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Quantum-Hall–superconductor hybrids have been predicted to exhibit various types of topological order,
providing possible platforms for intrinsically fault-tolerant quantum computing. In this paper, we investigate
disorder effects on the Rashba-coupled quantum-Hall system combined with the type-II superconductor. By
diagonalizing the Bogoliubov–de Gennes Hamiltonian projected into a Rashba-coupled Landau level, we demon-
strate the emergence of a topological superconducting phase resulting from disorders and proximity-induced
pairing. Distinctive gapless modes appear in the real-space entanglement spectrum, which is consistent with
topological superconductivity. Historically, the spherical geometry has been commonly used for identifying
topologically ordered states, especially quantum-Hall physics, due to its compact and contractible nature.
Motivated by this, we develop a formulation to construct this hybrid system on a sphere. Our numerical
demonstrations are all performed on the spherical geometry.
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I. INTRODUCTION

The topology of the many-body configuration space de-
termines possible quantum statistics of particles [1]. The
fundamental group of the configuration space is the symmetry
group in three or higher dimensions while it is the braid group
in two dimensions, allowing exotic particles beyond bosons
and fermions, namely anyons [2]. The emergence of anyonic
quasiparticles is a defining feature of topological order [3],
which has revealed a new aspect of phases of matter beyond
the scope of Landau’s theory. Typical examples of topolog-
ically ordered states are the fractional quantum-Hall (FQH)
effect [4–6], quantum spin liquids [7–10], and p + ip super-
conductors (SCs) [11,12]. Recent progress in experiments for
anyons has been made, for example, through measurements
of the half-integer quantized thermal Hall conductivity in
the Kitaev materials [13–15] and detections of the fractional
statistics via directly braiding the FQH quasiparticles [16–18].
Creating, manipulating, and reading non-Abelian anyons are
basic elements for topological quantum computing [19–21],
which has been an ultimate goal in condensed matter physics.

A key strategy for generating non-Abelian anyon platforms
has involved designing topological materials. Hybridizing
well-understood ingredients, even if they are not inherently
topological, has proved to be a valuable tool in this pro-
cess, leveraging their interplay to introduce topological order.
For instance, hybridization with s-wave nontopological SCs
induces superconducting proximity effects, leading to Ma-
jorana modes on surfaces of strong topological insulators
[22,23], spin-orbit coupled semiconductors [24–27], quan-
tum anomalous Hall systems [28], and integer quantum-Hall
(IQH) systems [29–31]. Recent efforts have been directed to-
wards exploring hybrid quantum-Hall–SC (QH-SC) systems
that host much more exotic particles such as parafermions
[32–41] and Fibonacci anyons [42–46] (the so-called QH
superconductivity [47–67] also exhibits similar physics as the

QH-SC hybrids). These developments have highlighted the
potential of QH-SC hybrids for universal topological quantum
computation.

In theoretical exploration of topological order, the ge-
ometry of systems is quite crucial. Particularly, boundaries
introduce low-energy modes as edge states [68,69], rendering
compact surfaces suitable for investigating bulk properties
of topologically ordered states. On a compact surface with
genus g � 1, the one-dimensional unitary representation of
the braid group is absent. Consequently, states on such sur-
faces must be degenerate to form a multicomponent structure
[70–75], referred to as topological degeneracy [76,77]. This
phenomenon, while intriguing and closely related to the topo-
logical nature of anyons, can pose technical challenges in
numerical studies. Indeed, the spherical geometry [78] with
g = 0 has been commonly used in the FQH physics.

Based on this background, our paper discusses two topics:
(i) investigating disorder effects on hybrid QH-SC systems
and (ii) developing a formulation for hybrid QH-SC systems
with the spherical geometry. Specifically, we consider the
Rashba-coupled IQH system combined with the type-II SCs,
motivated by Refs. [30,31]. In addition, we incorporate ran-
dom distributions of δ-function impurities. Figure 1 visually
represents our model. The type-II SC is chosen because of
the strong magnetic field required for the QH system. Our
numerical studies demonstrate that the interplay between dis-
orders and proximity-induced pairing results in a topological
superconducting phase associated with the half-integer Chern
number. Here, we refer to the half of the Bogoliubov–de
Gennes (BdG) Chern number (namely the Chern number of
BdG bands) as the “Chern number.” We identify this phase
by detecting gap-closing lines. The entanglement spectrum
reveals distinctive gapless modes, providing further evidence
for topological superconductivity. Our numerical calculations
are all performed on the spherical geometry.
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FIG. 1. QH–SC hybrid on a sphere. The outer (inner) surface
represents the type-II SC (QH system). The color of the outer surface
indicates the order parameter |�| at 2Q̄ = 450. We normalize � as∫

d ��|�|2 = 1 for simplicity. The black dots in the inner surface
depict impurities, with a total count of 4500. The order (outer or
inner) of each system is not significant. The green sphere at the center
is the magnetic monopole.

The paper is organized as follows. In Sec. II, we review two
components in our hybrid system on a sphere: the Rashba-
coupled QH system and a model type-II SC. In Sec. III, we
derive the BdG Hamiltonian projected into a Rashba-coupled
LL with the spherical geometry. Section IV presents numeri-
cal results and the paper concludes in Sec. V.

II. SETUP FOR THE SPHERICAL GEOMETRY

A. Rashba-coupled Landau level

We begin by considering the Rashba-coupled Landau level
(LL) structure. The single-particle Hamiltonian reads H1 =
�π2/2me − αR(�σ × �π )z, where �π is the canonical momentum,
me is the electron mass, �σ is the Pauli matrices, and αR is the
Rashba coupling strength. In the planar geometry, this reduces
to [30,31,79–83]

H1 = h̄ωc

(
a†a + 1

2 −igRa

igRa† a†a + 1
2

)
, (1)

where ωc = eB/mec is the cyclotron frequency, B is the
strength of the magnetic field, and gR = √

2αR/lBωc, with
lB = √

h̄c/eB the magnetic strength. The ladder operator is
defined by a† = (πx + iπy)lB/

√
2h̄. Within the subspace,

	nm =
[(|n − 1, m〉

0

)
,

(
0

|n, m〉
)]

with n � 1, (2)

where |n, m〉 is the eigenstate of angular momentum h̄m in
the nth LL without spin-orbit coupling, the Hamiltonian H1 is
block-diagonalized as

	†
nmH1	nm = h̄ωc

(
n − 1

2 −igR
√

n

igR
√

n n + 1
2

)
. (3)

FIG. 2. (a) Rashba-coupled LLs ε0 and εn± with n � 10. At
gR ∼ 0 and ∞, the energy is quantized in increments of n and

√
n,

respectively. We will use the ε1− level, represented by a red circle, for
the QH-SC hybrid systems. (b) Abrikosov factor βA at various 2Q̄′s.
These values are computed by numerically minimizing the GL free
energy F .

Its eigenvalues and eigenvectors are

εn± = h̄ωc
(
n ±

√
1/4 + g2

Rn
)
,

�vn± =
(

i/2 ∓ i
√

g2
Rn + 1/4

gR
√

n

)
/N , (4)

where N is a normalization factor. In addition, the unpaired
state (0, |0, m〉) is an eigenstate of H1 with energy ε0 =
h̄ωc/2. In the limit gR → ∞, H1 reduces to the Hamiltonian
of massless Dirac fermions. Figure 2(a) shows the single-
particle energy εn±. To observe the evolution for gR ∈ [0,∞),
we scale the energy by 1 + gR and plot it as a function of
arctan(gR). At gR ∼ 0, the energy is quantized in increments
of n while in increments of

√
n at gR ∼ ∞. In the next section,

we will focus on the Rashba-coupled LL with ε1−, referred to
as the ε1− level. This is the lowest energy level for 0 < gR <√

6 and becomes the “n = −1 LL” of the two-dimensional
Dirac Hamiltonian [84] as gR approaches infinity.

In the following, we consider Haldane’s spherical geom-
etry [78], where N particles move on the surface under a
radial magnetic field. The total radial flux is 2Qφ0, where
φ0 = hc/e is the flux quantum and 2Q is an integer. In the
spinless problem without spin-orbit coupling, single-particle
states are labeled by the orbital angular momentum l and its z-
component m because of rotational symmetry. Their possible
values are l = |Q|, |Q| + 1, . . . and m = −l,−l + 1, . . . , l .
The 2l + 1 states with l = |Q| + n correspond to the nth LL.
The eigenstates are the monopole harmonics YQlm( ��) [85,86],
where �� represents the angular coordinates θ and φ.

Spin-orbit coupling is not straightforward to apply as it
mixes different LLs having different degrees of degeneracy
on a sphere. The same issue also arises, e.g., in the QH
physics in graphene [87–92]. Fortunately, because of the non-
flat geometry, relativistic electrons on a Haldane’s sphere with
physical fluxes Q are subject to different magnetic fluxes
Q± = Q ± 1/2 depending on the spin orientation [93–96]. As
a result, nth LL with Q+ and (n + 1)th LL with Q− have the
same degree of degeneracy. Based on this solution, we use the
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following basis, instead of Eq. (2), for the spherical geometry:

	Qnm =
[(

YQ+,Q++n,m

0

)
,

(
0

YQ−,Q++n,m

)]
. (5)

The labels n, m represent the Landau index and the angular
momentum.

B. Abrikosov vortex lattice

We now review a model type-II superconductor on a sphere
[97,98] to calculate the superconducting order parameter,
which we will use to construct the proximity-induced pairing
amplitude in our hybrid system below. Here we consider a
clean system with a magnetic field slightly smaller than the
upper critical field Hc2. A magnetic monopole is placed at the
center of the sphere in the same fashion as above. For clarity,
we mark quantities for Cooper pairs by a bar; superconducting
flux quantum φ̄0 = hc/ē with ē = 2e and the total flux 2Q̄φ̄0

(equivalently, Q̄ = 2Q).
To identify the superconducting order parameter, we con-

sider the GL free energy F[�] = ∫
d �� f [�] with

f [�] = −a|�|2 + b

2
|�|4 + 1

2m̄e

∣∣∣∣
(

h̄

i
�∇ + ē

c
�A
)

�

∣∣∣∣
2

+ | �B|2
8π

,

(6)

where a, b are phenomenological parameters (a, b > 0). We
now demonstrate that � minimizing F does not depend on a
and b except the overall amplitude. For simplicity, we assume
that the order parameter lies in the lowest LL of Cooper pairs
[99] as

�( ��) =
Q̄∑

m̄=Q̄

um̄YQ̄Q̄m̄( ��), (7)

and one obtains

−a
∫

d ��|�|2 = −a�u†�u, (8)

b

2

∫
d ��|�|4 = b

2

2Q̄∑
s=−2Q̄

|�uT K (s)�u|2, (9)

where �u = (u−Q̄, u−Q̄+1, . . . , uQ̄) and

K (s)
i j = S

⎛
⎝Q̄ Q̄ −2Q̄

Q̄ Q̄ 2Q̄
i j −i − j

⎞
⎠δs,i+ j, (10)

S

⎛
⎝Q1 Q2 Q3

l1 l2 l3
m1 m2 m3

⎞
⎠ ≡

∫
d ��YQ1l1m1YQ2l2m2YQ3l3m3 . (11)

Dropping the constant, the GL free energy reduces to

F (�u) = −ax + b

2

βA

4π
x2, (12)

where x = �u†�u and βA is the Abrikosov factor:

βA ≡ 〈|�|4〉
〈|�|2〉2

= 4π
∑

s |�uT K (s)�u|2
(�u†�u)2 . (13)

Here 〈·〉 represents a spatial average. Equation (13) implies
that βA is independent of |�u| and also x (= �u†�u). The GL free

energy has a peak at x = 4πa/(bβA) ≡ x0 and its value is

Fpeak(�u) = −2πa2

bβA
. (14)

Thus minimizing F is equivalent to minimizing βA. Since βA

does not involve a and b, the solution of �u that minimizes
F does not either, apart from the norm (the norm of �u is
determined by x0).

We numerically minimize F with a = b = 1 and calculate
the Abrikosov factor βA for various 2Q̄ in Fig. 2(b). The value
of βA with 2Q̄ → ∞ is 1.1652, determined through linear
extrapolation. This is slightly larger than 1.1596 calculated on
an infinite flat plane with triangular Abrikosov vortex lattices
[100]. This deviation comes from the fact that a triangular
lattice cannot generally cover a surface of a sphere [97]. In
Fig. 1, we plot |�( ��)| on a sphere at 2Q̄ = 450. The vortices
basically form a triangular lattice but there are defects as well.
Similar discussions can be found in the context of the famous
Thomson problem [101–103] and the Wigner crystal in the
QH problem [104].

We use the solution of �u to construct a proximity-induced
pairing amplitude in our hybrid system below. In Fig. 2(b),
we minimize F with Msample different initial points of �u with
80 � Msample � 400. We then plot βA if the lowest βA is at
least threefold degenerate. Here, two β ′

As are considered the
same if their difference is less than 10−8. In Fig. 2(b), after
consecutively changing Q from 100 to 119 to make sure that
there is no particular Q dependency (e.g., an even-odd effect),
we pick every three from 120 to 225. (We failed to seek βA

that satisfies this criterion at some values of Q̄).

III. SPHERICAL HYBRID SYSTEM

Our spherical hybrid system is composed of a Rashba-
coupled QH system with disorders and a type-II s-wave SC.
Hybridization induces the superconducting proximity effect
on the QH system. The type-II SC is chosen due to the strong
magnetic field needed for the QH system. We write its total
Hamiltonian as

H =
∫

d �� c†( ��)[H1( ��) + Himp( ��) − μ]c( ��)

+
∫

d �� c†
↑( ��)�( ��)c†

↓( ��) + H.c., (15)

where c† = (c†
↑, c†

↓), c†
σ ( ��) is the creation operator for a

fermion with spin σ , and μ is a chemical potential. Here,
H1 describes the Rashba-coupled LLs as discussed in the
previous section and Himp represents a random distribution of
2Nimp = 20Q impurities at positions ��i with the energy ±w:

Himp( ��) =
2Nimp∑
i=1

(−1)iwδ2( �� − ��i ). (16)

The factor (−1)i is multiplied to adjust the average energy
to zero. The impurities broaden the LLs and their width is

estimated to be � = (w/R2)
√

4ρ/2π l2
B, where R = lB

√
Q and

ρ = 2Nimp/4πR2, by using the self-consistent Born approxi-
mation [105]. We parametrize the strength of disorders by �
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rather than w below. The pairing amplitude �( ��) in Eq. (15)
is defined by

�( ��) = C
Q̄∑

m̄=−Q̄

um̄YQ̄Q̄m̄( ��), (17)

where C is a constant and um̄ is the solution of the mini-
mizing problem of the GL free energy F discussed above.
We parametrize the strength of the proximity effect by �0 =√

|C|2�u†�u/(4π ), which corresponds to the spatial average of
�( ��), i.e., ∫

d ��|�( ��)|2 = 4π�2
0. (18)

Now, we assume that (i) the chemical potential μ is close to
the ε1− level and (ii) the Landau gap h̄ωc significantly exceeds
both disorder and proximity effect. These validate projection
of the Hilbert space onto the ε1− level subspace. The total
projected Hamiltonian has the form of

HBdG = 1

2
f †HBdG f , (19)

HBdG =
(

h0 2D
2D† −h∗

0

)
, (20)

where f † = ( f †
−Q+ , . . . , f †

Q+ , f−Q+ , . . . , fQ+ ) and f †
m is the

creation operator of states in the ε1− level defined by

f †
m = (d†

Q+Q+m↑, d†
Q−Q+m↓)�v1−, (21)

d†
Q±lmσ

=
∫

d ��YQ±lm( ��)c†
σ ( ��), (22)

where �v1− was defined in Eq. (4). Here, Q± in Eq. (22) takes
Q+ (Q−) with spin σ =↑ (↓) and Q± was defined as Q± =
Q ± 1/2 in Sec. II A. The explicit forms of matrices h0, D are
derived in Appendix A.

As shown in Appendix A, the matrix D is proportional

to gR/

√
1 + 4g2

R ≡ γ (gR), where again gR parametrizes the
Rashba coupling strength. In other words, the pairing am-
plitude �0 can be rescaled by γ (gR) [30,31]. γ (gR) is
a monotonically increasing function, with γ (0) = 0 and
γ (∞) = 1/2, indicating that the spin-orbit coupling generates
and enhances the proximity-induced superconducting pairing.
For simplicity, we set γ = 1/2 (equivalently gR → ∞) in the
following numerical calculation, but results for any value of
gR can be read off by appropriately rescaling �0.

Now, let us consider the eigenvalue problem of the pro-
jected Hamiltonian HBdG in Eq. (20) as

HBdG

(
uk

vk

)
= Ek

(
uk

vk

)
, (23)

where uk and vk are N-dimensional vectors, 2N ≡ 4Q+ +
2 is the dimension of HBdG, and k is just the label
of eigenvalues, which we arrange in ascending order as
E−(N−1/2) � E−(N−1/2)+1 � · · · � EN−1/2. The particle-hole

symmetry brings E−k = −Ek and (
u−k

v−k
) = (

v∗
k

u∗
k
). Then, we

FIG. 3. (a),(b) Density plots of the energy gap and its logarithm
as functions of the chemical potential μ and the pairing amplitude
�0, scaled by the width of the LL � (the “gap” is also scaled by
�). The star in (b) indicates a topological superconducting phase.
(c) Energy gap as a function of μ/�. (d) White points indicate the
local-minimum gap. When identifying these points, we sweep μ in
increments of δμ/� = 0.004 at each �0/�. The red dashed lines
represent �c1/� and �c2/�, representing the boundary where the
number of local-minimum gap points, M, changes. There are four
regions as labeled by (I)–(IV). We set 2Q = 198 in all of the figures.

have

HBdG =1

2

∑
all k

Ekg†
kgk =

∑
k<0

Ekg†
kgk + const, (24)

where

g†
k = g−k = f †

(
uk

vk

)
. (25)

The ground state is given by |G〉 = ∏
k<0 g†

k |0〉 with |0〉 the
vacuum state of electrons.

IV. NUMERICAL RESULTS

The system parameters we have not fixed yet are

(2Q,�0, �, μ).

The main goal now is to find a topological superconducting
phase by varying �0/� and μ/�. For simplicity, we measure
μ relative to ε1−. The numerical results below are all obtained
by diagonalizing HBdG in Eq. (19).

A. Energy gap

Figure 3(a) plots the energy gap—the energy separation
around E = 0 in the BdG spectrum—as a function of μ/�

and �0/� with 2Q = 198, which is a “typical” value of
2Q as mentioned below. To visualize gap-closing points, we
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present its logarithm in Fig. 3(b). The subsequent analysis
suggests that the centered phase with a star in the figure is
a topological superconducting phase. Figure 3(c) explicitly
shows the values of the gap at specific �′

0s, indicating that
each local minimum corresponds to the gap closing as long as
0 < �0/� � 8.5.

To clarify emergent phases, we generate Fig. 3(d) that dis-
plays local-minimum gap points. Here, we count the number
of those points at each �0, denoted M, and then define �c1

(�c2) as the transition points where M changes to 2 (1) as �0

increases. In Fig. 3(d), we have �c1/� ∼ 3 and �c2/� ∼ 8.5.
Let us now discuss each of the following four regions. (The
ground state at |μ| � �0, � is completely occupied or unoc-
cupied states. Associating the Chern number C, we call each
of them “C = 1” and “C = 0” states, respectively).

(I) �0/� = 0: QH plateau transition. A plateau transition
connecting C = 0 and 1 phases occurs as μ is changed. Lo-
calized states induce multiple gap-closing points in Fig. 3(d).

(II) 0 < �0 < �c1: Open question. We have M � 3. The
nature of the gap-closing points is still an open question. There
are two possible scenarios: a plateau transition connecting
(1) C = 0, 1/2 and 1 phases or (2) C = 0 and 1 phases. The
distinction lies in whether the intermediate state at μ/� ∼ 0 is
a topological SC (see the next paragraph for more details) or
a gapless state [30] arising from a network model with states
carrying different Chern numbers. Determining the possibil-
ities requires more careful calculations, which we leave for
future study.

(III) �c1 < �0 < �c2: Emergence of C = 1/2 phase. We
have M = 2. Given that the intermediate phase is situated
between C = 0 and C = 1 phases, we expect it to be the
C = 1/2 phase, namely a topological superconducting phase
with the unit BdG Chern number. This expectation is further
supported by the entanglement spectrum calculated in the next
section.

(IV) �c2 < �0: Disappearance ofC = 1/2 phase. We have
M = 1. The value of the local minimum increases as �0/�

is increased; see Fig. 3(c). According to Ref. [30], the pair-
ing amplitude induced from a mixed state SC contains point
nodes akin to the p + ip-wave pairing potential, which gives
rise to only two phases: C = 0 and C = 1. In other words,
a clean system without impurities does not exhibit topolog-
ical superconducting states. This suggests that the observed
finite minimum gap at �0/� = 9, 10 is a finite-size effect and
therefore the line in Fig. 3(d) can be interpreted as the phase
boundary dividing C = 0 and 1.

B. Entanglement spectrum

Now we topologically characterize the C = 1/2 phase. A
typical way is to calculate the Chern number, but is fun-
damentally challenging in our model due to the absence of
translation invariance in the spherical geometry. Cutting the
system and counting Majorana edge modes will allow de-
tection of the C = 1/2 phase but is also technically hard.
(The C = 1/2 state will exhibit one edge mode in the BdG
spectrum).

Instead, we calculate the single-particle real-space en-
tanglement spectrum (EtS) [106–114]. The EtS exhibits
a qualitatively similar structure as the eigenvalues of the

FIG. 4. (a) Entanglement spectrum (EtS). When μ/� � −0.05,
EtS is relatively concentrated around 0 and 1. At μ/� ∼ −0.05, the
midgap states suddenly appear and the density of ζ ′s between 0 and
1 is increased as μ/� is increased. (b) BdG spectrum. There are two
gap-closing points at μ/� ∼ ±0.05.

single-particle correlation function [106], which holds true
even in the BdG formulation [114] (see Appendix B). Hence-
forth, we refer to the eigenvalues of the correlation function as
the EtS. The EtS characterizes a topological nature of systems.
If a two-dimensional system is topologically trivial, the EtS
are concentrated on 0 and 1 and exhibit little dispersion.
Conversely, in systems like the Chern insulator or the IQH
system, additional eigenvalues emerge, crossing 0 and 1 akin
to midgap states in the EtS. Leveraging this observation, we
explore phases carrying the nonzero Chern number within our
system.

Now, we calculate the correlation function only on the
northern hemisphere (NH) in our system as

CNH( ��, ��′) ≡
∫

NH
d �� 〈G| c( ��)c†( ��′) |G〉 , (26)

where c† = (c†
↑, c†

↓, c↑, c↓) and |G〉 is the ground state of
the BdG Hamiltonian. The EtS is given by the eigenvalue
problem, ∫

NH
d ��′C( ��, ��′) �ψk ( ��′) = ζk �ψk ( ��). (27)

Appendix C describes how to get the solutions of this equa-
tion. As derived there, one obtains ζk = 0 or 1 at μ/� →
−∞. On the other hand, the ground state at μ/� → ∞ is
the IQH state, producing “entanglement gapless modes” as
well that cross ζk = 0 and 1 [110]. Below, we explore the
EtS in the intermediate range of μ/�. Figure 4(a) illustrates
the EtS as a function of μ/�. Here, we set 2Q = 222 and
�0/� = 4 because this system has the relatively large energy
gap of the ground state, resulting in less finite-size effect in
the EtS. In comparison, Fig. 4(b) shows the BdG spectrum,
revealing two gap-closing points at μ/� ∼ ±0.05. The values
of ζ ′s are relatively concentrated around 0 and 1 when μ/� �
−0.05, consistent with the trivial phase. At μ/� ∼ −0.05,
the midgap states suddenly appear in the EtS and the density
of ζ ′s between 0 and 1 is increased as we increase μ/�.
This suggests that the Chern number of the ground state is
nonzero when μ/� � −0.05. This observation is consistent
with the fact that the region separated by the gap-closing
points −0.05 � μ/� � 0.05 is a superconducting phase.
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FIG. 5. (a) Distribution of local-minimum gap points. The color
indicates the normalized count. The star denotes the topological
superconducting regime, enclosed by two red-dashed lines (repre-
senting �c1/� and �c2/�) and green and orange lines (representing
μL/� and μR/�). (b) Probability of having M local-minimum gap
points. The values of �c1 and �c2 are deduced from intersections of
each line. (c) Distribution of local-minimum gap points with M = 2
at �0/� = 3.5. The green and orange colors represent data for the
left and right local-minimum gap, respectively. The values of μL and
μR are defined as the means for each data set. We set 2Q = 198 in
all of the figures.

Currently, we have no further way to exactly identify the
Chern number of this phase, which we leave for future study.

C. Ensemble average

So far we have discussed findings based on a single impu-
rity distribution. In the remainder of the work, we will present
results using multiple random distributions.

Figure 5(a) is an analog of Fig. 3(d) but incorporates 300
random distributions of impurities. This is a 2D histogram
where the gray color represents the normalized count of local-
minimum-gap samples at each point. The superconducting
phase is expected to emerge in �1c < �0 < �2c and μL <

μ < μR as indicated by a star. Each phase boundary is iden-
tified as follows: Fig. 5(b) plots the probability of having
M local-minimum gap points, denoted PM , as a function of
�0/�. We define �c1 (�c2) by intersections of PM�3 and PM=2

(PM=2 and PM=1). We determine μR and μL using histograms
as in Fig. 5(c), where the green (orange) bars represent the dis-
tribution of left (right) local-minimum gap points. We define
μL and μR as means for each data set. To explore the thermo-
dynamic limit, we calculate �c1/� and �c2/� for different
2Q′s in the above way and present the results in Fig. 6. The
dashed lines indicate the mean values of each data set. The

FIG. 6. Size-scaling analysis for �c1/� (red dots) and �c2/�

(blue dots). The black lines connect the red and the blue dots at each
2Q. The dashed lines represent the average of each data set.

difference �c2/� − �c1/� appears to remain finite as systems
increase in size, suggesting the presence of the topological
superconducting phase in the thermodynamic limit. We have
chosen 2Q = 198 in Figs. 3 and 5 as a representative example
because it is the largest 2Q within the five closest systems to
the two dashed lines.

V. CONCLUDING REMARKS

In this paper, we formulate a scheme to combine the
Rashba-coupled QH system with a type-II s-wave SC on
the spherical geometry. Through this setup, we numerically
demonstrate the emergence of a disorder-induced phase be-
tween a trivial and the IQH phases. We expect this to be the
superconducting phase associated with the half-integer Chern
number. This expectation is further supported by revealing the
entanglement gapless modes in the EtS.

Our spherical model will be a useful platform for future
study on topological order. Although we have focused on the
(Rashba-coupled) IQH system, our formulation is also valid
for the FQH system. The interplay between fractionalization
and superconductivity can give rise to intriguing phenomena
such as Zn parafermions or Fibonacci anyons as mentioned in
the Introduction. The topological degeneracy of such states,
stemming from their non-Abelian nature, is generally not
exact in a finite system, which can lead to subtle problems
in, for example, assessing degeneracy or energy excitations
in a translationally invariant system. Our spherical model
inherently avoids this issue, facilitating the straightforward
identification of non-Abelian topological order.

ACKNOWLEDGMENTS

We acknowledge the computational resources offered by
Research Institute for Information Technology, Kyushu Uni-
versity. The work is supported in part by JSPS KAKENHI
Grants No. JP23K19036 and No. JP20H01830 and JST
CREST Grant No. JPMJCR18T2.

035147-6



DISORDER-INDUCED TOPOLOGICAL … PHYSICAL REVIEW B 110, 035147 (2024)

APPENDIX A: EXPLICIT FORMS OF h0 AND D

1. Matrix h0

The matrix h0 is derived from the first term of H in
Eq. (15). Within the ε1−-level space, we can perform the
following replacement:

c†
σ ( ��) →

l∑
m=l

Y ∗
Q±lm( ��)d†

Q±lmσ
, (A1)

(d†
Q+Q+m↑, d†

Q−Q+m↓) → f †
m�v†

1−. (A2)

Then the disorder potential is expressed by

∫
d �� c†( ��)Himp( ��)c( ��) =

Q+∑
m,m′=−Q+

Wmm′ f †
m fm, (A3)

where

Wmm′ = |[�v1−]↑|2WQ+ (Q+m; Q+m′)

+ |[�v1−]↓|2WQ− (Q+m; Q+m′),

WQ(lm; l ′m′) = w(−1)Q−m′
l f∑

l ′′=li

× S

⎛
⎝−Q Q 0

l l ′ l ′′
−m m′ m − m′

⎞
⎠

×
2Nimp∑
i=1

(−1)iYl ′′m′−m( ��i ), (A4)

where li = max{|l − l ′|, |m − m′|} and l f = l + l ′. Noting
that H1 becomes an identity matrix with a prefactor ε1−, one
gets

(h0)mm′ = Wmm′ + δmm′ (ε1− − μ). (A5)

2. Matrix D

The pairing amplitude is deformed as∫
d �� c†

↑( ��)�( ��)c†
↓( ��) =

∑
ll ′

∑
mm′

�(Q+lm; Q−l ′m′)

× d†
Q+lm↑d†

Q−l ′m′↓, (A6)

where

�(Q+lm; Q−l ′m′)

=
∫

d ��Y ∗
Q+lmY ∗

Q−l ′m′�( ��)

= Cum+m′ (−1)Q̄−m−m′
S

⎛
⎝−Q+ −Q− Q̄

l l ′ Q̄
−m −m′ m + m′

⎞
⎠.

(A7)

Note the validity of the replacement d†
Q+lm↑d†

Q−l ′m′↓ →
(γ /i) f †

m f †
m′ within the ε1− level, where γ ≡ i[ �v1−]∗1[ �v1−]∗2 =

gR/

√
1 + 4g2

R. The matrix elements of D, denoted Dmm′ , are

given by

Dmm′ = γ

i
�(Q+Q+m; Q−Q+m′). (A8)

One can easily show DT = −D.

APPENDIX B: ENTANGLEMENT SPECTRUM AND
CORRELATION FUNCTION IN THE BDG FORMULATION

The EtS is determined from the properties of the corre-
lation functions. In this Appendix, we review this using a
quadratic BdG Hamiltonian as (1/2)

∑
i j a†

i Hi ja j with a†
i =

(a†
i , ai ) on a lattice, where spin or orbital indices can be added

along with the spatial coordinate i. By dividing the system
into two parts, A and B, the entanglement Hamiltonian HA is
defined by

ρA ≡ trBρ = 1

Z
e−HA , (B1)

where ρ = |G〉 〈G| with |G〉 the ground state, trB refers to the
trace over the region B, and Z is a normalization constant.
The entanglement Hamiltonian also has a quadratic form as
HA = (1/2)

∑
i j∈A a†

i (HA)i ja j [106]. The matrix HA can be
expressed using the correlation function matrix (CA)i, j∈A =
tr[ρAaia

†
j ] as [106,107,114]

CA = 1

1 + e−HA
. (B2)

Since the spectra of HA and CA have the qualitatively same
structure, we focus on CA and refer to its eigenvalues ζ ′

ks as the
EtS in the main text. The particle-hole symmetry PHAP−1 =
−HA leads to

PCAP−1 = 1 − CA, (B3)

where P is an antiunitary matrix. Because of 0 � ζk � 1, the
EtS is symmetric with respect to 1/2. Assuming the validity
of applying the above discussion to a continuum system, we
consider the correlation function in Eq. (26).

APPENDIX C: EIGENVALUES OF CNH

In this Appendix, we describe how to numerically solve the
eigenvalue problem in Eq. (27). The correlation function CNH

reduces to

CNH( ��, ��′) = δ( ��, ��′) + Y ( ��)AY †( ��′). (C1)

Here, δ, Y , and A are the matrices defined as

δ( ��, ��′) ≡

⎛
⎜⎜⎝

δ2( �� − ��′)
δ2( �� − ��′)

0
0

⎞
⎟⎟⎠, (C2)

Y =

⎛
⎜⎜⎝

Y Q+Q+
Y Q−Q+

Y ∗
Q+Q+

Y ∗
Q−Q+

⎞
⎟⎟⎠, (C3)

A =
(

−MuM†
u −MuM†

v

M∗
u MT

v M∗
u MT

u

)
, (C4)
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where

Y Ql ( ��) = (YQl−l ( ��), . . . ,YQll ( ��)), (C5)

Mu = �v1− ⊗ u, (C6)

Mv = �v∗
1− ⊗ v. (C7)

Here, ⊗ refers to the tensor product and (u, v) are defined as

u ≡ (u−(N−1/2), . . . , u−1/2),

v ≡ (v−(N−1/2), . . . , v−1/2), (C8)

where uk and vk are elements of eigenvectors of HBdG as
defined in Eq. (23).

Let us write the eigenvalue equation in Eq. (27) again:

∫
NH

d ��′C( ��, ��′) �ψk ( ��′) = ζk �ψk ( ��).

By expanding �ψk ( ��) = Y ( ��)�αk and operating
∫

d ��Y †( ��)
from the left, Eq. (27) reduces to

(δ′ − AB)�αk = ζk �αk, (C9)

where

B =
∫

NH
d �� �Y † �Y , (C10)

δ′ = diag{14Q++2, 04Q++2}, (C11)

with 1n (0n) the n-dimensional identity (zero) matrices. Al-
though δ′ − AB is not Hermitian, Eq. (C9) can be transformed
to a Hermitian problem as

(δ′ − B1/2AB1/2)�α′
k = ζk �α′

k, (C12)

where �α′
k = B1/2 �αk . We note that A is Hermitian and B =

diag{B↑, B↓, B↑, B↓}, with (Bσ )mm′ = δmm′
∫

NH d ��|YQ±Q+m|2
being positive-definite (this integration reduces to the beta
function). At μ/� → −∞, A becomes a zero matrix because
u = 0, leading to ζk being 0 or 1. On the other hand, the
ground state at μ/� → ∞ is the IQH state, producing “en-
tanglement gapless modes” that cross ζk = 0 and 1 [110].
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[49] Z. Tešanović, M. Rasolt, and L. Xing, Phys. Rev. B 43, 288
(1991).

[50] M. R. Norman, Phys. Rev. Lett. 66, 842 (1991).
[51] H. Akera, A. H. MacDonald, S. M. Girvin, and M. R. Norman,

Phys. Rev. Lett. 67, 2375 (1991).
[52] A. K. Rajagopal and J. C. Ryan, Phys. Rev. B 44, 10280

(1991).
[53] M. Rasolt and Z. Tešanović, Rev. Mod. Phys. 64, 709
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