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Analytic continuation is a central step in the simulation of finite-temperature field theories in which numeri-
cally obtained Matsubara data are continued to the real frequency axis for a physical interpretation. Numerical
analytic continuation is considered to be an ill-posed problem where uncertainties on the Matsubara axis
are amplified exponentially. Here, we present a systematic and controlled procedure that approximates any
Matsubara function by a minimal pole representation to within a predefined precision. We then show a systematic
convergence to the exact spectral function on the real axis as a function of our control parameter for a range of
physically relevant setups. Our methodology is robust to noise and paves the way towards reliable analytic
continuation in many-body theory and, by providing access to the analytic structure of the functions, a direct
theoretical interpretation of physical properties.

DOI: 10.1103/PhysRevB.110.035154

I. INTRODUCTION

Quantum field theory simulations at finite temperature
are typically performed on the imaginary axis [1]. In a
postprocessing step, real-frequency information is obtained
via analytic continuation for a physical interpretation. Sim-
ulations that require continuation range from perturbative
calculations [2–4] to lattice [5] and continuous-time [6] quan-
tum Monte Carlo and lattice QCD [7–9] simulations, as well
as algorithms for the simulation of bosonic systems [10]
including He [11,12], supersolids [13], and warm dense mat-
ter [14].

Due to the ill-conditioned nature of the analytic continu-
ation step [15], a variety of numerical continuation methods
have been developed. Among these are Padé [16] continued
fraction fits of Matsubara data [17–22], an interpolation with
Nevanlinna functions [23,24], the maximum entropy (Max-
Ent) method [15,25–34], sparse modeling [35,36], stochastic
analytic continuation (SAC) and variants [36–43], genetic
algorithms and machine learning [12,44,45], causal projec-
tions [46] and Prony fits [47,48]. In all of these methods, it
is difficult in practice to systematically converge the spectral
function, even given high-precision Matsubara data.

In this paper, we revisit the continuation problem from the
perspective of a compact low-rank representation of response
functions in terms of a pole expansion that approximates Mat-
subara data within a predetermined precision ε. Remarkably,
as we show below, the spectral function systematically con-
verges to the exact answer as the precision of the Matsubara
fit is increased. Even “difficult” spectral functions containing
both sharp and smooth features at low and at high energies are
well approximated.

The method is generally applicable to all response func-
tions, including diagonal and off-diagonal fermionic and
bosonic response functions of continuous and discrete sys-
tems. Examining the application of the methodology to
data polluted with stochastic noise we find, similarly, that
a fit to within the known precision of the input data re-
sults in physically reasonable spectral functions that are

systematically improved as the uncertainty on the Matsubara
axis is reduced.

This paper is organized as follows. In Sec. II, we introduce
the theory of the minimal pole representation in three steps:
the approximation to the Matsubara input in Sec. II A, the
holomorphic mapping in Sec. II B, and the extraction of pole
information in Sec. II C. The numerical results are presented
in Sec. III. We demonstrate the error control of our method
in Sec. III A. Then, we analyze the dependence of the per-
formance on system temperature and the number of available
data points in Secs. III B and III C, respectively. In Sec. III D,
we test our method on challenging examples with both sharp
and broadened features, followed by an illustration of the
method’s versatility in Sec. III E. In Sec. III F, we show its
robustness to noise. Finally, Sec. IV contains a concluding
discussion.

II. THEORY

We construct an approximation of Matsubara data in the
upper half of the complex plane by

G(z) =
M∑

l=1

Al

z − ξl
, (1)

where the ξl ∈ C denote M pole locations in the lower half
of the plane and Al ∈ C the corresponding complex weights,
in three steps. First, we approximate Matsubara data on a fi-
nite interval of the non-negative imaginary axis using Prony’s
approximation method [49,50]. Second, we map this interval
onto the unit circle using a holomorphic mapping and eval-
uate the moments of the approximated function numerically.
Finally, we use Prony’s approximation for a second time to
extract a compact representation in terms of pole weights and
locations, map the poles back onto the original domain, and
evaluate the spectral function.

Prony’s method has previously been used to study the an-
alytic continuation problem [47,48]. The major differences to
this work are that Ref. [48] employs a different approximation
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procedure, either a causal projection onto a finite real-axis
grid or a spline interpolation, and different grids and maps,
as well as a different solution method of the Prony problem.
The methodology does not yield the systematic error control
observed here.

A. Approximation

Our input data consist of an odd number Nω = 2N + 1 of
Matsubara points G(iωn) that are uniformly spaced, starting
from a non-negative frequency ωn0 with spacing �n, i.e.,
{iωn0 , iωn0+�n, . . . , iωn0+(Nω−1)�n}.

Prony’s interpolation method [49] interpolates Gk as a sum
of exponentials Gk = ∑N−1

i=0 wiγ
k
i , where Gk = G(iωn0+k�n),

0 � k � 2N , wi denote complex weights, and γi correspond-
ing nodes.

Prony’s interpolation method is unstable [51]. We therefore
employ a Prony approximation [50], rather than an interpo-
lation, of G between iωn0 and iωn0+(Nω−1)�n. For physical
Matsubara functions, which decay in magnitude to zero for
iωn → i∞, only K ∝ log(1/ε) out of all N nodes in the Prony
approximation have weights |wi| > ε [50]. More importantly,
K significant nodes wi can be predetermined [50] such that the
solution to the overdetermined problem for finding weights
wi is stable and yields an accurate solution to the Prony
approximation problem

∣∣∣∣∣Gk −
K−1∑
i=0

wiγ
k
i

∣∣∣∣∣ � ε for all 0 � k � 2N, (2)

for a predefined tolerance ε > 0 via singular value decompo-
sition. By varying k continuously over the interval [0, 2N], we
obtain an approximation of Matsubara data on the continuous
interval [iωn0 , iωn0+(Nω−1)�n]. This form of approximation em-
ploys a minimum number of exponential sums and is essential
for regularizing the problem.

B. Holomorphic mapping

We then apply a holomorphic transform g(z), which is a
combination of linear transform and an inverse Joukowsky
transform [52] and is illustrated in Fig. 1, to map the complex
plane to the closed unit disk D̄,

w = g(z) = zs −
√

z2
s + 1 with zs = z − iωm

�ωh
,

z = g−1(w) = �ωh

2

(
w − 1

w

)
+ iωm, (3)

where ωm = (ωn0 + ωn0+(Nω−1)�n)/2 is the frequency in the
middle of the approximated interval, �ωh = (ωn0+(Nω−1)�n −
ωn0 )/2 is half of the segment length, and the branch of
the square root in the first equation is chosen such that
|w| � 1. The approximated Matsubara interval forms the
unit circle, with g(iωn0 ) = −i, g(iωn0+(Nω−1)�n) = +i, and any
other point splits into two copies with identical y values. The
real axis is mapped onto a closed contour contained in the unit
disk with ∞ mapped to the origin.

FIG. 1. Holomorphic functions g(z) and g−1(w) mapping the
complex plane to the unit disk and an interval on the imaginary axis
to the unit circle. Also shown are points on and near the real axis as
triangles, along with their image under g.

Since the transformed response function G̃(w) corresponds
to Eq. (1) as G̃(w) = G(z) and takes the form

G̃(w) =
M∑

l=1

Ãl

w − ξ̃l
+ analytic part, (4)

the integrals over the unit circle

hk := 1

2π i

∫
∂D̄

G̃(w)wkdw (5)

yield its moments and, via the residue theorem, pole informa-
tion [47,48],

hk =
∑

l

Ãl ξ̃
k
l , k � 0. (6)

Additional simplification of Eq. (5) yields

hk =
⎧⎨
⎩

i
π

∫ π
2

− π
2

G(i(ωm + �ωh sin θ )) sin(k + 1)θdθ, k is even

1
π

∫ π
2

− π
2

G(i(ωm + �ωh sin θ )) cos (k + 1)θdθ, k is odd

(7)

Using the continuous representation of G obtained in the last
step and numerical quadrature, these moments are obtained to
high precision. Note that since all ξ̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can be
truncated for hk � ε.

C. Extraction

Equation (6) forms a second Prony problem. With Eq. (2),
M significant Ãl and ξ̃l are extracted and the resulting poles
and weights are recovered as

ξl = g−1(ξ̃l ) = �ωh

2

(
ξ̃l − 1

ξ̃l

)
+ iωm, (8)

Al = Res[G(z), ξl ] = �ωh

2

(
1 + 1

ξ̃ 2
l

)
Ãl . (9)

Equations (8) and (9) yield a minimal pole approximation of
the form of Eq. (1) that is accurate to within ε and reveals the
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FIG. 2. Integrated real axis error err(A) = ∫
R dω|A − Acont| for

the discrete (left) and continuous (right) case as a function of control
parameter ε. Also indicated is the number of poles M. Inset: Exact
spectrum A(ω). Other parameters are β = 200, n0 = 30 (left) and 0
(right), �n = 1, and Nω = 2001.

analytic structure of the function. To evaluate the correspond-
ing spectral function A(ω) = − 1

π
Im G(ω), we evaluate Eq. (1)

for ω along R + i0+. By lowering ε, the precision can be sys-
tematically increased, at the cost of adding additional poles.
For the cases examined, this pole representation is much more
compact than comparable schemes [53–59] which typically
do not yield a systematically improvable representation of the
spectral function and may violate the analytic properties of the
response function.

III. RESULTS

In this section, we conduct simulations to verify the ef-
fectiveness of our method. The Supplemental Material [60]
to this paper contains a pedagogical implementation of this
procedure that, given a set of Matsubara points and a tolerance
ε, produces a compact representation of the response function
and its corresponding spectral function. An open source im-
plementation is also available as part of the Green software
package [61–63].

A. Error control

We start our discussion with an examination of the
convergence of the spectrum as a function of the error con-
trol parameter ε. For a discrete [Fig. 2(a)] and continuous
[Fig. 2(b)] case we define a spectral function A(ω) on the
real axis, transform it to the Matsubara axis, and continue
it back to the real axis within precision ε as Acont. We then
show err(A) = ∫

dω|A − Acont| as a function of ε. In striking
difference to the “ill-conditioned” nature of a direct analytic
continuation, we observe that Acont rapidly converges to A as ε

is decreased. We observe this convergence behavior regardless
of the form of the spectrum. The approximation is indeed
compact: In the discrete case, only two poles are needed irre-
spective of the precision. In the continuum case, increasing the
precision of the difference of the integral to 10−3 requires an
increase of the number of poles from M = 3 to M = 11. The

Supplemental Material [60] contains the precise analytical
form of the functions examined along a list of the poles.

B. Dependence on temperature

To investigate how performance depends on system tem-
perature, we use an asymmetric spectrum with multiple
features as an example and conduct simulations across a wide
range of temperatures and precision levels. Explicitly, data
points at precision 10−m are obtained by

Gprec(iωn) = round [Gexact (iωn) × 10m] × 10−m. (10)

As shown in Fig. 3, the results improve as precision increases,
regardless of the temperature. However, as temperature in-
creases, the convergence rate becomes slower and thus higher
precision is needed to resolve the same feature, which is an
inherent difficulty of the analytic continuation problem.

Although the three-peak feature cannot be resolved at the
current precision for β = 1 and 2, we argue that there is still an
improvement in the results. To illustrate this, we calculate the
difference between the exact spectrum moments Ak and the
recovered ones Âk . These are calculated using the following
equations:

Ak =
∫ ∞

−∞
dωAexact (ω)ωk and Âk =

∑
l

Alξ
k
l . (11)

As shown in Fig. 4, the recovered moments become more
and more accurate when the precision increases. It is expected
that as the precision is improved further, different peaks can
eventually be resolved.

C. Dependence on data points

To explore the dependence on available data points, we fix
the system at a moderate temperature (β = 30) and perform
simulations for the model in Sec. III B with a varying number
of data points Nω ∈ {7, 9, 11, 35, 151, 1001}. As shown in
Fig. 5, while seven points are not enough to achieve con-
vergence, nine points are sufficient to resolve the three-peak
feature. For Nω � 11, we observe a similar convergence be-
havior, which is insensitive to the number of available points.
Specifically, increasing the number of data points does not
necessarily accelerate convergence. We note that the reason
for this phenomenon is due to the fact that the holomorphic
mapping eliminates the effects from the absence of data points
in the long tail. This happens because the information of
mapped poles is fully contained by function values on the
unit circle, which are only mapped from the finite interval
[iωn0 , iωn0+(Nω−1)�n]. When there are too many data points,
the convergence speed slightly slows down, as the mapped
poles become too close to each other. Given Nω = 2N + 1
data points, our method can recover at most N poles, leading
to failures when there are too few points to capture all poles.
We estimate the threshold for the required number of points
to be Nmin � 2Npole + 1, where Npole is the number of poles
needed to resolve the fine structure of the spectrum. When
Nω � Nmin, convergence should always be observed at suffi-
cient precision.

Since the improvement is independent of temperature and
highly robust to the number of available data points, we fix the
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FIG. 3. Recovered spectral functions at different temperatures β ∈ {1, 2, 5, 10, 20, 50} and various precision levels
{10−3, 10−6, 10−9, 10−12}. Left panel: Evolution of spectrum shapes. Right panel: Convergence of err(A) as a function of precision.
Number of available data points is fixed at Nω = 201.

system temperature at β = 200 and the number of data points
at Nω = 2001 in the following discussions.

D. Challenging examples

In Fig. 6, we analyze the performance of the method for
four continuous noiseless scenarios: a continuous spectral
function with sharp band edges and a van Hove singularity,
as it is encountered in a two-dimensional (2D) tight-
binding calculation of the square lattice with nearest- and
next-nearest-neighbor hopping (left panel); a “semicircular”
density of states with square-root singularities as encoun-
tered in the noninteracting infinite coordination number Bethe
lattice with nearest-neighbor hopping (middle panel); a tight-

FIG. 4. Convergence of spectrum moments as a function of pre-
cision for β = 1 and 2.

binding band structure of an anisotropic triangular lattice [64],
and a simulated “Kondo” setup with a sharp peak and two side
bands (right panel).

We proceed by back-continuing the known function A(ω)
to the Matsubara axis, approximating it with ε chosen close
to machine precision (resulting in M = 10, 9, 9, and 9), and
plotting both A(ω) and Acont(ω) as a function of frequency ω

together with results from maximum entropy [15,30] and the
stochastic optimization method (SOM) [39,43].

All four functions are difficult to analytically continue
with standard methods, since they contain both broad and
sharp features. The standard methodology of finding the
“smoothest” function consistent with input data within some
error is not appropriate and introduces artificial “ringing.”
While precise knowledge of the location of the band edges
and singularities could be used in a Nevanlinna function inter-
polation [24] followed by a Hardy function optimization [24]
to pick the “correct” function out of a Hardy function space,
this knowledge is often not available.

The low-rank representation of the Green’s function pro-
duced by the Prony method provides an unbiased alternative
selection criterion that, in this case, is substantially more
precise than a smoothness criterion.

E. Versatility

While a fermion Green’s function of an operator and its
corresponding adjoint corresponds to a positive spectral func-
tion [65] whose poles lie in the lower half of the complex
plane [24], response functions of interest also include bosonic,
anomalous, and off-diagonal cases which have different an-
alytical properties. Importantly, they may not correspond to
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FIG. 5. Recovered spectral functions at different numbers of data points Nω ∈ {7, 9, 11, 35, 151, 1001} and various precision levels
{10−3, 10−6, 10−9, 10−12}. Left panel: Evolution of spectrum shapes. Right panel: Convergence of err(A) as a function of Nω at different
precision levels. System temperature is fixed at β = 30.

a probability distribution, ruling out the straightforward ap-
plication of maximum entropy and related methods. While
the issue can be circumvented by continuing related quanti-
ties [66–70], the procedure often amplifies errors [15].

The method presented here does not explicitly enforce
an analytic structure. It can therefore be applied directly to
bosonic, off-diagonal, and anomalous Green’s functions as
well as to self-energies. As an example we show the off-
diagonal part of a continuous fermion spectral function in
Fig. 7(a), a discrete off-diagonal fermion system in Fig. 7(b),
a continuous diagonal boson system in Fig. 7(c), and a
discrete off-diagonal boson system in Fig. 7(d). Note that the
method for continuous and discrete systems is identical; it is

the low-rank representation that places a minimum number of
poles very close to the real axis to distinguish sharp (discrete)
features from smooth (continuous) ones.

F. Noisy data

Analytic continuation is commonly used on noisy Monte
Carlo data, where a response function is known only within
a given precision. The precision achievable depends very
much on the Monte Carlo algorithm and the estimator used
but is rarely better than 10−5, and errors are often (but not
always [71]) Gaussian distributed. In that case, we substitute
ε as a proxy for the Monte Carlo error bar.

FIG. 6. Continuation of continuous spectral functions. From left to right: Tight-binding density of states of a 2D square lattice with
nearest- and next-nearest-neighbor hopping. Semicircular density of states. Tight-binding density of states of the anisotropic triangular lattice.
“Kondo”-like spectral function. Shown are the exact input A(ω) in black, a continuation with maximum entropy (blue), SOM (purple), and a
Prony fit (this method) in red. Maximum entropy parameters are fine-tuned to yield best spectra possible.
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FIG. 7. Analytic continuation of nonpositive spectral functions
in noiseless scenarios. Black: Exact input. Red: Continuation.
(a) Off-diagonal continuous and (b) discrete fermion case. (c) Di-
agonal boson case. (d) Discrete off-diagonal boson case.

For a discrete and a continuous scenario, the left panels of
Fig. 8 shows the convergence of the spectral function in our
method, and maximum entropy [15] and SOM [39] for simu-
lated Gaussian errors with varying magnitude. The right panel
shows the integrated error err(A). It is evident that already
very loose error tolerance reproduces the main features of the
spectrum. As the simulated Monte Carlo errors are decreased,
our method rapidly converges to the exact result whereas the
spectrum is not recovered in maximum entropy and SOM.

IV. DISCUSSION

In conclusion, we have shown a method to systemati-
cally construct low-rank pole approximations to Matsubara
response functions of quantum systems and used it to analyt-
ically continue spectral functions. We have demonstrated the
control of the method in the sense that the error in the real-
frequency response functions can be systematically reduced
by improving the corresponding Matsubara fit.

We have also demonstrated the wide applicability of the
method, including its suitability for diagonal, off-diagonal,

FIG. 8. Spectral functions for different levels of relative Gaus-
sian noise δ on the imaginary axis. Upper panel: Discrete case. Lower
panel: Continuous case. Also indicated is the number of poles M.

fermionic, bosonic, continuous, and discrete response func-
tions and we have examined the convergence in the presence
of noise. We note that the same approximation scheme can
also be used to model real-frequency response functions a
short distance above the real axis, which may be useful in
cases where a Matsubara representation is to be avoided
entirely.

Apart from analytic continuation, the compact representa-
tions introduced here offer a path towards faster numerical and
analytical manipulation of response functions, and they offer
physical insight by revealing the locations of poles and zeros
in the complex plane.

An open source implementation of the method described
here is freely available [60,62,63].
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