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We present a general approach for detecting when a fusion category symmetry is anomalous, based on the
existence of a special kind of Lagrangian algebra of the corresponding Drinfeld center. The Drinfeld center of
a fusion category A describes a (2 + 1)-dimensional topological order whose gapped boundaries enumerate all
(1 + 1)-dimensional gapped phases with the fusion category symmetry, which may be spontaneously broken.
There always exists a gapped boundary, given by the electric Lagrangian algebra, that describes a phase with A
fully spontaneously broken. The symmetry defects of this boundary can be identified with the objects in A. We
observe that if there exists a different gapped boundary, given by a magnetic Lagrangian algebra, then there exists
a gapped phase where A is not spontaneously broken at all, which means that A is not anomalous. In certain
cases, we show that requiring the existence of such a magnetic Lagrangian algebra leads to highly computable
obstructions to A being anomaly free. As an application, we consider the Drinfeld centers of ZN × ZN Tambara-
Yamagami fusion categories and recover known results from the study of fiber functors.
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I. INTRODUCTION

Symmetry plays a crucial role in the modern understanding
of quantum field theory and renormalization group flows. A
microscopic model invariant under a given set of symmetry
transformations gives rise to a macroscopic theory which
must also realize the same symmetry operators. In particu-
lar, ’t Hooft anomalies, which may be broadly understood
as obstructions to gauging a given symmetry, are quantized
invariants of the symmetry action. As such, they are calculable
at short distances and scale invariant, and hence are powerful
tools for constraining dynamics. Specifically, a nonvanishing
’t Hooft anomaly obstructs the existence of a trivially gapped
realization of the symmetry.1

A familiar class of examples, that we aim to generalize
below are (1 + 1)-dimensional [(1+1)D] theories invariant
under a discrete symmetry group G. (In the terminology of [1],
these are 0-form symmetries.) Concretely, one may consider
such symmetries as defined by operators acting on a Hilbert
space with composition described by group multiplication.
Alternatively, from the viewpoint of field theory, the sym-
metries are characterized by line operators with topological
correlation functions. There is one such defect for each g ∈ G
and their fusion encodes the group law. In a spontaneously
broken realization of the symmetry, such defects flow to do-
main walls separating distinct vacua.

From the symmetry operators and defects one may extract
an F symbol. (For an explicit construction see [2,3].) This is
a map F : G × G × G → U(1) that describes associativity of
fusion of defects of the symmetry. When the F symbol is a
nontrivial 3-cocycle, the symmetry has a ’t Hooft anomaly.
Therefore, for bosonic systems with a unitary symmetry G,

1A trivially gapped theory is one with a unique vacuum on any spa-
tial manifold. Such a system is also known as a symmetry-protected
topological order (SPT) or an invertible quantum field theory.

the different equivalence classes of ’t Hooft anomalies are
classified by H3(G, U(1)) [4,5]. This classification also has
an elementary interpretation via anomaly inflow [4–7]. The
anomalous (1 + 1)D system with symmetry G may be real-
ized as the edge of a (2 + 1)-dimensional [(2+1)D] invertible
phase with classical background G gauge fields and action
defined by the cohomology class F ∈ H3(G, U(1)). Alterna-
tively, one can also find the same anomalous (1 + 1)D system
at the edge of a topological gauge theory defined by dynamical
G gauge fields and action F ∈ H3(G, U(1)). In this case, the
bulk (2 + 1)D theory resides on a slab geometry where one
end supports the anomalous (1 + 1)D system and the other
end supports a canonical Dirichlet boundary condition. This
gives the simplest example of the paradigm of symmetry
topological field theories [8–18], a bulk (2 + 1)D TQFT char-
acterizing a symmetry and anomaly, which we will feature
throughout this work.

Symmetries characterized by a group describe a small sub-
set of more general fusion category symmetries [19–22]. At
the operator level, a fusion category symmetry is described
by a Hilbert space and a set of global operators that form an
algebra rather than a group. In a field theory, these are topolog-
ical line operators with general fusion algebras. Importantly,
a global symmetry operator may not have an inverse, and for
this reason such symmetries are often referred to as nonin-
vertible. A simple example of this kind of symmetry is the
Ising fusion category symmetry, found at the critical point
of an Ising spin chain. It is defined by three topological
lines {1, ψ, σ }, where ψ is the Z2 Ising symmetry and σ is
the Kramers-Wannier duality line, present because the Ising
model at the critical point is duality invariant. Their fusion
algebra is

ψ × ψ = 1, σ × σ = 1 + ψ. (1.1)

Note that σ does not have an inverse because there is no oper-
ator that fuses with σ to give only 1. The Ising example (1.1)
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also illustrates the key idea of an anomalous fusion category
symmetry, namely, as we discuss below, there is no SPT phase
realizing the symmetry algebra above. Indeed, the duality line
σ may be either spontaneously broken leading to a threefold
ground-state degeneracy, or preserved necessitating a gapless
conformal field theory (CFT) at long distances.

Beyond the critical Ising model, noninvertible symmetries
characterized by fusion categories are ubiquitous in conformal
field theories [20–27], gapped boundaries of (2 + 1)D topo-
logical field theories [13,28–30], and anyon chains [31–35].
Recently, they have featured in diverse physical applica-
tions, including constraints on the operator spectrum of CFTs
[36,37], and renormalization group flows in gauge theories
[38]. Higher-dimensional analogs of these symmetries have
also recently been constructed in [39,40] and similarly used
to provide insight into dynamics [18,40–42].

As in the case of invertible (grouplike) symmetries, a
key question is to understand the possible phases that can
support a given fusion category symmetry A. Both gap-
less symmetry-preserving phases and gapped spontaneous
symmetry-breaking phases realizing A are always possible.
By contrast, the existence of an SPT phase, which has a
unique, symmetric, ground state on any manifold, realizing
A is delicate. By analogy with the case of invertible sym-
metry, when an SPT realizing A exists we say that A is
nonanomalous, while if no such SPT phase exists, we say that
A is anomalous. Characterizing anomalies of a given fusion
category A is the main aim of this work.2

It is worth mentioning that there are multiple different
“levels” of anomalies. For example, as we will review in the
next section, a fusion category can be anomalous due to its
fusion rules alone. Specifically, in order for a fusion category
symmetry to be anomaly free, the quantum dimensions of the
simple objects must all be integer. In this work, we present a
necessary and sufficient condition for a fusion category sym-
metry to be anomaly free. This condition involves not only
the fusion rules (which determine the quantum dimensions)
but also the F symbol.

A. Fusion categories and their anomalies

To frame our discussion, let us briefly review the defining
data of a fusion category A. For a more detailed treatment see,
e.g., [43–45].

1. Fusion rules

The fusion category A is described by a set of simple
objects {a}, and their fusion rules

a × b =
∑

c

Nc
abc. (1.2)

The fusion coefficients Nc
ab are non-negative integers which

specify the number of different ways that a and b can fuse
into c. The set of simple objects must include a unique vac-
uum object which we label 1, with Nc

a1 = Nc
1a = δa,c for all

2Note that we perform our analysis within the framework of TQFT
rather than explicit lattice models.

a ∈ A. We also require every simple object a to have a unique
“antiparticle” ā, such that 1 is included in their fusion product:

a × ā = 1 + · · · . (1.3)

Note that it is possible that a = ā. The fusion rules are re-
quired to be associative, hence,∑

e

Ne
abNd

ec =
∑

f

Nd
a f N f

bc. (1.4)

Each simple object has a real, positive quantum dimension da,
corresponding to the following process:

(1.5)

and (1.2) constrains these quantum dimensions to satisfy

dadb =
∑

c

Nc
abdc. (1.6)

Although they do not completely define the fusion category,
we note that the fusion rules may already be anomalous. In
other words, a given set of fusion rules may be incompatible
with a trivially gapped realization of the fusion category A.
Specifically, a necessary (but as we see below not in general
sufficient) condition for a trivially gapped realization of A is
that each quantum dimension da must be an integer.

A simple argument for this was given in [20]. In a trivially
gapped phase, there is a unique ground state in the Hilbert
space of the theory quantized on a circle. Alternatively, in ra-
dial quantization, this state is dual to the unique unit operator.
The quantum dimension of an object a then gives the vacuum
expectation value of the associated topological line operator:

da = 〈0|a|0〉. (1.7)

Equivalently, since there is only one state we can view the
above as a torus partition function with an insertion of the line
a. Using modular invariance, we can alternatively interpret
this same quantity as the trace of the Hilbert space Ha of states
on S1 with a inserted at a point in space and extending in time.
By the state operator map, this is the same as looking at point
operators which can end the line a. Therefore, we find

da = TrHa ∈ N, (1.8)

where the last statement follows from the fact that the trace
simple computes the dimension of the Hilbert space Ha.

Note that the constraint (1.8) is trivially satisfied by all
invertible fusion categories. By contrast, an example where
this constraint is not satisfied is the Ising fusion category
(1.1), which has dσ = √

2. Equation (1.8) thus gives a simple
proof that this fusion category cannot be realized in a trivially
gapped phase.3

2. F symbols

Beyond the algebra (1.2), the fusion category A is also
equipped with an F symbol that describes the associativity

3For higher-dimensional analogs of this constraint, see [46,47].
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FIG. 1. The pentagon equation is a consistency equation ensur-
ing the two paths to the same configuration given by the top part of
the pentagon and the bottom part of the pentagon match. This puts
strict constraints on the allowed F symbols. For fusion categories
describing invertible symmetries, the pentagon equation is equivalent
to the cocycle condition on the F symbol. Note that we have omitted
the arrows on the anyon lines for clarity of the figure.

of fusion:

(1.9)

(In this work, we will assume that Nc
ab ∈ {0, 1}, so the F sym-

bol does not have additional indices, but the generalization is
straightforward. Because we assume that Nc

ab ∈ {0, 1}, we will
also neglect the usual discussion of vector spaces associated
with fusion and splitting.) The F symbol satisfies the pentagon
equation, which guarantees consistency of fusion:

F f cd
egl F abl

e f k =
∑

h

F abc
gf h F ahd

egk F bcd
khl . (1.10)

The pentagon equation is illustrated in Fig. 1.
We also note that da is related to the F symbol by

F aāa
a11 = εa

da
, (1.11)

where εa is a phase called the Frobenius-Schur indicator, that
will be important later in this paper.

For a given set of fusion rules (1.2) there are in general
several different solutions to the pentagon equation. The main
question we are concerned with is as follows: How do we
know when a fusion category symmetry is anomalous, given
the F symbol? Of course, as described above, all solutions
with da nonintegral are automatically anomalous, so this ques-
tion is the most pressing only when the fusion rules are
compatible with integral quantum dimensions.

As reviewed above, in the grouplike case, the various solu-
tions to the pentagon equation are classified by H3(G, U(1)),
and the solutions giving anomalous fusion categories are those

Le

Lm

Le

Le

Le Le

Le Lm

Z[A]

Z[A]

→

→

(a)

(b)

FIG. 2. We study the fusion category symmetry A using the
Drinfeld center Z[A], which describes a (2 + 1)D topological order.
The gapped boundaries are described by Lagrangian algebras, which
specify which anyons can end at the boundary and how they end. By
definition, the boundary described by Le has low-energy excitations
corresponding to domain walls of the fusion category symmetry A
(thin black lines). (a) Choosing the gapped boundary Le on both
sides of the bulk theory allows anyons in Le to tunnel across the
system at no energy cost. Upon shrinking the cylinder to an effective
(1 + 1)D system (right side), the fusion category symmetry becomes
a global 0-form symmetry that is fully spontaneously broken due
to the nonzero order parameters given by the anyons that tunnel
across the system. (b) Constructing the theory with one Le boundary
and one Lm boundary gives a (1 + 1)D system with none of the
A symmetry spontaneously broken because there are no nonzero
local order parameters. This comes from the fact that, by definition,
Le ∩ Lm = {1}.

corresponding to nontrivial elements of H3(G, U(1)). In this
light, in looking for a criterion for nonanomalous F symbols
we are asking for an analog of the F symbol being a trivial
cocycle.

A mathematical approach to this question is based on fiber
functors: a fusion category symmetry is anomaly free if and
only if there exists a fiber functor, which is a tensor functor
from the fusion category to VecC , the category of complex
vector spaces (which has a single simple object C) [19,21,44].
For the purpose of just detecting when the fusion category
symmetry is anomalous, this method is far too detailed and
in general also too difficult. Indeed, in physical terms, a fiber
functor not only detects the absence of an anomaly, but also
yields an explicit construction of a gapped, symmetric SPT
phase of the given fusion category symmetry.

In this work, we present a different approach for detect-
ing when a fusion category symmetry A is anomalous. Our
approach is based on certain kinds of Lagrangian algebras of
the corresponding Drinfeld center Z[A] that we call magnetic
Lagrangian algebras. For a fusion category, Z[A] is in general
a non-Abelian topological order (i.e., a TQFT) (see Fig. 2). In
the paradigm of [13,17,30,48,49] this is the symmetry TQFT,
a universal gapped (2+1)D bulk that allows any possible edge
physics realizing the symmetry A. One such boundary which
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always exists is gapped with domain walls labeled by the
objects in A, and hence gives a realization of the symmetry
where A is spontaneously broken. To detect whether or not A
is anomalous, we ask whether the bulk topological order Z[A]
admits a gapped edge in which the categorical symmetry A is
not spontaneously broken.4

We observe that A admits a realization in an SPT, i.e., is
anomaly free, if and only if Z[A] has a magnetic Lagrangian
algebra. Thus, any obstruction to the existence of a magnetic
Lagrangian algebra can be viewed as an anomaly for the fu-
sion category symmetry A. Furthermore, there is a one-to-one
correspondence between (1+1)D SPTs of the fusion category
symmetry and magnetic Lagrangian algebras. This magnetic
Lagrangian algebra approach can be thought of as a “bulk”
approach in contrast to the “edge” approach of fiber functors.
Note that the idea of defining anomalies via Lagrangian al-
gebras was mentioned in Ref. [48]; here we elaborate on the
idea and explore its applications. In particular, we will show
that in many cases, there are obstructions to the existence of
such a Lagrangian algebra that do not require finding all the
data that specify the Lagrangian algebra. For instance, in order
for a magnetic Lagrangian algebra to exist, there must be a
sufficient number of bosons in the TQFT. We will demonstrate
the power of this obstruction by using it to show that certain
fusion category symmetries are anomalous, without searching
for Lagrangian algebras or fiber functors.

B. Main result

Let us now summarize our main results in more detail.
Gapped boundaries of a (2 + 1)D TQFT C are in one-to-one
correspondence with Lagrangian algebras [28,50,51]. A La-
grangian algebra L is a composite object formed from several
different anyons:

L = ⊕anaa, (1.12)

where {na} are non-negative integers and the sum is over the
simple objects a ∈ C. The formal definition of a Lagrangian
algebra, which we will give in Sec. II B, includes several addi-
tional structures and constraints. For now, we will simply use
the rough physical picture that L defines a gapped boundary
condition where anyons in L are simultaneously condensed,
and anyons not in L are confined.

Many topological orders do not have any gapped boundary
[52,53], but those that are the Drinfeld center of a fusion
category A, which we denote by C = Z[A], are guaranteed
to have at least one gapped boundary. This is the canonical
gapped boundary where A is fully spontaneously broken. The
corresponding Lagrangian algebra is what we will call the
electric Lagrangian algebra Le. For example, consider the par-
ticular case where the fusion category A can be obtained from
a topological order (braided fusion category) Ab by forgetting
the braiding. In this case, Z[A] = Ab �AT

b where AT
b is the

4It can be technically challenging to construct the Drinfeld center
of a fusion category, i.e., obtain the simple objects and their fusion
and braiding data. One way to do so is via the string-net formalism,
which we use in Appendix A.

time reversal of Ab. The corresponding electric Lagrangian al-
gebra is given by Le = ⊕a∈AbaāT , where ā is the antiparticle
of a, satisfying (1.3). Relatedly, in the case where the fusion
category A is formed out of invertible (grouplike) operators,
the (2+1)D bulk symmetry TQFT is a finite gauge theory and
the canonical boundary condition is the Dirichlet condition.

By contrast, to show that A is nonanomalous, we must ex-
hibit a gapped boundary which does not spontaneously break
any symmetries in A. This in turn is possible if and only if in
Z[A] there exists another Lagrangian algebra, that we call a
magnetic Lagrangian algebra Lm, that intersects trivially with
Le. Specifically, this means that the only anyon in both Le and
Lm is the vacuum anyon 1. The intuition behind this anomaly-
vanishing condition is the following: because such a Lm does
not contain any anyons in Le, it does not spontaneously break
any of the fusion category symmetries. Therefore, Lm defines
a symmetric, gapped (1 + 1)D theory, which can only exist
if A is not anomalous. In general, it is difficult to prove that
such a Lm exists. However, using properties of Lagrangian
algebras, we can show that certain fusion categories A lead to
obstructions to the existence of a Lm in Z[A]. These fusion
category symmetries are therefore anomalous.

We apply this approach to Tambara-Yamagami (TY) fusion
categories, which generalize the Ising fusion category (where
G = Z2) (1.1) to general Abelian groups G. We focus on
G = ZN × ZN with N = 2 and N > 2, N odd, and show
that particular choices of N and F symbol are anomalous, in
agreement with Ref. [54].

C. Example: Invertible symmetry A = Vecω
Z2

As an example, let us consider A = Vecω
Z2

. This fusion cat-
egory symmetry is just an invertible Z2 symmetry along with
an F symbol given by the cocycle ω ∈ H3(Z2, U(1)) = Z2.
Of course, when the F symbol is nontrivial the symmetry is
anomalous and cannot be realized in an invertible phase. This
is transparent from the anomaly inflow point of view where
we realize the (1+1)D system as the edge of an invertible
bulk phase with action described by ω. Here we instead aim
to reproduce this conclusion by using the related (2+1)D
Dijkgraaf-Witten theory Z[A] which is a dynamical Z2 gauge
theory with the same action ω. Specifically, we will show that
simply computing the number of bosons in Z[A] detects an
anomaly.

This fusion category A has only two simple objects {1, g},
with the fusion rules

a × 1 = a, g × g = 1, (1.13)

for all a ∈ A. Additionally, we must specify the F symbol.
Explicitly, this is a function from Z2 × Z2 × Z2 → U(1) sat-
isfying the cocycle condition or pentagon equation (1.10). Let
us denote the trivial cocycle by ω0 and the nontrivial cocy-
cle by ω1. In particular, ω1(g, g, g) = −1, which pictorially
means that

(1.14)
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Z[Vecω
Z2

] is an Abelian Z2 gauge theory, with four anyons
{1, e, m, em}. Here e denotes the electric Wilson line, and m
its magnetic dual (the Z2 flux). The two choices of cocycle
ω give are distinguished by the topological spin of m (and
therefore also the topological spin of em): ω0 yields untwisted
Z2 gauge theory with bosonic m, while ω1 yields twisted Z2

gauge theory with semionic m (topological spin i).
To exhibit the anomaly, we must now check whether these

topological field theories admit gapped boundaries. Since
these theories are Abelian, we do not need all of the structure
of Lagrangian algebras and can instead use Lagrangian sub-
groups [52,55]. A Lagrangian subgroup L̃ is a subgroup of
the Abelian anyons satisfying the following two properties:

(1) The anyons in L̃ have trivial mutual statistics: θab = 1
for all a, b ∈ L̃. In particular, for bosonic topological orders,
θa = 1 for all a ∈ L̃, where θa is the topological spin of a. This
ensures that the anyons in L̃ can be simultaneously condensed.

(2) Any anyon not in L̃ has nontrivial mutual statistics
with at least one anyon in L̃. This ensures that all anyons not
in L̃ are confined.

In addition, the number of anyons in L̃, |L|, satisfies

|L| = D =
√∑

a∈C
d2

a =
√

|C|, (1.15)

where |C| is the number of anyons in C. Here, we used the fact
that da = 1 for all a ∈ C if C is Abelian.

With the trivial cocycle, the resulting Z2 gauge theory has
two Lagrangian subgroups:

L̃e = {1, e}, L̃m = {1, m}. (1.16)

The first of these is the expected electric Lagrangian sub-
group, which condenses to give a gapped edge with the Z2

symmetry spontaneously broken. The second is the magnetic
Lagrangian subgroup which condenses to give a gapped edge
without spontaneous symmetry breaking. On the other hand,
twisted Z2 gauge theory has only one Lagrangian subgroup:

L̃e = {1, e}. (1.17)

In particular, because the other two anyons in twisted Z2

gauge theory have topological spin i and −i, they cannot
be condensed. Therefore, there is no magnetic Lagrangian
subgroup in twisted Z2 gauge theory.

From the analysis above, we recover the fact that Vecω0

Z2

is anomaly free, while Vecω1

Z2
is anomalous. However, even

without explicitly finding all Lagrangian subgroups, we can
already easily detect that twisted Z2 gauge theory does not
have a L̃m by simply examining anyon spins. Indeed, for a L̃m

to exist, there to be at least two anyons not including the gauge
charge e which are bosons. By inspecting the topological spins
of anyons in twisted Z2 gauge theory, we see that there are not
enough bosons. Disregarding e, there is only a single bosonic
anyon in the theory, which is 1. Therefore, the theory cannot
possibly have a L̃m.

II. REVIEW OF (2 + 1)D TOPOLOGICAL ORDERS

Much of the analysis above carries over to more general
fusion categories A that describe noninvertible symmetries,
whose Drinfeld centers Z[A] are non-Abelian topological

orders. In this section, we briefly review relevant background
before applying these ideas to anomalies of fusion category
symmetries. For more details, see [43–45].

A. Braided fusion categories

A (2 + 1)D topological order is defined mathematically as
a unitary modular tensor category C [43], which is a category
with fusion and braiding described by F and R symbols,
respectively, defined in a consistent way. For the application
to anomalies, we are interested in particular in Drinfeld cen-
ters of fusion categories, but in this section we will consider
general C.

We now proceed to briefly review some properties of gen-
eral topological orders, that are not necessarily of the form
Z[A] for some fusion category A. A topological order C is
described by a set of simple objects {a} that we call anyons.
Note that when C = Z[A], this set is different from but related
to the simple objects in A. The quantum dimensions of the
anyons define a total quantum dimension D of C:

D =
√∑

a∈C
d2

a . (2.1)

C is equipped with both fusion and braiding, described
by F̃ abc

def and Rab
c , respectively. Here we use the notation F̃ abc

def
to differentiate it from the F symbol of the fusion category
F abc

def . Braiding, given by the R symbol, describes the following
process:

(2.2)

In order for fusion and braiding to be consistent, F̃ abc
def and

Rab
c must satisfy the hexagon equations, which we will omit

because they are not necessary for this work. Braiding defines
the topological spin of each anyon:

θa = θā =
∑

c

dc

da
Raa

c , (2.3)

and it can be shown that mutual braiding and topological spin
are related in the following way [43]:

Rab
c Rba

c = θc

θaθb
. (2.4)

The quantum dimensions and topological spins of the
anyons define the topological S and T matrices. The S matrix
is defined as

Sab = 1

D
∑

c

Nc
āb

θc

θaθb
dc. (2.5)

The S matrix is useful for computing the fusion coefficients
from the Verlinde formula

Nc
ab =

∑
x∈C

SaxSbxS∗
cx

S0x
. (2.6)

The T matrix is given by

Tab = θaδab. (2.7)
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For a topological order of the form Z[A], the S and T matrices
are always unitary and thus nondegenerate. This means that
all the anyons are detectable via braiding: for each anyon a ∈
C other than 1, there exists another anyon b ∈ C that braids
nontrivially with a.5

B. Lagrangian algebras

In this section, we give a complete definition of Lagrangian
algebras, which describe gapped boundaries of general topo-
logical orders [50,51,56]. Our treatment follows [57].

A Lagrangian algebra L = ⊕anaa describes which anyons
can be annihilated at the boundary of a topological order with
local operators. The multiplicity na, which is a non-negative
integer, specifies the number of inequivalent ways a can be an-
nihilated at the boundary. It follows that na is the dimension of
“boundary condensation space” V a, which is the vector space
{|a; μ〉} for local operators that annihilate a. L must include
1, with n1 = 1. An additional piece of data describing L is an
algebra morphism L × L → L given by the M symbol, which
describes the following process:

(2.8)

where the bottom bold line is the boundary. Here, μ, ν, and
λ are states in the boundary condensation spaces of a, b, and
c, respectively. The M symbol describes a map between the
condensation spaces, similar to how the F and R symbols
describe maps between fusion spaces.

Unlike the F̃ and R symbols, the M symbol is not unitary;
it does not preserve the dimensions of the vector spaces on the
left- and right-hand sides. Instead, as shown in [51],

nanb �
∑

c

Nc
abnc. (2.9)

Consistency of the M symbol together with the F̃ symbol
gives the following variant of the pentagon equation:

∑
e,σ

[
Mab

c

]μν

σ

[
Mec

d

]σλ

δ
F̃ abc

def =
∑
ψ

[
Ma f

d

]μψ

δ

[
Mbc

f

]νλ

ψ
, (2.10)

which is illustrated pictorially in Fig. 3.
There are additional constraints on the M symbol related

to braiding. Note that an anyon in L disappears when it is
annihilated at the boundary, so it should not matter in what
order the anyons are annihilated at the boundary; two different
orders should not differ by a phase. This means that[

Mba
c

]νμ

λ
Rab

c = [
Mab

c

]μν

λ
, (2.11)

5In particular, this means that we are studying bosonic topological
orders which do not have transparent fermions.

a b c

a b c

a b c

a b ca b c

μ ν λ

μ

λσ

ψ

φ

φ

M M

M

M

F̃

FIG. 3. The boundary pentagon equation is a consistency equa-
tion ensuring the two paths to the same configuration given match.
We have again omitted the arrows on the anyon lines for clarity of
the figure.

which pictorially means

(2.12)

From (2.11), it is easy to see that

Rab
c Rba

c = 1, (2.13)

if a, b, and c are all in L. Furthermore, for bosonic topological
orders like the ones considered in this work, all the anyons in
L are bosons. Finally, we also have the condition∑

nada = D. (2.14)

With an eye towards computing anomalies, we note that
searching for an L satisfying (2.9) and (2.14) composed only
of bosonic anyons with trivial braiding within channels in L
(2.13) is often straightforward. Hence, failure of these condi-
tions can be used to obstruct the existence of an Lm and prove
that a fusion category is anomalous. This will be our main
strategy below.6

Let us give some examples of Lagrangian algebras. As
mentioned in Sec. I B, for a topological order of the form
Z[A] = Ab �AT

b , the Lagrangian algebra corresponding to
the boundary where A is fully spontaneously broken is
given by Le = ⊕a∈AaāT . For example, for the doubled Ising
topological order C = {1, ψ, ψ̄, σ, σ̄ , ψσ̄ , σ ψ̄, ψψ̄, σ σ̄ }, we
have

Le = 1 + ψψ̄ + σ σ̄ . (2.15)

Similarly, for the doubled Fibonacci topological order C =
{1, τ, τ̄ , τ τ̄ }, we have

Le = 1 + τ τ̄ . (2.16)

6These conditions are not sufficient for L to define a Lagrangian
algebra as one must also construct a consistent M symbol.
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Note that both the doubled Ising topological order and the
doubled Fibonacci topological order only have a single La-
grangian algebra, which is the Le. Because there does not
exist a Lm in either theory, the Ising fusion category and the
Fibonacci fusion category are both anomalous. This agrees
with the simple analysis using fusion rules discussed around
(1.8) since σ and τ both have nonintegral quantum dimension.

Another class of non-Abelian topological orders are those
of the form Z[Vecω

G] where G is a non-Abelian group and
ω ∈ H3(G, U(1)). Here, the electric Lagrangian algebra is
given by Le = ⊕a∈RepG

daa where da is the dimension of
the irreducible representation a of G (and also the quantum
dimension of the anyon a).7 This is the familiar Dirichlet
boundary condition for the gauge theory. More generally, for
any topological order of the form Z[A], there always exists
an Le. In the string-net formalism [58], the set of a ∈ C in
Le are those that contain the vacuum string because these are
the anyons that can be absorbed into the “smooth” boundary
(fully spontaneously broken) of the string-net model. For an
example of finding Le from the string-net formalism, see
Appendix A.

III. WARMUP: ABELIAN TOPOLOGICAL ORDERS

In this section, we derive two well-known results using
magnetic Lagrangian subgroups. First, we will show that
Z[Vecω

G] is anomalous whenever G is a finite Abelian group
and ω is a type-I or type-II cocycle, as a generalization of
the analysis in Sec. I C. (We will soon explain what we mean
by “type-I” and “type-II.”) We will consider in particular
G = ZN1 × ZN2 , which is the simplest group that can have
both a nontrivial type-I cocycle and a type-II cocycle, but
the analysis straightforwardly generalizes to general finite
Abelian G. Second, we show that there is a ZN classification
of (1 + 1)D SPTs when G = ZN × ZN and ω is trivial. Again
this analysis also extends to general G.

A. Anomalies from Abelian topological orders

Let us consider the topological order Z[Vecω
ZN1 ×ZN2

] where

ω ∈ H3(ZN1 × ZN2 , U(1)). These kinds of 3-cocycles are
built out of two types, labeled type-I and type-II [59–61]. A
type-I cocycle involves a single cyclic group and modifies the
topological spin of the gauge fluxes of that cyclic group [see
Eq. (3.5)]. On the other hand, a type-II cocycle involves two
cyclic groups and modifies the braiding of the gauge fluxes of
the two cyclic groups [see Eq. (3.6)]. It therefore describes a
mixed anomaly between the two cyclic groups, and is trivial
when restricted to a single subgroup.

Z[Vecω
ZN1 ×ZN2

] has |N1N2|2 anyons, generated by
{e1, m1, e2, m2}. A generic anyon in the theory is labeled
by ep1

1 mq1
1 ep2

2 mq2
2 , where pi, qi ∈ [0, Ni − 1]. The L̃e (recall

7Recall that anyons of Z[Repω0
G ] are labeled by (c, ρu) where c

is a conjugacy class of G, u is an element of c, and ρu is an ir-
reducible representation of the centralizer of u in G. G always has
the conjugacy class {1}, and the centralizer of 1 is the whole group.
By irreducible representations a here, we mean anyons of the kind
({1}, ρ1).

that we use L̃ to denote Lagrangian subgroup and L to denote
Lagrangian algebra) is generated by {e1, e2}, i.e.,

L̃e = {
ep1

1 ep2
2

}
, (3.1)

for pi ∈ [0, Ni − 1].
Before we describe a useful necessary condition for there

to be a L̃m, it is convenient to define an equivalence relation
where we “mod out” by gauge charges. We define

ep1
1 mq1

1 ep2
2 mq2

2 ∼ mq1
1 mq2

2 . (3.2)

Using this equivalence relation, we can state a necessary con-
dition for there being a L̃m as the following: there needs to
be a bosonic anyon within each equivalence class of anyons
under (3.2). To see why this is the case, suppose that instead,
we construct a Lagrangian subgroup with two elements from
the same equivalence class under (3.2):{

ep1
1 mq1

1 ep2
2 mq2

2 , e
p′

1
1 mq1

1 e
p′

2
2 mq2

2

} ∈ L̃. (3.3)

Then by fusing the first anyon with the antiparticle of the
second, we see that they generate e

p1−p′
1

1 e
p2−p′

2
2 , which must

also be in L̃. But this is a pure charge, so it means that L̃
intersects nontrivially with L̃e, so it fails to be a magnetic
Lagrangian subgroup. In order for there to exist a magnetic
Lagrangian subgroup with |N1N2| anyons, we need at least one
element of each equivalence class under (3.2) to be a boson.

We will now show that if ω is a nontrivial 3-cocycle, then
we cannot obtain a boson in each equivalence class. To do so,
we will first review how ω specifies the topological spins of
the gauge fluxes.

The topological spin of mi is determined by ω [60]:

θNi
mi

=
Ni−1∏
n=0

ω
(
gi, gn

i , gi
) = e

2π iki
Ni , (3.4)

where ki ∈ [0, Ni − 1] distinguishes the different equivalence
classes of type-I cocycles and k �= 0 if ω is nontrivial. From
(3.4) and (2.4), we see that

θmq
i
= e

2π iq2ki
N2

i . (3.5)

The mutual statistics of m1 and m2 is also given by ω:

(Rm1,m2 Rm2,m1 )N12 = e
2π ik12

N12 , (3.6)

where N12 = lcm(N1, N2) and N12 = gcd(N1, N2). k12 ∈
[0, N12 − 1] distinguishes the different equivalence class of
type-II cocycles. In particular, k12 �= 0 if there is a nontrivial
mixed anomaly between the two cyclic groups. Note that we

omit the explicit expression for e
2π ik12

N12 in terms of ω here; it
can be found in [60].

Using (2.4) together with (3.6), we have

θm
q1
1 m

q2
2

= e
2π ik12q1q2

N1N2 e
2π ik1q2

1
N2

1 e
2π ik2q2

2
N2

2 . (3.7)

Now that we have all the information about the topological
spins of the gauge fluxes, we need to check if there exists an
anyon in each equivalence class under (3.2) that is bosonic.
First, let us check that there exists an anyon in each equiv-
alence class labeled by mqi

i with bosonic topological spin. In
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particular, there must be a bosonic anyon with qi = 1, so there
must be a solution to

θe
p1
1 e

p2
2 mi

= θe
pi
i mi

= e
2π iki
N2

i e
2π ipi

Ni = 1. (3.8)

Clearly, there is no solution to the above equation if 0 < ki <

Ni, so if k1 �= 0 or k2 �= 0, then there cannot exist a magnetic
Lagrangian subgroup.

Now suppose that k1 = k2 = 0. We must also check that
there exists an anyon in the equivalence class labeled by
mq1

1 mq2
2 that has bosonic topological spin. In particular, there

must be a bosonic anyon with q1 = q2 = 1. We have

θe
p1
1 m1e

p2
2 m2

= e
2π ik12
N1N2 e

2π ip1
N1 e

2π ip2
N2 = 1. (3.9)

If 0 < k12 < N12, then the above equation cannot hold for
any p1 and p2, so there cannot exist a magnetic Lagrangian
subgroup.

In summary, any twisted ZN1 × ZN2 gauge theory defined
by a nontrivial ω ∈ H3(ZN1 × ZN2 , U(1)) cannot have a mag-
netic Lagrangian subgroup, recovering the known fact that
Vecω

ZN1 ×ZN2
is anomalous when the F symbol (given by ω)

is a nontrivial element of H3(ZN1 × ZN2 , U(1)).

B. (1 + 1)D SPTs with ZN × ZN symmetry

We will now study the fusion category Vecω
ZN ×ZN

where
ω is a trivial 3-cocycle. We will show that there are N
distinct L̃m, so there are N SPTs with ZN × ZN symme-
try in (1 + 1)D. Z[Vec1

ZN ×ZN
] has N4 anyons, generated by

{e1, m1, e2, m2}. The Lm are given by

L̃(p)
m = {(

m1ep
2

)s(
m2e−p

1

)t}
, (3.10)

where s, t ∈ [0, N − 1]. Let us check that L̃(p)
m is a valid La-

grangian subgroup. First, because e1 braids trivially with m2

and e2 braids trivially with m1, the two generators of L̃(p)
m are

bosonic: θm1ep
2
= θm2e−p

1
= 1. Second, m1ep

2 and m2e−p
1 have

trivial mutual statistics. Therefore, all the anyons generated
by m1ep

2 and m2e−p
1 , which are all the anyons in L̃(p)

m , are
bosonic. It is also clear that |L̃(p)

m | = N2 = D, where D is the
total quantum dimension of Z[Vec1

ZN ×ZN
]. Finally, there are

no pure gauge charges in L̃(p)
m : there is a single element from

each equivalence class under fusion with charges.
Any other Lagrangian subgroup would overlap nontrivially

with L̃e. This is because the only other way to get a La-
grangian subgroup that contains a single element from each
equivalence class under fusion with charges (and hence does
not contain any pure charges) is to instead generate it by
m1ep2

2 and m2ep1
1 where p2 �= −p1 mod N . However, then

m1ep2
2 m2ep1

1 is not a boson, so these anyons cannot generate a
Lagrangian subgroup. Therefore, the only L̃m are those given
in (3.10). Since p can take N values, there are N distinct L̃m

and hence N (1 + 1)D ZN × ZN SPTs.
For concreteness, consider the particular case where N =

2. The Lagrangian subgroups of this topological order are
given by

L̃e = {1, e1, e2, e1e2},
L̃a = {1, e1, m2, e1m2},

L̃b = {1, m1, e2, m1e2},
L̃c = {1, e1e2, m1m2, e1e2m1m2},

L̃(0)
m = {1, m1, m2, m1m2},

L̃(1)
m = {1, e1m2, e2m1, e1m2e2m1}. (3.11)

L̃e corresponds to a (1 + 1)D gapped boundary with the full
Z2 × Z2 symmetry spontaneously broken, while L̃a, L̃b, and
L̃c correspond to boundaries that spontaneously break differ-
ent Z2 subgroups of Z2 × Z2. Notice that L̃(0)

m and L(1)
m do not

contain any pure charges. Therefore, L̃(0)
m and L̃(1)

m correspond
to gapped boundaries that do not spontaneously break any of
the Z2 × Z2 symmetries. These give the two Z2 × Z2 SPTs
in (1 + 1)D.

IV. ANOMALIES OF TAMBARA-YAMAGAMI
FUSION CATEGORIES

In this section, we will analyze anomalies of Tambara-
Yamagami (TY) fusion categories using magnetic Lagrangian
algebras. We denote these fusion categories by TYχ,ε

G , where
G is an Abelian group and χ and ε are defined below and
specify the F symbol. We will focus on G = ZN × ZN be-
cause TYχ,ε

ZN
is always anomalous even without specifying

the F symbol (see Sec. IV C 1). After reviewing TYχ,ε
G , we

will use the method of gauging a 0-form duality symmetry
to obtain some information and intuition about Z[TYχ,ε

ZN ×ZN
].

We compute the topological spins of the anyons in Z[TYχ,ε
G ]

using the string-net formalism [58,62] in Appendix A. We
will show that Z[TYχ,ε

ZN ×ZN
] with particular choices of N, χ ,

and ε are anomalous. Our results agree with those of [54],
which approached the problem using fiber functors, where
they overlap.

A. Tambara-Yamagami fusion categories

The simple objects of TYχ,ε
G are given by elements of an

Abelian group G, along with a duality object σ [63]. The
objects have the following fusion rules:

g × σ = σ × g = σ,

σ × σ =
∑
g∈G

g. (4.1)

The only nontrivial F symbols are F gσh
σσσ , F σgσ

hσσ
, and F σσσ

σgh .
These F symbols are given by

F gσh
σσσ = F σgσ

hσσ
= χ (g, h),

F σσσ
σgh = ε√|G|χ (g, h)−1,

(4.2)

where ε = ±1 is the Frobenius-Schur indicator, which we will
discuss more in the next section. In order for the F symbol
to satisfy the pentagon equation (1.10), χ (g, h) must be a
function from G × G → U(1) with the following properties:

χ (g, h) = χ (h, g),

χ (gh, k) = χ (g, k)χ (h, k),

χ (g, hk) = χ (g, h)χ (g, k).

(4.3)
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In other words, χ (g, h) is a symmetric bicharacter. Equa-
tions (4.1)–(4.3) completely define the fusion category TYχ,ε

G .
For G = ZN × ZN , (4.3) means that χ (g, h) is completely

specified by the following values8:

x = χ ((1, 0), (1, 0)),

y = χ ((0, 1), (0, 1)), (4.4)

z = χ ((1, 0), (0, 10)),

where (1,0) and (0,1) are the two generators of ZN × ZN .
We will focus on two particular bicharacters in this work,
although our methods apply to general bicharacters. We define
the diagonal bicharacter as

x = y = e
2π i
N , z = 1, (4.5)

and we define the off-diagonal bicharacter as

x = y = 1, z = e
2π i
N . (4.6)

Let us also comment on the physical realization of this
class of fusion categories. The duality object σ naturally arises
in theories which are invariant under gauging the G symmetry.
Notice that this is possible in (1+1)D since the twisted sectors
produced by gauging give rise to new 0-form G symmetry op-
erators. Particular examples realizing this construction are the
critical Ising model (for G = Z2) and the parafermion coset
model SU(2)N/U(1) (for G = ZN ). Other examples include
the compact boson at special values of the radius. There are
also gapped theories that are invariant under gauging the G
symmetry (see, e.g., [64]). These theories are the focus of this
work.

B. Z[TYχ,ε

G ] from gauging duality symmetry

We will now derive the properties of Z[TYχ,ε
G ] using

the method of gauging a duality symmetry in (untwisted) G
gauge theory, which is the Abelian topological order Z[Vec1

G]
[30,45,65]. As we explain in the next section, we define a
duality symmetry as a Z2 unitary symmetry that permutes
the anyons. We can also obtain Z[TYχ,ε

G ] directly from the
input fusion category using the string-net formalism [58,62] as
shown in Appendix A. Here we will focus on G = ZN × ZN

for N = 2 and N > 2, N odd to simplify the calculation of the
topological spins and obtain the results in Appendix B, but
one can generalize the analysis to any finite Abelian group.

8Note that we are not allowed to choose any x, y, z because, for
example, if we choose x = y = z = 1, the F symbol is not unitary. A
closer inspection on the constraints due to unitarity of the F symbol
shows that we can only choose x, y, z satisfying

1

N

N−1∑
h1,h2=0

xh1(g1−k1 )yh2 (g2−k2 )zh1(g2−k2 )+h2 (g1−k1 )

= δg1,k1δg2,k2 .

Clearly, the diagonal bicharacter (x = y = e
2π i
N , z = 1) and the

off-diagonal bicharacter (x = y = 1, z = e
2π i
N ) are solutions to this

equation.

1. Duality-enriched G gauge theory

Let us consider (2 + 1)D ZN × ZN gauge theory enriched
with a duality symmetry, i.e., a global 0-form Z2 symmetry.
This symmetry gives an order-two permutation of the anyons
that maintains the topological spins of the anyons (and hence
also the braiding statistics) [45]. Following [45], we will use
the shorthand notation ga to indicate the anyon obtained by
acting on a with a 0-form symmetry g. In equation form, the
above statement means that

θa = θga. (4.7)

We call a Z2 symmetry whose only action is to permute
anyons a duality symmetry.9 The simplest example of a du-
ality symmetry can be found in Z2 gauge theory, where the
unique duality symmetry permutes e and m.

We will show that gauging a duality symmetry of a
(2+1)D ZN × ZN gauge theory gives Z[TYχ,ε

ZN ×ZN
]. In this

construction, the bicharacter χ is determined by the choice
of anyon permutation and ε is determined by whether or
not we stack a (2 + 1)D Z2 SPT before gauging. Specifi-
cally, H3(Z2, U(1)) = Z2, so there is a nontrivial Z2 SPT in
(2 + 1)D, in addition to the trivial theory [66,67]. Because the
symmetry fluxes of this SPT are semions, with topological
spin i, stacking with this SPT changes the topological spin
of the duality defects by i. We will show this explicitly in
Appendix A.

Consider the 0-form duality symmetry with the permuta-
tion action

e1 ↔ m1, e2 ↔ m2. (4.8)

This Z2 0-form symmetry leads to twisted sector duality de-
fects which are topological lines in space-time (equivalently
points in space) that can end the Z2 0-form symmetry [see
(4.10)]. To characterize this particular duality symmetry in
ZN × ZN gauge theory it is convenient to generate all the
anyons in the theory with {m1e−1

1 , m2e−1
2 , m1, m2} rather than

the usual basis {m1, e1, m2, e2}. There are N2 different flavors
of duality defects, labeled by

σ (p,q) = (
mp

1mq
2, σ

)
. (4.9)

These flavors of σ differ because they braid differently with
m1e1 and m2e2. Specifically, m1e1 and m2e2 pass through the
symmetry defect line unchanged, and can move around the
duality defect σ (p,q) at the end of the defect line:

(4.10)

Here, the pink region indicates the permutation symmetry
action on one side of the defect branch cut line. This per-

9In general, one must also keep track of the symmetry fractional-
ization characterized by the degree-two cohomology class from the
0-form symmetry (Z2) to the 1-form symmetry and Abelian anyons
(ZN × ZN × ZN × ZN ). For examples with N odd this cohomology
group is trivial and we can safely ignore fractionalization.
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mutation acts trivially on m1e1. A full braid gives a phase
Rm1e1,σ

(p,q)

σ (p,q) Rσ (p,q),m1e1

σ (p,q) , which depends on (p, q). Physically,
these duality defects can be thought of as differing by a mp

1mq
2

anyon sitting next to a bare σ .
The Abelian anyons and the N2 duality defects form

a Vec1
ZN ×ZN

× TYχ,ε

ZN ×ZN
fusion category. Specifically, the

anyons generated {m1e−1
1 , m2e−1

2 } together with σ (0,0) form
a TYχ,ε

ZN ×ZN
fusion category and the anyons generated by

{m1, m2} form a Vec1
ZN ×ZN

fusion category. A similar analysis
applies to any other duality symmetry, with any permutation
action satisfying (4.7).

2. Gauging the duality symmetry

Now we gauge the duality symmetry to produce the center
Z[TYχ,ε

G ]. Anyons in the gauged theory are labeled by a pair
([a], πa) [45], where a ranges over objects in the original
category and twisted sectors. Here, [a] is the orbit of the
object a under the duality symmetry, while πa is an irreducible
representation of the stabilizer of a. Since the symmetry group
we are gauging is simply a Z2 the stabilizer is either Z2 or
trivial depending on whether the anyon a is duality invariant
or not.10 Anyons in the gauged theory are grouped into orbits
since after gauging those that differ by duality are physically
equivalent. Meanwhile, the additional label of πa accounts for
charges of the new Z2 duality gauge fields.

We will analyze the N = 2 case, and then we will analyze
the N > 2, N odd case. In Z2 × Z2 gauge theory enriched
with diagonal e − m duality symmetry given by (4.8), all the
Z2 orbits are singletons except

[m1], [m2], [m1m2], [e1m2], [m1e1m2], [m1m2e2], (4.11)

where [m1] = {m1, e1}, etc. The stabilizer subgroup of the
singletons is Z2 and that of the other orbits (4.11) is Z1. Every
singleton can carry an irreducible representation of Z2, which
we can label r ∈ Z2 = {0, 1}. Therefore, the gauged theory
has anyons

(1, r), (e1m1, r), (e2m2, r), (e1m1e2m2, r),

[m1], [m2], [m1m2], [e1m2], [m1e1m2], [m1m2e2],

(σ (0,0), r), (σ (1,0), r), (σ (0,1), r), (σ (1,1), r). (4.12)

In summary, there are eight Abelian anyons (first line), six
non-Abelian anyons from the orbits of size two (second line),
and eight non-Abelian anyons from the duality defects (third
line), matching the anyon content of Z[TYχ,ε

Z2×Z2
] [68,69].

The topological spins of these anyons are given by [45]

θ([a],πa ) = θag

χπa (g)

χπa (1)
, (4.13)

where χπa (g) = Tr[πa(g)]. Roughly speaking, (4.13) comes
from the fact that the anyons in the gauged theory are dyons
whose topological spin comes from both the original spin of

10For gauging more general symmetries, we must consider projec-
tive representations of the stabilizer. We do not encounter these here
for the same reason that we do not find symmetry fractionalization.
See footnote 9.

ag (first factor) along with the Aharonov-Bohm phase from
internal braiding of the anyon’s flux and charge (second fac-
tor). The second factor is only relevant for the singletons under
the symmetry. Note that the anyons of the underlying Abelian
topological order (i.e., the theory before gauging) are always
in the untwisted sector (g trivial) so the second factor in (4.13)
is equal to 1 for the Abelian anyons. Thus, the Abelian anyons
of the gauged theory come in pairs with identical spin. On
the other hand, the duality defects are in the twisted sector
(g nontrivial), so the resulting duality anyons come in pairs
with spin differing by a minus sign.

From (4.13), we see that gauging the duality symmetry
given in (4.8) gives a topological order with four Abelian
anyons with topological spin 1 and four Abelian anyons with
topological spin −1. The topological spins of the anyons
coming from orbits of size two can be read off from (4.12):
there are four bosons and two fermions. In Appendix A [see
Eqs. (A6) and (A13)], we show that the Abelian anyons and
anyons with quantum dimension two can be labeled by a(r)

g
and bg,h, respectively, where g, h ∈ G and g �= h. The topo-
logical spins of these anyons are given by

θa(r)
g

= 1

χ (g, g)
, θbg,h = 1

χ (g, h)
. (4.14)

Therefore, the above analysis means that gauging this partic-
ular duality symmetry gives Z[TYχ,ε

Z2×Z2
] with the diagonal

bicharacter [21], given by (4.5).
Finally, we must also obtain the topological spins of

the duality anyons. To do so, we must either use the hep-
tagon equations to obtain the topological spins of the duality
defects, and then apply (4.13), or directly solve the string-
net equations. We show in Appendix A, using the latter
approach, that topological spins of the duality anyons are
{±√

iε,±√
ε,±√

ε,±√−iε}.
For general odd N , ZN × ZN gauge theory enriched with

the diagonal duality symmetry in (4.8) has N4 Abelian anyons,
together with N2 flavors of σ , as written in Eq. (4.9). Gauging
the duality symmetry gives anyons which are again labeled by
([a], πa). Anyons generated by m1e1 and m2e2, along with the
duality defects, form singletons under the duality symmetry.
Since the singletons can carry an irreducible representation of
Z2, we label them by πa ∈ Z2. This gives in total

(i) 2N2 Abelian anyons a(r)
g ,

(ii) N2(N2−1)
2 dimension-two anyons bg,h ∼ bh,g (g �= h),

(iii) 2N2 dimension-N duality anyons c(r)
g ,

which matches the anyon content of Z[TYχ,ε

ZN ×ZN
] [68]. The

topological spins of a(r)
g and bg,h are again given by (4.14), and

we refer to Appendix A for a computation of the topological
spins of the duality anyons.

Another choice for the permutation of the duality symme-
try in ZN × ZN gauge theory is

e1 ↔ m2, e2 ↔ m1. (4.15)

In the N = 2 case, following the same calculations as above,
we find that gauging this duality symmetry gives Z[TYχ,ε

Z2×Z2
]

with eight bosonic a(r)
g , three bosonic bg,h, and three fermionic

bg,h. It follows from these topological spins that gauging
the above duality symmetry gives Z[TYχ,ε

Z2×Z2
] with the off-

diagonal bicharacter [21], given in (4.6). We will show in
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TABLE I. The number of bosonic duality anyons of
Z[TYχ,ε

ZN ×ZN
] for various choices of N and ε, for the diagonal

and off-diagonal bicharacters. The asterisk in the diagonal column
indicates that we only compute the number for N such that −1 is a
quadratic residue mod N .

Diagonal χ Off-diagonal χ

N = 2, ε = +1 2 3
N = 2, ε = −1 0 1
N > 2, N odd, ε = +1 2N − 1∗ 2N − 1
N > 2, N odd, ε = −1 0∗ 0

Appendix A that the topological spins of the duality anyons
c(r)

g in this case are {±√
ε,±√

ε,±√
ε,±i

√
ε}.

We also summarize the number of bosonic duality anyons
in Z[TYχ,ε

ZN ×ZN
] in Table I. These results are derived in Ap-

pendixes A and B, and will be important for the following
analysis of anomalies.

C. Analysis of anomalies

Now that we have the topological spins of the anyons
in Z[TYχ,ε

ZN ×ZN
], we can proceed to study when the fusion

category is anomalous. We will first discuss a zeroth-level
obstruction to the fusion category being anomaly free, de-
tected by the absence of a duality invariant L̃m of the G gauge
theory. This obstruction already shows that TYχ,ε

ZN
is anoma-

lous regardless of the choice of χ and ε [21]. This matches
with the familiar fact that the self-dual clock model, which
generalizes the Ising spin chain to ZN symmetry, must be
gapless. Furthermore, this zeroth-level obstruction shows that
TYχ,ε

ZN ×ZN
is anomalous when χ is the diagonal bicharacter

and −1 is not a quadratic residue mod N .
We thus show that the existence of a duality invariant L̃m

is equivalent to the condition obtained in [54] that for |G|
odd, the bicharacter must be hyperbolic [see below (4.23)] for
TYχ,ε

G to be anomaly free. We then study the duality symme-
tries in (4.8) and (4.15) for the particular N for which they
give hyperbolic bicharacters. We show that for N > 2, N odd
(and giving a hyperbolic bicharacter), ε = −1 gives another
obstruction, related to the fact that in this case none of the
duality anyons c(r)

g are bosonic.

1. Duality invariant L̃m

In general, for the TYχ,ε
G to be nonanomalous, there must

first exist a duality invariant L̃m of the original G-gauge the-
ory. Otherwise, there is no (1 + 1)D gapped phase symmetric
under the Abelian G symmetry that has the duality symmetry
at all, regardless of whether or not the duality symmetry is
spontaneously broken [21,40,42]. In this case, the fusion cate-
gory is anomalous without even specifying the F symbol. All
Lagrangian algebras of Z[TYχ,ε

G ] for TYχ,ε
G with this zeroth-

level obstruction describe theories that not only spontaneously
break part of the fusion category symmetry (which is expected
of anomalous fusion categories), but also describe theories
that spontaneously break a subgroup of the invertible G part
of the fusion category.

Note that duality symmetry in (1 + 1)D is a gauging op-
eration, so the absence of a duality invariant L̃m means that
there is no G-symmetric (1 + 1)D theory that is invariant
under gauging: gauging always maps one phase to a different
phase. Therefore, the first step is to find for which G there
exists at least one duality invariant L̃m of the G gauge theory.
Thus, the results in this section can all be derived by explicit
gauging using the actions of the (1 + 1)D theories, as shown
in [21,40,42].

A duality invariant L̃m is a Lagrangian subgroup that satis-
fies two properties. First, it does not contain any pure charges
of the G gauge theory. Second, it maps back to itself under the
anyon permutation of the duality symmetry.

Let us use the absence of a duality invariant L̃m to show
that TYχ,ε

ZN
is always anomalous. To see why there is no duality

invariant L̃m in untwisted ZN gauge theory, note that the only
L̃m is the one generated by m: L̃m = {1, m, . . . mN−1}. This
follows from the observation in Sec. III that such a Lagrangian
subgroup must contain one element from each equivalence
class under modding out by e. In particular, it must contain an
anyon of the form mep, but this is not a boson unless p = 0, so
the Lagrangian subgroup must be generated by m. However, it
is clear that this Lagrangian subgroup is not duality invariant
because it maps to L̃e. Therefore, there are no duality invariant
L̃m in ZN gauge theory.11

The analysis becomes more interesting for G = ZN × ZN ,
where there does exist duality invariant L̃m. For the diagonal
duality symmetry (4.8), for N = 2, the duality invariant L̃m is

L̃m = {1, m1e2, m2e1, m1e2m2e1}. (4.16)

This also serves as a duality invariant L̃m for the off-diagonal
duality symmetry (4.15).

To determine for which N there exists such a duality-
invariant Lagrangian subgroup for N > 2, we can generate the
Lagrangian subgroup with{

m1ep
2, m2e−p

1

}
. (4.17)

As discussed in Sec. III B, all magnetic Lagrangian sub-
groups of ZN × ZN gauge theory are of this form. For the
diagonal duality, we need this Lagrangian subgroup to be
invariant under m1 ↔ e1 and m2 ↔ e2. This means that m2e−p

1

must generate e1mp
2 and m1ep

2 must generate e2m−p
1 , so we

have (
m2e−p

1

)p = mp
2e−p2

1 = mp
2e1,(

m1ep
2

)−p = m−p
1 e−p2

2 = e2m−p
1 ,

(4.18)

which means that

p2 = −1 mod N. (4.19)

The existence of such a p is a constraint on N , which implies
that all prime factors of N are 1 mod 4, with the exception

11There does exist a duality-invariant Lagrangian subgroup when
N is a perfect square, but these always intersect nontrivially with L̃e.
For example, for N = 4, the duality-invariant Lagrangian subgroup
is {1, e2, m2, e2m2}. In general, these Lagrangian subgroups describe
(1 + 1)D theories where the ZN symmetry is spontaneously broken
to its Z√

N subgroup.
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of at most a single factor of 2. Because there only exists
a duality-invariant Lagrangian subgroup for N where there
exists p satisfying (4.19), only for these N can TYχ,ε

ZN ×ZN
be

anomaly free [40,42]. For example, for N = 2, p = 1 satisfies
this condition, and for N = 5, p = 2 and 3 satisfy this condi-
tion. For any N , if there exists a p that satisfies (4.19), N − p
also satisfies (4.19).

For the off-diagonal duality, we only require that m1ep
2

generates e2mp
1 and m2e−p

1 generates e1m−p
2 . This means that(

m1ep
2

)p = mp
1ep2

2 = mp
1e1,(

m2e−p
1

)−p = m−p
2 ep2

2 = e1m−p
2 ,

(4.20)

which is satisfied when

p2 = 1 mod N. (4.21)

For any N , p = 1 is always a solution to (4.21), so TYχ,ε

ZN ×ZN

can be anomaly free for any N .
More generally, it was shown in Ref. [54] that TYχ,ε

G is
anomaly free when |G| is odd if and only if ε = +1 and the
bicharacter χ is hyperbolic. This means that G is of the form

G = G1 × G2, (4.22)

where G1
∼= G2 and

χ (g1, g′
1) = χ (g2, g′

2) = 1, (4.23)

for all g1, g′
1 ∈ G1 and g2, g′

2 ∈ G2.
Note that for G = ZN × ZN , the diagonal bicharacter

when −1 is a quadratic residue mod N and the off-diagonal
bicharacter for any odd N both satisfy this condition. The
off-diagonal bicharacter clearly satisfies the hyperbolic con-
dition because χ ((1, 0), (1, 0)) = χ ((0, 1), (0, 1)) = 1. The
diagonal bicharacter where −1 is a quadratic residue mod N
also satisfies the hyperbolic condition because we can choose
to generate ZN × ZN with (1, p) and (1,−p). Then we find
that

χ ((1, p), (1, p)) = χ ((1,−p), (1,−p)) = e
2π i
N e

2π ip2

N , (4.24)

which is equal to 1 if and only if p2 = −1 mod N . Note that
(1, p) and (1,−p) generate ZN × ZN in this case because p is
coprime to N and N is odd.

We show in Appendix C that the condition that there ex-
ists a duality invariant L̃m of the G gauge theory is actually
equivalent to the condition that the bicharacter is hyperbolic.
The intuition behind this result is the following: the bichar-
acter gives the topological spins of the anyons in Z[TYχ,ε

G ]
that come from anyons of the G gauge theory (singletons
and orbits of size two under the duality) according to (4.14).
Therefore, the properties of the bicharacter are specified en-
tirely by the G gauge theory and the choice of permutation,
like the existence of a duality invariant L̃m.

2. Obstructions from counting Bosons

We now specifically consider G = ZN × ZN with N = 2
or N > 2 and odd, for which there exists at least one duality
invariant L̃m. In particular, this means that for the diagonal
bicharacter, we only consider N = 2 and N odd for which −1
is a quadratic residue mod N . For these G, any anomaly of
the TY fusion category comes from its F symbol. We will use

the results in Table I to show how TY fusion categories with
certain N, χ, and ε are anomalous. We recover the fact that for
N = 2, the diagonal bicharacter with ε = −1 is anomalous,
and for N > 2, N odd, both the diagonal and the off-diagonal
bicharacters with ε = −1 are anomalous [54].

A simple calculation using the anyon data listed at the
end of Sec. IV B 2 shows that the total quantum dimension
of Z[TYχ,ε

ZN ×ZN
] is

D = 2N2. (4.25)

According to (2.14), this is the quantum dimension of any
Lagrangian algebra L of Z[TYχ,ε

ZN ×ZN
]. At the very least, we

need a sufficient number of bosons a (other than the ones in
Le) to form

Lm = ⊕anaa, (4.26)

where
∑

a nada = 2N2. Of course, if we have any bosons at all
in Z[TYχ,ε

ZN ×ZN
], we can obtain

∑
a nada = 2N2 by choosing

sufficiently large {na}. However, there are constraints on {na}
given by the fact that n1 = 1 and the inequality in (2.9).
We will use these constraints to demonstrate that certain TY
fusion categories are anomalous because their corresponding
Drinfeld center does not have enough bosons.

First, note that for the Abelian anyons, na ∈ {0, 1} due to
(2.9). Specifically, if the Abelian anyon a is in L, then ā is also
in L. However, from (2.9) and n1 = 1, we have

nanā � 1 → na = nā ∈ {0, 1}. (4.27)

To further analyze possible obstructions, let us first focus
on N = 2, with the diagonal bicharacter given in (4.5). We
show in Appendix A that for ε = +1, there are the following
bosons:

(i) a(0)
(0,0), a(1)

(0,0), a(0)
(1,1), a(1)

(1,1),
(ii) b(0,0),(1,0), b(0,0),(0,1), b(0,0),(1,1), b(1,0),(0,1),
(iii) c(0)

(1,0), c(0)
(0,1).

On the other hand for ε = −1, there are no bosonic duality
anyons according to Table I.

Notice that five of these anyons already belong in Le,
which is given by12

Le = a(0)
(0,0) + a(1)

(0,0) + b(0,0),(0,1) + b(0,0),(1,0) + b(0,0),(1,1).

(4.28)

Now we use the fusion rule

b(1,0),(0,1) × b(1,0),(0,1) = a(0)
(0,0) + a(1)

(0,0) + a(0)
(1,1) + a(1)

(1,1),

(4.29)

which can be derived from the duality-enriched gauge theory
[45]. Combining this with (2.9) and the fact that na(1)

(0,0)
= 0 in

Lm (because it is in Le), we find that

n2
b(1,0),(0,1)

� 3 (4.30)

12We can obtain Le from the string-net construction, as shown in
Appendix A. Alternatively, we can also note that Le comes from
L̃e of Z2 × Z2 gauge theory: L̃e = {1, e1, e2, e1e2}. e1, e2, and e1e2

become dimension-two anyons in Z[TYχ,ε

Z2×Z2
] because they form

orbits of size two under the duality symmetry. 1 becomes a(0)
(0,0) and

a(1)
(0,0) in Z[TYχ,ε

Z2×Z2
].
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in Lm, so nb(1,0),(0,1) ∈ {0, 1}. This means that we need at least
one duality anyon to be bosonic because using the anyons
described thus far we can only construct a Lagrangian algebra
with dimension 3 + 2 ∗ 1 = 5, which is less than 2N2 = 8.
However, none of the duality anyons are bosonic if ε = −1,
so TYχ,ε

Z2×Z2
with diagonal χ and ε = −1 must be anomalous.

On the other hand, for ε = +1, there is no obstruction to there
being a Lm at the level of number of bosons because there are
two bosonic duality anyons. Indeed, this fusion category is
not anomalous [21,54]. Performing a similar analysis with the
off-diagonal bicharacter, we find that there is no obstruction
(at the level of number of bosons) to there being a Lm for both
ε = +1 and −1, matching the result of [21,54].

It follows from arguments similar to the N = 2 case that
for N > 2, we need Z[TYχ,ε

ZN ×ZN
] to have at least one bosonic

duality anyon to obtain a Lm. For the diagonal bicharacter
and N for which −1 is a quadratic residue mod N , the results
stated in Table I and proven in Appendixes A and B show that
there are 2N − 1 bosonic duality anyons when ε = +1 and no
bosonic duality anyons when ε = −1. Therefore, there is no
obstruction to there being a Lm when ε = +1, but the case
with ε = −1 is always anomalous. There is a similar story
for the off-diagonal bicharacter: TYχ,ε

ZN ×ZN
with ε = +1 can

be anomaly free (for any odd N). However, all such fusion
categories with ε = −1 are anomalous because there are no
bosonic duality anyons in Z[TYχ,ε

ZN ×ZN
].

V. DISCUSSION

In this work, we presented a general approach for un-
derstanding anomalies of fusion category symmetries, and
applied it to study anomalies of TY fusion categories. This
yields highly computable obstructions to the fusion category
being anomaly free. We highlight here some future directions.

First, it would be instructive to understand better the map-
ping between module categories and Lagrangian algebras of
the corresponding Drinfeld center, especially from a physical
perspective. This would also lead to a direct mapping between
fiber functors and magnetic Lagrangian algebras. A starting
point for this problem is the case when the fusion category
is RepG. Here, both module categories over RepG and La-
grangian algebras of Z[RepG] correspond to gapped (1 + 1)D
theories with the G symmetry, which are labeled by subgroups
K of G and cocycles in H2(K, U(1)) [70,71].

The mapping envisioned above would also be helpful for
constructing microscopic (1 + 1)D lattice models correspond-
ing to gapped phases labeled by Lagrangian algebras, with
categorical symmetries [35,72,73]. In particular, using [74],
this would give lattice models for SPTs of fusion category
symmetries when given an Lm. This idea is also closely related
to the problems of (1) constructing microscopic models for
string-net models with boundaries, given a Lagrangian alge-
bra, and (2) condensing a Lagrangian algebra microscopically,
by adding terms to the lattice Hamiltonian.

More generally, it would interesting to further explore the
phase diagrams of (1 + 1)D systems with fusion category
symmetry, and transitions between different phases with fu-
sion category symmetry. For example, for Z[TYχ,ε

Z2×Z2
] with

off-diagonal bicharacter and ε = +1, there are actually three
distinct SPTs of the fusion category symmetry, but it is unclear

how to drive a system into each of these gapped phases at
either the field-theory level or the lattice level.13

It would also be interesting to apply our method to other
fusion categories. As discussed in (1.8), one requirement on
fusion categories that comes from the fiber functor description
of anomalies is that a fusion category can only be anomaly
free if the quantum dimensions of all its objects are integer
[20]. It would be instructive to rederive this result using mag-
netic Lagrangian algebras, and study other fusion categories
containing only objects with integer quantum dimension. Re-
latedly, our analysis uses only coarse obstructions based on
the number of bosons in the corresponding Drinfeld center,
and a natural direction for future work is to study other kinds
of obstructions to the existence of a Lm.

Another natural direction for future work is to explore
anomalies of noninvertible symmetries in higher dimensions
[40,42,75,76], perhaps extending recent results on gapped
boundaries of (3 + 1)D topological orders [77–83].

Finally, in the grouplike case, we not only know when the
symmetry is anomalous but we also understand a classifica-
tion of different kinds of anomalies. For example, for finite
Abelian groups, the types of anomalies ω ∈ H3(G, U(1)) are
differentiated into type-I, type-II, and type-III, which are as-
sociated with three different kinds of braiding processes in
Z[Vecω

G] [60]. It would be interesting to further develop this
kind of classification for anomalies of non-Abelian groups and
general fusion category symmetries. These different types are
closely related to the linking invariants described in [49].
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APPENDIX A: Z[TYχ,ε

ZN×ZN
] FROM THE STRING-NET

CONSTRUCTION

The string-net construction is one way to obtain informa-
tion about Z[A] for any input fusion category A [58,62]. We
will use this method to obtain some of the information rele-
vant for identifying the Lagrangian algebras of Z[TYχ,ε

ZN ×ZN
],

including the topological spins of the anyons.

13For this particular fusion category, it is perhaps useful to notice
that Z[TYχ,ε

Z2×Z2
] is dual to Z[RepD4

] where the dihedral group D4

is the symmetry group of a square.
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The input fusion category gives a list of string types, which
we label by english letters {a, b, c, . . . } to match with the
notation of Ref. [62] (note that this differs from the main
text, where we use english letters to refer to anyons). For
example, TYε,χ

G has |G| + 1 string types corresponding to
the |G| group elements and the duality object. Each anyon α

of Z[TYε,χ
G ] is characterized by a set of data (�α, �̄α, nα )

where nα = (nα,g1 , . . . , nα,g|G| , nα,σ ) is a vector with |G| + 1
elements, describing which strings α is built out of. The main
equations for the string-net models are [62]∑

a′
�a,rsa′

α

(
F rab

c′a′c
)∗

F asb
c′a′b′ =

∑
t

�c,rtc′
α �̄b,tsb′

α F abt
c′cb′ ,

�̄a,rsa′
α = (

�a,sra′
α

)∗
,∑

s

�̄a,rsa′
α �a,sta′

α = δrt ,

(A1)

where the F symbol is given by (4.2) and � describes the
braiding of an anyon type α with the string type a14:

(A2)

In this work we will assume that nα,r, nα,s ∈ [0, 1], which is
sufficient for the string-net models we will consider. When
nα,r > 1 or nα,2 > 1 there are additional indices on � [62].

The complete set of anyons describing Z[A] correspond
to the independent solutions to (A1) for (�α, �̄α, nα ). For the
particular case where A = TYχ,ε

G , we will show that Z[TYχ,ε
G ]

has 7
2 |G| + 1

2 |G|2 anyons, matching Ref. [68] and our deriva-
tion in Sec. IV B 2. These consist of the following:

(i) 2|G| Abelian anyons a(0)
g and a(1)

g , where g ∈ G, built
out of a single string type g ∈ G.

(ii) |G|(|G|−1)
2 non-Abelian anyons bg,h, with quantum di-

mension 2, built out of two string types g, h ∈ G, with g �= h.
(iii) 2|G| non-Abelian anyons c(0)

g and c(1)
g , where g ∈ G,

with quantum dimension
√|G|, built out of a single string type

σ .
Note that in the string-net construction, the anyons in Le

are easy to specify: they are the anyons that contain the vac-
uum string type, 1. For TYχ,ε

G , there are two Abelian anyons
and |G| − 1 dimension-two anyons that contain the vacuum
string.

To study the other Lagrangian algebras of Z[TYχ,ε

ZN ×ZN
],

we will need the self-statistics and mutual statistics of the
anyons. The self-statistics of an anyon α is given by

eiθα =
∑

s Tr
(
�s̄,ss1

α

)
ds∑

s nα,sds
. (A3)

We will also make use of the following formula for the S-
matrix elements:

Sαβ = 1

D

∑
stb

Tr
(
�̄t,ssb

α

)
Tr

(
�̄s,ttb

β

)
db. (A4)

14Here we use the same convention as Ref. [62], where the string
types are always oriented in the upward direction.

In particular, we will use (A4) to propose Lm for TYχ,ε

Z2×Z2
when the fusion category is not anomalous.

1. Anyon self-statistics

We begin with computing the self-statistics of the Abelian
anyons a(0)

g and a(1)
g . Plugging in a = ḡ, r = s = t = g, and

b = σ , it follows from the fusion rules that a′ = 1 and c′ =
c = b′ = σ . Then (A1) says that

�
ḡ,gg1

a(r)
g

(
F gḡσ

σ1σ

)∗
F ḡgσ

σ1σ = �
σ,ggσ

a(r)
g

�̄
σ,ggσ

a(r)
g

F ḡσg
σσσ

→ �
ḡ,gg1

a(r)
g

= F ḡσg
σσσ = χ (ḡ, g).

(A5)

From (A3), we have

e
iθ

a(0)
g = e

iθ
a(1)

g = χ (ḡ, g) = 1

χ (g, g)
. (A6)

a(0)
g and a(1)

g differ because �
σ,ggσ

a(0)
g

= −�
σ,ggσ

a(1)
g

. To see this, first

note that switching ḡ with h in (A5) gives

�
h,gg(hg)

a(r)
g

= χ (h, g). (A7)

Then plugging in a = a′ = b = σ and r = s = t = g into
(A1) gives

�
σ,ggσ

a(r)
g

(
F gσσ

(cg)σc

)∗
F σgσ

(cg)σσ = �
c,gg(cg)

a(r)
g

�̄
σ,ggσ

a(r)
g

F σσg
(cg)cσ . (A8)

Simplifying using (A7), we obtain(
�

σ,ggσ

a(r)
g

)2 = χ (c, g)χ (g, gc)−1 = 1

χ (g, g)

→ �
σ,ggσ

a(r)
g

= ± 1√
χ (g, g)

, (A9)

so we choose

�
σ,ggσ

a(0)
g

= 1√
χ (g, g)

, �
σ,ggσ

a(1)
g

= − 1√
χ (g, g)

. (A10)

Note that (A10) will be important for computing the braiding
statistics between a(0)

g , a(1)
g and the duality anyons. We will use

these braiding statistics to hypothesize Lagrangian algebras.
We now compute the self-statistics of bg,h. Plugging in a =

ḡ, r = s = g, and b = σ gives

�
ḡ,gg1
bg,h

(
F gḡσ

σ1σ

)∗
F ḡgσ

σ1σ =
∑

t

�
σ,gtσ
bg,h

�̄
σ,tgσ
bg,h

F ḡσ t
σσσ , (A11)

where the right-hand side runs over t = g, h. From (A1), we
obtain �

σ,ggσ
bg,h

= 0 and �
σ,ghσ

bg,h
�̄

σ,hgσ
bg,h

= 1, so

�
ḡ,gg1
bg,h

= F ḡσh
σσσ = χ (ḡ, h). (A12)

Then from (A3) we get

eθbg,h = 1

2

(
�

ḡ,gg1
bg,h

+ �h̄,hh1
bg,h

)
= 1

2
(χ (ḡ, h) + χ (h̄, g))

= 1

χ (g, h)
. (A13)

Since these anyons are built from two string types g and h with
g �= h, there are (|G|

2 ) = |G|(|G|−1)
2 anyons of this kind.
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Now we move onto the non-Abelian anyons c(0)
g and c(1)

g

with quantum dimension
√|G|. Note that here, the subscript

does not refer to the string type that it is built out of. Rather,
we will define g to be the following. Consider the generators
pi of G, of order |pi|, so that

∏
i |pi| = |G|. We will show that

(
�

pi,σσσ

c(r)
g

)|pi| = 1

χ (pi, pi )
|pi |(|pi |−1)

2

(A14)

so that �
pi,σσσ
α can take |pi| different values that differ by

a phase e
2π i
|pi | . Therefore, there are |G| different {�pi,σσσ },

labeled by g ∈ G. Furthermore, for each {�pi,σσσ }, we have
two values of �σ,σσ0

α that differ by a sign, giving a total of
2|G| anyons of this kind.

To obtain the self-statistics of these anyons, we will use the
following two results:

�
g,σσσ

c(r)
g

= χ (g, gh)�σ,σσ (gh)

c(r)
g

�̄σ,σσh
c(r)

g
, (A15)

�
g,σσσ

c(r)
g

�h,σσσ

c(r)
g

= 1

χ (g, h)
�

(gh),σσσ

c(r)
g

. (A16)

In particular, plugging in h = ḡ into (A15) gives

�
g,σσσ

c(r)
g

= �σ,σσ1
c(r)

g
�̄

σ,σσ ḡ

c(r)
g

. (A17)

For g = 1, we have

�1,σσσ

c(r)
g

= 1. (A18)

We derive (A15) by plugging in a = g, b′ = h, and r = s =
b = t = σ into (A1) and we derive (A16) by plugging in r =
s = t = σ and a = g, b = h into (A1). Choosing g = pi and
iterating (A16) |pi| − 1 times and then using (A18), we obtain
(A14). We can get �

g,σσσ

c(r)
g

for all g that are not generators of

G by using (A16). This gives {�g,σσσ

c(r)
g

}.
Now we use a = r = s = t = b = σ and a′ = g, c = b′ =

1 in (A1) to get∑
g

�
σ,σσg

c(r)
g

(
F σσσ

σg1

)∗
F σσσ

σg1 = �1,σσσ

c(r)
g

�̄σ,σσ1
c(r)

g
F σσσ

σ11 . (A19)

Using (A18) and (4.2), we obtain

ε2

|G|
∑

g

�
σ,σσg

c(r)
g

= �̄σ,σσ1
c(r)

g

ε√|G| . (A20)

Further simplifying, and using (A17), we obtain(
�̄σ,σσ1

c(r)
g

)2 = ε√|G|
∑

g

(
�

ḡ,σσσ

c(r)
g

)∗

= ε√|G|
∑

g

(
�

g,σσσ

c(r)
g

)∗
. (A21)

It follows from (A3) that

e
iθ

c(0)
g =

√
ε√|G|

∑
�

g,σσσ
α ,

e
iθ

c(1)
g = −

√
ε√|G|

∑
�

g,σσσ
α , (A22)

where {�g,σσσ
α } are given by (A14) and (A16).

These computations match with Sec. 4C of [68].

2. Example: G = Z2 × Z2

We will now consider conditions for the existence of a Lm

for a TY fusion category with G = Z2 × Z2. For this group,
there are four different TY fusion categories, given by two
possible bicharacters and two values of ε. First, let us consider
the diagonal bicharacter given in (4.5). Le is given by all the
anyons that contain the trivial string:

Le = a(0)
(0,0) + a(1)

(0,0) + b(0,0),(1,0) + b(0,0),(0,1) + b(0,0),(1,1).

(A23)

It is straightforward to check that all of these anyons are
bosons. We can check that they are closed under fusion us-
ing the S-matrix elements defined in (A4) and the Verlinde
formula (2.6).

Out of all the a(0)
g , a(1)

g , and bg,h, we have the following

bosons (aside from the ones in Le): a(0)
(1,1), a(1)

(1,1), and b(1,0),(0,1).
We will now compute the self-statistics of the anyons c(0)

g and
c(1)

g . From the previous section, we have

�
(1,0),σσσ

c(0)
(0,0)

= �
(0,1),σσσ

c(0)
(0,0)

= i,

�
(1,0),σσσ

c(0)
(1,0)

= −�
(0,1),σσσ

c(0)
(1,0)

= −i,

�
(1,0),σσσ

c(0)
(0,1)

= −�
(0,1),σσσ

c(0)
(0,1)

= i,

�
(1,0),σσσ

c(0)
(1,1)

= �
(0,1),σσσ

c(0)
(1,1)

= −i. (A24)

This gives

e
iθ

c(0)
(0,0) = √

iε, e
iθ

c(0)
(1,0) = √

ε,

e
iθ

c(0)
(0,1) = √

ε, e
iθ

c(0)
(1,1) = √−iε, (A25)

and e
iθ

c(1)
g = −e

iθ
c(0)
g .

We see that for ε = 1, c(0)
(1,0) and c(0)

(0,1) have bosonic statis-
tics. We propose that there is a gapped, symmetric, (1 + 1)D
theory from the following Lm:

Lm = a(0)
(0,0) + a(1)

(1,1) + b(1,0),(0,1) + c(0)
(1,0) + c(0)

(0,1). (A26)

Note that we cannot confirm that this forms a valid Lagrangian
algebra without solving for the M symbol. For ε = −1, none
of the c(0)

g , c(1)
g anyons have bosonic self-statistics. We there-

fore do not have enough anyons to form a Lm; the fusion
category symmetry is anomalous.

We now proceed to the off-diagonal bicharacter, given by
(4.6). Le is the same as in the diagonal case. We now have

�
(1,0),σσσ

c(0)
(0,0)

= �
(0,1),σσσ

c(0)
(0,0)

= 1,

�
(1,0),σσσ

c(0)
(1,0)

= −�
(0,1),σσσ

c(0)
(1,0)

= −1,

�
(1,0),σσσ

c(0)
(0,1)

= −�
(0,1),σσσ

c(0)
(0,1)

= 1,

�
(1,0),σσσ

c(0)
(1,1)

= �
(0,1),σσσ

c(0)
(1,1)

= −1. (A27)

This gives

e
iθ

c(0)
(0,0) = √

ε, e
iθ

c(0)
(1,0) = √

ε,

e
iθ

c(0)
(0,1) = √

ε, e
iθ

c(0)
(1,1) = i

√
ε,

(A28)
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and e
iθ

c(0)
g = −e

iθ
c(1)
g . We see that for ε = 1, c(0)

(0,0), c(0)
(1,0), and

c(0)
(0,1) all have bosonic statistics. We propose the following

three magnetic Lagrangian algebras:

Lm1 = a(0)
(0,0) + a(1)

(1,0) + a(0)
(0,1) + a(0)

(1,1) + 2c(0)
(1,0),

Lm2 = a(0)
(0,0) + a(0)

(1,0) + a(1)
(0,1) + a(0)

(1,1) + 2c(0)
(0,1),

Lm3 = a(0)
(0,0) + a(0)

(1,0) + a(0)
(0,1) + a(1)

(1,1) + 2c(0)
(0,0). (A29)

By computing the S matrix via (A4), we checked that
these three Lagrangian algebras satisfy a set of necessary, but
not sufficient, conditions for L being a Lagrangian algebra
[28,53]:

SZL = ZL, T ZL = ZL. (A30)

Here, ZL is a |C|-component vector with entries {na}. This
agrees with the result that there are three (1 + 1)D SPTs of
this fusion category symmetry [19,21,63]. For ε = −1, c(1)

(1,1)
is a boson, so we propose a single Lm given by

Lm = a(0)
(0,0) + a(1)

(1,0) + a(1)
(0,1) + a(1)

(1,1) + 2c(1)
(1,1). (A31)

3. Example: G = ZN × ZN for N > 2, N odd

For N odd, (A14) simplifies to(
�

(1,0),σσσ

c(r)
g

)N
=

(
�

(0,1),σσσ

c(r)
g

)N
= 1. (A32)

We choose to label

�
(1,0),σσσ

c(r)
g

= e− 2π ip
N , �

(0,1),σσσ

c(r)
g

= e− 2π iq
N , (A33)

for p, q ∈ [0, N − 1]. The N2 different elements g = (p, q)
correspond to the N2 different duality anyons in Z[TYχ,ε

ZN ×ZN
].

Using the notation of (4.4) and the result in (A16), we
obtain

�
(n,m),σσσ

c(r)
g

= e− 2π ipn
N e− 2π iqm

N x
n(n−1)

2 y
m(m−1)

2 znm. (A34)

We can plug this into (A22) to get the topological spins of
the duality anyons for any choice of x, y, z. To determine
the number of bosonic duality anyons for ε = +1, we need
to determine the number of distinct pairs (p, q) that give a
solution to

1

N

∑
n,m

�
(n,m),σσσ

c(r)
g

= 1. (A35)

For ε = −1, we need to find the number of pairs that give a
solution to to

1

N

∑
n,m

�
(n,m),σσσ

c(r)
g

= −1. (A36)

Let us determine the number of bosonic duality anyons for
ε = ±1 for the diagonal and off-diagonal bicharacters. The
diagonal bicharacter corresponds to x = y = e

2π i
N , z = 1. In

this case, we show in Appendix B that when −1 is a quadratic
residue mod N , there are 2N − 1 bosonic duality anyons when
ε = +1 and zero bosonic duality anyons when ε = −1. The
off-diagonal bicharacter corresponds to x = y = 1, z = e

2π i
N .

In this case, we obtain

1

N

∑
n,m

�
(n,m),σσσ

c(r)
g

= e− 2π ipq
N . (A37)

We immediately see that there are 2N − 1 solutions to
e− 2π ipq

N = +1, given by p = 0 or q = 0, and no solutions to
e− 2π ipq

N = −1 for any odd N . Therefore, there are 2N − 1
bosonic duality anyons for ε = +1 and none for ε = −1.

APPENDIX B: BOSONIC DUALITY ANYONS FOR THE
DIAGONAL BICHARACTER

For the diagonal bicharacter, we have

∑
n,m

�
(n,m),σσσ

c(r)
g

=
N−1∑

n,m=0

e
iπn(n−1−2p)

N e
iπm(m−1−2q)

N . (B1)

We would like to find the pairs (p, q) that give

1

N

N−1∑
n,m=0

e
iπn(n−1−2p)

N e
iπm(m−1−2q)

N = 1, (B2)

and we would like to show that there does not exist any pair
(p, q) for which

1

N

N−1∑
n,m=0

e
iπn(n−1−2p)

N e
iπm(m−1−2q)

N = −1. (B3)

We use the quadratic reciprocity law (notice that the re-
quirements for using this are satisfied because N is odd) for
general Gauss sums [84] to obtain

N−1∑
n=0

e
iπn(n−1−2p)

N =
√

Ne
iπ (N−(1+2p)2 )

N , (B4)

which gives

1

N

N−1∑
n,m=0

e
iπn(n−1−2p)

N e
iπm(m−1−2q)

N = ie− iπ
2N (1+2p+2p2+2q+2q2 ), (B5)

so (B2) means we need to search for solutions to

1 + 2p(p + 1) + 2q(q + 1) = N mod 4N. (B6)

Note that choosing p = q = N−1
2 is always a solution. Plug-

ging this in, we get

N2 = N mod 4N → N = 1 mod 4, (B7)

which is always satisfied when −1 is a quadratic residue mod
N . Specifically, for the prime factors of these N must all
be Pythagorean, leading to (B7). To find the other solutions,
let p = N−1

2 + δ1 and q = N−1
2 + δ2. The previous solution

corresponds to δ1 = δ2 = 0. Plugging this into (B6), we get

1 + (N − 1 + 2δ1)

(
N + 1

2
+ δ1

)
,

+ (N − 1 + 2δ2)

(
N + 1

2
+ δ2

)
= N mod 4N. (B8)

Pulling out the N2 part from the previous solution, we get

2Nδ1 + 2Nδ2 + 2δ2
1 + 2δ2

2 = 0 mod 4N. (B9)
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Now let δ1 be any integer in the range [−N−1
2 , N−1

2 ], and let
δ2 = sδ1. Plugging this into (B9) and dividing through by 4,
we get

Nδ1(1 + s) + δ2
1 (1 + s2) = 0 mod N. (B10)

Because −1 is a quadratic residue mod N , we can al-
ways choose s ∈ [0, N − 1] such that s2 = −1 mod N , which
clearly gives a solution for any δ1. In fact there are always
only two solutions: s and N − s, giving q = N−1

2 + sδ1 and
q = N−1

2 − sδ1. So we see that for each of the N values of δ1

there are two solutions, except at δ1 = δ2 = 0. As a result we
have a total of 2N − 1 solutions to (B6), giving the 2N − 1
bosonic duality defects.

For (B3), we need to show that there are no (p, q) satisfying

1 + 2p(p + 1) + 2q(q + 1) = N (4n + 3). (B11)

Let N = 4k + 1 where k is an integer. Then we have

1 + 2p(p + 1) + 2q(q + 1) = (4k + 1)(4n + 3),

2p(p + 1) + 2q(q + 1) = 16kn + 12k + 4n + 2,

p(p + 1) + q(q + 1) = 8kn + 6k + 2n + 1.

(B12)

The left-hand side must be even because either p or p + 1 is
even, and either q or q + 1 is even. However, the right-hand
side is clearly odd. Therefore, there is no solution to this
equation.

APPENDIX C: DUALITY-INVARIANT LAGRANGIAN
SUBGROUPS AND THE HYPERBOLIC BICHARACTER

CONDITION

We will show in this Appendix that the condition that there
exists a duality invariant L̃m of the G gauge theory is actually
equivalent to the condition that the bicharacter is hyperbolic,
as defined in (4.22) and (4.23). First, we observe that if a G
gauge theory has a duality invariant L̃m, then we can generate
the |G|2 Abelian anyons of the gauge theory by

C = L̃(0)
m × L̃(1)

m , (C1)

where L̃(0)
m and L̃(1)

m satisfy the following properties. First,
they are each are mapped back to themselves under the du-
ality symmetry because they are duality invariant. Second, the
anyons in each subgroup are all bosonic (but anyons formed
by the fusion of one in each subgroup are not bosonic in
general). Third, they are each, as groups, are isomorphic to
G. This comes from the fact that at least one of the two La-
grangian subgroups, say L̃(0)

m , must be magnetic. This means
that it must contain an anyon from each equivalence class
under modding out by gauge charges (see Sec. III), and must
be closed under fusion. Therefore, it must, as a group, be

isomorphic to G. This is violated in ZN gauge theory when
N is a perfect square, where the (not magnetic) duality in-
variant L̃ is isomorphic to Z√

N × Z√
N rather than ZN . Since

L̃(0)
m

∼= G, in order to generate all of the G × G anyons, L̃(1)
m

must also be isomorphic to G as a group.
A general property of any duality-invariant group of

anyons is that it can be written as C = C1 × C2, where C1

and C2 are mapped onto each other under duality. When C
is braided, this result comes from the anyon content of the
gauged theory, which is the Drinfeld center of a TY fusion
category (see Sec. IV B 2 and Appendix A). Specifically, it
comes from the number of Abelian anyons vs dimension-two
anyons in the Drinfeld center of a TY fusion category. An
alternative intuitive argument is the following: first, we cannot
have every anyon in C be invariant under duality; the duality
symmetry would then have trivial action. Now suppose that a
single anyon a of C is mapped to a different anyon ad under
the duality symmetry, so that it forms an orbit of size two
under the duality symmetry. Then fusing a with any other
anyon b ∈ C will also give an an orbit of size two. a × b is
not invariant under duality even if b is invariant under duality.
Therefore, it is not possible to have |C| − 2 duality invariant
anyons and a single orbit of size two. Continuing in this way,
using the nature of the Abelian anyon fusion, one finds that C
must take the form C = C1 × C2, where C1 and C2 are mapped
onto each other under duality.

In particular, this means that

L̃(0)
m = L̃(0)

m1 × L̃(0)
m2, L̃(1)

m = L̃(1)
m1 × L̃(1)

m2, (C2)

where L̃(0)
m1 and L̃(0)

m2 are mapped onto each other under duality,
as are L̃(1)

m1 and L̃(1)
m2. L̃(0)

m1, L̃(0)
m2, L̃(1)

m1, and L̃(1)
m2 are all isomor-

phic to G1
∼= G2 as groups. Notice that combining an anyon

in L̃(0)
m1 with its duality partner in L̃(0)

m2 gives a bosonic duality-
invariant anyon. The

√|G| bosonic duality-invariant anyons
in L̃(0)

m form a group isomorphic to G1, and the
√|G| bosonic

duality invariant anyons in L̃(1)
m also form a group isomorphic

to G1, giving 2
√|G| − 1 duality-invariant bosons (where we

subtracted 1 to avoid double counting the vacuum anyon). The
fact that these duality-invariant anyons are bosonic (which
come from the fact that they belong in Lagrangian subgroups)
is precisely the condition that χ (g1, g′

1) = χ (g2, g′
2) = 1, and

in particular χ (g1, g1) = χ (g2, g2) = 1. Specifically, χ (g, h)
is given by the topological spins of the anyons in G gauge
theory according to (4.14), and χ (g, g) gives the topological
spins of the duality-invariant anyons. The hyperbolic con-
dition (4.23) guarantees that there are at least 2

√|G| − 1
bosonic duality-invariant anyons in the G gauge theory, which
matches the result above from the existence of a duality in-
variant L̃m.
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