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Optimal half-metal band structure for large thermoelectric performance
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Half-metal ferromagnets were predicted [Cahaya, Tretiakov, and Bauer, IEEE Trans. Magn. 51, 1 (2015)] to
give large thermoelectric performance in antiparallel spin valve configuration. Despite being metals that suffer
from the Wiedemann-Franz law, the additional spin degrees of freedom allow for tuning of the thermoelectric
properties due to the spin valve enhancement factor. We test this theory and find a mismatch of parameters that
gives large thermoelectric performance and large spin valve enhancement factor. As a result, we show that the
spin valve setup is useful only for half-metal ferromagnets with initially poor thermoelectric performance. To
obtain the largest thermoelectric performance, one still needs to open the band gap.
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I. INTRODUCTION

Thermoelectric (TE) materials are capable of transforming
heat into electricity. Despite the fact that research on this
topic has been conducted for centuries, it is still difficult
to obtain TE materials for practical applications. The power
factor PF = S2σ and the dimensionless figure of merit ZT =
(PF/κ ) T are two parameters used to determine whether a
material is suitable for TE purposes. Here, S is the Seebeck
coefficient, σ is the electrical conductivity, κ is the thermal
conductivity, and T is the average of the hot and cold temper-
atures. Much effort has been put into improving both ZT and
PF. Thermoelectric performance can be increased by either in-
creasing PF or reducing thermal transport. Common methods
for this include using low-dimensional structures [1–4] and
manipulating the band structure [5] through doping [6] and
strain [7,8]. Recent progress in topological insulators enables
a dissipationless edge channel to enhance thermoelectric per-
formance [9,10]. The other method is by enhancing phonon
scattering [11] to reduce phonon transport [12,13].

Metals are not ideal TE materials because electrons
that carry charge current also carry heat, which obeys the
Wiedemann-Franz law σT/κ = (3k2

B)/(π2e2), where kB is the
Boltzmann constant and e is the charge of an electron [14]. In
addition, the Seebeck coefficient, which is the ratio of electric
field to temperature gradient (S = −∇V/∇T ), is very small
in metals, resulting in a ZT value that is much less than 1.
Despite the small TE efficiency of metals, the power factor
can be large. Currently, Mg3Bi2-based materials possess one
of the largest PF about 20 µW/cm K2 [15]. This large PF
is useful when there is an unlimited heat source and output
power is prioritized over efficiency.

When spin degrees of freedom are involved in TE trans-
port [16], both the PF and ZT of metals can be further

increased [17]. In Fig. 1(a), half-metal ferromagnets (HMFs)
with opposite spin majority in two legs are connected by a nor-
mal metal. The Seebeck coefficients in both legs are assumed
to be of equal and opposite sign (S and −S). In this antiparallel
setup, the spin accumulation at the spacer is maximized due
to low spin transfer from one leg to the other. As a result, the
voltage and temperature gradients across the thermocouple are
maximized [18] and consequently so are ZT and PF [17,19].
This effect is referred to as the spin valve enhancement factor
(SVEF).

A previous work considered half-metallic two-dimensional
(2D) chromium pnictides [19]. They predict the enhancement
of ZT for CrAs, CrSb, and CrBi but not in CrP. In some values
of the Fermi energy, the SVEF is less than unity, indicating
that no enhancement has been achieved. Therefore, it is nec-
essary to find the optimal band structure and parameters to
achieve the largest PF and ZT in this system. In this paper, we
start with the simplest model of the half-metal band structure
and find the optimal parameters to obtain the largest SVEF,
PF, and ZT . We describe a half metal as spin-polarized bands
comprising a single metallic band [blue line in Fig. 1(b)]
and two insulating bands [red lines in Fig. 1(b)] with a band
gap 2� and opposite spin orientation. We model the metallic
band as a single parabolic band that has a finite density at
equilibrium determined by its band depth E0 measured from
the charge neutrality point μ = 0. Since we consider 2D ma-
terials, the Fermi energy μ is tunable by a gate voltage.

In this paper, we focus on optimizing TE quantities from
electronic contributions and neglect the phonon contribution
to thermal conductivity, κph. Depending on materials, κph

will reduce ZT by small or large percentage. There exists,
HMF with low thermal conductivity such as CrBi with κph ≈
0.06 W/mK compared with electronic thermal conductivity
≈102 W/mK [19].
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FIG. 1. (a) Spin valve configuration of the half-metal ferromag-
netic insulator and (b) band structure of the half-metal ferromagnetic
insulator using the parabolic band model.

II. MODEL AND METHODS

Here, we model a HMF system using a parabolic band
for the spin-down metal state and two parabolic bands for
the spin-up insulating state. The electronic band structures for
metal is given by

Em(k) = h̄2k2

2m̄
− E0, (1)

while for insulator Ei it consists of

Ec(k) = h̄2k2

2m̄
+ �, (2)

Ev (k) = − h̄2k2

2m̄
− �, (3)

where E0 is the depth of the metallic band and � is half of the
band gap of insulating bands, as illustrated in Fig. 1(b).

We can vary the effective mass m̄ for three bands; however,
the TE kernel

L(n)
j =

∑
Nj

∫
τv2

j (E )D j (E )(E − μ)n

(
− ∂ f

∂E

)
dE (4)

defined in the linearization of the Boltzmann equation is in-
dependent of mass due to the cancellation of m̄ in v2 and D
(see Appendix A). Here j = m, i are indices for the metal and
insulator band respectively with number of bands Nm = 1 and
Ni = 2 which consist of {c, v} bands. D j (E ) = ∑

k δ(Ej (k) −
E ) is the density of states, τ is the relaxation time, and
v j = h̄−1∂Ej/∂kx is the longitudinal velocity of the electron.
TE properties of our system are obtained using the Boltzmann
transport equation with relaxation time approximation. We
argue that a constant relaxation time independent of energy E
is a good approximation in the 2D parabolic band due to the
constant density of states. Later in Sec. IV B, we also estimate
corrections due to an energy-dependent relaxation time τ (E ).
For simplicity, here we assume negligible phonon contribution
to κ as shown in previous work [19].

Thermoelectric transport coefficients are given by

σ j = e2L(0)
j , j = m, i, (5)

S j = − 1

eT

L(1)
j

L(0)
j

, (6)

κ j = 1

T

(
L(2)

j −
(
L(1)

j

)2

L(0)
j

)
, (7)

where σ , S, and κ are electrical conductivity, Seebeck co-
efficient, and electronic thermal conductivity. The transport
coefficient of the whole system is described by [17]

σt = σi + σm, (8)

St = σiSi + σmSm

σi + σm
, (9)

κt = κi + κm. (10)

Using the transport coefficient of the system, we can define
the figure of merit and power factor as well as their corre-
sponding spin valve enhanced values as follows:

ZTv = χZT = χ
σt S2

t

κt
, (11)

PFv = χPF = χσt S
2
t , (12)

where χ is the SVEF due to nonparallel configuration shown
in Fig. 1(a) [17]. SVEF is given by

χ = (1 − PP′)2

1 − P2
, (13)

where P and P′ are respectively related to spin polarization of
charge and heat:

P = σm − σi

σm + σi
, (14)

P′ = σmSm − σiSi

σmSm + σiSi
. (15)

Parenthetically, we neglect the spin-orbit coupling so that the
polarizations can be given simply by Eqs. (14) and (15). In the
presence of spin-orbit coupling, Eqs. (8)–(10) remain intact
while for Eqs. (14) and (15) they should be defined through
the spin projection procedure.

III. RESULTS

A. Thermoelectric coefficients

In Fig. 2, we show separately the thermoelectric coef-
ficients (σ , S, and κ) of the spin-down state (metal) and
spin-up state (insulator) and the total contribution of both
spins as a function of the Fermi energy μ. We fix the band gap
and vary the depth of the metallic band E0. TE coefficients
are plotted in units of σ0 = τ0kBTe2/πLh̄2, S0 = kB/e, and
κ0 = τ0k3

BT 2/πLh̄2 where τ0 is the relaxation time and L is
confinement length. Using a typical confinement length L =
1 nm, T = 300 K, and τ0 = 1 fs, we obtain σ0 = 3043.1 S/m,
S0 = 86.1 µV/K, and κ0 = 677.7 µW/cm K.

As summations of contributions from the insulating and
metallic bands, the electric σt and thermal κt conductivities
of the half-metallic band possess values higher than those of
each individual spin. Meanwhile, the Seebeck coefficient of
the half-metallic band shows an insulating—or metallic—like
character depending on the value of E0 vs �. For E0 larger
than �, the Seebeck coefficient of half metal is monotonic
and therefore has a similar character to metal. On the other
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FIG. 2. Thermoelectric coefficients of insulator, metal, and half metal. Electrical conductivity, Seebeck coefficient, and thermal conductiv-
ity as a function of � and varying E0.

hand, for E0 smaller than �, the Seebeck coefficient shows an
insulating-like character with the peak positions being shifted
from the charge neutrality point μ = 0. However, the com-
bined Seebeck coefficient values on the HMF are lower than
those of individual bands given by Eq. (9).

B. ZT and PF of half metals

Based on the results in Fig. 2, one can calculate dimension-
less ZT and PF using Eqs. (8)–(10). In Fig. 3(a) we show the
2D plot of ZT as a function of μ and � for E0 = 2kBT . In
the negative μ, we obtain a very large ZT above 2 (extended
color bar). Taking a vertical cut of ZT along � = 6kBT , one
observes double peak structures of ZT as a function of μ.
These double peaks originate from S2

t (Fig. 2). Focusing on
μ = ±� [Figs. 3(b) and 3(c)], we scan ZT over the � − E0

space. At μ = �, ZT is generally less than 1. On the other
hand, at μ = −�, ZT can be higher than 2 as long as E0 is
smaller than � [see Fig. 3(c)]. This means that the ideal band
structure to achieve the highest ZT is slightly gapped out with
a band gap of approximately ≈3kBT [see Fig. 3(d)]. We note
that the region with large ZT extends to large values of E0 and
�. However, for large � one needs large doping via a gate
voltage to reach μ = −�. We note, parenthetically, the value
of μ can be smaller than −� as long as E0 > �. We have
checked numerically that for E0 = c� the values of PF, ZT ,
and SVEF are the same for μ = −� and −c� (see Fig. 11
and Appendix C).

Next, we turn our attention to PF. The HMF power factor
reaches a very high value at μ = � and for very low �

[see Fig. 4(a)]. Focusing on μ = �, we can obtain optimal
� and E0 in Fig. 4(b). Small � ≈ 2–3kBT and small E0 <

3kBT produce very large PF ≈ 6PF0 where PF0 = 0.23 ×
τ̄ µW/cm K2, with τ̄ the relaxation time in femtoseconds. To

reach the current record of PF, one requires a relaxation time
of about 10 fs, which is a moderately clean sample. Some
experiments and computational results of electron relaxation
time have shown a higher value than 10 fs as in graphene
around 300 fs [20–22]. For μ = −�, one can obtain a moder-
ately large PF in the region where ZT is large [see Fig. 4(c)].
The optimal band structure for the largest PF is summarized

FIG. 3. (a) The 2D plot of ZT as a function of Fermi energy
μ and � for E0 = 2kBT . (b), (c) ZT for μ = � and μ = −�,
respectively, plotted as a function of E0 and �. (d) Optimal band
structure to achieve optimal ZT .
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FIG. 4. (a) The 2D plot of PF as a function of μ and � for
E0 = 2kBT . (b), (c) PF for μ = � and −�, respectively, plotted as
a function of E0 and �. (d) Optimal band structure to achieve the
largest PF.

in Fig. 4(d). In this case, μ = � and E0 and � are very small,
which means that we need to open the global HMF band gap
about � − E0.

C. Spin valve enhancement factor

In Eqs. (11) and (12), thermoelectric performance is en-
hanced when SVEF > 1. Therefore, SVEF is expected to
improve the TE performance of half metals. Figure 5(a) shows
the SVEF of HMF as a function of the Fermi energy μ

from −� to �. The solid lines are for � = 5kBT and the
dashed lines are for � = 20kBT , with each color represent-
ing different metallicity (E0). The results show that a large
band gap yields small values of SVEF at low Fermi energy
and drastically increases near the band edge. SVEF increases
greatly with the increase of E0. In the limit of E0 � �, charge
polarization is dominated by the metal sector which gives

FIG. 5. (a) SVEF as a function of Fermi energy (μ/�) for vari-
ous values of E0. The dashed lines are for � = 20kBT and the solid
lines are for � = 5kBT . (b) Optimal band structure for large SVEF.

FIG. 6. SVEF of HMF in contour plots at two different Fermi
energies (a) μ = −� and (b) μ = � as a function of E0 and �.
(c) SVEF as a function of � for several values of E0. (d) SVEF as a
function of E0 for several values of �. In (c) and (d), the solid lines
are for μ = −� and the dashed lines are for μ = �. (The dashed
lines are multiplied by 5 so that they can be plotted on the same
scale.)

P ≈ 1 [see Eq. (14)] in the entire range μ between [−�,�].
On the other hand, the values of P′ can deviate from unity
due to the large contribution of Si near the band edges. The
degrees of polarization P and P′ are proportional to E0/�.
For small �, thermal carriers are excited above the gap giving
the smeared profile of SVEF inside the gap (solid lines). The
bigger E0, the closer P value to unity at the edges, resulting
in a linear increase in SVEF. The highest SVEF is achieved at
μ = −� because in these parameters Si and Sm give opposite
signs [see Eq. (15)] with P′ = 3 and P ≈ 1 for E0 � �. For
E0 = 100kBT , SVEF reaches 100 at μ = −� and about 20 at
μ = �. Figure 5(b) illustrates the optimal band structure for
the largest SVEF.

We focus on two values of μ = ±� and find the optimal
E0 and � for the best SVEF of the two cases. In Figs. 6(a)
and 6(b), we show the 2D plot of SVEF as a function of E0

and � for position μ, respectively, at μ = −� and �. We
take a horizontal cut of Figs. 6(a) and 6(b) and plot SVEF vs
� in Fig. 6(c) for several values of E0. For μ = −� (solid
lines), SVEF shows a peak with an optimal band gap �

between 2 and 3kBT . Meanwhile, for μ = � (dashed lines),
the SVEF increases monotonically as a function of �. Taking
a vertical cut of Figs. 6(a) and 6(b), we show that SVEF
increases monotonically as a function of E0 at both positions
of μ [see Fig. 6(d)]. However, at μ = � (μ = −�), the SVEF
is proportional (inversely proportional) to �. In Figs. 6(c)
and 6(d), we deliberately multiply SVEF values by 5 for the
case of μ = � to make comparisons with μ = −�.

As presented in Figs. 3 and 4, high TE performances re-
quire a very small value of E0. On the other hand, as shown
in Figs. 5 and 6, SVEF prefers large E0. These different
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FIG. 7. (a), (b) 2D plots of ZT on the spin valve at μ = −� and
�, respectively, as a function of � and E0. (c), (d) ZT as a function
of E0 and �, respectively, at μ = �.

conditions indicate the mismatch of parameters to obtain
maximum SVEF with the parameters that contribute to large
ZT and PF. For that reason, we cannot get both of them at
the same time. Two-dimensional ferromagnetic insulators, for
example CrI3, which have a large band gap around 1.89 eV
(ZT = 1.57 at T = 900 K) [23] thus do not have large SVEF
and PF. Here, we calculate the ferromagnetic insulator by the
four-band model, and it gives consistent results where SVEF
is low (see Appendix B). ZT can be potentially large, but
phonon thermal conductivity might hamper it. On the other
hand, chromium pnictide such as CrBi is an HMF and has
large � and E0. This material has a large SVEF but the initial
ZT is small [19].

IV. TE PERFORMANCE OF THE SPIN VALVE
THERMOCOUPLE

We have shown that the spin valve setup in Fig. 1(a) can,
in principle, increase ZT and PF by a factor of hundreds as
shown in Figs. 5 and 6. In Sec. IV A, we discuss which combi-
nation of E0, �, and μ gives the largest ZTv and PFv. However,
the parameters that give large ZT and PF do not match those
of large SVEF [cf. Fig. 6(a) with Figs. 3(c) and 4(c)]. The
mismatch is further elaborated in Sec. IV B.

A. ZT and PF with SVEF

We examine the values of ZTv at two different Fermi ener-
gies, μ = −� and �, shown in Figs. 7(a) and 7(b). It should
be noted that optimal ZTv is achieved at μ = �, despite the
optimal SVEF occurring at a negative Fermi energy. The max-
imum value of ZTv is approximately 0.8, which is obtained
when � is equal to 2kBT and small E0.

In Fig. 7(c), we plot ZTv (solid lines) and compare it with
the initial ZT (dashed lines) as a function of log-scaled E0

FIG. 8. (a), (b) 2D plot of PF on the spin valve at μ = −� and
�, respectively, as a function of � and E0. (c), (d) Power factor as a
function of E0 and �, respectively, at μ = �.

for � = 2kBT (red lines) and � = 20kBT (blue lines). The
enhancement by spin valve setup, indicated by the difference
between the solid and dashed line, is small at small band gap
and increases a little bit as E0 increases. On the other hand, for
larger �, ZTv enhances by a factor of ≈4 although the overall
value of ZTv ≈ 0.06 is small.

Figure 7(d) shows ZT as a function of log-scaled �, which
indicates that the optimal ZTv is achieved when � = 2kBT .
At the largest ZTv value, SVEF is relatively small. The con-
tribution relative to the change of � can be compared with
Fig. 6(d), where the SVEF for μ = −� increases as � in-
creases. At lower �, SVEF is lower than unity, making ZT >

ZTv. As E0 increases SVEF also increases but the value of ZTv

becomes smaller.
We also calculate the power factor of the spin valve con-

figuration (PFv). Figures 8(a) and 8(b) show the PFv at μ =
−� and �, respectively. Similarly to ZTv, the optimal PFv

is obtained at μ = �. Despite that, PFv at μ = −� is not
negligible, thanks to the large SVEF for E0 � �. In Figs 8(c)
and 8(d), the SVEF contribution can be seen from the dis-
tance between the solid and dashed lines. In Fig. 8(c), the
same phenomenon as ZTv also appears in PFv, where the
high PFv (red lines) has low SVEF. From Fig. 8(d), high
SVEF is found at higher E0, which has low initial PF. On
the other hand, lower E0 has a higher initial power fac-
tor, which is shown by the red line. Figure 8(d) shows that
the peak is also found at � = 2kBT , which indicates the
optimal �.

Our model yields an optimal ZTv of 0.8 and a power fac-
tor PFv close to 7PF0. The decrease in power factor due to
changes in parameters is not as drastic as the decrease in ZT .
On the basis of these calculations, we propose a third sce-
nario, which achieves the optimal figure of merit and power
factor. When the Fermi energy is set in the lowest conduction
band (μ = �) with low metallicity (E0 ≈ 0.1) and � around
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FIG. 9. 2D plot of log[χ ] as a function of γ and ξ . Line plots
represent the region with a certain value of PF/PFi(= 1, 3, 5) and
scatter markers are the data with r = −1, 0, 1, 2. Black markers are
the maximum PFv and red markers are the maximum ZTv.

2kBT (Fig. 8), optimal PFv and ZTv are achieved. These re-
sults suggest that a suitable HMF should have a narrow band
gap.

B. Mismatch of TE performance and spin valve enhancement

Figure 5 shows that the large SVEF is achieved at higher
HMF metallicity (larger values of E0); meanwhile, to get bet-
ter TE performance, one needs to open the gap. At first sight,
the mismatch between SVEF and TE performance might
depend on the fact that we use a constant relaxation time
τ = τ0(E/kBT )r with r = 0. We reveal the universality of our
results by taking into account nonzero r. We can simplify the
analysis of Eqs. (8)–(15) by writing σm = γ σi and σmSm =
ξσiSi with γ > 0 and ξ can be positive or negative to express
P = (1 − γ )/(1 + γ ), P′ = (1 − ξ )/(1 + ξ ), χ or SVEF, and

PF = (σt St )2

σt
= (1 + γ )2

(1 + ξ )

(σiSi )2

σi

as a function of ξ and γ .
In Fig. 9, we show log(χ ) as a function of ξ and γ and over-

lay it with lines that give PF/PFi = 1 up to 6. From Fig. 9, we
can see that the large SVEF is localized at large γ with small
ξ or large negative ξ with γ < 1. However, the high PF/PFi

is found mainly in SVEF <1. We also show the spread of
data points of � ∈ [0, 5]kBT μ ∈ [−1, 1]�, E0 ∈ [0, 5]kBT ,
and r ∈ [−1, 2]. A typical half metal with large γ cannot
simultaneously give large PF and SVEF. It is tempting to say
that small γ < 1 and large negative ξ give both large PF and
SVEF but it is not true because the lines show the relative
value of PF/PFi and not the absolute value. The highest values
of PFv and ZTv are shown in black and red, respectively, with
different marks indicating different r. We summarize the op-
timal γ and ξ that give the maximum ZT , PF, ZTv, and PFv in
Table I.

Maximum values of PF and ZT are located beyond the
range of the plot in Fig. 9 except for max(PF) of r = 0 which
has the same location as max (PFv). These maximum values
of PF and ZT are located in the far right corner or the left

TABLE I. Position γ and ξ of maximum TE quantities for differ-
ent r.

(γ , ξ )

r Maximum ZT Maximum PF Maximum ZTv Maximum PFv

−1 (601.4,98.7) (1620, −473.6) (7.5,0.75) (4.5,0.9)
0 (275.0, −17.0) (3.3,1.8) (3.8,2.2) (3.3,1.8)
1 (27.9,−18.3) (20.8,6.8) (4.8,3.0) (4.8,3.0)
2 (27.9,−19.3) (1515.4,175.7) (6.1,4.1) (6.1,4.1)

corner of Fig. 9 with both large γ and |ξ |. However, in these
regions, SVEF is very small and even less than 1. The optimal
product of SVEF and TE performance yields PFv and ZTv

with typical values of SVEF around unity. We note that with
larger r values the achievable TE performance increases as
shown in Appendix D (Figs. 12 and 13).

V. CONCLUSION

We found optimal parameters to achieve large ZT and PF
as well as their corresponding SVEF in the HMF. The large
SVEF is achieved when the degree of metallicity of the HMF
is large (large E0). On the other hand, to obtain large PF and
ZT , one needs to open the band gap of HMF (E0 < �). The
mismatch in these two optimized parameters indicates that
spin valve enhancement is effective only in pure HMF without
band gap, in which the TE performance is rather poor. These
results are consistent with the previous finding in chromium
pnictides where SVEF is large for materials with initially
small ZT (CrAs, CrSb, CrBi) but small for the one that has
larger ZT (CrP). The achievable ZT or ZTv in gapless HMF
cannot be as large as those with the band gap. For example,
a ferromagnetic insulator (e.g. CrI3) might have larger ZT
than HMF but has lower SVEF. We also found that increasing
the exponential factor r in the relaxation time τ ∝ (E/kBT )r

also increases the TE performance. However, this does not
change the fact that the resulting optimal values of ZTv and
PFv cannot be higher than the highest value of ZT and PF in
gapped systems.
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APPENDIX A: THERMOELECTRICITY OF THE 2D
HALF-METAL FERROMAGNETIC INSULATOR

To analyze the thermoelectric coefficient of the half-
metallic band structure illustrated in Fig. 1(b), we applied
Boltzmann transport theory with

v2(E ) =
(

E (k)

m

)
, (A1)

τ (E ) = τ0

(
E (k)

kBT

)r

, (A2)

D(E ) = m

πLh̄2 �(E ), (A3)

where E (k) = h̄2k2/2m. A thermoelectric kernel using lin-
earized Boltzmann transports gives

Li = τ0

πLh̄2(kBT )r

∫
E (k)r+1(E − μ)i

(
− ∂ f0

∂E

)
dE . (A4)

Next, we use τ0

πLh̄2 = C, E/kBT = ε, and μ/kBT = η to arrive
at an analytical form:

Li = C(kBT )i+1
∫ (

E (k)

kBT

)r+1 (ε − η)i exp (ε − η)

[exp (ε − η) + 1]2
dε.

(A5)

1. Insulating band kernel

Constant relaxation time approximation (r = 0), with dis-
persion energy Ec(k) = E (k) − � for the conduction band
and Ev (k) = −E (k) − � for the valence band (�̃ = �/kBT ),
gives

L(c,v),i = C(kBT )i+1
∫

(±ε − �̃)(ε − η)i exp (ε − η)

[exp (ε − η) + 1]2
dε.

(A6)

Here, we introduced ε − η = x, dε = dx, with i = 0, 1, 2:

L(c,v),i = C(kBT )i+1
∫

xi(±(x + η) − �̃) exp (x)

[exp (x) + 1]2
dx

= C(kBT )i+1

(
±

∫
xi+1 exp (x)

[exp (x) + 1]2
dx

+ (±η − �̄)
∫

xi exp (x)

[exp (x) + 1]2
dx

)
(A7)

for conduction band, energy range � � E < ∞, and valence
band � � −E < ∞. So the integral boundaries �̄ + η � x <

∞ for the conduction kernel, and −∞ < x � −�̄ − η for the
valence band kernel:

Lc,i = C(kBT )i+1

( ∫ ∞

�̃−η

xi+1 exp (x)

[exp (x) + 1]2
dx

+ (η − �̄)
∫ ∞

�̃−η

xi exp (x)

[exp (x) + 1]2
dx

)
, (A8)

Lv,i = C(kBT )i+1

(
−

∫ −�̃−η

−∞

xi+1 exp (x)

[exp (x) + 1]2
dx

+ (−η − �̄)
∫ −�̃−η

−∞

xi exp (x)

[exp (x) + 1]2
dx

)
. (A9)

Using the integrals

Fi,c(�) =
∫ ∞

�

xi exp x

[exp (x) + 1]2
dx (A10)

and

Fi,v (�) = −
∫ −�

−∞

xi exp x

[exp (x) + 1]2
dx, (A11)

conduction and valence band kernels can be written as

Lc,i = C(kBT )i+1[Fi+1,c(�̃ − η) − (�̃ − η)Fi,c(�̃ − η)]
(A12)

and

Lv,i = C(kBT )i+1[Fi+1,v (�̃ + η) + (�̃ + η)Fi,v (�̃ + η)],
(A13)

respectively.
Integral forms on F can be analytically evaluated to give

the following analytic forms. For the conduction band,

Fo,c(x) = 1

1 + ex
, (A14)

F1,c(x) = − xex

1 + ex
+ ln(1 + ex ), (A15)

F2,c(x) = − x2ex

1 + ex
+ π2

3
+ 2xln(1 + ex ) + 2Li2(−ex ),

(A16)

F3,c(x) = − x3ex

1 + ex
+ 3x2ln(1 + ex )

+ 6xLi2(−ex ) − 6Li3(−ex ). (A17)

On the other hand, the integral for the valence band obeys
Fi,v (x) = (−1)i+1Fi,c[(−1)ix], where i = 0, 1, 2, 3.

2. Metallic band kernel

Similar to the insulating band, the thermoelectric kernel
for the metallic band has an energy range −E0 � E < ∞ and

FIG. 10. (a) Band-structure illustration of the four-band model
with two different band gaps. (b) SVEF of the ferromagnetic insula-
tor by the four-band model.

035150-7



FINANTIUS E. M. RAHANGIAR et al. PHYSICAL REVIEW B 110, 035150 (2024)

FIG. 11. (a) ZT and ZTv and (b) PF and PFv of HMF with E0 =
2� where � = 10kBT . (c) SVEF of the system. (d) Band-structure
illustration of the system.

introduces −Ē0 − η � x < ∞ in the kernel:

Lm,i = C(kBT )i+1

(∫ ∞

−Ē0−η

xi+1 exp (x)

[exp (x) + 1]2
dx

+ (η + Ē0)
∫ ∞

−Ē0−η

xi exp (x)

[exp (x) + 1]2
dx

)
(A18)

= C(kBT )i+1[Fi+1,m(η + Ē0) + (η + Ē0)Fi,m(η + Ē0)],

(A19)

where

Fi,m(Ē0) =
∫ ∞

−Ē0

xi exp (x)

[exp (x) + 1]2
dx = Fi,c(−E0). (A20)

APPENDIX B: FOUR-BAND MODEL

SVEF in ferromagnetic insulators such CrI3 is modeled
by using the four-band model. Each spin channel is gapped
with different band gap widths [see Fig. 10(a)]. In this
model, the spin-down(up) channel has a band gap width �1(2),
where �1 > �2:

L(n)
j (� j, η) = L(n)

c, j (� j, η) + L(n)
v, j (� j, η), (B1)

where j = 1 or 2 representing the spin-up (down) channel and
n is the exponent that gives conductivity, Seebeck coefficient,
and thermal conductivity. Thermoelectric coefficients are cal-
culated by Eqs. (5)–(7). Hence, P and P′ are calculated from
Eqs. (14) and (15), as

P = σ1 − σ2

σ1 + σ2
, (B2)

P′ = σ1S1 − σ1S2

σ1S1 + σ2S2
. (B3)

The SVEF of the ferromagnetic insulator is calculated by
Eqs. (13) by the four-band model plotted in Fig. 10(b).

APPENDIX C: THERMOELECTRICITY FOR μ < −�

In the main text, we limit the value of μ between [−�,�].
It is possible for HMF to have μ lower than −� as long as
E0 > � as shown in Fig. 11(d). In Figs. 11(a)–11(c), we show
that for the case of HMF with E0 = 2�, the thermoelectric
quantities (ZT , PF, and SVEF) at μ = −� are equal to those
at μ = −2�. In general, for E0 = c�, the thermoelectric
quantities at μ = −� are equal to those at μ = −c�.

FIG. 12. (a)–(d), (e)–(h) ZT and ZTv, respectively, for various r from −1 to 2 as a function of Fermi energy μ and � for E0 = 0.1kBT .
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FIG. 13. (a–d, e–h) PF and PFv, respectively, for various r from −1 to 2 as a function of Fermi energy μ and � for E0 = 0.1kBT .

APPENDIX D: ENERGY-DEPENDENT RELAXATION TIME

Dependence of relaxation time on energy is calculated
using Eqs. (A2). We calculate figure of merit and power
factor for different r as shown in Figs. 12 and 13. Thermo-
electric kernels for each relaxation time are calculated using
Eqs. (A5). The results show that relaxation time changes

influence the ZT enhancement by SVEF. When relaxation
time is inverse proportional to energy, SVEF can improve the
ZT of HMF. This is the same as shown in Fig. 9, where the
circle markers tend to be located at regions with high SVEF.
The power factor in Fig. 13 shows that r change improves the
power factor of HMF the same as with the ZT , and at the same
time SVEF is decreased.
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