polaronic mass enhancement
[89]. As shown below, such mass renormalization will en-
hance the density of states ρF on the Fermi surface, which
scales as ρF ∝ m, leading to the higher Kondo temperature

TK ∝ e− 1
JρF and thus the cavity-enhanced Kondo effect.
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We note that the ground-state expectation value of the non-
local interaction, which is proportional to 〈P̂2

e 〉, should vanish
if the total system has the translational symmetry. Thus, in the
absence of the impurity J = 0, the ground state is simply a
Fermi sea with P̂e = 0. The AD transformation (10) acting on
this state reduces to the identity operator, and the light-matter
interaction only appears as the squeezing effect induced by the
Â2 term, which is captured by the Bogoliubov transformation
(6). In contrast, the presence of the localized impurity breaks
the translational symmetry, which renders the effect of the
nonlocal interaction P̂2

e nontrivial even in the ground state.

B. Variational analysis of the cavity Kondo effect

To analyze the ground-state properties of the Hamiltonian
(13), we employ the non-Gaussian variational method com-
bining the unitary transformation and a many-body fermionic
Gaussian state. The fermionic Gaussian wave function defines
a family of efficient variational states, where the number
of variational parameters increase polynomially as O(L2)
[90,91], while it alone cannot capture the strong correlation
between the localized impurity and conduction electrons as
realized in the Kondo state. To overcome this limitation, one
can use a unitary transformation to make a larger family of
variational states, allowing for efficient and flexible varia-
tional calculations.

Specifically, we use the following unitary transformation
to completely disentangle the localized impurity and electrons
[84,85]:

ÛK = e
iπ
4 σ̂

y
impP̂bath , (14)

where P̂bath = exp[iπ
∑

k ĉ†
k↑ĉk↑] is the parity operator of the

conduction electrons and σ̂ α
imp with α = x, y, z is the Pauli

matrix of the impurity spin. After the unitary transformation,
the impurity can be decoupled from the electrons since the
transformed Hamiltonian commutes with the impurity spin,
[Û †

KĤcKÛK, σ̂ x
imp] = 0. This fact can be inferred from the par-

ity symmetry of the original Hamiltonian, [ĤcK, P̂ ] = 0 with
P̂ = σ̂ z

impP̂bath satisfying the relation Û †
KP̂ÛK = σ̂ x

imp.
Consequently, the impurity spin is no longer a dynamical

degree of freedom in the transformed Hamiltonian. At the cost
of decoupling the impurity, the Hamiltonian acquires the addi-
tional nonlocal electron-electron interaction, which originates
from the impurity-mediated interaction. One can efficiently
analyze this transformed Hamiltonian by using variational
Gaussian states to study the ground-state properties, which
can provide accurate results comparable to tensor network cal-
culations with much less variational parameters [85]. We note
that it has been also demonstrated that the cavity-mediated
nonlocal term P̂2

e can be well described by the Gaussian vari-
ational states in the context of polaron problems [92,93].

More specifically, as a variational state for the transformed
Hamiltonian Û †

KĤcKÛK, we use a fermionic Gaussian state
|ψGS〉,

|ψGS〉 := e
1
4 ψ̂

T
X ψ̂|0〉, (15)

where X is a 2Nf × 2Nf real antisymmetric matrix with Nf

being the total number of fermionic modes, and |0〉 is the
vacuum state of conduction electrons; in the present case,

Nf = gs(2N� + 1) where gs = 2 counts the spin degrees of
freedom. The vector ψ̂ in the Majorana basis is defined by

ψ̂ = (
ψ̂1,1, . . . , ψ̂1,Nf , ψ̂2,1, . . . , ψ̂2,Nf

)T
,

with

ψ̂1,i = ĉ†
i + ĉi, ψ̂2,i = i(ĉ†

i − ĉi ) (16)

for i = 1, 2, . . . , Nf . The fermionic Gaussian wave function
is completely characterized by its covariant matrix

(�ψ )η,ξ = i

2
〈[ψ̂η, ψ̂ξ ]〉GS, (17)

where 〈·〉GS means the expectation value with respect to a
Gaussian state |ψGS〉.

To obtain the variational ground state, we employ the
imaginary-time evolution that minimizes the variational
energy [94]

d�ψ

dτ
= −H − �ψH�ψ, (18)

H := 4
δEvar

δ�ψ

, Evar = 〈Û †
KĤcKÛK〉GS. (19)

This imaginary-time evolution allows us to obtain an approx-
imate ground state within the subspace of the Hilbert space
spanned by the variational wave function in the limit τ → ∞.
We note that during the imaginary-time evolution the total
number of the conduction electrons Ne is conserved. The
higher-order many-body correlation function for Gaussian
states can be decomposed into components of a covariance
matrix by Wick’s theorem. Thus, an expectation value with
respect to the Gaussian variational state can be efficiently
calculated for various physical quantities such as magnetic
susceptibility and Kondo length as discussed below.

It is worthwhile to recall that, in the original Coulomb
gauge, the above procedure is equivalent to finding the varia-
tional ground state within the manifold spanned by

|ψ〉 = ÛADÛK(|0〉ph|σx〉imp|ψGS〉), (20)

where |0〉ph is the vacuum state for the photon operator b̂,
which is a squeezed state in terms of the original photon
operator â, and |σx〉imp is the eigenstate of the impurity x-spin
operator σ̂ x

imp that has eigenvalues σx = ±. It is evident that
the photon-electron entanglement (impurity-electron entan-
glement) is solely generated by the unitary transformation
ÛAD (ÛK).

While ÛAD and ÛK commute with each other, we note that
the order of the unitary transformations is still important in
our variational calculations. Specifically, it is useful to first
apply ÛAD to efficiently decouple the photon and impurity de-
grees of freedom from the bulk electrons. In this way, we can
employ the perturbation theory based on the Schrieffer-Wolff
transformation [95] to eliminate the charge fluctuations in the
impurity site before applying ÛK. If one attempts to apply
ÛK before ÛAD, then one needs to eliminate the charge fluc-
tuations while keeping the photon degree of freedom, which
makes the subsequent decoupling by ÛAD more complicated
and less straightforward.
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(a) (b)

(d)(c)

FIG. 2. (a) Kondo temperature TK = 1/(4χh ) determined from the magnetic susceptibility of the impurity χh plotted against the dimension-
less light-matter coupling η = √

Neg/ωc. The Kondo temperature at η = 0 is represented by TK0. (b) Kondo length ξK obtained by estimating
the distance from the impurity at which the spin correlation is screened as

∫ ξK
0 dx〈�Simp · �s(x)〉 = − 3

4 (1 − f ) with 1 − f = 0.97. The Kondo
length at g = 0 is represented by ξK0. (c) Kondo temperature plotted against the light-matter coupling strength g normalized by TK0. The plot
covers the range of η � 1. (d) Kondo length plotted against the light-matter coupling strength g normalized by ξK0. The plot covers the range
of η � 0.7. The calculations are performed for Ne = 70 in panels (a), (c) and Ne = 122 in panels (b), (d).

III. RESULTS

A. Cavity-enhanced Kondo effect

We numerically demonstrate that the Kondo effect can
be enhanced by the cavity confinement. In this section, we
use the dimensionless exchange interaction j = ρF J with the
density of states at the Fermi energy ρF , and represent the di-
mensionless light-matter coupling strength via η = √

Neg/ωc

by including the collective factor
√

Ne. In Fig. 2, we show
the numerical results of the Kondo temperature TK extracted
from the magnetic susceptibility χh via the zero-temperature
relation

TK = 1

4χh
, (21)

where we neglect an unimportant coefficient [2]. The Kondo
length ξK estimated by the impurity-electron spin correlation
function. More specifically, the Kondo length is defined as a

length scale such that the singlet sum rule [9,96]∫
dx〈�Simp · �s(x)〉 = −3

4
(22)

is almost satisfied. This relation follows from the fact that
the total spin operator �Stot = �Simp + ∫

dx�s(x) of the Kondo
singlet state satisfies the relation �S2

tot = 0. Technically, we
use a threshold value f > 0 to estimate the Kondo length as
follows: ∫ ξK

0
dx〈�Simp · �s(x)〉 = −3

4
(1 − f ). (23)

Here, a choice of f is arbitrary as far as 1 − f is sufficiently
close to the unity. While a value of f can affect the quantitative
results (see the caption in Fig. 2), the qualitative features
remain the same as long as 1 � f [84]. We also note that all
the results are plotted by setting h̄ = kB = m = ωc = 1.

Figures 2(a) and 2(b) show the results of η dependence
of the Kondo temperature and length, respectively, where
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TK0 and ξK0 are the Kondo temperature and length at η = 0.
These numerical calculations consistently indicate that the
Kondo effect is enhanced by the cavity confinement, where
the Kondo cloud shrinks due to the effectively enhanced ex-
change interaction j. Physically, the enhancement originates
from the cavity-mediated nonlocal interaction proportional to
P̂2

e , which leads to the mass renormalization that enhances
the density of states. In the original frame, this phenomenon
can be understood as the dressing of conduction electrons by
virtual photons, leading to the effect akin to the polaronic
mass enhancement. We note that the Kondo temperature is
more sensitive to the change of the dimensionless light-matter
coupling strength η at a smaller exchange interaction j. This
finding might be understood as follows: a smaller exchange
interaction leads to the formation of a more spatially extended
Kondo cloud, and the larger number of localized electrons can
be susceptible to the cavity confinement effect.

One of the important features of the Kondo effect is that
various quantities exhibit universal scaling with the Kondo
temperature. It is natural to ask whether a similar scaling re-
lation can be found in the cavity Kondo effect discussed here.
To examine this possibility, we plot the Kondo temperature
and length as a function of the light-matter coupling strength
g normalized by TK0 as shown in Figs. 2(c) and 2(d). These
numerical results lie on the same universal curves independent
of the exchange interaction j up to η ∼ 1, suggesting that the
cavity-enhancement of the Kondo temperature can exhibit the
universal scaling. Thus, the results indicate the scaling relation
of the cavity-enhanced Kondo temperature,

TK( j, g)

TK0( j)
= 1 + f

(
g

TK0( j)

)
, (24)

with a scaling function f (x) satisfying f (0) = 0; we recall
that TK0( j) = TK( j, 0) is the Kondo temperature at g = 0. The
relation suggests that, even though the light-matter coupling
strength g presents as an additional parameter, this parameter
can be renormalized in the universal relation of the Kondo
effect.

B. Virtual photons induced by the Kondo effect

In this section, we discuss the influence of the Kondo effect
on the quantum electromagnetic environment. Specifically, we
consider the ground-state photon occupation number in the
original Coulomb gauge, which is defined by (see Appendix B
for details)

Nph( j, g) = 〈â†â〉

= ωc

�

ξ 2
g

h̄2 〈P̂2
e 〉GS + 1

4

(
ωc

�
+ �

ωc
− 2

)
. (25)

The last term originates from the squeezing due to the A2

term and exists even in the absence of the magnetic impurity.
Meanwhile, the first term is the photon occupation induced by
the Kondo effect and can be written as

δNph( j, g) := Nph( j, g) − Nph(0, g)

= ωc

�

ξ 2
g

h̄2

〈
P̂2

e

〉
GS. (26)

(a)

(b)

FIG. 3. (a) The g dependence of δNph( j, g), a component of the
photon occupation number (25) that is induced by the Kondo effect.
The horizontal axis is normalized by the Kondo temperature TK0

at η = 0, while the vertical axis plots the photon energy h̄ωcδNph

divided by the Kondo temperature TK0. (b) Entanglement entropy
between the electron system and cavity photons. The results are
obtained for Ne = 122.

We note that the η dependence of the Kondo-induced photon
occupation δNph is mainly characterized by ξ 2

g , which scales
as

ξ 2
g ∝ η2

(1 + 2η2)3/2
.

This quantity reaches a maximum value at η = 1, and con-
sequently, δNph( j, g) should exhibit a peak in the vicinity of
η = 1 and monotonically decrease at larger η. Nevertheless,
we note that the last term in Eq. (25), which is the squeez-
ing contribution, always dominates over the Kondo-induced
virtual photon contribution δNph, and thus the total photon
occupation Nph still monotonically increases as a function of
η.

The variational results of h̄ωcδNph( j, g) are plotted in
Fig. 3(a). Interestingly, the photon energy h̄ωcδNph exhibits
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the universality as a function of g/TK0, indicating the relation

h̄ωcδNph( j, g)

kBTK0
= h

(
g

TK0

)
, (27)

with a scaling function h(x) that satisfies h(0) = 0. The de-
viation from the universal curve in the deep strong coupling
regime η > 1 can be understood from the fact that the photon
excitation energy is renormalized to � and gets enhanced as
� ∝ η in this regime. Such a high photon excitation energy
can lead to electron excitations far from the Fermi level where
the dispersion relation can no longer be approximated as the
linear one.

The similar behavior can be also found in the entanglement
entropy between the cavity photons and the electron system.
One can obtain the entanglement entropy up to an order of
O(ξ 2

g ) as

ŜEE = −Trelectron[ρ̂0 log ρ̂0] = −
∑
σ=±

λσ log λσ , (28)

λ± = 1

2

(
1 ±

√
1 − 4ξ 2

g

〈
P̂2

e

〉
GS/h̄2

)
, (29)

with ρ̂0 being the density matrix operator of the variational
ground state in the Coulomb gauge [cf. Eq. (20)]. As shown
in Fig. 3(b), the η dependence of this entanglement entropy
is qualitatively similar to that of the Kondo-induced photon
occupation (25). Meanwhile, we note that the photon-electron
entanglement shows the reduction in the deep strong coupling
regime (η > 1) and likely converges to zero in the limit η →
∞. This behavior arises from the fact that, as η is increased,
the Â2 term in the original frame becomes dominant, leading
to the asymptotic decoupling of light and matter.

IV. DISCUSSIONS

We here provide a simple explanation of the variational
results presented in the previous section on the basis of poor
person’s scaling [97]. After making several simplifications,
the renormalization group equation for the scaling of the ex-
change interaction, including the cavity-mediated interaction,
can be given by (see Appendix C for technical details)

d j = − dE�

ε − E�

(
1 − 2 g2

�2

) j2, (30)

where E� is the cutoff energy, and ε is an excitation energy of
electrons. This relation allows us to obtain the approximative
analytical expression of the cavity-modified effective Kondo
temperature as follows:

kBTK(η) = kBTK0 exp

[
2

Ne

η2

1 + 2η2

1

j0

]
. (31)

In Fig. 4, we make a comparison between the variational re-
sults and the analytical result (31) obtained from poor person’s
scaling. Both results exhibit qualitatively similar behaviors
and, in particular, indicate the universal relation of the cavity-
modified Kondo temperature up to η ∼ 1 [cf. Eq. (24)].

In the setup we have studied in this paper, there exists only
the single localized impurity embedded in the bulk metal, and
the effect of the cavity confinement is expected to disappear
when the number of conduction electrons Ne is taken to be
infinity while keeping η finite. In practice, however, metals

poor person scaling

non-Gaussian state

FIG. 4. Comparison between the variational results and poor
person’s scaling. Dashed curves represent the enhancement of the
Kondo temperature using the analytical expression (31) based on
poor person’s scaling. The solid curves represent the variational
results obtained from the non-Gaussian states. The results are plotted
for Ne = 70. Both variational and poor person’s results are plotted as
a function of g/TK0, indicating the universal relation at small g/TK0.

contain a number of magnetic impurities with nonvanishing
density. As far as the impurity concentration, nimp = Nimp/Ne,
remains sufficiently small such that the RKKY interaction
does not play an important role, we expect that our variational
calculations should capture qualitative features of the cavity
Kondo effect in such real materials including magnetic impu-
rities. This is a consequence of the fact that, in our setup, the
cavity is filled with the bulk materials that naturally contain
a number of magnetic impurities in contrast to a quantum-dot
setup such as Ref. [86]. In principle, the Kondo cloud consists
of a finite number of electrons in the vicinity of the local-
ized impurity, and the cavity-enhanced Kondo effect could be
realized in each of individual magnetic impurities within the
bulk. It would be interesting to observe the cavity-induced
shrinkage of such Kondo cloud dressed by virtual photons
with the help of recent techniques [11,21] if at all possible.

Previous studies have indicated that the magnetic impurity
system strongly interacting with bosonic degrees of freedom
can give rise to the multi-channel Kondo effect. Examples
include the systems with periodically driven classical light
[31,34] or the electron-phonon interactions [87,98]. In partic-
ular, in Ref. [99], it has been discussed that the Hamiltonian
of the Kondo polaron can contain a term proportional to
P̂2

e , which gives rise to the multi-channel Kondo effect. It
merits further study to explore the possibility of realizing
the multi-channel Kondo effect also in the setup with the
cavity confinement, where the nonlocal P̂2

e term can appear as
shown in this paper; exploring such non-Fermi liquid feature
induced by vacuum fluctuations of the cavity field could be
one of the intriguing directions. It would be also interesting
to explore transport phenomena and real-time dynamics of
the cavity Kondo effect, which can be done by using the
real-time Gaussian variational calculations [38,85], where the
inclusion of photon excitations in the transformed frame could
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be important. From a broader perspective, our nonperturbative
framework can be used to study a variety of quantum impurity
problems influenced by structured quantum electromagnetic
environment.

In conclusion, we have studied the influence of the cavity
confinement on the Kondo effect in the ultrastrong coupling
regime. Employing the two disentangling unitary transforma-
tions, we have obtained the effective model that describes
the low-energy physics of the single magnetic impurity in a
metal confined by the cavity. The leading contribution due
to the cavity confinement can be captured by the nonlocal
electron-electron interaction, leading to the mass renormaliza-
tion akin to the polaronic mass enhancement. Consequently,
the Kondo effect can be enhanced by the cavity confinement
as confirmed in our variational calculations using fermionic
Gaussian states. We also found that the ultrastrong coupling
leads to universal scaling relations depending on the light-
matter coupling strength g, which are unique to the cavity
Kondo effect. We expect that our results should advance our
understanding of cavity engineering of strongly correlated
electronic phenomena. We hope that our work stimulates fur-
ther studies in this direction.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this section, we derive the low-energy effective Hamil-
tonian (13) of the cavity Kondo effect, which includes the
exchange interaction, by using perturbation theory. We recall
that the hybridization term is written as

Ĥhyb = V0√
Ne

∑
k,σ

(eξgk(b̂†−b̂)d̂†
σ ĉkσ + H.c.). (A1)

The terms in Eq. (12) other than Ĥhyb are the unperturbed
Hamiltonian Ĥ0. We consider the perturbative analysis by
performing the expansion with respect to the characteristic
length,

ξg = g

√
h̄

m

1

�
3
2

=
√

h̄

m

η√
Neωc(1 + 2η2)

3
4

,

which remains small over all the coupling strengths since it
scales as ξ 2

g ∝ O(N−1
e ) at any η. Specifically, we expand the

exponential function in Ĥhyb with respect to ξgk as follows:

Ĥhyb = Ŵ0 + Ŵ1 + Ŵ2 + . . . , (A2)

where

Ŵ0 = V0√
Ne

∑
k,σ

(d̂†
σ ĉkσ + ĉ†

kσ
d̂σ ), (A3)

Ŵ1 = ξgV0√
Ne

∑
k,σ

k(b̂† − b̂)(d̂†
σ ĉkσ − ĉ†

kσ
d̂σ ), (A4)

Ŵ2 = ξ 2
g V0

2
√

Ne

∑
k,σ

k2(b̂† − b̂)2(d̂†
σ ĉkσ + ĉ†

kσ
d̂σ ). (A5)

To derive the effective Hamiltonian, we consider the strong
Coulomb interaction at the impurity site, i.e., U � V0, and
also assume that an impurity-site energy is below the Fermi
energy εd < ε f . In this parameter regime, doubly occupied
state can be eliminated from the low-energy Hilbert space of
interest, thereby leading to the single-magnetic moment state
[1,4,95].

We begin by constructing the low-energy Hamiltonian by
the second-order perturbation theory

∑
m

〈 f |Ĥhyb|m〉〈m|Ĥhyb|i〉
〈Ĥ0〉i − 〈Ĥ0〉m

, (A6)

with the initial state |i〉 and the final state | f 〉. First, only
considering Ŵ0, one can get the usual Kondo exchange
model,

Hsd,0 = J0

Ne

∑
k,k′

[Ŝz
imp(ĉ†

k′↑ĉk↑ − ĉ†
k′↓ĉk↓) + Ŝ+

impĉ†
k↓ĉ†

k↑

+ Ŝ−
impĉ†

k↑ĉ†
k↓] + R0

∑
k,k′,σ

ĉ†
kσ

ĉk′σ , (A7)

with the coupling constants

J0 = V 2
0

[
1

εd + U
− 1

εd

]
, (A8)

R0 = V 2
0

2Ne

[
1

εd + U
+ 1

εd

]
. (A9)

We introduce the impurity spin operator Ŝα
imp for α = x, y, z

and Ŝ±
imp = Ŝx

imp ± iŜy
imp. Here, in the denominator, we assume

ε f = 0 and neglect the kinetic energy term εk = h̄2k2/2m in
the excitation energy near the Fermi surface.

Next, we consider the leading and next-leading terms Ŵ1

and Ŵ2 in Eqs. (A4) and (A5), respectively, which include
virtual excitations and emissions of cavity photons. Since the
hybridization process between the d orbital and free elec-
trons remains unchanged, the notable modifications from the
conventional Kondo model appear in the perturbation’s de-
nominator, where the energy of the cavity field should be
included, and in the term involving ξg appearing as a product
with V0.

Since Ŵ1 changes the number of photons, the change in
the ground-state energy can originate from the second-order
perturbation of Ŵ1. This modification accounts for the dis-
tinctive features introduced by the presence of virtual photon
absorption and emission processes, differentiating the present
model from the conventional Kondo model. More specifically,
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the leading contribution from Ŵ1 is

Ĥsd,1 = 1

Ne

∑
k,k′

J1,kk′
[
Ŝz

imp(ĉ†
k′↑ĉk↑ − ĉ†

k′↓ĉk↓)

+ Ŝ+
impĉ†

k↓ĉ†
k↑ + Ŝ−

impĉ†
k↑ĉ†

k↓
]

+
∑

k,k′,σ

R1,kk′ ĉ†
kσ

ĉk′σ , (A10)

J1,kk′ = V 2
0 ξ 2

g

[
1

εd + U + h̄�
− 1

εd − h̄�

]
kk′, (A11)

R1,kk′ = V 2
0

2Ne
ξ 2

g

[
1

εd + U + h̄�
+ 1

εd − h̄�

]
kk′. (A12)

The exchange interaction appears in a form that depends on
the wave vector k.

Meanwhile, the leading contribution from Ŵ2 comes from
the first-order perturbation of Ŵ2, which reads as

Ĥsd,2 =
∑
k,k′

J2,kk′
[
Ŝz

imp(ĉ†
k′↑ĉk↑ − ĉ†

k′↓ĉk↓)

+ Ŝ+
impĉ†

k↓ĉ†
k↑ + Ŝ−

impĉ†
k↑ĉ†

k↓
]

+
∑

k,k′,σ

R2,kk′ ĉ†
kσ

ĉk′σ , (A13)

J2,kk′ = −1

2
V 2

0 ξ 2
g

[
1

εd + U
− 1

εd

]
(k2 + k′2), (A14)

R2,kk′ = −V 2
0

4
ξ 2

g

[
1

εd + U
+ 1

εd

]
(k2 + k′2). (A15)

When we consider the symmetric case εd = −U/2, the inter-
actions become J0 = 4V 2

0 /U, R0 = 0 and

J1,kk′ = ξ 2
g kk′

1 + 2J0 h̄�/V 2
0

J0 ∼ ξ 2
g kk′J0, (A16)

where we neglect the second term in the denominator
since J0 h̄�/V 2

0 = 4h̄�/U � 1 as inferred from U � h̄� =
h̄ωc

√
1 + 2η2.

Finally, we arrive at the following Hamiltonian

ĤcK = h̄2

2m

∑
k,σ

k2ĉ†
kσ

ĉkσ − h̄2g2

m�2
P̂2

e

+ 1

2Ne

∑
k,k′,σ,σ ′

Jkk′ ĉ†
kσ

(�σ )σσ ′
ĉk′σ ′ · �Simp, (A17)

Jkk′ =
(

1 − 1

2
ξ 2

g (k − k′)2

)
J0. (A18)

We note that the spin-unrelated scattering R vanishes. While
we assume the symmetric model εd = −U/2 here, we expect
that our conclusions remain qualitatively similar in other cases
since only the magnitude of Jkk′ can be slightly affected, and
a nonzero spin-independent scattering R only modifies the
chemical potential.

The second term 1
2ξ 2

g (k − k′)2 of Jkk′ in Eq. (A18) gives
a contribution which is at most ∼2ξ 2

g k2
f . We recall that ξ 2

g

scales as O(N−1
e ). In the ultrastrong coupling regime with

the collective enhancement, η = √
Neg/ωc can be η ∼ O(1).

Even when ξg takes its maximum value around η = 1, the

contribution 2ξ 2
g k2

f remains small such that the k and k′ de-
pendencies in Eq. (A18) can be neglected. Indeed, we have
numerically checked that the inclusion of the momentum-
dependent term in Jkk′ only leads to minuscule changes in the
results and does not affect the conclusions of this paper. We
thus obtain the effective Hamiltonian (13) in the main text.

APPENDIX B: DERIVATION OF THE PHOTON
OCCUPATION AND ENTANGLEMENT ENTROPY

In this section, we provide the expressions of the photon
occupation number in Eq. (25) and the entanglement entropy
in Eq. (28). First of all, using the relation in the Bogoliubov
transformation (6), the expectation value of the photon num-
ber of the â operator in the Coulomb gauge can be rewritten
as

Nph( j, g) = 〈â†â〉

= ωc

�
(1 + η2)〈b̂†b̂〉 − η2

2

ωc

�
〈b̂2 + b̂†2〉

+ 1

4

(
ωc

�
+ �

ωc
− 2

)
. (B1)

Using the expressions of the variational ground state |ψ〉 =
ÛADÛK(|0〉ph|σx〉imp|ψGS〉) in the Coulomb gauge, where
|ψGS〉 is a fermionic Gaussian state, we obtain the expectation
values

〈b̂†b̂〉 = ξ 2
g

h̄2

〈
P̂2

e

〉
GS, (B2)

〈b̂2 + b̂†2〉 = 2ξ 2
g

h̄2

〈
P̂2

e

〉
GS. (B3)

We here note that the vacuum state is defined in terms of the b̂
operator, i.e., b̂|0〉ph = 0, and the unitary transformation acts
as Û †

ADb̂ÛAD = b̂ + ξgP̂e/h̄. As a result, we get

Nph( j, g) = ξ 2
g

h̄2

ωc

�

〈
P̂2

e

〉
GS + 1

4

(
ωc

�
+ �

ωc
− 2

)
. (B4)

To calculate the entanglement entropy between the cavity
electromagnetic field and the total electron system, including
the impurity and conduction electrons, we define a reduced
density operator by tracing out the electron part,

ρ̂ph = Tre[|ψ〉〈ψ |]. (B5)

We use the Fock space basis {|n〉ph} with respect to the b̂
photon field, the partial trace results in

ρ̂ph =
∑

n,m=0

|n〉ph〈m|
h̄n+m

√
n!m!

ξ n+m
g

〈
P̂n+m

e e−ξ 2
g P̂2

e
〉
GS. (B6)

The leading contribution in terms of ξgP̂e to the entanglement
entropy as a von Neumann entropy gives

SEE = −Tr[ρ̂ph log ρ̂ph] (B7)

� −
∑
σ=±

λσ log λσ , (B8)

where

λ± = 1
2

(
1 ±

√
1 − 4ξ 2

g

〈
P̂2

e

〉
GS/h̄2

)
. (B9)
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While the entanglement entropy in Eq. (B7) is not sensitive to
a choice of the photon basis, it does so in practice when trun-
cating the photon number to evaluate its approximate value.
Our results indicate that the convergence of this approxima-
tion is much better when considering the Fock space of the b̂
photon than that of the â photon.

APPENDIX C: POOR PERSON’S SCALING

Here we provide the details of poor person’s scaling, which
has been originally developed by Anderson [97]. Consider a
cut-off energy ±E� that is away from the Fermi energy at
ε f = 0. When this cut-off energy is slightly modified by the
amount �E > 0 such that E ′

� = E� − �E , the change of the
potential energy is

dV̂ = V̂ P̂�E Ĝ0V̂ + O(�E2), (C1)

where P̂�E is the projection operator onto a high-energy space
that satisfies E� > |ε| > E� − �E and Ĝ0(ε) = (ε − Ĥ0)−1

is the unperturbed Green’s function. The potential displace-
ment dV̂ is the operator on the states that belong to the
lower-energy subspace of 1 − P̂�E .

We define the unperturbed Hamiltonian Ĥ0 and the poten-
tial energy V̂ as follows:

Ĥ0 =
∑

k

εk ĉ†
kσ

ĉkσ − h̄2g2

m�2

( ∑
k,σ

kĉ†
kσ

ĉkσ

)2

, (C2)

V̂ = J �Simp · �s(0)

= J

2Ne

�Simp ·
∑

k,k′,σ,σ ′
ĉ†

kσ �σσσ ′
ĉk′σ ′ . (C3)

The change in the potential can be calculated as

dV̂ = 1

4Ne
J2

|εk ,εk′ |<E�−�E∑
k,k′,σ,σ ′

∑
p,ξ

E�−�E<|εp|<E�

[
[�Simp · (�σσξ )][�Simp · (�σ ξσ ′

)]ĉ†
kσ

ĉpξ
1

ε − Ĥ0
ĉ†

pξ ĉk′σ ′

+ [�Simp · (�σ ξσ )][�Simp · (�σσ ′ξ )]ĉ†
pξ ĉkσ

1

ε − Ĥ0
ĉ†

k′σ ′ ĉpξ

]
. (C4)

The first and last terms in Eq. (C5) correspond to processes involving a high-energy particle εp > ε f and a hole εp < ε f process,
respectively. Considering sufficiently low temperatures, the wavenumbers k, k′ can be treated as the variables denoting the
excitations near the Fermi surface. Also, high-energy momentum p describes the momentum of an electron in the intermediate
processes within the subspace P̂�E . The summation over p can be taken as an excitation that is nearly at the energy cutoff, which
is sufficiently far from the Fermi surface, and the energy slice �E is sufficiently small. We then calculate the energy term in the
denominators as

dV̂ = 1

4Ne
J2

|εk ,εk′ |<E�−�E∑
k,k′,σ,σ ′

∑
ξ

[E�−�E<εp<E�∑
p

[�Simp · (�σσξ )][�Simp · (�σ ξσ ′
)]

1

ε − (ε f + εp − εk′ − vp,k′ )
ĉ†

kσ
ĉpξ ĉ†

pξ ĉk′σ ′

+
−E�<εp<−E�+�Eλ∑

p

[�Simp · (�σ ξσ )][�Simp · (�σσ ′ξ )]
1

ε − (ε f + εk′ − εp − vp,k′ )
ĉ†

pξ ĉkσ ĉ†
k′σ ′ ĉpξ

]
, (C5)

where we introduce the variable vp,k′ = h̄2g2

m�2 (p2 + k′2 − 2pk′) for the sake of notational simplicity. Since p is the excitation
momentum confined to narrow slice �E in nearly at the energy cutoff, we assume that the p dependence of the vp,k′ can be
neglected, as vk′ = vp,k′ ||p|=k�

. We note that the terms proportional to
∑

q,τ qĉ†
qτ ĉqτ and

∑
q,q′,τ,τ ′ qq′ĉ†

qτ ĉqτ ĉ†
q′τ ′ ĉq′τ ′ vanish in a

Fermi state.
After integrating out the virtual states in the subspace P̂�E and assuming that the density of state is constant ρF with |εp| � E�,

we get

dV̂ = 1

4Ne
J2

|εk ,εk′ |<E�−�E∑
k,k′,σ,σ ′

∑
ξ

[
[�Simp · (�σσξ )][�Simp · (�σ ξσ ′

)]
ρF �E

ε − E� + εk′ + vk′
ĉ†

kσ
ĉk′σ ′

+ [�Simp · (�σ ξσ ′
)][�Simp · (�σσξ )]

ρF �E

ε − εk − E� + vk
ĉk′σ ′ ĉ†

kσ

]
. (C6)

Using the relation of the Pauli matrices σασβ = δαβ + iεαβγ σγ with the Levi-Civita symbol εαβγ for α, β, γ = x, y, z, the
spin degrees of freedom part can decompose as∑

ξ

[�Simp · (�σ )σξ ][�Simp · (�σ )ξσ ′
] =

∑
ξ

Ŝα
impŜβ

impσ
σξ
α σ

ξσ ′
β

= 3

4
δσσ ′ − �Simp · (�σ )σσ ′

. (C7)
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The last term corresponds to the exchange interactions while
the other term simply shifts the energy level. Thus, we can
take the exchange interactions out of the expression (C6) such
that

dV̂ = − 1

4
J2

∑
k,k′

[
ρF �E

ε − E� + εk′ + vk′

+ ρF �E

ε − E� − εk + vk

]
�Simp · ĉ†

kσ
(�σ )σσ ′

ĉk′σ ′ . (C8)

We assume that the electron excitations are only being in
the vicinity of the Fermi energy εF = 0. The denominators
can then be simplified as εk � εk′ � 0 and vk′ � 2E�g2/�2,
leading to

dV̂ = − J2ρF �E

ε − E�

(
1 − 2 g2

�2

) �Simp · �S(0). (C9)

Thus, the scaling of the exchange interaction becomes

dJ = − ρF dE�

ε − E�

(
1 − 2 g2

�2

)J2. (C10)

Taking the limit ε → 0 with the initial conditions J (E�0 ) =
J0, E�0 = D, we can integrate this equation to get

1

ρF J (E�)
= 1

ρF J0
+

(
1 − 2

g2

�2

)−1

log
E�

D
. (C11)

The cutoff energy E� at which J (E�) goes to infinity can be
defined as the Kondo temperature TK as follows:

kBTK(η) = kBTK0 exp

[
2g2

�2

1

ρF J0

]
(C12)

= kBTK0 exp

[
2

Ne

η2

1 + 2η2

1

ρF J0

]
, (C13)

where kBTK0 = De−1/(ρF J0 ) is the Kondo temperature at η = 0
This formula provides the cavity-enhanced Kondo tempera-
ture in Eq. (31) in the main text.
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