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Robust topological invariants of topological crystalline phases in the presence of impurities
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Topological crystalline phases (TCPs) are topological states protected by spatial symmetries. A broad range of
TCPs have been conventionally studied by formulating topological invariants (symmetry indicators) at invariant
momenta in the Brillouin zone, which leaves open the question of their stability in the absence of translational
invariance. In this work, we show that robust basis-independent topological invariants can be generically
constructed for TCPs using projected symmetry operators. Remarkably, we show that the real-space topological
markers of these invariants are exponentially localized to the fixed points of the spatial symmetry. As a result,
this real-space structure protects them against the presence of impurities that are located away from the fixed
points and also sufficiently slowly varying disorder potentials. By considering all possible symmetry centers in a
crystalline system we can generate a mesh of real-space topological markers that can provide a local topological
distinction for TCPs. We illustrate the robustness of this mesh of invariants with one- and two-dimensional TCPs
protected by inversion, rotational, and mirror symmetries. Finally, we find that the boundary modes of these
TCPs can also exhibit robust topological invariants with localized markers on the edges. We illustrate this with
the gapless Majorana boundary modes of mirror-symmetric topological superconductors, and relate their integer
topological edge invariant with a quantized effective edge polarization.
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I. INTRODUCTION

Over the past decade, dramatic progress has been made in
understanding the interplay between symmetry and topology
in quantum phases of matter [1,2]. A particular focus has
been the so-called topological crystalline phases (TCP) [3,4],
which are topological states protected by spatial symmetries.
A number of experiments have already revealed their exis-
tence in nature [5–8], and over the course of just a few years,
significant theoretical progress has been made [9–27].

It has been argued that the surface states of TCPs are
robust to the presence of disorder as long as it is symmetric
on average [28–30]. Experimental signatures of TCPs appear
to be qualitatively consistent with this idea, even in crystals
that are expected to have moderate amounts of disorder from
alloying, e.g., PbxSn1−xTe [31]. Bulk studies have also argued
the existence of statistical topological insulators which have
protected boundary modes as long as the spatial symmetry
is preserved on average [29,30,32]. Notwithstanding these
studies, a bulk understanding of the mechanism behind the
robustness of TCPs against the presence of impurities is still
lacking, especially in cases in which a notion of average
symmetry has not been clearly defined.

In this work, we find that a large class of TCPs protected
by point-group symmetries can be characterized by a mesh
of topological invariants that can be robustly quantized
even in the presence of impurities. To demonstrate this
we construct basis-independent forms of topological
invariants protected by point-group symmetry, and show
that their associated position-space topological markers
are spatially localized to the fixed points of the spatial
symmetry. We then construct a mesh of such invariants by

considering invariants defined on each of the symmetry
centers of the lattice. We provide evidence that this mesh
can remain robust in the presence of impurities, and can
provide some rigidity to the TCP. We exemplify our results
for one-dimensional (1D) inversion-symmetric insulators,
two-dimensional (2D) rotation-symmetric superconductors,
and 2D mirror-symmetric superconductors. In the latter
case, we also find cases in which the edge states are also
characterized by topological invariants that are themselves
robustly quantized in the presence of impurities.

II. LOCALIZED MARKERS IN 1D
INVERSION-SYMMETRIC INSULATORS

We begin by analyzing 1D topological insulators protected
by inversion symmetry on a lattice having an even number
of sites Lx. On a system with periodic boundary conditions
and lattice translation symmetry, there is an extensive set
of possible inversion-symmetry operations PS distinguished
by the two positions S = {R1 + r0, R2 + r0} they leave in-
variant; here, R1,2 each label a unit cell, and r0 takes one
of two possible values 0 or 1

2 . For this work, we focus on
gapped Hamiltonians Ĥ such that [ p̂S , Ĥ ] = 0, where p̂S is
the Hilbert space representation of PS .

The conventional topological classification of inversion-
symmetric insulators implicitly assumes translation sym-
metry and proceeds by formulating the problem with a
Bloch Hamiltonian in momentum space Ĥ = ∑

kx
c†

kx
h(kx )ckx

.

The Bloch Hamiltonian must satisfy p̃S (kx )h(kx ) p̃−1
S (kx ) =

h(PSkx ), where p̃S (kx ) is the momentum representation of
the inversion operator. At the inversion-invariant momenta
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kinv
x = 0, π, the Bloch states can be labeled with inversion

eigenvalues. Let n(±)
S (kinv

x ) denote the number of occupied
states with inversion eigenvalues ±1 at momentum kinv

x , and
let us define

�
p
S =

∑
kinv

x

[
n(+)
S
(
kinv

x

)− n(−)
S
(
kinv

x

)]
. (1)

It was shown in [33] that �
p
S |r0=1/2 is an integer invariant

that distinguishes 1D inversion-symmetric topological insu-
lators from the trivial atomic limit. For example, a simple
model with nontrivial �

p
S |r0=1/2 is h(kx ) = sin kxσ2 + (m −

cos kx )σ1, where the σa are Pauli matrices acting on two
orbitals {A, B} per cell. The inversion operator is p̃S (kinv

x ) =
e−2ikinv

x r0σ1, which leads to �
p
S |r0=1/2 = 2(0) in the topological

(trivial) phase.
As it stands, the computation of �

p
S relies on momentum

being a good quantum number. It is thus unclear to what
extent �

p
S can remain quantized when translation symmetry is

broken by disorder. However, even with translation symmetry,
using the momentum-space description is just a choice of
basis. Hence, we expect there is a way to compute the topo-
logical invariant in a basis-independent manner. Indeed, we
find that we can write �

p
S in the general form (see Appendix)

�
p
S = Tr[ p̄S ], (2)

where p̄S = PG p̂SPG, and PG = ∑
n∈occ. |un〉〈un| is the pro-

jector onto the occupied single-particle states. Thus, instead of
analyzing the contributions to �

p
S in momentum space, Eq. (2)

affords us a way to study its position-space structure by taking
the trace in the position basis.

To this end, it is natural to consider the spatially resolved
topological marker

T p
S (x) = 〈x|Tr◦[ p̄S ]|x〉, (3)

where Tr◦ traces over only the local degrees of freedom
in each unit cell. The topological invariant is thus given
by �

p
S = ∑Lx

x=1 T
p
S (x). Topological markers have been used

in other contexts to study the local properties of topologi-
cal phases [34–38]. Remarkably, we can identify a generic
structure in the topological markers of gapped systems by
noting (i) the position matrix elements for the inversion op-
erator satisfy 〈x, α| p̂S |x′, β〉 ∝ δx,PSx′ , and (ii) for a gapped
or localized system with inverse gap or localization length
of order ζ , the position matrix elements of the projector
satisfy |〈x′, α|PG|x, β〉| < O(e−|x−x′|/ζ ) when |x − x′| � ζ .

Using these results, the topological marker obeys∣∣T p
S (x)

∣∣ < O(e−2|x−S|/ζ ) for |x − S| � ζ , (4)

where |x − S| denotes the smallest distance of x to any of the
fixed points in S . Hence, Eq. (4) implies that, for a given PS ,

the associated topological marker is localized in a neighbor-
hood of S. We illustrate one of these localized markers in
Fig. 1(a); the inset shows the marker on a logarithmic scale
to confirm its exponential localization.

We note that this stands in sharp contrast to the topological
markers of Chern insulators and other strong topological in-
sulators, which have markers that are not spatially localized.
The spatial symmetry, combined with the exponential decay
of the projector for a gapped or localized system produces the

FIG. 1. Inversion-symmetric 1D insulator. (a) Topological
marker T p

S (x). The inset shows the same data on a logarithmic scale.
(b) Deviation of the invariant |δ�p

S | induced by an impurity at posi-
tion X0. The inset shows the same data on a logarithmic scale. (c)–(e)
The net local invariant �

p
Si

(red and gray dots) for each inversion
center S as the distribution of impurities (blue squares) increases its
spatial variation. The dots that are red denote the cases for which
|�p

Si
| differs from the clean-limit value 1.0 by 10−3, whereas gray

dots deviate more significantly.

spatial localization. Interestingly, the full set of operators PS
for a translationally invariant lattice generates a position-space
mesh of localized topological markers, and their associated
invariants, that are spread throughout the lattice [cf. red dots
in Figs. 1(c)–1(e)]. This mesh, which we will define more
precisely below, endows topological crystalline phases with
some local robustness against impurities as we now discuss.

Suppose we add an impurity at a position X0, where for our
purposes an impurity is any localized term in the Hamiltonian,
which of course breaks translational symmetry. The projection
operator of the new ground state in the presence of the impu-
rity can be written as P ′

G = PG + δPG. Since the system is
gapped, δPG has support in an exponentially small neighbor-
hood of size ζ centered at the impurity. For an impurity placed
far away from S, and using 〈x|δPG|X0〉 < O(e−|X0−x|/ζ ), we
find the basis-independent expression∣∣δ�p

S
∣∣ ≡ ∣∣�p′

S (X0) − �
p
S
∣∣ < O(e−2|X0−S|/ζ ). (5)

This implies that the effect of the impurity on �
p
S is ex-

ponentially suppressed in the distance between the impurity
center and the inversion center(s). We confirm this numeri-
cally in Fig. 1(b) where we show |δ�p

S | as a function of the
impurity position X0. This effect holds even if the impurity
strength is much greater than the bulk energy gap since the
topology is encoded in a localized manner. Furthermore, we
can define a mesh of topological invariants by summing each
topological marker over the neighborhood of one inversion
center: �

p
Si

= ∑
|x−Si|<ζ T

p
S (x), such that �

p
S ≈ ∑

i=1,2 �
p
Si

(i runs over the two invariant points in S ). For our example
model, in the topological phase and without impurities, we
have �

p
Si

|r0=1/2 = 1, and hence �
p
S |r0=1/2 = 2. Our results

for a single impurity imply that if we consider the full mesh
of invariants, only those exponentially close to the impurity
have a chance to be strongly impacted, hence, the mesh of
topological invariants is robust.

While we have argued that local invariants away from an
impurity remain robust, we will now show that the invariants
can remain robust even when impurities are close to the their

035146-2



ROBUST TOPOLOGICAL INVARIANTS OF TOPOLOGICAL … PHYSICAL REVIEW B 110, 035146 (2024)

FIG. 2. Rotationally symmetric 2D superconductors. (a) Invari-
ant points under C (4)

S (left) and C (2)
S (right). For example, in the

former case, each set of symbols maps to themselves under fourfold
rotations centered at that symbol. (b) Invariant momenta in the BZ.
(c)–(e) Topological markers for the rotationally symmetric topologi-
cal superconductor with (Ch, [X ], [M1], [M2]) = (1, 1, 1, 0).

associated symmetry center. To show this, instead of a single
impurity let us focus on a disorder potential V (r). We expect
that if V (r) varies on a scale ξ , the TCP should remain ro-
bust as long as ζ � ξ . This will effectively lead to a locally
inversion-symmetric system, even though the Hamiltonian
does not commute with the inversion operator. In Figs. 1(c)–
1(e) we show the mesh of invariants �

p
Si

for all possible S
as the impurity potential progressively varies more rapidly
in space. When the potential varies slowly [Fig. 1(c)], all
invariants remain robustly quantized. As the potential is made
to vary more rapidly, the impurities destroy the quantization
of the mesh at some points (gray dots), while at other regions
�

p
Si

remains robustly quantized (red dots). Thus, the system
can retain a local distinction between the trivial and nontrivial
topological phases (i.e., unobstructed and obstructed atomic
limits). Interestingly, even in the worst-case scenario of com-
pletely uncorrelated disorder [Fig. 1(e)], some invariants in
the mesh remain robustly quantized.

Let us also note that the strength of the potential can have
an impact on the topological mesh. We expect that a slowly
varying potential preserves the quantization of the local in-
variants unless it is strong enough to close the gap or mix
localized states with delocalized states at that point. However,
we expect that a potential that locally varies faster than ζ , say
on the scale of the lattice, can destroy the quantization even
for weaker strengths without the gap closing.

III. LOCALIZED MARKERS IN 2D
ROTATION-SYMMETRIC SUPERCONDUCTORS

Next, we consider 2D topological superconductors pro-
tected by rotation symmetries and without time-reversal
symmetry. With periodic boundary conditions, a given n-fold
rotation operation C(n)

S leaves invariant a set of positions
S = {Ri + r0} [see Fig. 2(a)]. Defining 2a1 and 2a2 as prim-
itive vectors, then r0 ∈ {0, a1 + a2} for C(4)

S , whereas r0 ∈
{0, a1, a2, a1 + a2} for C(2)

S . We consider models that satisfy

[ĉ(n=2,4)
S , Ĥ ] = 0, where ĉ(n)

S is the representation of C(n)
S . The

conventional classification of rotation-symmetric insulators
focuses on Bloch states at the rotation-invariant momenta
which can be labeled by rotation eigenvalues. As illustrated
in Fig. 2(b), ĉ(n=4)

S (ĉ(n=2)
S ) leaves invariant the momenta 
, M

(
, M, X, X ′). One of the topological invariants in this sym-
metry class is a Chern number Ch, which exists regardless
of the spatial symmetries. Additionally, there are three more
integers ([X ], [M1], [M2]) [15,16]. These invariants count the
difference in the number of occupied states at the X, M points
that have rotation eigenvalues (eiπ/2, eiπ/4, ei3π/4), respec-
tively, compared to those at 
.

Rather than writing out momentum-space expressions for
these invariants, we can again express them in a basis-
independent manner. By defining the projected rotation
operators c(n)

S = PGĉ(n)
S PG, we obtain (see Appendix)

[X ] = i

4
Tr
[(

c(2)
S
∣∣
r0=a1

)+ (
c̄(2)
S
∣∣
r0=a1+a2

)]
, (6)

[M1,2] = i

4
Tr
[√

2
(
c̄(4)
S
∣∣
r0=a1+a2

)± (
c̄(2)
S
∣∣
r0=a1

)]
. (7)

Similarly to the inversion-symmetric case, the presence of
c(n)
S in these expressions implies that these invariants have

exponentially localized topological markers. To exemplify the
topological markers associated with these invariants, let us
consider the following model:

h(k) = sin(k · a1)τ1 + sin(k · a2)τ2

+ u1[cos(k · a1) + cos(k · a2)]τ3

+ u2[cos(k · a′
1) + cos(k · a′

2)]τ3, (8)

where a1 = a(1, 0), a2 = a(0, 1), a′
1 = a1 + a2, and a′

1 =
−a1 + a2, a is the lattice constant, and the Pauli matrices
τa act on the Nambu degree of freedom. We choose u1 =
1.0 and u2 = 0.5, which leads to (Ch, [X ], [M1], [M2]) =
(1, 1, 1, 0). The corresponding topological markers are illus-
trated in Figs. 2(c)–2(e), which indeed are spatially localized
to the symmetry centers. As with the previous 1D case, this
localization can be used to define a local mesh of invariants
that grants these TCPs robustness against the addition of
impurities.

IV. GENERAL ROBUST TOPOLOGICAL
INVARIANTS OF TCPS

Our results suggest that many TCPs should support a robust
mesh of localized topological markers. Naively, one might
have attempted a systematic study of such robust invariants
in terms of exponentially localized Wannier functions. But,
interestingly, the rotational case above shows that such topo-
logical markers are still localized even when Ch 
= 0, which
precludes the construction of localized Wannier functions.
The localized nature of topological markers is thus more
general, being fundamentally due to the action of projected
symmetry operators of gapped or localized systems.

We now show that robust invariants can indeed be con-
structed using projected symmetry operators for a large class
of TCPs that are invariant under a spatial symmetry ĝS , where
again S labels a choice of symmetry center(s). Consider a
Bloch Hamiltonian h(kG) of a d-dimensional system obtained
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by Fourier transforming only the spatial components rG that
change under GS ; we denote by dG(� d ) the number of
components of rG. For example, under Cz

4 symmetry only the
x and y components change, hence, rG = (x, y), d = 2 or 3,
and dG = 2. At the invariant momenta in the BZ dual to rG,
the states {|un

jkinv
G

〉} are labeled by the eigenvalues {eiφ j (kinv
G )} of

g̃S (kinv
G ) where j runs over the set of symmetry representa-

tions, and n is a band index.
The topological invariants (e.g., symmetry indicators,

mirror Chern numbers) of a large class of TCPs are conven-
tionally obtained using projection operators at kinv

G : P jkinv
G

=∑
n∈occ. |un

jkinv
G

〉〈un
jkinv

G
|. Let us generally denote such topolog-

ical invariants as τ j (kinv
G ). Examples include the counting

of states with a particular symmetry eigenvalue, or for in-
stance mirror-winding numbers and mirror-Chern numbers
[3,12]. In all of these examples, one finds that τ j (kinv

G ) =
Tr[F (P jkinv

G
)], where F is a suitably defined function of P jkinv

G

that ultimately projects the trace into a sum over occupied
states. For example, in the simplest case of counting occupied
symmetry representations we just have F (P jkinv

G
) ∝ P jkinv

G
.

More generally, F (P jkinv
G

) could also involve commutators
of P jkinv

G
with position operators that are not components of

rG. Examples include mirror (y → −y) winding numbers for
which F (P jkinv

y
) ∝ P jkinv

y
[X̂ ,P jkinv

y
] where (d = 2, dG = 1);

and mirror (z → −z) Chern invariants for which F (P jkinv
z

) ∝
P jkinv

z
[[X̂ ,P jkinv

z
], [Ŷ ,P jkinv

z
]] where (d = 3, dG = 1).

Now, the τ j (kinv
G ) are clearly not robust to the presence

of impurities since they depend on identifying well-defined
momenta in the BZ. We can nevertheless construct new robust
invariants through the remarkably simple linear combination

T g
S ≡

∑
j,kinv

G

eiφ j (kinv
G )τ j

(
kinv

G

)
. (9)

The robustness of the T g
S is made manifest when we rewrite

them in terms of a trace over the full Hilbert space, leading to
the basis-independent expression

T g
S = Tr[gSF (PG)], (10)

which we derive in the Appendix, with gS = PGĝSPG and
PG = ∑

jkG
P jkG . Since the invariants depend on gS , we thus

find that their topological markers are localized as a function
of rG:∣∣T g

S (rG)
∣∣ < O(e−|GSrG−rG|/ζ ) for ζ � |GSrG − rG|.

(11)

As an immediate consequence, if we place an impurity at
R0 far from S, then [cf. Eq. (5)]∣∣T g′

S (R0) − T g
S
∣∣ < O(e−|GSR0−R0|/ζ ). (12)

We thus see that the topology of these TCPs is generi-
cally encoded in localized meshes of topological markers
that are robust against the presence of impurities. These lo-
calized markers are consistent with other real-space layered
approaches [22,39,40], as well as with approaches using path-
integral formulations [41–43], though the focus of these works
was not on the effects of disorder.

(a) (b)

(c) (d)

FIG. 3. Mirror-symmetric DIII 2D superconductor. (a) Mirror-
invariant lines at y0 = 0 (dashed-dotted blue) and y0 = 1

2 (dashed
green). (b) Schematic of the energy bands in the BZ for TCPs with
trivial DIII strong index. (c), (d) Topological markers of the bulk
(square lattice) and edge (purple strip) invariants, as well as some of
the Wannier functions |
χ

n |2 at the edge for the phases (ii) and (iii)
discussed in the main text.

V. ROBUST TOPOLOGICAL
MARKERS AT THE BOUNDARY

After completing our discussion on general bulk topo-
logical markers for TCPs, we now demonstrate that the
boundary modes of TCPs can also exhibit robust topological
markers connected with the localized bulk invariants T g

S . To
exemplify this, consider 2D mirror-symmetric superconduc-
tors in class DIII [12]. This symmetry class is described by
a Bogoliubov–de Gennes Hamiltonian h(ky) that commutes
with a mirror operator m̂S that sends y → −y, and where
S = (Y1 + y0,Y2 + y0) denotes the mirror-invariant lines [see
Fig. 3(a)]; we assume m̂2

S = −1. A chiral symmetry χ̂ = TC
arises from having both time-reversal T and particle-hole C
symmetries, and satisfies {T, χ̂} = 0. Chiral symmetry im-
plies that, in the basis in which m̂S is diagonal, each mirror
block of h(kinv

y ) belongs to class AIII [12]. Hence, a natural
topological invariant to apply is the basis-independent topo-
logical winding number of class AIII [44]. Indeed, each mirror
block has a topological winding invariant

ν±
S
(
kinv

y

) = Tr[F (P±,kinv
y

)], (13)

where

F (P±,kinv
y

) = 2L−1
x P±,kinv

y
[X̂ ,P±,kinv

y
]χ̂ , (14)

and X̂ is the position operator. By implementing Eq. (9), we
obtain the robust (bulk) invariant

T m
S = Tr[mSF (PG)]. (15)

In what follows, we use the invariant Vm
S = − i

2 T m
S , with an

added prefactor to simplify later expressions.
As expected, the presence of the projected mirror operator

mS in the expression for Vm
S localizes these integer-valued,

position-space topological markers to mirror lines. Let us con-
sider three representative cases. (i) If Vm

S |y0=0 =Vm
S |y0=1/2 =1,
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then the full mesh of markers is nonvanishing and has support
on every possible mirror line of the lattice. This implies a
nontrivial (strong) DIII Z2 index, and a single Kramers’ pair
of propagating helical Majorana modes at the boundary. (ii) If
Vm
S |y0=0 
= 0 and Vm

S |y0=1/2 = 0, then nonvanishing markers
are centered at y0 = 0. Such a phase has a trivial DIII Z2

index, and is adiabatically connected to the limit of decou-
pled DIII mirror-symmetric wires parallel to the x axis and
stacked in the y direction; as such it is a weak topological
superconductor. (iii) If Vm

S |y0=0 = 0 and Vm
S |y0=1/2 
= 0, then

its DIII strong invariant is trivial, but it has nontrivial markers
that are localized on y lines centered halfway between cells.
Thus, while this is still adiabatically connected to a decoupled
wire limit, the wires are shifted by half a unit cell in the y
direction compared to case (ii). This case is unusual and has a
quantized edge topological invariant we will discuss below. To
exemplify cases (ii) and (iii), let us consider the Hamiltonian

h(k) = sin kx
1 + ty sin ky(
2 + m3�3)

+ (μ + cos kx + ty cos ky)
3 +
2∑

i=1

mi�i, (16)

where 
1 = f3τ3σ3, 
2= f0τ3σ1, 
3 = f0τ1σ0,�1 = f3τ1σ0,

�2 = f2τ1σ3�3 = f1τ3σ2. Here, the Pauli matrices τa, σa,

fa act on Nambu, spin, and orbital degrees of freedom,
respectively. The time-reversal, charge-conjugation, chiral,
and mirror operators are T = σ2K, C = iτ2σ2K, S = τ2, and
m̃S (ky) = ie2ikyy0σ3, respectively. The parameters we choose
are indicated in the table below:

ty μ m1 m2 m3

Weak TCP 0.25 −1.0 1.0 0.0 0.0
Mirror TCP 1.0 0.0 −1.0 0.5 0.5

These parameter values realize a weak TCP with
(Vm

S |y0=0,Vm
S |y0=1/2) = (2, 0); and a mirror TCP with

(Vm
S |y0=0,Vm

S |y0=1/2) = (0, 2). We illustrate the resulting
markers in Figs. 3(c) and 3(d). We see that the marker for case
(ii) [Fig. 3(c)] is localized around the center of the unit cell,
while the marker for case (iii) [Fig. 3(d)] is localized halfway
between unit cells.

To gain intuition about cases (ii) and (iii) we note that
each mirror line having a nonvanishing invariant corresponds
to a nontrivial 1D topological superconductor that must have
Kramers’ pairs of Majorana end modes on boundaries with
normal vector ±x̂. In case (ii) such Majorana modes should
arise along the edge at integer sites in the y direction, while in
(iii) we expect them to be displaced to the midpoint between
integers. This suggests that these phases could be distin-
guished by the location of Majorana modes along the edge.

To quantify this intuition, we examine the distribution of
Wannier centers inside a unit cell R at the edge where a
mirror line terminates. First, note that with a trivial strong
index, the edge spectrum can always be detached from the
bulk bands while preserving the DIII and mirror symmetries
[see Fig. 3(b)]. By detaching the bands from the bulk we can
define Pedge which is the projector into this spectrally de-
tached Majorana band (DMB). Since Pedge includes positive

and negative energies related by chiral symmetry, we can write
it in terms of projectors into chiral subspaces

Pedge =
∑
χ=±

Pχ

edge. (17)

To characterize the position space structure of the edge
modes we can consider the Wannier centers {e−2π i(Ry+νRy j )/Ly}
and Wannier functions {|
χ

Ry j〉} of the DMB that are obtained
by diagonalizing the periodic projected position operator
Wχ

edge = Pχ

edgee−2π iŶ /LyPχ

edge [45]; here, Ry labels unit cells
along the edge, and j runs over the Nb states per unit cell
included in the DMB. Using these Wannier centers, we can
locally characterize the edge modes at R by the edge shift

δYχ

edge(R) =
⎛⎝∑

j

νR j

⎞⎠mod 1, (18)

where δY+
edge(R) = δY−

edge(R) from time-reversal symme-
try. Furthermore, because of mirror symmetry δYχ

edge(R) =
−δYχ

edge(R) mod 1. Thus, the edge shift must be quantized

to either δYχ

edge(R) = 0 or 1
2 .

Now, the value of δYχ

edge(R) can be determined by the
(parity of the) number of Wannier centers located at the sym-
metry centers in the unit cell at R, and the mirror-related cell
R′. Hence, consider the pair of invariant points S|y0=1/2 =
{R + 1

2 ,R′ + 1
2 }. The Wannier states centered at these two

symmetry centers are eigenstates of m̂S |y0=1/2, whereas the
remaining Wannier states come in mirror-related pairs. It fol-
lows that we can write the equality

δYχ

edge(R) =
⎡⎣− i

4

∑
Ry j

〈



χ
Ry j

∣∣(m̂S |y0=1/2)
∣∣
χ

Ry j

〉⎤⎦mod 1,

(19)

which we derive in the Appendix. The sum can be re-
placed by a trace over the Hilbert space of the entire
system to obtain δYχ

edge(R) = [ 1
4�m

S |y0=1/2]mod 1, where

�m
S ≡ − i

2 Tr[(Pedgem̂SPedge)χ ]. If we evaluate the edge in-
variant �m

S and use the connection between the bulk AIII
winding invariant and the number of zero-energy boundary
modes, then we find

�m
S = Vm

S , (20)

as we show in the Appendix. The edge shift is then determined
by the bulk invariant

δYχ

edge(R) = (
1
4V

m
S
∣∣
y0=1/2

)
mod 1. (21)

We thus conclude that the two possible quantized edge shifts
(0, 1

2 ) are determined by the bulk and correspond to the two
phases (ii) and (iii) we discussed earlier.

A remarkable by-product of this analysis reveals that the
DMB is characterized by the integer topological invariant �m

S
which must be equal to the bulk invariant Vm

S . Its topological
marker is also exponentially localized at S along the edge and
is robust to the presence of impurities at the edge. In Figs. 3(c)
and 3(d) we illustrate the resulting topological markers of Vm

S
(labeled bulk marker) and �m

S (labeled edge marker) as well as
representative Wannier functions |
χ

n |2 at the edge. In order
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to numerically obtain the projector Pedge for a given edge,
which is required for these calculations, we gapped out the
boundary modes on the opposite edge (see Appendix). These
results show that there is a clear correspondence between the
bulk and edge topological markers that are centered at the
mirror-invariant lines. Furthermore, the Wannier functions at
the edge are centered at these mirror-invariant points as well,
consistent with Eq. (21). Finally, the topological marker at the
edge is localized, indicating that this edge invariant is indeed
robust against the presence of impurities.

VI. CONCLUSIONS

In this work we have found that a large class of TCPs are
characterized by a mesh of robustly quantized bulk and edge
topological invariants that are constructed using projected
symmetry operators. Our results constitute a starting point to
further explore the real-space structure of other kinds of TCPs,
for example, those on nonsymmorphic lattices. Furthermore,
it suggests a pathway to study disordered systems with in-
teractions by replacing single-particle projectors with Green’s
functions [46]. Finally, our findings point to the possibility of
experimentally studying TCPs through local probes; for ex-
ample, in ultracold atomic systems, where the single-particle
projection operator can be extracted from time-of-flight
measurements [47].
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APPENDIX: LOCALIZATION AND ROBUSTNESS
OF TOPOLOGICAL MARKERS OF TCPs

1. General formulation of basis-independent
topological invariants

a. Conventional momentum-space classification

Consider a translationally invariant d-dimensional sys-
tem described by a Hamiltonian Ĥ . Suppose the system is
invariant under a spatial symmetry GS , where S denotes
collectively the set of points that are left invariant by GS in

a system with periodic boundary conditions. If we denote by
ĝS the Hilbert space representation of GS , then

[ĝS , Ĥ ] = 0. (A1)

Depending on the dimensionality of the system, when the
spatial symmetry acts on a general position vector r, it can
leave invariant a subset of its components. We denote by
rI (rG) the components of r that are invariant (changed) by the
operation GS . The number of components of rI (rG) is dI (dG)
such that dI + dG = d.

We study the Bloch Hamiltonian h(k) obtained by Fourier
transforming only the spatial coordinates rG. Thus, k is a wave
vector with dG components. The momentum-space expression
of ĝS is

ĝS =
∑

k

g̃S (k) ⊗ |GSk〉〈k|, (A2)

so the action of the spatial symmetry on the Bloch Hamilto-
nian is then

g̃S (k)h(k)g̃−1
S (k) = h(GSk). (A3)

At the momenta kinv that are invariant under GS , we have

[g̃S (kinv), h(kinv)] = 0. (A4)

Thus, the occupied states {|un
jkinv〉} can be classified according

to the eigenvalues {eiφ j (kinv )} of g̃S (kinv). Let us denote the
projector into the occupied eigenstates of a given subspace by
P jkinv = ∑

n∈occ |un
jkinv〉〈un

jkinv |. The conventional classification
of a large class of TCPs is based on determining the topology
encoded by P jkinv .

The set of topological invariants {τ j (kinv)} that characterize
the invariant subspaces depend on their effective dimension-
ality ds and the other symmetries of the system. Examples of
possible invariants that could be relevant include occupation
numbers (e.g., [9]), winding numbers (e.g., [12]), and Chern
numbers (e.g., [3]). Such topological invariants {τ j (kinv)} can
generally be written as the average over occupied states of an
operator F that is a function of P jkinv :

τ j (kinv) = Tr◦
[
F
(
P jkinv

)]
, (A5)

where Tr◦ refers to the trace over the nonspatial degrees of
freedom as well as the dI spatial degrees of freedom that
do not get transformed by GS . For a broad range of TCPs,
the function F is written as a sum of products of projection
operators and position operators that are components of rI ,

such that it projects the trace into a sum over occupied states.
Examples of the form of F are

F (P ) ∝

⎧⎪⎨⎪⎩
P (e.g., 0D occupation number [9] for 1D TCP),

P[X̂ ,P] (e.g., 1D winding number [44] for 2D TCP),

P[[X̂ ,P], [Ŷ ,P]] (e.g., 2D Chern number [48] for 3D TCP),

(A6)

where X̂ , Ŷ are the x, y components of the position operator.
These commutators are the basis-independent generalizations
of momentum-space derivatives that naturally arise in the
calculations of Berry connections.

b. Basis-independent topological invariants of TCPs

We now set out to obtain topological invariants with
localized topological markers using the momentum-
space invariants {τ j (kinv)}. Let us now define the
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quantities

T g
S ≡

∑
j,kinv

eiφ j (kinv )τ j (kinv). (A7)

Since the {T g
S} are linear combinations of the momentum-

space topological invariants, they are themselves topological
invariants of the TCP. We will now show that these topologi-
cal invariants have topological markers that are exponentially
localized and are robust to the presence of impurities in the
system. This will be done by expressing them in terms of the
projector in the full ground state given by

PG =
∑

jk

Pk j . (A8)

We can rewrite them in a basis-independent form

T g
S =

∑
j,kinv

eiφ j (kinv )τ j (kinv) (A9)

=
∑
j,kinv

Tr◦[eiφ j (kinv )F (P j,kinv )] (A10)

=
∑
j,kinv

Tr◦
[
eiφ j (kinv )P jkinvF (P j,kinv )

]
(A11)

=
∑
j,kinv

Tr◦[P jkinv eiφ j (kinv )P jkinvF (P j,kinv )]. (A12)

Now, since r̂I and P jkinv commute with g̃S (kinv), then
[̃gS (kinv),F (P jkinv )] = 0. This implies that F (P jkinv ) is block
diagonal in the basis of g̃S (kinv), and we can thus write∑

j F (P jkinv ) = F (
∑

j P jkinv ). Furthermore, by assumption,
the terms that make up F (PG) are invariant under translations
along the components of r̂G. This means that F is block
diagonal with respect to k. As a consequence∑

k

F (Pk ) ⊗ |k〉〈k| = F
(∑

k

Pk ⊗ |k〉〈k|
)

(A13)

= F (PG). (A14)

Using these properties of F , we then obtain

T g
S =

∑
kinv

Tr◦

⎡⎣⎛⎝∑
j1

P j1kinv

⎞⎠g̃S (kinv)

⎛⎝∑
j2

P j2kinv

⎞⎠F

⎛⎝∑
j3

P j3kinv

⎞⎠⎤⎦ (A15)

=
∑
kinv

Tr◦[(Pkinv )̃gS (kinv)(Pkinv )(F (Pkinv ))] (A16)

=
∑
kinv

〈kinv|Tr◦[(Pkinv ⊗ |kinv〉〈kinv|)(g̃S (kinv) ⊗ |kinv〉〈kinv|).

× (Pkinv ⊗ |kinv〉〈kinv|)(F (Pkinv ) ⊗ |kinv〉〈kinv|)]|kinv〉 (A17)

=
∑
kinv

〈kinv|Tr◦

⎡⎣⎛⎝∑
q1

Pq1 ⊗ |q1〉〈q1|
⎞⎠⎛⎝∑

q2

g̃S (q2) ⊗ |GSq2〉〈q2|
⎞⎠

×
⎛⎝∑

q3

Pq3 ⊗ |q3〉〈q3|
⎞⎠⎛⎝∑

q4

F (Pq4 ) ⊗ |q4〉〈q4|
⎞⎠⎤⎦|kinv〉

=
∑

k

〈k|Tr◦

⎡⎣⎛⎝∑
q1

Pq1 ⊗ |q1〉〈q1|
⎞⎠⎛⎝∑

q2

g̃S (q2) ⊗ |GSq2〉〈q2|
⎞⎠

×
⎛⎝∑

q3

Pq3 ⊗ |q3〉〈q3|
⎞⎠F

⎛⎝∑
q4

Pq4 ⊗ |q4〉〈q4|
⎞⎠⎤⎦|k〉 (A18)

=
∑

k

〈k|Tr◦[PGĝSPGF (PG)]|k〉 (A19)

= Tr[gSF (PG)], (A20)

which is the basis-independent expression quoted in the main
text for these topological invariants.

c. Localized topological markers

We now show that the presence of the projected symmetry
operator gS in our expression for T g

S implies that the topo-
logical markers are spatially localized. Consider a position
rG far away from the fixed points S (a condition we denote

by |S − rG| � ζ ), which implies that |GSrG − rG| � ζ . We
know that for gapped systems, the projection operator has the
long-distance behavior

|〈rG1 , α|PG|rG2 , β〉| < O(e−|rG1 −rG2 |/ζ ), (A21)

when ζ � |rG1 − rG2 | where α, β denote all internal and re-
maining spatial degrees of freedom. Furthermore, since F is
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only dependent on PG and the components of r̂I , then

|〈rG1 , α|F (PG)|rG2 , β〉| < O(e−|rG1 −rG2 |/ζ ) (A22)

when ζ � |rG1 − rG2 |. Using this, we can then write the topological marker T g
S (rG) = 〈rG|Tr◦[gSF (PG)]|rG〉 as

T g
S (rG) = Tr◦[〈r′

G|ĝSPGF (PG)|rG〉] (A23)

=
∑

rG1rG2

Tr◦[〈rG|ĝS |rG1〉〈rG1|PG|rG2〉〈rG2|F (PG)|rG〉] (A24)

=
∑

rG1rG2

Tr◦[δrG,GSrG1〈rG1|PG|rG2〉〈rG2|F (PG)|rG〉] (A25)

=
∑
rG2

Tr◦
[〈

G−1
S rG

∣∣PG|rG2〉〈rG2|F (PG)|rG〉] (A26)

=
∑

|rG2−rG|<ζ

Tr◦
[〈

G−1
S rG

∣∣PG|rG2〉〈rG2|F (PG)|rG〉]+
∑

|rG2−G−1
S rG|<ζ

Tr◦
[〈

G−1
S rG

∣∣PG|rG2〉〈rG2|F (PG)|rG〉] (A27)

+
∑

|rG2−G−1
S rG|>ζ

|rG2−rG|>ζ

Tr◦
[〈

G−1
S rG

∣∣PG|rG2〉〈rG2|F (PG)|rG〉]. (A28)

Now, we have that

A1 =
∣∣∣∣∣∣

∑
|rG2−rG|<ζ

Tr
[〈

G−1
S rG

∣∣PG|rG2〉〈rG2|F (PG)|rG〉]
∣∣∣∣∣∣ < O(e−|G−1

S rG−rG|/ζ ), (A29)

A2 =

∣∣∣∣∣∣∣
∑

|rG2−G−1
S rG|<ζ

Tr
[〈

G−1
S rG

∣∣PG|rG2〉〈rG2|F (PG)|rG〉]
∣∣∣∣∣∣∣ < O(e−|G−1

S rG−rG|/ζ ), (A30)

A3 =

∣∣∣∣∣∣∣∣∣
∑

|rG2−G−1
S rG|>ζ

|rG2−rG|>ζ

Tr
[〈

G−1
S rG

∣∣PG|rG2〉〈rG2|F (PG)|rG〉]
∣∣∣∣∣∣∣∣∣ � A1,2. (A31)

We thus conclude that ∣∣T g
S (rG)

∣∣ < O(e−|GSrG−rG|/ζ ) when ζ � |GSrG − rG|, (A32)

which implies that the topological marker is concentrated
around the fixed points of the spatial symmetry.

d. Robustness to impurities placed far from fixed points

We now show that although the conventional momentum-
space invariants cannot be used in the presence of impurities,
the invariants T g

S can remain robustly quantized. Suppose
we add an impurity Vimp(r) = V0δr,R0 at a position R0. The
projection operator of the new ground state can be written
as P ′

G = PG + δPG. Since the system is gapped, δPG only
has support in an exponentially small neighborhood of size ζ

centered at the impurity:

|〈rG, α|δPG|R0, β〉| < O(e−(|rG−R0|)/ζ ). (A33)

Let us now define a function 
(P ′
G) by

δ
(P ′
G) ≡ P ′

GF (P ′
G) − PGF (PG). (A34)

The function 
(P ′
G) must vanish when δPG = 0, so it must be

a sum of terms all of which possess at least one factor of δPG.

It follows that

|〈rG, α|
(P ′
G)|R0, β〉| < O(e−|rG−R0|/ζ ) (A35)

for |rG − R0| � ζ . For an impurity placed far away from the
points in S, the topological invariant is modified as

T g′
S (R0) − T g

S = Tr[ĝS
(P ′
G)]

=
∑
rGrG1

Tr◦[〈rG|ĝS |rG1〉〈rG1|
(P ′
G)|rG〉]

=
∑
rGrG1

Tr◦
[
δrG,GSrG1〈rG1|
(P ′

G)|rG〉]
=
∑
rG

Tr◦
[〈

G−1
S rG

∣∣
(P ′
G)|rG〉]

=
∑

|G−1
S rG−R0|<ζ

Tr◦
[〈

G−1
S rG

∣∣
(P ′
G)|rG〉]
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+
∑

|rG−R0|<ζ

Tr◦
[〈

G−1
S rG

∣∣
(P ′
G)|rG〉]

+
∑

|G−1
S rG−R0|>ζ

|rG−R0|>ζ

Tr◦
[〈

G−1
S rG

∣∣
(P ′
G)|rG〉].

(A36)

Now, we have that

B1 =

∣∣∣∣∣∣∣
∑

|G−1
S rG−R0|<ζ

Tr◦
[〈

G−1
S rG

∣∣
(P ′
G)|rG〉]

∣∣∣∣∣∣∣
< O(e−|R0−GSR0|/ζ ), (A37)

B2 =
∣∣∣∣∣∣

∑
|rG−R0|<ζ

Tr◦
[〈

G−1
S rG

∣∣
(P ′
G)|rG〉]

∣∣∣∣∣∣
< O(e−|G−1

S R0−R0|/ζ ), (A38)

B3 =

∣∣∣∣∣∣∣∣∣
∑

|G−1
S rG−R0|>ζ

|rG−R0|>ζ

Tr◦
[〈

G−1
S rG

∣∣
(P ′
G)|rG〉]

∣∣∣∣∣∣∣∣∣
� B1,2. (A39)

We thus conclude that∣∣T g′
S (R0) − T g

S
∣∣ < O(e−|GSR0−R0|/ζ ), (A40)

which implies that impurities in the system will not affect the
quantization of the invariants T g

S as long their distance to S is
many times bigger than a correlation length ζ .

2. Inversion-symmetric topological insulators in one dimension

a. Conventional classification

Consider topological insulators in one-dimensional pro-
tected by inversion symmetry. With periodic boundary con-
ditions, an inversion-symmetry operation PS leaves invariant
two positions S = {R + r0, R + 1 + Lx/2 + r0} on the lattice
with R � Lx/2. The number r0 is a fixed position within the
unit cell that can take the values 0 or 1

2 , where we set the
unit-cell length to be a = 1. Consider the momentum-space
expansion of the inversion operator

p̂S =
∑

kx

p̃S (kx ) ⊗ |PSkx〉〈kx|. (A41)

The conventional momentum-space classification is based on
counting the number of occupied states n±

S (kinv
x ) with eigen-

values of the operator p̃S (kx ) at the invariant momenta kinv
x =

0, π. The invariant is given by [33]

�
p
S =

∑
kx=0,π

[n(+)
S (kx ) − n(−)

S (kx )],

which is an integer invariant.

b. Basis-independent classification

We now discuss the topological invariants T p
S for this TCP.

The topological invariants at the invariant momenta are

τ±
(
kinv

x

) = n±
S
(
kinv

x

) = Tr◦
[
P±,kinv

x

]
. (A42)

It is clear then that, in this case, F (P±,kinv
x

) = P±,kinv
x

. By using
these invariants in Eq. (A20), we find

T p
S =

∑
kx=0,π

[(+1)n(+)
S (kx ) + (−1)n(−)

S (kx )]

= Tr
[
pS · P±,kinv

x

] = Tr[pS ].

In this particular example, the linear combination T p
S of

momentum-space topological invariants is precisely the topo-
logical invariant �

p
S that was proposed for these TCPs [33].

The topological marker for this invariant satisfies∣∣T p
S (x)

∣∣ < O(e−2|x−S|/ζ ), (A43)

when ζ � |x − S| and an impurity placed at x = X0 will
change an invariant centered at S by an exponentially small
amount ∣∣T p′

S (X0) − T p
S
∣∣ < O(e−2|X0−S|/ζ ), (A44)

when ζ � |X0 − S| where the notation |X0 − S| means the
shortest distance to any of the invariant points in the set S.

3. Rotationally symmetric topological superconductors
in two dimensions

a. Conventional classification

Consider topological superconductors in the absence of
time-reversal symmetry and protected by rotational sym-
metries. With periodic boundary conditions, a given n-fold
rotation operation C(n)

S leaves invariant a set S = {Ri + r0}
of positions on the lattice. In particular, we will consider
models that satisfy [ĉ(n=2,4)

S , Ĥ ] = 0, where ĉ(n)
S is the Hilbert

space representation of C(n)
S . By denoting the primitive vectors

as 2a1 and 2a2, then fourfold rotations allow the posi-
tions r0 ∈ {0, a1 + a2}, whereas twofold rotations allow r0 ∈
{0, a1, a2, a1 + a2}. Consider the momentum-space expansion
of the rotation operators

ĉ(n)
S =

∑
k

c̃(n)
S (k) ⊗ ∣∣C(n)

S k
〉〈k|. (A45)

The conventional momentum-space classification is based on
counting eigenvalues of the specific operator c̃(n)

S (k)|r0=0.

For a given invariant momentum �(n)(= 
, X, Mi ), the pos-
sible eigenvalues of c̃(n)

S (k)|r0=0 are �(n)
p = eiπ (2p−1)/n, for

p = 1, 2, . . . , n. Let us denote by #�(n)
p the number of occu-

pied states with eigenvalue �(n)
p at the momentum �(n). The

topological invariants are then obtained by defining a relative
occupation number[

�(n)
p

] = #�(n)
p − #
(n)

p . (A46)

In particular, as we mentioned in the main text, the topolog-
ical invariants for systems that are symmetric under fourfold
rotations are ([X ], [M1], [M2]).
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b. Basis-independent classification

We now proceed to adapt Eq. (A20) to these TCPs. We
define the topological invariants of the invariant subspaces as
the occupation numbers n(n,p)

S (�(n) ) of the eigenvalues of the
operator c̃(n)

S (k):

τnp(�(n) ) = n(n,p)
S (�(n) ) = Tr◦[P jkinv ], (A47)

where we again have used F (P jkinv ) = P jkinv . From
Eq. (A20), we know that this implies that

T c(n)
S = Tr

[
c(n)
S F (PG)

] = Tr
[
c(n)
S
]
. (A48)

In contrast with the inversion-symmetric case, the conven-
tional momentum-space topological invariants are not exactly
the invariants T c(n)

S . We can, nevertheless, find a relation

between both. The rotation operator at an invariant momentum
for a given set of fixed points S can be written in the form

c̃(n)
S (k) = [̃

c(n)
S (k)

∣∣
r0=0

]
ei(C(n)

S �(n)−�(n) )·r0 , (A49)

which implies that their eigenvalues are

eiφnp(�(n) ) = ei(π (2p−1)/n+(C(n)
S �(n)−�(n) )·r0 ). (A50)

Since the �(n) are invariant momenta under rotations by
definition, (C(n)

S �(n) − �(n) ) · r0 = ∑
i mibi where the m1,2

are integers and the b1,2 are primitive vectors in reciprocal
space that satisfy bi · (2a j ) = 2πδi j . With these definitions,
the traces of the projected rotation operators for n = 4 can be
written as

T c(4)
S =

4∑
p=1

(
eiφ4p(�)n(4,p)

S (�) + eiφ4p(M)n(4,p)
S (M)

)
(A51)

=
4∑

p=1

(eiπ (2p−1)/4#
p + eiπ (2p−1)/4−ib1·r0 #Mp) (A52)

=
4∑

p=1

eiπ (2p−1)/4[(1 + e−ib1·r0 )#
p + e−ib1·r0 [Mp]]

=
⎧⎨⎩(1 + e−ib1·r0

)⎛⎝∑
p

eiπ (2p−1)/4#
p

⎞⎠+ i
√

2e−ib1·r0 ([M1] + [M2])

⎫⎬⎭, (A53)

where we have used that [M1] = −[M4] and [M2] = −[M3] due to particle-hole symmetry. For the n = 2 case, the topological
invariants are

T c(2)
S =

∑
p

(
eiφ2p(�)n(2,p)

S (�) + eiφ2p(M)n(2,p)
S (M)

) = i((#
1 + #
3) + e−i(b1+b2 )·r0 (#M1 + #M3) + (e−ib1·r0 + e−ib2·r0 )#X1)

− i((#
2 + #
4) + e−i(b1+b2 )·r0 (#M2 + #M4) + (e−ib1·r0 + e−ib2·r0 )#X2)

= i(1 + e−ib1·r0 + e−ib2·r0 + e−i(b1+b2 )·r0 )(#
1 + #
3) + ie−i(b1+b2 )·r0 ([M1] + [M3]) + i(e−ib1·r0 + e−ib2·r0 )[X1]

− i(1 + e−ib1·r0 + e−ib2·r0 + e−i(b1+b2 )·r0 )(#
2 + #
4) − ie−i(b1+b2 )·r0 ([M2] + [M4]) − i(e−ib1·r0 + e−ib2·r0 )[X2]

= 2i

{(
1 + e−ib1·r0 + e−ib2·r0 + e−i(b1+b2 )·r0

2

)
(#
1 + #
3 − #
2 − #
4)

+ e−i(b1+b2 )·r0 ([M1] − [M2]) + (e−ib1·r0 + e−ib2·r0 )[X ]

}
, (A54)

where we used [X ] ≡ [X1] = −[X2] due to particle-hole sym-
metry as well. By evaluating these expressions at the rotation
centers r0 = a1, a1 + a2, we obtain

T c(2)
S

∣∣
r0=a1

= −2i([M1] − [M2]), (A55)

T c(2)
S

∣∣
r0=a1+a2

= 2i{([M1] − [M2]) − 2[X ]}, (A56)

T c(4)
S

∣∣
r0=a1+a2

= −i
√

2([M1] + [M2]), (A57)

which finally implies, using Eq. (A48), that

[X ] = i

4

(
T c(2)
S

∣∣
r0=a1

+ T c(2)
S

∣∣
r0=a1+a2

)
= i

4
Tr
[(

c(2)
S
∣∣
r0=a1

)+ (
c̄(2)
S
∣∣
r0=a1+a2

)]
, (A58)

[M1,2] = i

4

(√
2T c(4)

S
∣∣
r0=a1+a2

± T c(2)
S

∣∣
r0=a1

)
= i

4
Tr
[√

2
(
c̄(4)
S |r0=a1+a2

)± (
c̄(2)
S |r0=a1

)]
, (A59)
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which are the expressions discussed in the main text. The
topological marker for this invariant satisfies∣∣T c(n)

S (r)
∣∣ < O(e−2 sin[ π

n ]|r−S|/ζ ). (A60)

When ζ � |x − S| and an impurity placed at r = R0 will
change an invariant centered at S by an exponentially small
amount∣∣T c(n)′

S (R0) − T c(n)
S

∣∣ < O
(
e−2 sin [ π

n ]|R0−S|/ζ ), (A61)

when ζ � |R0 − S| where the notation |R0 − S| means the
shortest distance to any of the invariant points in the set S.

4. Mirror-symmetric DIII topological
superconductors in two dimensions

a. Conventional classification

In the main text, we discussed the basis-independent
approach to the classification of mirror-symmetric DIII topo-
logical supercondctors in two dimensions. Here, we will make
contact with the momentum-space classification in order to
connect with Eq. (A20).

As we mentioned in the main text, a 2D mirror-symmetric
superconductor in class DIII is described by a Bogoliubov–de
Gennes Hamiltonian Ĥ such that [m̂S , Ĥ ] = 0. The mirror-
invariant lines are located at S = (Y1 + y0,Y2 + y0), with

y0 = 0, 1
2 . We focus on the case when m̂2

S = −1. If we Fourier
transform only the coordinate that changes under mirror sym-
metry, the mirror constraint on the Bloch Hamiltonian is

m̃S (ky)h(ky)m̃−1
S (ky) = h(−ky), (A62)

where m̃S (ky) is the momentum representation of the mirror
operator. At the mirror-invariant momentum lines kinv

y = 0, π,

the Bloch states can be labeled with mirror eigenvalues. By
using the chiral symmetry χ = TC that arises from having
both time-reversal T and particle-hole C symmetries, one can
define topologically invariant mirror-winding numbers given
by [44]

ν
(±)
S
(
kinv

y

) = − 1

Nx
Tr[(S−Q±,kinv

y
S+)[X̂ , (S+Q±,kinv

y
S−)]],

(A63)

where Q±,kinv
y

= 2P±,kinv
y

− I, S± = (I ± χ̂ )/2 projects into
chiral subspaces with eigenvalue χ = ±1, and P±,kinv

y
is

the projection operator into the occupied states with mirror
eigenvalue ±i. Due to time-reversal symmetry, ν

(+)
S (kinv

y ) =
−ν

(−)
S (kinv

y ). The integers at the two invariant momenta lead to
the known Z × Z classification [12]. To express the winding
in terms explicitly of projection operators, we write

ν
(±)
S (kinv

y ) = − 1

Nx
Tr
[(

S−Q±,kinv
y

S+
)[

X̂ ,
(
S+Q±,kinv

y
S−
)]]

(A64)

= − 1

Nx
Tr
[(

2P±,kinv
y

− I
)
S+
[
X̂ ,
(
2P±,kinv

y
− I

)]
S−
]

(A65)

= − 4

Nx
Tr
[
P±,kinv

y

[
X̂ , S+P±,kinv

y
S−
]]

(A66)

= − 4

Nx
Tr

[
P±,kinv

y

[
X̂ ,

(
(I + χ̂ )

2

)
P±,kinv

y

(
(I − χ̂ )

2

)]]
(A67)

= − 1

Nx
Tr
[
P±,kinv

y

[
X̂ ,P±,kinv

y
+ χ̂P±,kinv

y
− P±,kinv

y
χ̂ − χ̂P±,kinv

y
χ̂
]]

(A68)

= − 1

Nx
Tr
[
P±,kinv

y

[
X̂ ,P±,kinv

y
+ (

χ̂ − P±,kinv
y

χ̂
)− P±,kinv

y
χ̂ − (

I − P±,kinv
y

)]
(A69)

= − 2

Nx
Tr
[
P±,kinv

y

[
X̂ ,P±,kinv

y

]]+ 2

Nx
Tr
[
P±,kinv

y

[
X̂ ,P±,kinv

y
χ̂
]]

(A70)

= 2

Nx
Tr
[
P±,kinv

y

[
X̂ ,P±,kinv

y

]
χ̂
]
, (A71)

which is the expression we presented in the main text.

b. Basis-independent classification

We now implement Eq. (A20) for this TCP. As is clear from
the previous section, the topological invariants of the invariant
subspaces are

τ±
S,b

(
kinv

y

) = ν±
S
(
kinv

y

)
, (A72)

where we added the index b to be reminded that it refers to
the bulk invariant, as opposed to the edge invariant that we

introduce in the next subsection. Furthermore, we have that

F (P ) = 2N−1
x P[X̂ ,P]χ. (A73)

By applying Eq. (A20), we then have the topological
invariants

T m
S =

∑
kinv

y

[
(+i)ν+

S
(
kinv

y

)+ (−i)ν−
S
(
kinv

y

)]
= Tr[mSF (PG)]. (A74)
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The relation with the invariant we defined in the main text is
then

Vm
S = − i

2
T m
S . (A75)

The topological marker for this invariant satisfies∣∣T m
S (y)

∣∣ < O(e−2|y−S|/ζ ), (A76)

when ζ � |y − S| and an impurity placed at y = Y0 will
change an invariant centered at S by an exponentially small
amount ∣∣T m′

S (Y0) − T m
S
∣∣ < O(e−2|Y0−S|/ζ ) (A77)

when ζ � |Y0 − S|.

c. Integer topological invariants for the edge

In the main text, we used the bulk-boundary relation �m
S =

− i
2 Tr[medge

S χ ] = Vm
S , which we will now prove in this sec-

tion. To do this, we begin by noting that we can write �m
S in

the suggestive form

�m
S = − i

2
Tr[mSF (Pedge)], (A78)

which has the form of the invariants in Eq. (A20), in this case
with the function F (P ) = Pχ. Thus, in momentum space we
must obtain that �m

S receives contribution exclusively from
the invariant momenta in the form

�m
S =

(
− i

2

)∑
kinv

y

[
(+i)τ edge

+
(
kinv

y

)+ (−i)τ edge
−

(
kinv

y

)]
,

(A79)

where we defined new edge topological invariants

τ edge
m

(
kinv

y

) ≡ Tr
[
Pedge

(
kinv

y

)
F
(
Pedge

(
kinv

y

))]
= Tr

[
Pedge

(
kinv

y

)
χ
]
, (A80)

with Pedge(kinv
y ) the projector onto the boundary states with

momentum kinv
y and mirror eigenvalue mi. Because of the form

of the function F in this case, the quantities τ
edge
m (kinv

y ) count
the difference

Tr
[
Pedge

(
kinv

y

)
χ
] =

∑
n∈edge

〈
un

kinv
y

∣∣χ ∣∣un
kinv

y

〉
= Nm

+
(
kinv

y

)− Nm
−
(
kinv

y

)
(A81)

at the invariant momentum kinv
y in a given mirror subspace m,

with Nm
χ (kinv

y ) the number of modes with chiral eigenvalue
χ = ±1. Due to the bulk-boundary correspondence of AIII
systems, this difference must be equal to the bulk topological
winding (A71), and thus

τ edge
m

(
kinv

y

) = ν
(m)
S
(
kinv

y

)
. (A82)

Finally, putting together Eqs. (A75), (A79), and (A82),
we obtain the relation

�m
S = 1

2

∑
kinv

y

[
τ

edge
+

(
kinv

y

)− τ
edge
−

(
kinv

y

)]
= 1

2

∑
kinv

y

[
ν

(+)
S
(
kinv

y

)− ν
(−)
S
(
kinv

y

)] = Vm
S (A83)

as we had set out to prove.

d. Quantized edge shift of gapless Majorana boundary modes

In this section, we derive Eq. (7) from the main text, which
relates the local edge shift δYχ

edge(R1) with the bulk invari-
ant Vm

S . Consider the projected position operator Wχ

edge =
Pχ

edgee−2π iŶ /LyPχ

edge. We denote its eigenvalues and eigenstates

by {e−2π iλRy j/Ly} and {|
χ
Ry j〉}, respectively. Here, Ry labels

unit cells along the edge, and j = 1, . . . , Nb, where Nb is the
number of subbands included in the detached Majorana band
(DMB). Thus, the number of states in the edge projector Pedge

is NbLy. Let us write λRy j = Ry + νRy j . The edge shift is then
defined by

δYχ

edge(R1) =
⎛⎝ Nb∑

j=1

νR1 j

⎞⎠mod 1. (A84)

Now, mirror symmetry imposes the constraint

m̂SWχ

edgem̂−1
S = Pχ

edgem̂Se−2π iŶ /Ly m̂−1
S Pχ

edge

= e−4π iS/Ly
(
Wχ

edge

)†
. (A85)

Thus, we have that Wχ

edge|
χ
Ry j〉 = e−2π iλRy j/Ly |
χ

Ry j〉 implies

Wχ

edgem̂S |
χ
Ry j〉 = e−2π i(2S−λRy j )/Ly m̂S |
χ

Ry j〉. Because of this
constraint, for a given fixed unit cell Ry, there are three types
of Wannier centers νRy j :

(1) Those that come in symmetry-related pairs
{νRy jmod 1,−νRy jmod 1}.

(2) Those that coincide with an integer mirror-invariant
point νRy jmod 1 = 0.

(3) Those that coincide with a half-integer mirror-
invariant point νRy jmod 1 = 1

2 .

In view of these possibilities, if we denote by Nχ,1/2(R1)
the number of Wannier states centered at R1 + 1

2 , then

δYχ

edge(R1) =
⎛⎝ Nb∑

j=1

λR1 j

⎞⎠mod 1

=
⎛⎝Nχ,1/2∑

i=1

1

2

⎞⎠mod 1

=
[

1

2
Nχ,1/2(R1)

]
mod 1. (A86)

Thus, the only way to obtain a nonzero shift δYχ

edge(R1) = 1
2

is for there to be an odd number of Wannier centers at the
midpoint of the unit cell R1. Next, let us write Nχ,1/2(R1) =
N (+)

χ,1/2(R1) + N (−)
χ,1/2(R1), where N (±)

χ,1/2(R1) is the number of
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Wannier states centered at R1 + 1
2 with ±i mirror eigenvalues.

Then

δYχ

edge(R1) = [
1
2 (N (+)

χ,1/2(R1) + N (−)
χ,1/2(R1))

]
mod 1

= [
1
2 (N (+)

χ,1/2(R1) − N (−)
χ,1/2(R1))

]
mod 1. (A87)

Consider the set of mirror-invariant points S|y0=1/2 = {R1 +
1
2 , R2 + 1

2 }. Due to the constraint of mirror symmetry, for
λRy j 
= R1 + 1

2 , the state |
χ
Ry j〉 is orthogonal to the state

m̂S |
χ
Ry j〉. By contrast, if λRy j = R1 + 1

2 , then |
χ
Ry j〉 is an

eigenstate of m̂S |y0=1/2. It follows that

N (+)
χ,1/2(R1) − N (−)

χ,1/2(R1) = − i

2

∑
Ry j

〈



χ
Ry j

∣∣(m̂S |y0=1/2)
∣∣
χ

Ry j

〉
.

(A88)

Note that the dependence of the right-hand side on R1 comes
from the index S|y0=1/2 of the mirror operator that is chosen.
The factor of 1

2 is due to the fact that the sum counts the two
points in S|y0=1/2, and we defined Nχ,1/2 with respect to only
one of them. Using Eq. (A88) in (A87), we then obtain

δYχ

edge(R1) =
⎡⎣− i

4

∑
Ry j

〈



χ
Ry j

∣∣(m̂S |y0=1/2)
∣∣
χ

Ry j

〉⎤⎦mod 1.

(A89)

Now, note that since χ̂T |
+
Ry j〉 = −χT |
+

Ry j〉 then T |
+
Ry j〉 ∝

|
−
Ry j〉. Thus, if m̂S |y0=1/2|
+

Ry j〉 = eiφ|
+
Ry j〉, then by acting

with T on both sides we obtain m̂S |y0=1/2|
−
Ry j〉 = e−iφ |
−

Ry j〉,
i.e., the two states |
+

Ry j〉 and |
−
Ry j〉 have opposite mirror

eigenvalues. Because of this, we can write

〈



χ
Ry j

∣∣(m̂S |y0=1/2)
∣∣
χ

Ry j

〉
= 1

2

(〈

+

Ry j

∣∣(m̂S |y0=1/2)
∣∣
+

Ry j

〉
− 〈


−
Ry j

∣∣(m̂S |y0=1/2)
∣∣
−

Ry j

〉)
. (A90)

We then obtain

δYχ

edge(R1) =
[
− i

8

∑
Ry j

{〈

+

Ry j

∣∣(m̂S |y0=1/2)
∣∣
+

Ry j

〉

− 〈

−

Ry j

∣∣(m̂S |y0=1/2)
∣∣
−

Ry j

〉}]
mod 1.

(A91)

Finally, we replace the sum over Wannier functions by a trace
over the full Hilbert space of the system by introducing the
projection operator Pedge :

δYχ

edge(R1) =
⎡⎣− i

8

∑
Ry jχ

〈



χ
Ry j

∣∣(m̂S |y0=1/2)χ̂
∣∣
χ

Ry j

〉⎤⎦mod 1

=
[
− i

8
Tr[Pedge(m̂S |y0=1/2)χ̂ ]

]
mod 1 (A92)

=
[

1

4
�m

S
∣∣
y0=1/2

]
mod1,

=
[

1

4
Vm
S
∣∣
y0=1/2

]
mod 1, (A93)

which is the expression we discussed in the main text.

e. Constructing the projection operator for the DMB

As we state in the main text, to obtain the edge projector
Pedge of the boundary bands of only one of the edges, we gap
out the boundary modes on the opposite edge. To achieve this,
we add the term

V =
∑

ky

α( f1τ3σ0)|x = 1, ky〉〈x = 1, ky|

+β( f1τ3σ1 − cos ky f0τ2σ0)|x = Lx, ky〉〈x = Lx, ky|,
(A94)

with α = −1.0, β = 0.5 for the weak TCP example. For the
mirror-topological TCP, we use

V =
∑

ky

α( f1τ3σ0)|x = 1, ky〉〈x = 1, ky|

+β( f0τ3σ1)|x = Lx, ky〉〈x = Lx, ky|, (A95)

with α = 0.1, β = −0.8.
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