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Local geometry and quantum geometric tensor of mixed states
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The quantum geometric tensor (QGT) is a fundamental concept for characterizing the local geometry of
quantum states. After casting the geometry of pure quantum states and extracting the QGT, we generalize the
geometry to mixed quantum states via the density matrix and its purification. The gauge-invariant QGT of mixed
states is derived, whose real and imaginary parts are the Bures metric and the Uhlmann form, respectively. In
contrast to the imaginary part of the pure-state QGT that is proportional to the Berry curvature, the Uhlmann form
vanishes identically for ordinary physical processes. Moreover, there exists a Pythagorean-like equation that links
different local distances and reflect the underlying fibration. The Bures metric of mixed states is shown to reduce
to the corresponding Fubini-Study metric of the ground states as temperature approaches zero, establishing a
correspondence despite the different underlying fibrations. We also present two examples with contrasting local
geometries and discuss experimental implications.
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I. INTRODUCTION

The geometry of quantum states has sparked lasting re-
search interest [1,2] and played an indispensable role in
quantum statistical mechanics, quantum information, con-
densed matter, and atomic, molecular, and optical physics
[3–10]. Unlike the topology of quantum systems that reflects
global properties of the underlying structures via quantized in-
dices [11–13], the geometry of quantum states can be sensitive
to local intricacies. The quantum geometric tensor (QGT) is a
fundamental concept for characterizing the variation between
quantum states [5,6,14,15]. For pure states, the QGT is a com-
plex quantity, whose real part gives the Fubini-Study metric
[16] that assesses the local distance between physically dis-
tinct quantum states while the imaginary part is proportional
to the Berry curvature [17,18] and related to the topology.

Pure quantum states are considered equivalent if they differ
by a global phase [19]. Taking into account the equivalence,
the phase space of pure states can be identified [2]. The
QGT is then a complex metric defined on the phase space,
which measures the local geometry and is invariant under
gauge transformation. There have been many studies on the
QGT of pure states, including proposals to extract the QGT
[20–25], experimental realizations using photoluminescence
of exciton-photon polaritons [26], Rabi oscillation of an NV
center in diamond [27], quench or periodic driving of a super-
conducting qubit [28], Bloch state tomography of cold atoms
[29], and transmission measurements of plasmonic lattices
[30], as well as theoretical works on optical response [31],
quantum fluctuations of the QGT [32], quantum phase tran-
sitions [33], superfluidity in flat bands [34], generalizations
to N-band systems [35], topological semimetals [36] or other
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topological matter [37–40], and PT-symmetric systems [41].
By considering the QGT as the second cumulant of the fidelity
susceptibility, Ref. [42] studied other relevant quantities.

While most of the previous studies are about pure states,
we move forward to formulating the QGT of mixed quan-
tum states. The equivalence among mixed states due to the
phase factors and the phase space of mixed states will be
be identified before we derive the gauge-invariant QGT for
mixed states and unveil rich geometric properties behind the
QGT. To present a complete picture of the QGT, we first
examine the local geometry of the phase space of pure states,
which is a Kähler manifold [1], and its fibration that gives
rise to a Pythagorean-like equation among the distances in
different spaces.

For mixed quantum states, we will identify the phase
space and fibration by taking hints from the pure-state results.
While the QGT of pure states can be obtained through gauge-
invariant modifications to the “raw” metric, we will show that
a similar method applies to mixed states via Uhlmann’s ap-
proach of the topology of full-rank density matrices [43–45].
We find that all gauge-invariant modifications to the real part
of the raw metric of mixed states reduce to the Bures met-
ric within this framework, and a similar modification to the
imaginary part causes it to vanish identically. To our best
knowledge, the phase space of mixed states is not a Kähler
manifold. Thus, the imaginary part of the QGT is not propor-
tional to the Uhlmann curvature of mixed states, in contrast to
the pure-state case.

The generalization of the QGT to mixed states serves
another illustration of the subtle similarities and differences
between pure and mixed states. While the Uhlmann bun-
dle of full-rank density matrices is a trivial bundle [46] and
causes the associated characteristic classes to vanish, the
Uhlmann holonomy and the Uhlmann phase can be nontrivial
and exhibit the Uhlmann-Berry correspondence as tempera-
ture approaches zero [45]. Similarly, we will show that the
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mixed-state phase space lacks the Kähler structure but still ex-
hibits an analogous Pythagorean-like relation between the raw
metric and the metric on the phase space. Although the fibra-
tions of pure and mixed states are different, we present a proof
that the Bures metric can reduce to its pure-state counterpart,
the Fubini-Study metric, as the temperature approaches zero
and give rise to a correspondence between mixed and pure
states. We also compare the Bures distance and the Sjöqvist
distance [47] by showing their different gauge conditions in
a unified framework. Finally, the uniqueness of the Bures
distance within the framework based on the Uhlmann bundle
explains why it is common in the literature on mixed states,
despite many different arguments or derivations [2,10,48].
Therefore, our paper lays the foundation for systematic in-
vestigations of the geometry characterized by the QGT of
mixed states.

Our main findings are: (1) The Uhlmann bundle provides
a natural and solid foundation for deriving the QGT of mixed
states with full-rank density matrices. (2) The gauge-invariant
real part of the QGT reproduces the Bures metric, which
approaches the Fubini-Study metric of pure states as tempera-
ture goes to zero. (3) The gauge-invariant imaginary part of
the QGT is the Uhlmann form, which vanishes for regular
systems in contrast to the Berry curvature of pure states. (4)
A Pythagorean-like relation between the quantum distances
of the total space and quantum phase space for mixed states
emerges despite the lack of a Kähler structure like that of
pure states.

The rest of the paper is organized as follows. In Sec. II,
an overview of the QGT of pure states is presented, and
the geometric origins of the real and imaginary compo-
nents are elucidated. In Sec. III, the QGT of mixed states
from a geometric perspective is formulated, including the
Pythagorean-like equation between different local distances
and the gauge-invariant QGT. The relations to the Bures dis-
tance and Sjöqvist distance are explained and the vanishing of
the imaginary part is derived. We prove in Sec. IV that the Bu-
res metric approaches the Fubini-Study metric as temperature
goes to zero. In Sec. V, two examples of the QGT of mixed
states are provided. We also summarize some implications
of the QGT of mixed states and challenges of going beyond
the Uhlmann fibration. Section VI concludes our paper. Some
details and derivations are summarized in the Appendix.

II. QGT OF PURE STATES (REVIEW)

A. The quantum phase space

Hereafter, the dimension of the quantum system of in-
terest is assumed to be N . To contrast the similarities and
differences between the geometries of pure and mixed states,
we follow Refs. [1,2] to review the physical space of the
state-vectors. Readers familiar with the local geometry of pure
states may proceed to Sec. III directly. In general, the linear
space spanned by N-dimensional vectors is the N-dimensional
complex vector space H = CN . Since a state vector |ψ〉
is physically equivalent to c|ψ〉 if c is a nonzero complex
number (c ∈ C∗ = C − {0}), the phase space of pure states
is a (N − 1)-dimensional complex projective space, P(H) =
CN/C∗ ∼= CPN−1, where the elements are complex rays.

A canonical projection connecting these two spaces is � :
H → P(H) by collapsing any nonzero complex number
c [49], �(c|ψ〉) = |ψ〉. An alternative way to construct
CPN−1 begins with normalizing the state vectors and ob-
taining a (2N − 1)-dimensional real sphere S(H) := {|ψ〉 ∈
H|〈ψ |ψ〉 = 1} ∼ S2N−1. Since two points in S(H) are phys-
ically equivalent |φ〉 ∼ |ψ〉 if they differ only by a phase
factor |ψ〉 = eiχ |φ〉, P(H) is the quotient space S(H)/U(1) =
CPN−1. The Hopf fibration [1] corresponds to the N = 2 case
with S3/S1 = S2 since U(1)∼S1 and CP1 ∼ S2. For a better
distinction, we will use the tilde symbol to label a state |ψ̃〉 in
H = CN or S(H), and reserve the state |ψ〉 to indicate one in
P(H) = CPN−1.

A well-defined local distance between quantum states
should be independent of any U(1) phase factor that only
gives rise to an equivalence relation between the states. This
indicates that the distance and the associated metric defined
in the quantum phase space CPN−1 must be invariant under
arbitrary U(1) gauge transformations. Furthermore, CPN−1 is
a Kähler manifold [1] endowed with a Kähler metric, the real
part of which is a Riemannian metric satisfying the gauge-
invariant requirement while the imaginary part is a symplectic
form proportional to the Berry curvature as a two-form.

B. The quantum distance

Throughout the paper, we set h̄ = kB = 1 and apply the
Einstein summation convention. Consider a family of normal-
ized quantum states |ψ̃ (R)〉 ∈ S(H), which depends on a set
of real parameters R = (R1, R2, . . . , Rk )T ∈ M. Here M is a
parameter manifold, whose dimension may not be equal to N .
Examples of such a parameter manifold include the direction
of an external magnetic field of a spin system or the Brillouin
zone of a lattice system. Following the idea of Refs. [6,15],
the local distance between quantum states upon a variation of
R is given by

ds2 = ||ψ̃ (R + dR)〉 − |ψ̃ (R)〉|2 = 〈∂iψ̃ |∂ jψ̃〉dRidR j . (1)

It is tempting to choose the metric as gi j = 〈∂iψ̃ |∂ jψ̃〉.
However, this is not invariant under a local U(1) gauge trans-
formation given by |ψ̃ (R)〉 → eiχ (R)|ψ̃ (R)〉, so the quantum
distance between physically equivalent states may not vanish.
Interestingly, the imaginary part of 〈∂iψ̃ |∂ jψ̃〉 is invariant
under a U(1) gauge transformation.

By plugging eiχ |ψ̃〉 instead of |ψ̃〉 into Eq. (1), the quan-
tum distance becomes

ds2 → ds′2

= (〈∂iψ̃ |∂ jψ̃〉 − iωi∂ jχ − iω j∂iχ + ∂iχ∂ jχ )dRidR j,

where

ωi = 〈ψ̃ |∂iψ̃〉 = −〈∂iψ̃ |ψ̃〉 (2)

is the Berry connection on S(H). Under the same U(1) gauge
transformation, it changes as ωi → ω′

i = ωi + i∂iχ. Thus, we
can redefine the quantum distance as [6,15]

ds2 = (〈∂iψ̃ |∂ jψ̃〉 − 〈ψ̃ |∂iψ̃〉〈∂ jψ̃ |ψ̃〉)dRidR j . (3)

It can be verified that the new metric

gi j = 〈∂iψ̃ |∂ jψ̃〉 − 〈ψ̃ |∂iψ̃〉〈∂ jψ̃ |ψ̃〉 (4)
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is gauge invariant. Therefore, gi j is a proper measure of the
local distance between physically inequivalent states in the
quantum phase space P(H). The gauge-invariant metric is also
referred to as the quantum geometric tensor (QGT) [6,15].

C. Kähler manifold and QGT

To gain a deeper understanding of the geometric foun-
dation of the QGT and its link to the Kähler geometry,
we present an alternative and systematic construction. We
consider the state |ψ〉 ∈ P(H) depending on the real-valued
parameters R = (R1, R2, . . . , Rk )T and X (t ) being the tan-
gent vector of the curve R(t ). This implies |X (t )〉 =
d
dt |ψ (R(t ))〉 = |∂iψ〉Ṙi. By using X in the gauge-invariant
inner product summarized in Appendix A, we have

〈∂iψ |∂ jψ〉 = 〈∂iψ̃ |∂ jψ̃〉 − 〈∂iψ̃ |ψ̃〉〈ψ̃ |∂ jψ̃〉, (5)

which is exactly the QGT of Eq. (4). This means that the met-
ric induced in Eq. (3) is indeed a metric on P(H) = CPN−1.
Explicitly,

ds2(CPN−1) = ||ψ (R + dR)〉 − |ψ (R)〉|2

= gi jdRidR j ≡ 〈∂iψ |∂ jψ〉dRidR j (6)

is the quantum distance between the equivalent classes rep-
resented by |ψ (R + dR)〉 and |ψ (R)〉. Note gi j is complex
in general, and its real part can be obtained simply by sym-
metrizing i and j since dRidR j are symmetric about i ↔ j.
Using the fact 〈∂iψ̃ |ψ̃〉 = −〈ψ̃ |∂iψ̃〉, we have

γi j ≡ Regi j = Re〈∂iψ̃ |∂ jψ̃〉 − 〈∂iψ̃ |ψ̃〉〈ψ̃ |∂ jψ̃〉. (7)

This is the aforementioned Riemannian metric on P(H) =
CPN−1 that satisfies ds2(CPN−1) = ∑

i j γi jdRidR j . In other
words, the imaginary part of gi j makes no contribution to the
quantum distance.

By antisymmetrizing Eq. (5), we get the (negative) imagi-
nary part of gi j ,

	i j = −Im〈∂iψ̃ |∂ jψ̃〉 = i

2
(〈∂iψ̃ |∂ jψ̃〉 − 〈∂ jψ̃ |∂iψ̃〉) (8)

and the symplectic form

	|ψ〉 = i

2
〈∂iψ̃ |∂ jψ̃〉dRi ∧ dR j . (9)

It can be verified that both γi j and 	i j are gauge invariant.
Using 〈∂i∂kψ̃ |·〉dRk ∧ dRi ∧ · = 0 = 〈·|∂i∂kψ̃〉dRk ∧ dRi ∧ ·,
it can be shown d	|ψ〉 = 0, i.e., the symplectic form is closed.
Therefore, P(H) = CPN−1 is indeed a Kähler manifold and
	|ψ〉 is called the Kähler form [1]. More details of the Kähler
manifold and its metric are given in Appendix B.

Introducing the Berry connection A = AidRi, whose ith
component is Ai = 〈ψ |∂iψ〉, and explicitly expressing |ψ̃〉 =
eiθ |ψ〉, we find

〈∂iψ̃ |ψ̃〉〈ψ̃ |∂ jψ̃〉 = 〈∂iψ |ψ〉〈ψ |∂ jψ〉 (10)

since the derivatives of θ cancel each other. Thus, the QGT
can be written as

gi j = 〈∂iψ̃ |∂ jψ̃〉 + AiAj (11)

according to Eq. (5). We emphasize that A = 〈ψ |dψ〉 intro-
duced here is the Berry connection on P(H), while Eq. (2)

defines the Berry connection ω on S(H). The relation between
them will be discussed later. It is straightforward to verify
from Eq. (9) that the Kähler form is

	 = i

2
〈dψ | ∧ |dψ〉 + i

2
dθ ∧ dθ

+ 1

2
(dθ ∧ 〈ψ |dψ〉 − 〈dψ |ψ〉 ∧ dθ )

= i

2
dA. (12)

Thus, the imaginary part is proportional to the gauge-invariant
Berry curvature F = dA, so no modification is needed.

Equation (3) thus represents the local distance between
|ψ (R + dR)〉 and |ψ (R)〉 in CPN−1, as explained by Eq. (6).
Similarly, the distance of Eq. (1) may be viewed as the “raw”
distance between |ψ̃ (R + dR)〉 and |ψ̃ (R)〉 in S(H) = S2N−1.
However, the states may be physically equivalent to each
other. We denote the raw distance by

ds2(S2N−1) = 〈∂iψ̃ |∂ jψ̃〉dRidR j, (13)

where 〈∂iψ̃ |∂ jψ̃〉 is the “raw” metric. The Berry connection A
builds a bridge that connects ds2(S2N−1) and ds2(CPN−1). We
notice from Eq. (11) that

ds2(CPN−1)

dt2
= 〈∂iψ̃ |∂ jψ̃〉ṘiṘ j + (〈ψ̃ |∂iψ̃〉Ṙi )2

� ds2(S2N−1)

dt2
. (14)

The inequality is due to 〈ψ̃ |∂iψ̃〉 being a purely imaginary
number, so (〈ψ̃ |∂iψ̃〉Ṙi )2 is negative. Hence, ds2(S2N−1) is
minimized if

〈ψ̃ |∂iψ̃〉Ṙi = 〈ψ̃ (t )| d

dt
|ψ̃ (t )〉 = Im〈ψ̃ (t )| d

dt
|ψ̃ (t )〉 = 0,

(15)

where the second identity comes from 〈ψ̃ |ψ̃〉 = 1, and “d”
is the local derivative on S(H). We previously show that
d
dt |ψ̃ (t )〉 is actually |X̃ (t )〉. Hence, the condition (14) simply
implies that 〈ψ̃ (t )|X̃ (t )〉 = 0 or |X̃ 〉 = |X̃ ⊥〉, indicating that

〈ψ̃ (t )|ψ̃ (t + dt )〉 = 〈ψ̃ (t )|ψ̃ (t )〉 + 〈ψ̃ (t )
d

dt
|ψ̃ (t )〉dt + · · ·

≈ 1 > 0. (16)

In quantum information [43,50], the above result means
|ψ̃ (t + dt )〉 is parallel to |ψ̃ (t )〉 since they are “in phase” with
each other. As a consequence, Eq. (15) is the parallel-transport
condition, and |ψ̃ (t )〉 is referred to as the horizontal lift of
|ψ (t )〉. However, the parallelism between quantum states does
not define an equivalence relation because it lacks transitivity
[51]. Therefore, even if |ψ̃〉 is parallel transported, it may
gradually start to be out of phase with the initial state, and the
Berry phase is a measure of this discrepancy for a cyclic evo-
lution. Substituting |ψ̃ (t )〉 = eiθ (t )|ψ (t )〉 into Eq. (15) gives

iθ̇ + 〈ψ (t )| d

dt
|ψ (t )〉 = 0. (17)

If |ψ (t )〉 undergoes a cyclic process [|ψ (0)〉 = |ψ (τ )〉] that
lasts for a duration τ (0 � t � τ ), in the end the state obtains
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a gauge-invariant Berry phase

θB ≡ θ (τ ) = i
∫ τ

0
dt〈ψ (t )| d

dt
|ψ (t )〉. (18)

Using the expression of the Berry connection A = 〈ψ |dψ〉
and |ψ̃〉 = eiθ |ψ〉, we have

〈ψ̃ |∂iψ̃〉dRi = 〈ψ̃ |dψ̃〉 = i(dθ − iA). (19)

The first line of Eq. (14) then indicates

ds2(S2N−1) = ds2(CPN−1) + (dθ − iA)2. (20)

This gives a Pythagorean-like relation for the quantum dis-
tances, which is a more complete relation than

ds2(CPN−1) = inf[ds2(S2N−1)]. (21)

We remark that a similar result for unnormalized quantum
states was given in Ref. [52] obtained by using complex local
coordinates of CN . In the fiber-bundle description of the Berry
phase [44,52], S2N−1 is the total space of the Hopf bundle over
the base space CPN−1. All possible phase factors at |ψ〉 ∈
CPN−1 form a fiber space at that point. Thus, Eq. (20) shows
the local distance on S2N−1 has two contributions respectively
from the base and the fiber spaces. During a physical process,
if the quantum state undergoes parallel transport depicted in
Eq. (17), no contribution from the U(1) phase factor adds to
the total distance since the state is kept “in phase” instanta-
neously. In this situation, ds2(S2N−1) is minimized. This is
indeed the definition of the Fubini-Study distance between
quantum states [53],

ds2
FS(|ψ (t + dt )〉, |ψ (t )〉) := inf ||ψ̃ (t + dt )〉 − |ψ̃ (t )〉|2

= 2 − 2〈ψ̃ (t + dt )|ψ̃ (t )〉. (22)

The infimum is obtained when |ψ̃ (t + dt )〉//|ψ̃ (t )〉 or equiva-
lently 〈ψ̃ (t )|ψ̃ (t + dt )〉 = 〈ψ̃ (t + dt )|ψ̃ (t )〉 > 0. This is why
the metric (or the QGT) given by Eq. (11) is also called the
Fubini-Study metric [16].

To summarize, the real part of the QGT γi j measures the
local distance of a parameter-dependent state |ψ (t )〉 in the
quantum phase space P(H) while the imaginary part 	i j of
the QGT characterizes the violation of parallelism between
quantum states during a cyclic parallel transport and the local
curvature of the evolutional curve |ψ (t )〉. We emphasize that
P(H) = CPN−1 possesses those geometric properties because
it is a Kähler manifold, and a more detailed discussion is
outlined in Appendix B.

III. QGT OF MIXED STATES

Mixed states are inevitable for systems at finite tempera-
tures or out of equilibrium. It is thus natural and necessary
to extend the formalism of the QGT to cover mixed-state
scenarios. Since the QGT is a measure of the local geometry
of quantum states, it is important to analyze the properties of
the space(s) formed by mixed states.

A. Phase space of mixed states

A mixed quantum state, also known as a statistical en-
semble, is a collection of distinct pure states {|i〉}, each with

an associated, non-negative probability λi. In quantum me-
chanics, this ensemble {(λi, |i〉)} is usually represented by a
density matrix, denoted by ρ = ∑

i λi|i〉〈i|. Mathematically,
ρ is an N × N complex matrix satisfying three conditions:
(1) Hermiticity, ρ = ρ†, (2) non-negativity, ρ � 0 (all the
eigenvalues of ρ are non-negative), and (3) normalization,
Trρ = 1. The mixed state is not in one-to-one correspondence
with the density matrix, as stated by Schrödinger’s mixture
theorem [2]. Interesting examples can be found in Ref. [19]. In
general, there may be infinitely many different ensembles rep-
resented by the same density matrix [54], but they cannot be
distinguished by any physical measurement [55]. Therefore,
it is sufficient to use density matrices to represent physically
distinguishable mixed states.

We denote by P the set, or “space”, of all density matrices.
Unlike the pure-state situation, P is neither a linear space
nor a manifold but only a convex subset of End (H), the
set of endomorphisms (or operators) of H [2]. Since P is
not even a linear space, its dimension can not be defined in
the usual way. Here we refer to it as the number N2 − 1 of
real parameters necessary to completely specify an arbitrary
density matrix [2]. Some details can be found in Appendix C.
Mathematically, P can be thought of as a convex rigid body
in RN2−1. Thus, we will restrict our discussion to N > 1 since
if N = 1, R0 is a single point, so is P .

Although P is not a manifold, it is the union of a series
of manifolds: P = ⋃N

k=1 DN
k . Here DN

k is the space of nor-
malized N × N density matrices of fixed rank k (1 � k � N),
which is a manifold equipped with a Riemannian metric [56].
However, the metrics of DN

k cannot be glued together to con-
struct a metric of P due to the conical singularities in the
neighborhood of the boundary of DN

N if N > 2 [56]. This is
understandable since P is a positive cone in End (H) [2].
The density matrix of a pure state is a projective operator
with ρ2 = ρ and rank 1. Thus, the set of pure-state density
matrices is equivalent to DN

1 , i.e., DN
1 � {ρ ∈ P|ρ2 = ρ}. Ge-

ometrically, DN
1 is equivalent to CPN−1, the phase space of

pure states, and they both have dimension 2(N − 1). For pure
states, we introduced the manifold of all normalized states
S(H) = S2N−1 after the phase space CPN−1 is defined, thereby
obtaining the fibration S2N−1/U(1) = CPN−1 by collapsing all
the U(1) phase factors. Here we ask whether a similar fibration
also exists for mixed states with DN

N as the phase space. If so,
what plays the similar role of S2N−1?

Those questions can be resolved by following Uhlmann’s
approach via purification [43]. The Uhlmann bundle was
based on full-rank density matrices. Therefore, we will focus
exclusively on DN

N , the submanifold of all full-rank density
matrices, which include all mixed states in thermal equi-
librium. To investigate the local geometry of the Uhlmann
bundle, we recognize DN

N as the phase space of mixed states
of interest. Unlike the phase space of pure states that forms a
Kähler manifold with many geometric properties, the mixed-
state phase space DN

N lacks some characteristics but still
exhibits interesting local geometry, which will be shown
shortly. The dimension of DN

N is N2 − 1 while dim DN
k =

N2 − (N − k)2 − 1. A proof is outlined at the end of Ap-
pendix C.

An operator W ∈ End (H) is called a purification or ampli-
tude of ρ ∈ DN

N iff ρ = WW †, which implicitly requires that
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W also has full rank. Conversely, a full-rank matrix W has
a unique polar decomposition W = √

ρU , where U ∈ U(N ).
The uniqueness of the decomposition of purification is another
reason that we recognize DN

N as the phase space of mixes
states. When compared with the pure-state case, W and U are
the counterparts of the wavefunction and phase factor, respec-
tively. Moreover, Trρ = 1 leads to Tr(W †W ) = 1. Hence, we
introduce the Hilbert-Schmidt product of objects in End (H),

〈A, B〉HS = Tr(A†B). (23)

This leads us to further define the Hilbert-Schmidt norm:
||W ||HS = 〈W,W 〉HS. With these notations, we introduce
SN ⊂ End (H) as the unit sphere with respect to the Hilbert-
Schmidt norm, which is a manifold consisting of all full-rank
(rank N) density matrices with unit norm. SN plays a similar
role as its pure-state counterpart S(H) = S2N−1. In this way,
a fibration SN/U(N ) = DN

N for mixed states is established via
the projection

π : SN → DN
N , π (W ) = WW † = ρ. (24)

Furthermore, ρ is invariant under the gauge transformation
W → W ′ = WU , where U ∈ U(N ).

While W is a state matrix, its counterpart |ψ̃〉 is a state vec-
tor. The difference brings some inconvenience when making
a direct comparison. The purified state associated with W is
introduced as follows. If ρ is diagonalized as ρ = ∑

i λi|i〉〈i|,
W = ∑

i

√
λi|i〉〈i|U with the corresponding purified state de-

fined as |W 〉 = ∑
i

√
λi|i〉 ⊗ U T |i〉 by taking the transpose of

“〈i|U” of W . Thus, |W 〉 ∈ H ⊗ H∗. Finally, an inner prod-
uct between two purified states is introduced as 〈W1|W2〉 =
〈W1,W2〉HS = Tr(W †

1 W2) [57], which preserves the Hilbert-
Schmidt product.

B. The Hilbert-Schmidt metric

To generalize the concept of QGT to mixed quantum states,
it is necessary to give a suitable definition for the quantum
distance between two physically distinct mixed states. We
have introduced the Hilbert-Schmidt product on End (H) pre-
viously, which leads to the Hilbert-Schmidt distance

d2
HS(A, B) = 1

2 Tr[(A − B)(A† − B†)]. (25)

Since ρ = ρ†, the Hilbert-Schmidt distance between two den-
sity matrices ρ and ρ ′ is given by

d2
HS(ρ, ρ ′) = 1

2 Tr(ρ − ρ ′)2. (26)

Let ρ ′ → ρ + dρ, the infinitesimal Hilbert-Schmidt dis-
tance becomes d2

HS(ρ, ρ + dρ) = 1
2 Tr(dρ)2. We choose R =

(R1, R2, . . . , Rk )T as before, then dρ = ∂μρdRμ and the cor-
responding Hilbert-Schmidt metric is

gHS
μν = 1

2 Tr(∂μρ∂νρ). (27)

However, gHS
μν may not be an appropriate choice to capture the

local geometry of DN
N since it is equivalent to a flat metric on

End (H), which will be shown below.
As explained previously, N2 − 1 parameters are needed to

specify a full-rank density matrix ρ. Therefore, with the help
of the Bloch vector a(R) = (a1(R), a2(R), . . . , aN2−1(R))T ,

any density matrix can be decomposed as [2]

ρ = 1

N
1N +

N2−1∑
i=1

ai(R)Ti. (28)

Here 1N is the N × N identity matrix, and Tis are the genera-
tors of SU(N ) that satisfy

TiTj = 2

N
δi j +

∑
k

di jkTk + i
∑

k

fi jkTk . (29)

Here di jk is a totally symmetric tensor that can only be de-
fined if N > 2, and fi jk is a totally antisymmetric tensor.
Using these properties and TrTi = 0, it can be shown that
d2

HS(ρ, ρ ′) = d2
HS(

∑
i aiσi,

∑
i a′iσ ′

i ) = ∑
i(a

i − a′i )2. Hence,

d2
HS(ρ, ρ + dρ) = da · da =

∑
i j

δi jdaida j, (30)

which exhibits the Euclidean-like distance. Accordingly, the
components ai also serves as the Cartesian coordinates in
Bloch space, and the induced metric δi j from Eq. (30) is flat.
Thus, it does not reveal interesting properties of DN

N since it
cannot accurately capture the local geometry. In terms of R,
the Hilbert-Schmidt metric is

gHS
μν = ∂a

∂Rμ
· ∂a
∂Rν

= ∂ai

∂Rμ

∂a j

∂Rν
δi j, (31)

which is simply the coordinate-transformed expression of the
flat metric.

C. Purification and Bures metric

To construct a suitable Riemannian metric on DN
N , we need

to find a way to isometrically embed DN
N into End (H), or

more accurately, into SN since Trρ = 〈W,W 〉HS = 1. This
is achievable through the approaches by Uhlmann [43,58]
and Dittmann [56]. However, their original formulations were
quite mathematical. Here we combine their ideas with a more
pedagogical description to elucidate the geometrical meaning
and physical implications. The projection (24) provides an
embedding ρ = π (W ), which may induce a metric from the
Hilbert-Schmidt metric via its push-forward map π∗ [56]. The
metric g on DN

N is a type (0,2) tensor field [1] defined by
g(·, ·) : TρDN

N × TρDN
N → C, similar to Eq. (A1). Explicitly,

if Yρ is a tangent vector at the point ρ, i.e., Yρ ∈ TρDN
N , then

g(Yρ,Yρ ) := inf{〈V,V 〉HS|π∗(V ) = Yρ,V ∈ TSN }. (32)

Since the Hilbert-Schmidt metric is invariant under the gauge
transformation V → VU with U ∈ U(N ), it is sufficient to
take V tangent to SN at W (0) = √

ρ. We consider a curve
parameterized by t starting from ρ: ρ(t ) = ρ(0) + tYρ , where
t is small and ρ(0) = ρ. Based on the above assumptions, the
purification of the density matrix is W (t ) = W (0) + tV with
W (0) = √

ρ. Using ρ(t ) = W (t )W †(t ), we obtain
√

ρV † +
V

√
ρ = Yρ . Moreover, since V = limt→0

W (t )−W (0)
t , Eq. (32)

becomes

g(Yρ,Yρ ) := inf

{
lim
t→0

1

t2
〈W (t ) − W (0),W (t )

− W (0)〉HS|√ρV † + V
√

ρ = Yρ

}
. (33)

035144-5



HOU, ZHOU, WANG, GUO, AND CHIEN PHYSICAL REVIEW B 110, 035144 (2024)

This is equivalent to the infimum of the Hilbert-Schmidt
distance between W (t ) and W (0) = √

ρ, which is the Bures
distance between ρ(t ) and ρ(0) = ρ [43]. Explicitly,

d2
B(ρ(t ), ρ) := inf Tr(W (t ) − W (0))(W (t ) − W (0))†

= inf[2 − Tr(W †(0)W (t ) + W †(t )W (0))], (34)

where the infimum is obtained with respect to all possible
W (t ) such that ρ(t ) = W (t )W †(t ). From this definition, the
Bures metric is indeed the desired metric when DN

N is iso-
metrically embedded. It should be noted that the infimum is
taken among all possible purifications, thus it is independent
of the gauge choice of W . In other words, it is by definition
invariant under the gauge transformation W → W ′ = WU ,
and the same argument applies to the Bures metric.

The right-hand side of Eq. (34) takes the infimum

d2
B(ρ(t ), ρ) = d2

B(ρ, ρ(t )) = 2 − 2Tr
√√

ρρ(t )
√

ρ (35)

iff (see Appendix D)

W †(t )W (0) = W †(0)W (t ) > 0, (36)

where Tr
√√

ρρ(t )
√

ρ is called the Uhlmann fidelity [53,57],
and Eq. (36) is called the Uhlmann parallel condition between
W (t ) and W (0) [43]. This condition implies that the tangent
vector V is also parallel to W (0). Furthermore, how V leads to
the infimum of (33) is shown in Appendix D. Analogous to the
situation of pure states, V // W (0) = √

ρ means V belongs to
the horizontal subspace of TW (0)SN . We will revisit this topic
later. The differential form of Eq. (36) is

Ẇ †(t )W (t )|t→0 = W †(t )Ẇ (t )|t→0. (37)

Taking trace of both sides, we get a necessary condition in
terms of purified states

Im〈W (t )| d

dt
|W (t )〉 = 0, (38)

which can be viewed as a generalization of Eq. (15) for pure
states. However, this is only a weaker and necessary condition
of Eq. (37).

The Bures distance in terms of the generic local coordi-
nates R = (R1, R2, . . . , Rk )T is

d2
B(ρ, ρ + dρ) = gB

μν (ρ(R))dRμdRν, (39)

where gB
μν is the Bures metric. Using Eq. (35), it can be found

that [59]

d2
B(ρ, ρ + dρ) =1

2

∑
i j

|〈i|dρ| j〉|2
λi + λ j

=1

2

∑
i j

〈i|∂μρ| j〉〈 j|∂νρ|i〉
λi + λ j

dRμdRν . (40)

Some details can be found in Appendix E. Thus, the Bures
metric is

gB
μν = 1

2

∑
i j

〈i|∂μρ| j〉〈 j|∂νρ|i〉
λi + λ j

. (41)

Since the density matrix is invariant under the gauge transfor-
mation W → W ′ = WU , the Bures metric remains unchanged
as well. Therefore, it is naturally a good candidate as the QGT

for mixed states. Since Eq. (40) represents the local distance
on DN

N , we will interchangeably use d2
B(DN

N ) to denote it
hereafter.

D. The Uhlmann metric

So far, our discussions have revealed some similarities
between the Fubini-Study metric for pure states and the Bu-
res metric for mixed states. The definition (34) of the Bures
distance can be written as

d2
B(ρ(t ), ρ) = inf ||W (t ) − W (0)||HS. (42)

In terms of purified states, it is also expressed as

d2
B(ρ(t ), ρ) = inf ||W (t )〉 − |W (0)〉|2. (43)

As a comparison, the results in Sec. II C show that

ds2
FS(|ψ (t )〉, |ψ (0)〉) = inf ||ψ̃ (t )〉 − |ψ̃ (0)〉|2. (44)

The infima of the above expressions are attained when the
parallel-transport conditions for |ψ̃ (t )〉 and W (t ) are fulfilled,
respectively. However, the infimum of Eq. (43) is obtained
with respect to all possible U(N) phase factors U (t ) in W (t ) =√

ρ(t )U (t ) whereas that of Eq. (44) is obtained with respect to
all possible U(1) phase factors eiθ (t ) in |ψ̃ (t )〉 = eiθ (t )|ψ (t )〉.
Thus, despite the superficial similarity, they are not equivalent.
Moreover, Eqs. (43) and (44) further lead to the Fubini-Study
and Bures metrics, which are respectively invariant under the
U(1) and U(N) gauge transformations. The gauge invariance
makes them suitable choices for the QGTs in their respective
situations.

For pure states, however, the Fubini-Study metric can be
derived either through a gauge-invariant modification to the
raw metric 〈∂iψ̃ |∂iψ̃〉 or by directly constructing a gauge-
invariant metric on CPN−1. Subsequently, it was found that
the requirement of gauge-invariance saturates the inequality
ds2(CPN−1) � ds2(S2N−1). In addition, the local geometry
associated with the fibration S2N−1/U(1) = CPN−1 is mani-
fested by the relation (20). For mixed states, the Bures metric
is obtained by taking the infimum of the Hilbert-Schmidt
distance between two purifications, which is guaranteed to be
gauge-invariant by definition. Despite the progress made so
far, there still remain some intriguing puzzles that need to be
addressed. For example, is there a similar relation associated
with the fibration SN/U(N ) = DN

N just like the case of pure
states? Additionally, the parallel-transport condition (36) min-
imizes the right-hand-side of Eq. (42). Is it equivalent to the
criterion for the metric to be gauge-invariant? Can there be
other gauge-invariant metrics besides the Bures metric?

To answer these questions, we follow the same procedure
as that of the pure-state case to modify the “raw metric” on SN .
Let W (t ) or |W (t )〉 depend on t via the parameter curve R(t ).
From Eq. (42), the local distance on SN can be equivalently
written as

ds2(SN ) = ||W (R + dR)〉 − |W (R)〉|2

= 〈∂μW |∂νW 〉dRμdRν = Tr(∂μW †∂νW )dRμdRν,

(45)

where 〈∂μW |∂νW 〉 is recognized as the desired raw met-
ric. It is not invariant under the U(N) gauge trans-
formation W ′ = WU . By symmetrizing the indices μ
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and ν, the local distance takes the form ds2(SN ) =
γμνdRμdRν , where γμν = 1

2 (〈∂μW |∂νW 〉 + 〈∂νW |∂μW 〉) is
the real part of 〈∂μW |∂νW 〉. Similarly, the imaginary part
σμν = 1

2i (〈∂μW |∂νW 〉 − 〈∂νW |∂μW 〉) gives no contribution to
ds2(SN ). It can be verified that both γμν and σμν are not
gauge invariant. Based on the previous discussions, it can be
found that γμν reduces to the Bures metric if W satisfies the
condition (37). Here we ask if a more generic gauge-invariant
metric can be constructed by imposing a suitable modification
to γμν . Moreover, the imaginary part in the case of pure states
is proportional to the gauge-invariant Berry curvature and
needs no modification. In the case of mixed states, does a
similar assertion hold for σμν if it is appropriately modified?

We utilize Uhlmann’s approach on geometric phase of
mixed states [43,58] to address the above questions. Here
we briefly outline Uhlmann’s formalism as more recent
overviews can be found in Refs. [44–46,49]. The theory of
the Uhlmann phase is built on a U(N) principle bundle, in
which SN is the total space, DN

N is the base manifold, and
the embedding π defined by Eq. (24) projects SN to DN

N .
As a generalization to the Berry connection, the Uhlmann
connection AU is defined on DN

N and is given by

AU = −
∑

i j

|i〉 〈i|[d
√

ρ,
√

ρ]| j〉
λi + λ j

〈 j|, (46)

where “d” is the derivative on DN
N . It can be derived from the

relation [44,45]

ρπ∗AU + π∗AUρ = −[dSN

√
ρ,

√
ρ]. (47)

Here dSN is the derivative on the total space SN . Similarly, the
Ehresmann connection ω is defined on SN , which is related to
AU via the pull-back π∗. Explicitly,

ω = U †π∗AUU + U †dSN U . (48)

Here U is the phase factor of W = √
ρU . If a mixed state is

transported along a curve W (t ) (0 � t � τ ) with its tangent
vector given by X̃ , the parallel-transport condition (37) can be
written as ω(X̃ ) = 0 [44,45]. Using Eq. (48), this is equivalent
to

AU(X ) + U̇U † = 0, (49)

or AUμ + ∂μUU † = 0 in the component form, where
X = π∗X̃ = d

dt .
We refer to any cyclic process during which a mixed state

follow the Uhlmann parallel-transport condition as a Uhlmann
process described by either Eqs. (37) or (49). By solving
Eq. (49), the initial and final phase factors of a Uhlmann
process are off by an Uhlmann holonomy

U (τ ) = Pe− ∮
AUU (0), (50)

where P is the path ordering operator. Similar to the Berry
phase factor, the Uhlmann holonomy is a measure of the loss
of parallelity during a cyclic parallel transport.

It can be verified that under the gauge transformation W ′ =
WU , γμν , σμν , and ω change accordingly. A candidate of a
gauge-invariant modification to γμν is

gU
μν := γμν + 1

2 Tr(W †W ωμων + ωνωμW †W ), (51)

which is referred to as the Uhlmann metric. Moreover, a
gauge-invariant modification of the imaginary part leads to

σ U
μν = σμν + i

2
Tr[∂μ(W †W ων ) − ∂ν (W †W ωμ)]. (52)

One can verify that both gU
μν and σ U

μν are invariant under
the gauge transformation W ′ = WU . The proof is outlined in
Appendix F. Their relations to the pure-state counterparts will
be studied later.

E. Uhlmann distance

Since gU
μν is manifestly gauge invariant, it is a candidate

of a QGT of mixed states. However, what is the differ-
ence between the Uhlmann metric and the Bures metric? To
facilitate a fair comparison, we restrict the components of
gU

μν on DN
N . In other words, the previously chosen parame-

ters R = (R1, R2, . . . , Rk )T are the local coordinates of DN
N .

Then, ωμ = U †AUμU + U †∂μU . Using W †W = U †ρU , the
Uhlmann metric is given by

gU
μν =γμν + 1

2 Tr[ρ(AUμ + ∂μUU †)(AUν + ∂νUU †)]

+ 1
2 Tr[ρ(AUν + ∂νUU †)(AUμ + ∂μUU †)]. (53)

With this expression, we can define the Uhlmann distance as

ds2
U = gU

μνdRμdRν, (54)

If we plug Eq. (51) into Eq. (54), an interesting result
appears,

ds2
U = 〈dW |dW 〉 + Tr[ρ(AU + dUU †)2]

⇒ ds2(SN ) = ds2
U + Tr[ρ(iAU + idUU †)2]. (55)

This is a Pythagorean-like equation for the distances of mixed
states. In contrast to Eq. (20), the mixed-state equation has
not been discussed in the literature. Here we emphasize that
both AU and dUU † are anti-Hermitian, hence a factor i from
the rearrangement ensures that (iAU + idUU †)2 is positive-
definite. Since the product of two positively-definite matrices
is also a positively-definite matrix, the second term on the
right-hand side of the second line of Eq. (55) is positive. To
compare with the case of pure states, we rewrite Eq. (20) by
using g = eiθ or dθ = −idgg† to obtain

ds2(S2N−1) = ds2(CPN−1) + (iA + idgg†)2. (56)

Interestingly, ds2
U plays a similar role as ds2(CPN−1), whose

counterpart in mixed states is the Bures distance. Moreover,
Eq. (55) implies that when the parallel-transport condition
(AUμ + ∂μUU † = 0) is satisfied, ds2(SN ) reduces to ds2

U.
However, the discussions in the previous subsection suggest
that ds2(SN ) reduces to the Bures distance under the same
condition. Therefore, a reasonable guess is that the Uhlmann
distance is equal to the Bures distance. Here we prove an
equivalent statement: The Uhlmann metric on DN

N reproduces
the Bures metric, so the metric is unique in this sense. We
also remark that dθ is the differential angle or differential
fiber idgg† in Eq. (56) that the pure state obtains through
parallel transport. Similarly, AU is the Uhlmann connection,
and idUU † is the change of the generator of the U(N) phase
factor. In pure states, dθ is the change of the generator of
the U(1) phase factor. No loop integral of a cyclic process
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is involved, hence no geometric phase emerges, and only the
local changes appear in Eqs. (20) and (56).

As summarized in Appendix E, the Bures metric can be
written as

gB
μν = 1

2

∑
i j

(
√

λi + √
λ j )2

λi + λ j
〈i|∂μ

√
ρ| j〉〈 j|∂ν

√
ρ|i〉. (57)

Similarly, by expanding the commutator, the Uhlmann con-
nection is expressed as

AUμ =
∑

i j

√
λi − √

λ j

λi + λ j
〈i|∂μ

√
ρ| j〉|i〉〈 j|. (58)

We show in Appendix G that the Uhlmann distance is indeed
equal to the Bures distance. Eq. (55) thus takes the form

ds2(SN ) = ds2
B(DN

N ) + Tr[ρ(iAU + idUU †)2], (59)

which is a manifestation of the fibration SN/U(N ) = DN
N .

This expression for mixed states serves as the counterpart
of the relation (56) for pure states. A subtle difference is
that g is a U(1) phase factor, whereas U is a U(N ) phase
factor. The local distance on the total space SN also has
two contributions, respectively from the base manifold DN

N
and the fiber space U(N ). Similarly, the parallel transport of
mixed states minimizes ds2(SN ) since there is no “vertical”
contribution from the fiber. The Bures metric is therefore the
unique real part of the gauge-invariant QGT for mixed states
within this framework. Moreover, Eq. (59) also indicates a
crucial but previously unnoticed property of the geometry
of mixed quantum states. We caution that Eq. (59) is not a
trivial generalization because the Uhlmann connection does
not become the Berry connection as T → 0. The settlement
of the uniqueness of the metric from the Uhlmann bundle
not only provides a unified description of its local geometry
but also dissuades people from futile trials of constructing
alternative gauge-invariant metrics on the bundle.

F. Sjöqvist distance

Recently, another type of quantum distance between mixed
states was introduced by E. Sjöqvist in Ref. [47], which will
be referred to as the Sjöqvist distance for convenience. Its
relation to the Bures distance can also be deduced via pu-
rification. Appendix H briefly reviews the construction of the
Sjöqvist distance, which is given by

d2
S (ρ(t ), ρ) = inf

θn(t )
||W (t )〉 − |W (0)〉|2. (60)

The only difference between the Sjöqvist distance and
the Bures distance in Eq. (43) is that the infima are ob-
tained under different conditions. According to Eq. (60), the
Sjöqvist distance is invariant under the gauge transforma-
tion diag(eiχ0 , eiχ1 , . . . , eiχN−1 ) ∈ U(1) × · · · × U(1)︸ ︷︷ ︸

N

, which is

a subgroup of the U(N ) transformation. Therefore, the mini-
mizing condition of Eq. (60) is weaker than that of Eq. (43).
This implies

d2
B(ρ(t ), ρ) � d2

S (ρ(t ), ρ), (61)

which agrees with the results of Ref. [60].

Therefore, the Sjöqvist and Bures distances can be cast into
a unified formalism by minimizing the raw distance between
nearby purifications with respect to different conditions, mak-
ing them respectively invariant under the U(1) × · · · × U(1)
and U(N ) gauge transformations. We mainly focus on the
Bures distance, given its broad presence in the literature
[2,10,48]. A comparison of the Bures and Sjöqvist metrics of
two-level systems is also presented in a recent paper [61].

G. Uhlmann form

We now turn to the gauge-invariant imaginary part σ U
μν . A

compact expression is obtained by introducing the two-form

σ U = 1

2
σ U

μνdRμ ∧ dRν

= 1

2i
Tr[∂μW †∂νW − ∂μ(W †W ων )]dRμ ∧ dRν . (62)

We refer to it as the Uhlmann form. To our knowledge, it
has not been derived in the literature. Unlike the pure-state
case, the Uhlmann form is not proportional to the Uhlmann
curvature FU = dAU + AU ∧ AU with AU given by Eq. (46)
since the Uhlmann curvature is matrix-valued. The difference
is because DN

N does not possess the same features as the
Kähler manifold CPN−1. Interestingly, when restricted on DN

N ,
the Uhlmann form is also independent of the fiber U ,

σ U = i

2
Tr[∂μ(ρAUν )]dRμ ∧ dRν = i

2
Tr[d (ρAU)]. (63)

The proof is summarized in Appendix G. We emphasize that
the proof and result can be generalized to situations where
the restriction of σ U on DN

N can be relaxed. This is done by
replacing AU by π∗AU, a one-form on the total space SN , in
the expression above to get

σ U = i

2
Tr[d (ρπ∗AU)]. (64)

The exterior derivative can be pulled out of the trace if the
dimension of the system is finite (N < ∞). This leads to
vanishing σ U according to Eq. (47),

σ U = i

4
dTr(ρπ∗AU + π∗AUρ) = i

4
dTr[

√
ρ, dSN

√
ρ] = 0.

(65)

What is the physical implication of the vanishing Uhlmann
form? In terms of differential forms, Eq. (62) becomes

σ U = 1

2i
dTr(W †dW − W †W ω) = 0. (66)

When contracted with a horizontal vector X̃ = d
dt twice, we

have

d

dt
Tr(W †Ẇ ) = 0 (67)

by using ω(X̃ ) = 0. A horizontal vector generates a parallel-
transport condition, which requires W †Ẇ = Ẇ †W . By using
ρ = WW † and the cyclic property of trace, Eq. (67) is equiv-
alent to

d

dt
Tr(ρ̇) = 0. (68)
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TABLE I. A comparison between the geometries of pure and mixed states.

Pure state Mixed state

Total space S2N−1 SN

Phase space CPN−1 DN
N

Fibration S2N−1/U(1) = CPN−1 SN/U(N ) = DN
N

Connection Berry connection (U (1) bundle) Uhlmann connection (U (N ) bundle)
Raw distance ds2(S2N−1) ds2(SN )
Gauge-invariant distance ds2(CPN−1) ds2

B(DN
N )

Relations between distances ds2(S2N−1) = ds2(CPN−1) + (iA + idgg†)2 ds2(SN ) = ds2
B(DN

N ) + Tr[ρ(iAU + idUU †)2]
Raw metric 〈∂iψ̃ |∂ jψ̃〉 〈∂μW |∂νW 〉
Real part of QGT Re〈∂iψ̃ |∂ jψ̃〉 + AiAj (Fubini-Study) gB

μν (Bures)
Imaginary part of QGT Berry curvature Uhlmann form (=0)

For Uhlmann’s parallel transport, this can be recognized as
a constraint imposed by the vanishing σ U because Eq. (68)
is obtained by combing Eq. (67) and the parallel-transport
condition W †Ẇ = Ẇ †W . The condition is satisfied by any
trace-preserving processes since Trρ = 1. Therefore, the van-
ishing Uhlmann form imposes a restriction to rule out parallel
transport of open systems where Eq. (68) is violated. When
contracted with a vertical vector X̃V = d

dt , Eq. (66) leads to

d

dt
Tr(W †Ẇ − W †Wu) = 0, (69)

where u = ω(X̃V ) is a u(N ) generator in the fiber space
[45]. Equation (69) is satisfied by a generic U(N) transfor-
mation on the fiber with Ẇ = Wu, whose solution is W (t ) =
W (0)etu. Thus, the vanishing of the gauge-invariant imaginary
part associated with the Uhlmann form naturally reflects the
physical properties of the Uhlmann parallel transport. Unless
exotic processes violating Eqs. (68) or (69) are involved, the
Uhlmann form remains zero.

We remark that while the pure and mixed states exhibit
similar fibrations and geometric structures of local distances,
the imaginary part of the QGT of mixed states vanishes identi-
cally instead of being proportional to the curvature as the case
of pure states. This is because DN

N is not necessarily a Kähler
manifold. Since ρ is by definition Hermitian, DN

N always
admits a set of real coordinates not necessarily compatible
with an almost complex structure. This can be more clearly
understood by noticing that the real dimension of DN

N can be
an odd number while the dimension of the Kähler manifold
CPN−1 is 2(N − 1), which is always even.

Moreover, the vanishing of the Uhlmann form also high-
lights the different topologies of pure and mixed states. Here
we refer to the U(1) principal bundle of pure states that admits
a Berry connection as the Berry bundle, which can be topolog-
ically nontrivial. Quantized topological invariants, such as the
Chern number, can be found by calculating the characteristic
classes of the bundle. In contrast, the Uhlmann bundle is
topologically trivial [44,46,49], and its characteristic classes
must vanish. Since the Uhlmann form is gauge invariant, its
integral over DN

N may serve as a topological invariant of the
Uhlmann bundle, similar to the Chern number of the Berry
bundle. If the integral is nonzero, it would contradict the
topological triviality of the Uhlmann bundle. We also remark
that the Uhlmann bundle cannot reduce to the Berry bundle as
T → 0 because the former requires full-rank density matrices.

Since topological properties are defined with respect to the
corresponding geometry, the difference between the T → 0
and T = 0 cases comes from the change of the underly-
ing bundles. However, there still exists some correspondence
between quantities derived from pure and mixed states as
T → 0. which will be discussed in the next section. Nev-
ertheless, our findings show that DN

N already possesses rich
geometric properties for mixed states. We summarize our
main results by comparing the key points between pure and
mixed states in Table I.

IV. CORRESPONDENCE BETWEEN PURE
AND MIXED STATES

Since the geometric structures of pure and mixed quantum
states are remarkably analogous, one may wonder whether
the results of mixed states can reduce to those of pure states
as T → 0 if we consider systems in thermal equilibrium.
The fact that DN

N of systems in thermal equilibrium cannot
become CPN−1 of systems in the ground states for N > 1
because of DN

1 = CPN−1 highlights the challenges connecting
the results for pure and mixed states. In contrast, thermody-
namic quantities at low temperatures are expected to reduce to
their counterparts at zero temperature as T → 0. Therefore, it
is an important task to sort out which geometric quantities of
quantum systems approaches their pure-state counterparts as
T → 0.

The fibrations S2N−1/U(1) = CPN−1 and SN/U(N ) = DN
N

lay the foundation for the fiber-bundle descriptions of the
Berry and Uhlmann phases, respectively. As mentioned pre-
viously, the Berry bundle can be topologically nontrivial,
whereas the Uhlmann bundle is always trivial. Consequently,
the Uhlmann connection and Uhlmann curvature do not
reduce to the Berry connection and Berry curvature as T → 0
because they belong to fiber bundles with distinct topolo-
gies. Nevertheless, it has been conditionally proven that the
Uhlmann phase approaches the Berry phase as T → 0, which
is also known as the Uhlmann-Berry correspondence [45].
One may ask if there exists any other correspondence between
the geometric results of pure and mixed states? Here we show
that for systems of dimension N > 1, the Bures metric of
mixed states indeed reduces to the Fubini-Study metric of
pure states as T → 0, thereby providing a correspondence. To
our knowledge, there has been no proof of the correspondence
between the two metrics. Ref. [62] provides an example based
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on qubits but requires a constant factor to be dropped. Here
we provide a general proof showing that the correspondence
is exact.

Using the expression (57) for the Bures metric, the Bures
distance is written as

ds2
B = 1

2

N−1∑
i j=0

(
√

λi + √
λ j )2

λi + λ j
|〈i|d√

ρ| j〉|2. (70)

Suppose the Hamiltonian of a finite-dimensional quantum
system is Ĥ , and the corresponding ground state is |E0〉 ≡
|ψ̃〉. At temperature T with β = 1/T , the density matrix is

given by ρ = e−βĤ

Z , where Z is the partition function. In this
situation, ρ and Ĥ share the same set of eigenstates |i〉 = |Ei〉,
and λi = e−βEi

Z . From Eq. (70), the Bures distance becomes

ds2
B =

∑
i

〈i|d√
ρ|i〉2 + 1

2

∑
i �= j

(
√

λi + √
λ j )2

λi + λ j
|〈i|d√

ρ| j〉|2.

(71)

For simplicity, we focus on the situation with no energy de-
generacy. Let E0 < E1 < · · · < EN−1, then

lim
T →0

λi

λ j
= lim

β→∞
e−β(Ei−Ej ) = 0, if i > j. (72)

For i �= j, we set λmin = min{λi, λ j} and λmax = max{λi, λ j}.
This implies

lim
T →0

(√
λi + √

λ j
)2

λi + λ j
= lim

T →0

(
1 +

√
λmin
λmax

)2

1 + λmin
λmax

= 1. (73)

Thus, Eq. (71) reduces to

lim
T →0

ds2
B = 1

2

∑
i

〈i|d√
ρ|i〉2 + 1

2
Tr(d

√
ρd

√
ρ ). (74)

The normalized eigenstate |i〉 satisfies 〈i|di〉 + 〈di|i〉 = 0, re-
sulting in 〈i|d√

ρ|i〉 = d
√

λi. A straightforward evaluation
shows (see Appendix I for details)

lim
T →0

ds2
B =

∑
i

(d
√

λi )
2 +

∑
i

λi〈di|di〉

+
∑

i j

√
λiλ j〈i|d j〉〈 j|di〉. (75)

As T → 0, λ0 → 1 and λi>1 → 0, both of which are in-
dependent of the evolution parameters. As a consequence,
d
√

λi = 0. This leads to

lim
T →0

ds2
B = λ0(〈dψ̃ |dψ̃〉 + 〈ψ̃ |dψ̃〉〈ψ̃ |dψ̃〉)

+ λ0

∑
i

λi

λ0
〈di|di〉 − λ0

∑
i>0 or j>0

√
λiλ j

λ2
0

|〈i|d j〉|2.

(76)

Using Eq. (72) and limT →0 λ0 → 1 because λ0 + · · · +
λN−1 = 1, the correspondence is established,

lim
T →0

ds2
B = 〈dψ̃ |dψ̃〉 + 〈ψ̃ |dψ̃〉2 = ds2

FS, (77)

according to Eq. (4). Therefore, the Bures metric reduces
to the Fubini-Study metric in the zero temperature limit for
finite-dimensional quantum systems in thermal equilibrium.

The relation between the Bures and Fubini-Study metrics
as temperature approaches zero builds a correspondence be-
tween the real parts of the QGTs of pure and mixed states. On
the other hand, there is no such correspondence between the
associated imaginary parts of the QGTs of the pure and mixed
states. As shown in the previous discussions, the imaginary
part of the mixed-state QGT is the Uhlmann form, which is
identically zero, while the imaginary part of the pure-state
QGT is proportional to the Berry curvature.

For the simplest situation with N = 1, the density matrix
is of rank 1 and actually describes a pure state, ρ = |ψ〉〈ψ |.
Let ρ(t ) = |ψ (t )〉〈ψ (t )|. Using ρ = √

ρ, the Bures distance
between ρ and ρ(t ) is

d2
B(ρ, ρ(t )) = 2 − 2|〈ψ |ψ (t )〉| (78)

according to Eq. (35). Indeed, this reduces to the Fubini-Study
distance (22) for pure states. However, this reduction intrinsi-
cally differs from the more general correspondence because
the Bures metric is trivial in this case: Since λi = λ j = 1 and
|i〉 = | j〉 = |ψ〉,

〈i|∂μρ| j〉 = 〈ψ |(|∂μψ〉〈ψ | + |ψ〉〈∂μψ |)|ψ〉 = 0 (79)

by using 〈ψ |ψ〉 = 1. Thus, gB
μν = 0 according to Eq. (41).

This is because dim D1
1 = 12 − 1 = 0, representing a single

point as we have pointed out before.

V. EXAMPLES AND IMPLICATIONS

We will present concrete examples showing the correspon-
dence between the Bures and Fubini-Study metrics.

A. Generic result for two-level systems

For a two-level system with N = 2, the expression (40) of
the Bures distance can be further simplified. As the generators
Ti in Eq. (28) reduce to the Pauli matrices, the density matrix
accordingly takes the form ρ = 1

2 + a(R) · σ. In this case, the
Bures distance reduces to (see Appendix E for details)

d2
B(ρ, ρ + dρ) = 1

2
Tr(dρ)2 + (d

√
det ρ )2

= da · da + (a · da)2

b2
, (80)

where b = √
det ρ =

√
1
4 − a2 . Thus, the corresponding Bu-

res metric is

gB
μν = ∂a

∂Rμ
· ∂a
∂Rν

+ 1
1
4 − a2

a · ∂a
∂Rμ

a · ∂a
∂Rν

. (81)

To compare with the pure-state results, we set a = x
2 for

convenience and let r = |x| and n = x
r . Using n · dn = 0, the

Bures distance takes the form [63]

d2
B(ρ, ρ + dρ) = 1

4

(
dr2

1 − r2
+ r2dn · dn

)
. (82)
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As a comparison, Eq. (30) indicates that the Hilbert-Schmidt
distance is

d2
HS(ρ, ρ + dρ) = 1

4 (dr2 + r2dn · dn), (83)

which has the familiar Euclidean-distance form.
When r → 1, ρ reduces to the pure-state density matrix.

However, it appears that the Bures distance diverges as r → 1.
This seemingly singular behavior is actually spurious because
dr also approaches 0 as r → 1. Since 0 � r < 1, a change of
variable r = cos u leads Eq. (82) to

d2
B(ρ, ρ + dρ) = 1

4 (du2 + cos2 udn · dn). (84)

It reduces to d2
B(ρ, ρ + dρ) = 1

4 dn · dn as r → 1. Introduc-
ing n = (sin θ cos φ, sin θ sin φ, cos θ )T , the Bures distance
further reduces to

d2
B(ρ, ρ + dρ) = 1

4 (dθ2 + sin θ2dφ2) (85)

as T → 0, which agrees with the Fubini-Study distance for
pure states shown in Eq. (B13).

B. Spin- 1
2 system

We now study a two-level system that is physically
equivalent to many experimentally realized systems at zero
temperature [26–28]. We consider an ensemble ensemble of
spin- 1

2 paramagnets influenced by an external magnetic field
B with fixed magnitude B = |B| and described by the Hamil-
tonian

Ĥ = ω0B̂ · σ

2
. (86)

Here ω0 is the Larmor frequency, and B̂ = B/B. The orienta-
tion of B can be controlled externally via the angles θ and
φ: B = B(sin θ cos φ, sin θ sin φ, cos θ )T . At temperature T
with β = 1

T , the thermal equilibrium density matrix is ρ(T ) =
e−βĤ

Tre−βĤ = 1
2 [1 − tanh( βω0

2 )B̂ · σ]. Thus, the Bloch vector is a =
− 1

2 tanh( βω0

2 )B̂, whose magnitude depends on temperature.
Using Eq. (81), the Bures metrics are given by

gB
θθ = 1

4
tanh2

(
−βω0

2

)
,

gB
φφ = 1

4
tanh2

(
−βω0

2

)
sin2 θ,

gB
θφ = 0, (87)

which are proportional to the ordinary metric of S2 with
a temperature-dependent scaling factor 1

4 tanh2(− βω0

2 ). This
becomes clearer by examining the Bures distance via Eq. (82)
at fixed temperature,

d2
B(ρ, ρ + dρ) = 1

4
tanh2

(
−βω0

2

)
(dθ2 + sin2 θdφ2).

Therefore, we only concentrate on the variation of the Bu-
res metric with temperature since the metric of S2 is trivial.
Figure 1 presents the dependence of gB

θθ and gB
φφ on T with

θ = π
4 . As T → 0, they reduce to the Fubini-Study metric

(B13) since gB
θθ (T → 0) = 1

4 , gB
φφ (T → 0) = 1

4 sin2 θ . This
confirms our previous assertion about the correspondence

FIG. 1. Bures metric of the spin- 1
2 paramagnet described by

Eq. (86) as a function of temperature: (Top) gB
θθ , (bottom) gB

φφ at
θ = π

4 . The dots at T = 0 show the corresponding values from the
Fubini-Study metric.

between the Bures and Fubini-Study metrics since the eigen-
values of ρ are constants due to the fact that B = |B| is
fixed. As T → ∞, gB

θθ = gB
φφ = 0. This is reasonable since

the density matrix is ρ = 1
2 in the infinite-temperature limit.

The Bloch vector is a = 0, corresponding to the origin of the
Bloch ball, whose neighborhood also collapses to the origin
as T → +∞ and loses its local structure. We emphasize that
the results are relevant to experimentally realizable systems
[26–28] and may guide future measurements of the QGT at
finite temperatures.

C. 2D two-band model

In the first example, the Bures metric has zero off-diagonal
terms and the eigenvalues of the density matrix are inde-
pendent of the evolution parameters. Here we show another
example where the QGT has different behavior. We consider
a two-band model inspired by Refs. [9,64–68]. In momentum
space, the Hamiltonian is given by

Ĥk = sin kxσx + sin kyσy + μσz, (88)

where μ > 0 and k = (kx, ky)T is the 2D crystal momentum.
We assume the parameters are independent of temperature.
The density matrix in thermal equilibrium is given by

ρk(T ) = e−βĤk

Tr(e−βĤk )
= 1

2

[
1 − tanh

(
β�k

2

)
n̂k · σ

]
,

where n̂k = 2
�k

(sin kx, sin ky, μ) with �k =
2
√

sin2 ky + sin2 kx + μ2 being the gap in the spectrum
of Ĥk. In this case, the eigenvalues of the density matrix
depend on k and give nontrivial contributions to the Bures
metric. The Bloch vector is ak = − 1

2 tanh( β�k
2 )n̂k such that
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ρk = 1
2 (1 + ak · σ ). The Bures metric is then given by

gB
i j = ∂ak

∂ki
· ∂ak

∂k j
+ 1

1
4 − |ak|2

ak · ∂ak

∂ki
ak · ∂ak

∂k j
, (89)

for i, j = kx, ky. A straightforward evaluation shows

gB
xx =

[
β2

4 cosh2
(

β�k
2

) − tanh2
(

β�k
2

)
�2

k

]

× 4 sin2 kx cos2 kx

�2
k

+ tanh2
(

β�k
2

)
�2

k

cos2 kx,

gB
yy =

[
β2

4 cosh2
(

β�k
2

) − tanh2
(

β�k
2

)
�2

k

]

× 4 sin2 ky cos2 ky

�2
k

+ tanh2
(

β�k
2

)
�2

k

cos2 ky,

gB
xy =

[
β2

4 cosh2
(

β�k
2

) − tanh2
(

β�k
2

)
�2

k

]

× 4 sin kx cos kx sin ky cos ky

�2
k

. (90)

This example differs qualitatively from the spin- 1
2 param-

agnet because the eigenvalues of ρ now depends on the Bloch
momentum. The QGT has nonzero off-diagonal term, and the
Bures distance is not simply that of S2 up to a scaling factor.
Moreover, gB

xx and gB
yy are swapped under (kx, ky) → (ky, kx )

and (kx, ky) → (−ky, kx ) while gB
xy is even under the first in-

terchange but odd under the second [69]. Thus, the reduction
of the Bures metric to the Fubini-Study metric when T → 0
is not as trivial as the prior example, despite the guarantee
from the aforementioned proof. A straightforward calculation
of the Fubini-Study metric of this case yields

gFS
xx (kx, ky) = cos2 kx(sin2 ky + μ2)

(sin2 kx + sin2 ky + μ2)2
,

gFS
yy (kx, ky) = cos2 ky(sin2 kx + μ2)

(sin2 kx + sin2 ky + μ2)2
,

gFS
xy (kx, ky) = −1

4

sin 2kx sin 2ky

(sin2 kx + sin2 ky + μ2)2
. (91)

By taking the proper limit, it can be verified that gB
i j indeed

reduces to gFS
i j as T → 0.

We plot the component gB
xx of the Bures metric as a func-

tion of T in Fig. 2 by setting kx = ky = 1.2π , where gB
yy is

not shown since its behavior is the same as gB
xx up to the

kx ↔ ky symmetry. The off-diagonal term gB
xy is negative in

this case. However, this is possible for a curved manifold and
does not affect the positivity of the Bures distance ds2

B(DN
N ).

Unlike the spin- 1
2 system, gB

xx(kx = 1.2π, ky = 1.2π ) reaches
its maximum at finite temperature, showing the complicated
dependence on temperature of the Bures metric for this model.
If T → +∞, all components of the Bures metric decay to zero
as expected due to the triviality of the density matrix at infinite
temperature.

FIG. 2. Bures metric of the toy model described by Eq. (88) as
a function of temperature, (top) gB

xx , (bottom) gB
xy, where kx = ky =

1.2π and μ = 1.0. The dots at T = 0 show the corresponding values
from the Fubini-Study metric.

FIG. 3. The Bures metric of the model (88) in the first Brillouin
zone at T = 0.1µ. The left (right) column shows the contour (3D)
plots.
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Figure 3 shows the behavior of the Bures metrics of the
model in the first Brillouin zone at T = 0.1μ. The left column
shows the contour plots for gB

xx, gB
yy, and gB

xy, respectively,
and the right column shows the corresponding 3D plots. The
results clearly respect the aforementioned symmetries. gB

xx
and gB

yy both have a regular peak-array structure and are al-
ways positive, but gB

xy possesses both peaks and basins and
may also be negative. The peaks of gB

xx and gB
yy appear at

kc = (nπ, mπ )T with n, m = 0, 1, 2, where the energy gap
takes its minimum value �min = 2µ. These points (kc) are also
saddle points of the contour plot of gB

xy, as depicted in Fig. 3.
Moreover, since the off-diagonal term gB

xy(kc) = 0 and the
diagonal term gB

xx,yy(kc) take the maximal values, the Bures
distance reaches its local maximum at kc. The rich structures
of the Bures metric will inspire future research on the QGT of
mixed quantum states.

D. Implications

1. Physical relevance

Understanding the geometry behind the QGT of mixed
states will allow us to advance the investigations of quantum
systems beyond their ground-state properties. For exam-
ple, previous studies of the Bures distance in entanglement
[70–72], quantum discord [73], quantum criticality [74,75],
Gaussian states [76], quantum parameter estimation [77], and
comparisons with other quantum distances [60,78] can now
be phrased in a unified framework by the geometry of mixed
quantum states and their QGTs.

On the other hand, we have shown that the QGT of
mixed states only manifest itself in the Bures distance, as
the imaginary part given by the Uhlmann form vanishes for
regular processes. Therefore, the applications of the Bures dis-
tance mentioned above also provide experimentally testable
means for checking the mixed-state QGT in various quantum
systems. The Bures distance is also closely related to the
Uhlmann fidelity [53,57], which can be expressed in terms
of the partition function [74]. If the system is driven by a
Zeeman-like term, the fidelity susceptibility can be inferred
from the magnetic susceptibility [79], thereby connecting the
QGT with an experimentally measurable quantity. Further-
more, the vanishing of the gauge-invariant imaginary part of
the QGT of mixed states provides a no-go theorem, in contrast
to the case of the pure-state QGT, whose imaginary part is the
Berry curvature with measurable consequences.

2. Challenges beyond full-rank density matrices

One important reason behind the choice of full-rank den-
sity matrix in the construction of the Uhlmann bundle is
to ensure the uniqueness of the polar decomposition of the
amplitude, i.e., W = √

ρU . The full-rank density matrices al-
ready cover a great portion of mixed states, including systems
at finite temperatures. Going beyond the full-rank density
matrices will require a different construction of the underlying
fiber bundle and the associated local geometry. As an oversim-
plified example, we consider

ρ =
(

1 0
0 0

)
. (92)

Its square root gives W = √
ρ = ρ. Thus, the polar decompo-

sition of W is W = √
ρU with

U =
(

1 0
0 eiχ

)
. (93)

Here χ is an arbitrary real number. Physically, the purification
W no longer has an unique phase factor, in contrast to the
full-rank case. The arbitrariness of the polar decomposition of
the amplitude thus hinders the construction of a bundle like the
Uhlmann bundle. This is a severe obstacle when generalizing
the previous approach to DN

k<N .
For density matrices ρ1 and ρ2 each of rank k < N in DN

k ,
one may generalize the Bures distance shown in Eq. (34)
to d2

B(ρ1, ρ2) = inf Tr[(W1 − W2)(W1 − W2)†]. However, the
condition to saturate the infimum will be different from the
parallel-transport condition shown in Eq. (36). This is because
W1 and W2 are not full-rank, so their zero-eignevalues may
invalidate the condition. Alternatively, one may take Eq. (35)
as another definition of a local distance, but this distance
is no longer the minimum of Eq. (34). This is in contrast
to the full-rank case, where the two expressions agree with
each other. Consequently, the precise local geometry DN

k can
be different from that of DN

N . Moreover, the construction of
the Uhlmann bundle no longer applies if the rank is not full
since the polar decomposition of the amplitude is no longer
unique, so a geometric foundation for DN

k<N is lacking. There-
fore, the discovery of a gauge-invariant QGT for DN

k<N will be
a challenge. Nevertheless, this scenario underscores the need
for more research on the local geometry of mixed states.

VI. CONCLUSIONS

Through an analog of the QGT of pure states and purifica-
tion of density matrices, we explicitly construct the QGT of
mixed states applicable to thermal equilibrium based on the
Uhlmann fibration. The Pythagorean-like equations of pure
and mixed states relate the distances in the phase space and
its embedded space and reveal the corresponding parallel-
transport conditions. The gauge-invariant modification of the
mixed-state QGT leads to the Bures metric in the real part
and the Uhlmann form in the imaginary part. While the Bures
metric is the natural result within the framework, the Uhlmann
form vanishes for common systems. The Bures metric re-
duces to the Fubini-Study metric of pure states as temperature
approaches zero, but the correspondence only applies to the
real part of the QGT. The QGT of mixed states not only
characterizes the local geometry of quantum statistical sys-
tems but also allows us to explore geometric effects beyond
the ground state in rapidly developed quantum devices and
simulators.
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APPENDIX A: GAUGE INVARIANT INNER PRODUCT

The metric is extracted from the distance defined by an in-
ner product. Therefore, we first build a suitable scalar product
on the phase space P(H). Since the metric tensor is a bilinear
map on the tangent vectors, we define the inner product as

〈·, ·〉 : T|ψ〉P(H) × T|ψ〉P(H) → C, (A1)

where T|ψ〉P(H) is the tangent space at the point |ψ〉 ∈ P(H).
Since |ψ〉 actually represents an equivalent class with respect
to the equivalence relation |ψ〉 = eiχ |φ〉 ∼ |φ〉, the scalar
product 〈·, ·〉 must be gauge invariant. There is a natural
way to accomplish this. Since T|ψ〉P(H) ∼= P(H), any point
X ∈ T|ψ〉P(H) can be equivalently mapped to a state vector
|X 〉 ∈ P(H): If X is a tangent vector of a curve parameterized
by t , then X = d

dt and |X (t )〉 ≡ X |ψ (t )〉 = d
dt |ψ (t )〉, implying

|ψ (t + dt )〉 = |ψ (t )〉 + dt |X (t )〉 up to first order of dt . Thus,
the inner product between X,Y ∈ T|ψ〉P(H) is equivalently
expressed as 〈X,Y 〉 = 〈X |Y 〉, where 〈·|·〉 is the inner product
between pure states. This provides a gauge-invariant inner
product on P(H).

By choosing |ψ̃〉 ∈ �−1(|ψ〉), X can be obtained by pro-
jecting a vector X̃ ∈ T|ψ̃〉H via X = �∗(X̃ ), where �∗ is the
push-forward induced by �. Similarly, X̃ can also be repre-
sented by |X̃ 〉. Furthermore, we decompose X̃ into the parallel
and perpendicular parts with respect to |ψ̃〉 as

|X̃ 〉 = λ|ψ̃〉 + |X̃ ⊥〉, (A2)

where λ = 〈ψ̃ |X̃ 〉
〈ψ̃ |ψ̃〉 , and |X̃ ⊥〉 satisfies 〈ψ̃ |X̃ ⊥〉 = 0. Under the

gauge transformation |ψ̃ ′〉 = eiχ |ψ̃〉, the perpendicular com-
ponent of |X̃ 〉 is always invariant,

|X̃ ′⊥〉 = |X̃ 〉 − 〈ψ̃ ′|X̃ 〉
〈ψ̃ ′|ψ̃ ′〉 |ψ̃

′〉 = |X̃ ⊥〉. (A3)

Thus, for any pair of vectors X1, X2 ∈ T|ψ〉P(H), a gauge
invariant scalar product between them can be defined as

〈X1|X2〉 := 〈X̃ ⊥
1 |X̃ ⊥

2 〉
〈ψ̃ |ψ̃〉

= 〈X̃1|X̃2〉〈ψ̃ |ψ̃〉 − 〈X̃1|ψ̃〉〈ψ̃ |X̃2〉
〈ψ̃ |ψ̃〉2

. (A4)

Here Eq. (A2) has been applied. If |ψ̃〉 is restricted to S(H),
then

〈X1|X2〉 = 〈X̃1|X̃2〉 − 〈X̃1|ψ̃〉〈ψ̃ |X̃2〉. (A5)

This is the desired gauge-invariant inner product for Eq. (A1),
which further induces a norm ||X || := 〈X, X 〉.

APPENDIX B: KÄHLER METRIC

The Kähler manifold is naturally equipped with a Kähler
metric. However, the previously introduced gi j in Sec. II is
not of this type because we have initially chosen a set of real-
valued parameters rather than instilling a complex structure.
By employing a set of local complex coordinates, the Kähler

metric of CPN−1 can be derived. This has been achieved
[1,80] in an abstract manner, but here we present a more
physical demonstration starting from Eq. (5) and relaxing the
restriction |ψ̃〉 ∈ S(H). Therefore, 〈ψ̃ |ψ̃〉 �= 1 in general, and
Eq. (5) now takes the form

〈∂iψ |∂ jψ〉 = 〈∂iψ̃ |∂ jψ̃〉〈ψ̃ |ψ̃〉 − 〈∂iψ̃ |ψ̃〉〈ψ̃ |∂ jψ̃〉
〈ψ̃ |ψ̃〉2

. (B1)

We choose an orthonormal basis of CN , under which the coor-
dinates of |ψ̃〉 ∈ CN can be represented by a generic complex
vector (z0, z1, . . . , zN−1)T , such that

r2 = 〈ψ̃ |ψ̃〉 = δαβ z̄αzβ = z̄αzα. (B2)

Here we use the Greek alphabets α, β = 0, 1, 2, . . . , N − 1
to label the coordinate components. The elements of the flat
metric δαβ or δαβ are used to raise or lower the indices. Since
CPN−1 = CN/C∗, every point in CPN−1 represents a class in
CN with respect to any equivalence (gauge) transformation
c ∈ C∗. Explicitly, |ψ̃〉 ∼ |ψ̃ ′〉 if |ψ̃〉 = c|ψ̃ ′〉 or zα = cz′α .
We take z0 �= 0 without loss of generality, and the coordinates
of |ψ〉 ∈ CPN−1 are thereby obtained via the projection

wi = zi

z0
, i = 1, 2, . . . , N − 1. (B3)

Here wis are called the homogeneous coordinates, whose
indices are labeled by Latin alphabets.

Since ∂i ≡ ∂
∂wi

= z0 ∂
∂zi and |ψ̃〉 = (z0, z1, . . . , zN−1)T ,

|∂iψ̃〉 = z0(0, . . . , 1, . . . , 0)T , where only the ith component
is nonzero. Substituting these into Eq. (B1), we get

〈∂iψ |∂ jψ〉 = δi j z̄0z0

z̄αzα
− z̄0z0ziz̄ j

(z̄αzα )2

= (1 + w̄kw
k )δi j − wiw̄ j

(1 + w̄kwk )2
, (B4)

where we have applied z̄γ zγ = (1 + w̄kw
k )z̄0z0 in the second

step. Thus, the local distance in CPN−1 is

ds2 = 〈dψ |dψ〉 = (1 + w̄kw
k )δi j − wiw̄ j

(1 + w̄kwk )2
dw̄idw j . (B5)

Expressing ds2 = 2gi j̄dωidω̄ j , we get

gi j̄ = 1

2

(1 + w̄kw
k )δi j − w̄iw j

(1 + w̄kwk )2
,

gi j = gī j̄ = 0. (B6)

Since ds2 is real, it can also be expressed as

ds2 = gi j̄dωidω̄ j + gi j̄dω̄idw j, (B7)

which implies gī j = gi j̄ , so gī j is Hermitian. In differential
geometry, gī j is the component form of the Kähler met-
ric on CPN−1 [1]. Introducing the Kähler potential K =
ln

√
1 + w̄kwk, it can be further expressed as gi j̄ = ∂2K

∂wi∂w̄ j .

It has been pointed out that the real and imaginary parts
of QGT are the Fubini-Study metric and Berry curvature,
respectively [6,15]. Here we show how this arises from the
Kähler geometry. Different from our previous discussions,
complex coordinates must be included in order to yield the
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correct result. In terms of differential forms, the local dis-
tance ds2 = 2gi j̄dωidω̄ j on CPN−1 suggests a tensor field
G = 2gi j̄dωi ⊗ dω̄ j , which is non-Hermitian and plays the
role of QGT with complex coordinates. On the other hand,
the Hermitian form (B7) of ds2 introduces the Kähler metric

g = gi j̄dωi ⊗ dω̄ j + gī jdω̄i ⊗ dw j, (B8)

which is the real part of G and gives the Fubini-Study met-
ric in the form of complex coordinates. Since CPN−1 is a
complex manifold, it admits an almost complex structure J
satisfying J ∂

∂wi = i ∂
∂wi and J ∂

∂w̄i = −i ∂
∂w̄i [1]. With this, one

can define the Kähler form whose action on X,Y ∈ T P(H) is
	(X,Y ) := g(JX,Y ). A straightforward calculation shows

	 = igi j̄dωi ⊗ dω̄ j − igī jdω̄i ⊗ dw j

= igi j̄dωi ∧ dω̄ j, (B9)

which exactly agrees with the (negative) imaginary part of G.
Moreover, 	 is proportional to the Berry curvature

F = dA = w̄iw j − (1 + w̄kw
k )δi j

(1 + w̄kwk )2
dwi ∧ dw̄ j . (B10)

Here the Berry connection for an unnormalized state |ψ̃〉 is

A = iIm〈ψ̃ |d|ψ̃〉
〈ψ̃ |ψ̃〉 = iIm(w̄idwi )

1 + w̄kwk
= 1

2

w̄idwi − widw̄i

1 + w̄kwk
.

(B11)

From Eqs. (B6) and (B9), we indeed have 	 = − i
2 F . There-

fore, the QGT of pure states has a profound geometrical
origin.

We present a simple example of a two-level system with
N = 2 that corresponds to the Hopf fibration: S3/U(1) =
CP1 ∼= S2. A quantum state in S3 is expressed by (z0, z1)T

with |z0|2 + |z1|2 = 1. Hence, it can be parameterized by
three real parameters. Let z0 = ei(χ− φ

2 ) cos θ
2 and z1 =

ei(χ+ φ

2 ) cos θ
2 . There is only one homogeneous coordinate w =

z1

z0 = eiφ tan θ
2 . The Kähler potential is K = 1

2 ln(1 + w̄w),
from which we obtain the component of the Fubini-Study
metric,

gww̄ = −1

2

w̄w

(1 + w̄w)2
+ 1

2

1

1 + w̄w
= 1

2
cos4 θ

2
. (B12)

The Fubini-Study distance is thus given by

ds2 = 2gww̄dwdw̄ = 1
4 (dθ2 + sin2 θdφ2), (B13)

which is exactly the local distance on the two-dimensional
sphere. The QGT is

G = 2gww̄dw ⊗ dw̄

= cos4 θ

2

[
tan2 θ

2
dφ ⊗ dφ + 1

4
sec4 θ

2
dθ ⊗ dθ

− i

2
sec2 θ

2
tan

θ

2
(dθ ⊗ dφ − dφ ⊗ dθ )

]

= 1

4
(dθ ⊗ dθ + sin2 θdφ ⊗ dφ) − i

4
sin θdθ ∧ dφ.

(B14)

The real part is the Fubini-Study metric while the (negative)
imaginary part is proportional to the Berry curvature of the
two-level system [81]

F = i

2
sin θdθ ∧ dφ. (B15)

APPENDIX C: PROPERTIES OF THE SPACE
OF MIXED STATES

We have denoted by P the space of all density matrices.
For ρ1, ρ2 ∈ P and a pair of arbitrary complex numbers λ and
μ, it is possible to find counterexamples to λρ1 + μρ2 ∈ P .
On the other hand, as a complex matrix, ρ is also equivalent
to an operator acting on the N-tuple vectors in H = CN .
Consequently, ρ belongs to End (H), which is the space of
operators on H, and is also known as the algebra of N × N
complex matrices. This means P ⊂ End (H). Furthermore,
the requirement that Tr(λρ1 + μρ2) = 1 leads to λ + μ = 1,
which further implies P is a convex subset of P ⊂ End (H)
[2].

To determine the dimension of P , we note that a com-
plex N × N matrix ρ contains N2 complex parameters or
2N2 real parameters. In addition, the condition Trρ = 1 pro-
vides one restriction, and the Hermiticity requires that (1)
the diagonal elements are real, adding N restrictions, and
(2) the off-diagonal elements satisfy ρi j = ρ∗

ji, imposing 2 ×
N (N−1)

2 more restrictions. Thus, dim P = 2N2 − N (N − 1) −
N − 1 = N2 − 1. This implies that any ρ can be mapped to
a real N × N matrix ρ̃ such that Trρ̃ = 1 and rank(ρ) =
rank(ρ̃). We now use this mapping to determine the dimension
of DN

k . If rank (ρ̃) = k, it can be factorized as ρ̃ = AB, where
A is a N × k matrix and B is a k × N matrix. This factorization
is not unique since for any k × k invertible matrix R, ρ̃ =
(AR)(R−1B). This introduces k2 redundant degrees of free-
dom. The factorization itself has 2Nk − 1 parameters, so the
total number of independent parameters is 2Nk − k2 − 1 =
N2 − (N − k)2 − 1 = dim DN

k .

APPENDIX D: INFIMUM OF EQ. (33)

The infimum of Eq. (33) leads to the definition of the Bures
distance (34), which is evaluated as

d2
B(ρ(t ), ρ(0)) = 2 − 2 sup ReTr[W †(0)W (t )]. (D1)

Let A = W †(0)W (t ), which is also full rank and thereby
has a unique decomposition A = |A|UA with |A| =

√
AA†.

Applying the Cauchy-Schwartz inequality |Tr(A†B)|2 �
Tr(A†A)Tr(B†B), we get

Re[Tr(A)] � |Tr(A)| = |Tr(
√

|A|
√

|A|UA)|

�
√

Tr|A|Tr(U †
A |A|UA) = Tr|A|, (D2)

where the inequality is saturated whenever
√|A| = √|A|UA.

This leads to

A = |A| =
√

AA† �⇒ A2 = AA†

�⇒ A = A† = |A| > 0, (D3)
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i.e.,

W †(0)W (t ) = W †(t )W (0) > 0. (D4)

The Bures distance is

d2
B(ρ(t ), ρ(0)) = 2 − 2Tr|W †(0)W (t )|

= 2 − 2Tr
√

W †(0)W (t )W †(t )W (0)

= 2 − 2Tr
√√

ρρ(t )
√

ρ, (D5)

where we have applied the fact W (0) = W †(0) = √
ρ.

Substitute W (t ) = W (0) + tV and W (0) = √
ρ into the

condition (D4), we further get

V †√ρ = √
ρV, (D6)

which means V //
√

ρ. Both V and ρ are full-ranked, then
Eq. (D6) implies V † = √

ρV
√

ρ
−1. Plugging it into

√
ρV † +

V
√

ρ = Yρ , we have

ρV + V ρ = Yρ

√
ρ. (D7)

Multiply both sides with the completeness relation of the
eigenstates of ρ,

∑
i |i〉〈i| = 1, we obtain∑

i j

(λi + λ j )〈i|V | j〉|i〉〈 j| =
∑

i j

√
λ j〈i|Yρ | j〉|i〉〈 j|. (D8)

Due to the linear independence of {|i〉〈 j|}, we have

〈i|V | j〉 =
√

λ j

λi + λ j
〈i|Yρ | j〉. (D9)

Thus, when

V =
∑

i j

√
λ j

λi + λ j
〈i|Yρ | j〉|i〉〈 j|, (D10)

g(Yρ,Yρ ) reaches its infimum, which defines the Bures
distance.

APPENDIX E: DETAILS OF THE BURES DISTANCE

Following Ref. [59], we set A(t ) = √√
ρ(ρ + tdρ)

√
ρ,

then A(0) = ρ. The squared Bures distance can be ex-
panded up to second order in t as d2

B(ρ, ρ + tdρ) =
t2gB

μν (ρ)dRμdRν . Thus Eq. (35) implies

gB
μν (ρ)dRμdRν = 1

2

d2

dt
d2

B(ρ, ρ + tdρ)|t=0 = −TrÄ(t )|t=0.

(E1)

Since

A(t )A(t ) = √
ρ(ρ + tdρ)

√
ρ, (E2)

Differentiating both sides twice with respect to t , we get

Ȧ(0)A(0) + A(0)Ȧ(0) = √
ρdρ

√
ρ,

Ä(0)A(0) + 2Ȧ(0)Ȧ(0) + A(0)Ä(0) = 0. (E3)

Multiplying A−1(0) = ρ−1 from the left on both sides of the
second equation and taking trace, we have

Tr(ρ−1Ä(0)ρ) + 2Tr[ρ−1(Ȧ(0))2] + TrÄ(0) = 0, (E4)

which leads to

TrÄ(0) = −Tr[ρ−1(Ȧ(0))2]. (E5)

Using ρ|i〉 = λi|i〉 and
√

ρ|i〉 = √
λi|i〉, the first equation of

(E3) implies

(λi + λ j )〈i|Ȧ(0)| j〉 = √
λiλ j〈i|dρ| j〉. (E6)

Therefore by applying Eqs. (E1) and (E5), we have

d2
B(ρ, ρ + tdρ) = −TrÄ(0)t2

=
∑

i j

1

λi
〈i|Ȧ(0)| j〉〈 j|Ȧ(0)|i〉t2

=
∑

i j

1

λi

λiλ j

(λi + λ j )2
|〈i|dρ| j〉|2t2, (E7)

Now interchange the indices i and j and setting t = 1, we have

d2
B(ρ, ρ + dρ) = 1

2

∑
i j

|〈i|dρ| j〉|2
λi + λ j

. (E8)

The Bures distance has another equivalent expression that
is useful to our discussions. Using

√
ρ|i〉 = √

λi|i〉 and dρ =
d (

√
ρ
√

ρ) = d
√

ρ
√

ρ + √
ρd

√
ρ, the matrix element of dρ

becomes

〈i|dρ| j〉 = (
√

λi + √
λ j )〈i|d√

ρ| j〉. (E9)

Substituting it into Eq. (E8), we get

d2
B(ρ, ρ + dρ) = 1

2

∑
i j

(
√

λi + √
λ j )2

λi + λ j
|〈i|d√

ρ| j〉|2. (E10)

In the two-dimensional case, the Bures distance takes a
simpler expression. Let ρ = 1

2 + a · σ, then its eigenvalues are
λ1,2 = 1

2 ± |a| and the projective operators for each eigenvec-
tor are |1〉〈1| = 1

2 (1 + â · σ), |2〉〈2| = 1
2 (1 − â · σ) with â =

a
|a| . Using dρ = da · σ and λ1 + λ2 = 1, the Bures distance
becomes

d2
B(ρ, ρ + dρ)

= 1

4

∑
i

|〈i|dρ|i〉|2
λi

+ 1

2

∑
i �= j

|〈i|dρ| j〉|2

= 〈1|da · σ

(
1 + â · σ

8λ1
+ 1 − â · σ

4

)
da · σ|1〉

+ 〈2|da · σ

(
1 − â · σ

8λ2
+ 1 + â · σ

4

)
da · σ|2〉

=
(

1

8λ1λ2
+ 1

2

)
da · da −

∑
i=1,2

(−1)i

× 1 − 2λi

8λi
〈i|da · σâ · σda · σ|i〉. (E11)

Next, applying 〈1, 2|â · σ|1, 2〉 = ±1, 1 − 2λ1,2 = ∓2|a|,
and

da · σâ · σda · σ = [da · â + i(da × â) · σ]da · σ

= 2(da · â)da · σ − (da · da)â · σ,
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we further get

d2
B(ρ, ρ + dρ) =

(
1 + 1

8λ1λ2
− 1

8λ1
− 1

8λ2

)
da · da − da · a

(
da · 〈1|σ|1〉

2λ1
+ da · 〈2|σ|2〉

2λ2

)

= da · da − (da · a)2

2|a|
(

1

λ1
− 1

λ2

)

= da · da + (da · a)2

det ρ
, (E12)

where 〈1|σ|1〉 = −〈2|σ|2〉 = â has been applied. Moreover, noting

Tr(dρ)2 = Tr(da · σ )2 = 2da · da, (E13)

and

d
√

det ρ = d

√
1

4
− a2 = − da · a√

det ρ
, (E14)

it is found that in the two-dimensional case,

d2
B(ρ, ρ + dρ) = 1

2 Tr(dρ)2 + (d
√

det ρ )2. (E15)

APPENDIX F: MODIFICATION OF THE REAL AND IMAGINARY PARTS OF γμν

Under the gauge transformation W ′ = WU ,

γ ′
μν =γμν + 1

2
Tr[(W †∂νW − ∂νW †W )U∂μU†] + 1

2
Tr[(W †∂μW − ∂μW †W )U∂νU†] + 1

2
Tr[W †W (∂μU∂νU† + ∂νU∂μU†)],

(F1)

σ ′
μν =σμν + i

2
Tr[∂μ(W †W )U∂νU† − ∂ν (W †W )U∂μU†] + i

2
Tr[W †W (∂μU∂νU† − ∂νU∂μU†)], (F2)

ω′
μ =U†ωμU + U†∂μU . (F3)

Here ωμ is the component form of ω when restricted on DN
N , which satisfies [44,49]

W †∂μW − ∂μW †W = W †W ωμ + ωμW †W. (F4)

Using this, the transformation (F1) becomes

γ ′
μν = γμν + 1

2 Tr[(W †W ωμ + ωμW †W )U∂νU†] + 1
2 Tr[(W †W ων + ωνW †W )U∂μU†] + 1

2 Tr[W †W (∂μU∂νU† + ∂νU∂μU†)].
(F5)

Moreover, the second term on the right-hand-side of Eq. (51) changes as

1
2 Tr(W ′†W ′ω′

μω′
ν + ω′

νω
′
μW ′†W ′) = 1

2 Tr[W †W (ωμων + ωμ∂νUU† + ∂μUU†ων + ∂μUU†∂νUU†)] + (μ ↔ ν)

= 1
2 Tr(W †W ωμων + ωμωνW †W ) − 1

2 Tr[(W †W ωμ + ωμW †W )U∂νU†]

− 1
2 Tr[(W †W ων + ωνW †W )U∂μU†] − 1

2 Tr[W †W (∂μU∂νU† + ∂νU∂μU†)], (F6)

where we have applied ∂μ,νUU† = −U∂μ,νU†, U†∂νUU† = −∂νU† and the cyclic property of the trace. Using Eqs. (F5) and
(F6), it is straightforward to verify that gU′

μν = gU
μν .

For the imaginary part σμν , the transformation (F2) can be reformulated into

σ ′
μν = σμν + i

2
Tr[∂μ(W †WU∂νU†) − ∂ν (W †WU∂μU†)]. (F7)

Similarly, the second term on the right-hand side of Eq. (52) changes under W ′ = WU as

i

2
Tr{∂μ[U†W †WU (U†ωνU + U†∂νU )]} − (μ ↔ ν)

= i

2
Tr[∂μ(W †W ων ) − ∂ν (W †W ωμ)] − i

2
Tr[∂μ(W †WU∂νU†) − ∂ν (W †WU∂μU†)] (F8)

Moreover, the second term in the last line cancels that of Eq. (F7), making σ ′U
μν = σ U

μν .
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APPENDIX G: DETAILS OF UHLMANN METRIC, BURES METRIC, AND UHLMANN FORM

A calculation of Eq. (53) shows that gU
μν reduces to (see the proof below)

gU
μν = Tr(∂μ

√
ρ∂ν

√
ρ) + 1

2 Tr[ρ(AUμAUν + AUνAUμ)]. (G1)

Importantly, gU
μν is independent of the fiber U when compared to its original expression (53). This resolves the paradox that ds2

U

is a distance on DN
N but seems to have an explicit dependence on the fiber U . Taking the trace over the eigenstates of ρ, the first

term of Eq. (G1) is

Tr(∂μ

√
ρ∂ν

√
ρ ) =

∑
i j

〈i|∂μ

√
ρ| j〉〈 j|∂ν

√
ρ|i〉. (G2)

Using Eq. (58) and interchanging the indices i and j, the second term of Eq. (G1) becomes

− 1
2

∑
i j

(
√

λi−
√

λ j )2

λi+λ j
〈i|∂μ

√
ρ| j〉〈 j|∂ν

√
ρ|i〉. Adding this to Eq. (G2), we finally get the expression of the Uhlmann metric

gU
μν =

∑
i j

(
1 − 1

2

(
√

λi − √
λ j )2

λi + λ j

)
〈i|∂μ

√
ρ| j〉〈 j|∂ν

√
ρ|i〉

= gB
μν (G3)

according to Eq. (57).
To prove Eq. (G1), we use W = √

ρU , which leads to

Tr(∂μW †∂νW ) = Tr[∂μ

√
ρ∂ν

√
ρ + ρ∂νU∂μU † + √

ρ∂ν

√
ρU∂μU † + ∂μ

√
ρ
√

ρ∂νUU †]. (G4)

Thus, the real part of the raw metric is

γμν = Tr(∂μ

√
ρ∂ν

√
ρ ) + 1

2 Tr[ρ(∂μU∂νU † + ∂νU∂μU †)] + 1
2 Tr{[√ρ, ∂μ

√
ρ]U∂νU † + [

√
ρ, ∂ν

√
ρ]U∂μU †}. (G5)

Using the cyclic property of trace, we get the summation of the second and third terms of Eq. (53)

1
2 Tr[ρ(AUμAUν + AUνAUμ) − (ρAUμ + AUμρ)U∂νU † − (ρAUν + AUνρ)U∂μU † − ρ(∂μU∂νU † + ∂νU∂μU †)]

= 1
2 Tr[ρ(AUμAUν + AUνAUμ) − [

√
ρ, ∂μ

√
ρ]U∂νU † − [

√
ρ, ∂ν

√
ρ]U∂μU † − ρ(∂μU∂νU † + ∂νU∂μU †)]. (G6)

The last three terms of Eq. (G6) exactly cancel the last three terms of Eq. (G5), then the Uhlmann metric is given by Eq. (G1).
Using Eq. (G4), the first term of Eq. (62) is

Tr(∂μW †∂νW )dRμ ∧ dRν = Tr[∂μ

√
ρ∂ν

√
ρ + ρ∂νU∂μU † + √

ρ∂ν

√
ρU∂μU † + ∂μ

√
ρ
√

ρ∂νUU †]dRμ ∧ dRν . (G7)

The first term vanishes since Tr(∂μ
√

ρ∂ν
√

ρ ) is symmetric about μ and ν. Interchanging μ and ν in the third term, we have

Tr(∂μW †∂νW )dRμ ∧ dRν = Tr[ρ∂νU∂μU † − √
ρ∂μ

√
ρU∂νU † − ∂μ

√
ρ
√

ρU∂νU †]dRμ ∧ dRν

= Tr[ρ∂νU∂μU † − ∂μρU∂νU †]dRμ ∧ dRν . (G8)

Using W †W = U †ρU and the component form of Eq. (48), the second term of Eq. (62) becomes

Tr{∂μ[U †ρU (U †AUνU + U †∂νU )]}dRμ ∧ dRν = Tr[∂μ(ρAUν ) + ρ∂νU∂μU † − ∂μρU∂νU †]dRμ ∧ dRν . (G9)

Substituting Eqs. (G8) and (G9) into Eq. (62), we finally get Eq. (63).

APPENDIX H: DETAILS OF SJÖQVIST DISTANCE

Here we briefly summarize the construction of the Sjöqvist distance. When a full-rank density matrix ρ(t ) evolves along
a path, it is diagonalized as ρ(t ) = ∑N−1

n=0 λn(t )|n(t )〉〈n(t )|, from which one can define the spectral decomposition of ρ(t ) as
{√λn(t )eiθn (t )|n(t )〉}N−1

n=0 . Without loss of generality, let θn(0) = 0 and θn(t ) be differentiable. For infinitesimal t , the Sjöqvist
distance between ρ(t ) and ρ(0) = ρ is defined as

d2
S (ρ(t ), ρ) = inf

θn(t )

∑
n

|
√

λn(t )eiθn (t )|n(t )〉 −
√

λn|n〉|2 (H1)

where λn ≡ λn(0), |n〉 ≡ |n(0)〉, and the infimum is taken among all possible sets of spectral phases {θn(t )}. After some algebra,
it is found that

d2
S (ρ(t ), ρ) = 2 − 2 sup

θn(t )

∑
n

√
λnλn(t )|〈n|n(t )〉| cos φn(t ), (H2)
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where cos φn(t ) = θ̇n(t )t + arg[1 + 〈n(t )|ṅ(t )〉t] + O(t2). Since 1 + 〈n(t )|ṅ(t )〉t ≈ e〈n(t )|ṅ(t )〉t , the infimum is obtained when

iθ̇ (t ) + 〈n(t )|ṅ(t )〉 = 0, for n = 0, . . . , N − 1. (H3)

Interestingly, this is precisely the parallel-transport condition associated with each individual pure state in the ensemble according
to Eq. (17).

With the help of purified states, the definition of the Sjöqvist distance can also be cast into the form similar to Eq. (43). The
purifications of ρ(t ) is written as W (t ) = ∑

n

√
λn(t )|n(t )〉〈n(t )|U (t ). The key to the derivation is to choose the phase factor as

U (t ) = ∑
n eiθn (t )|n(t )〉〈n|, which is unitary due to the facts U (t )U †(t ) = ∑

n |n(t )〉〈n(t )| = 1 and U †(t )U (t ) = ∑
n |n〉〈n| = 1.

Thus, the purification is W (t ) = ∑
n

√
λn(t )|n(t )〉〈n|eiθn (t ), whose corresponding purified state is |W (t )〉 = ∑

n

√
λn(t )|n(t )〉 ⊗

eiθn (t )|n〉.

APPENDIX I: PROOF OF EQ. (75)

Using
√

ρ = ∑
j

√
λ j | j〉〈 j|, we have

(d
√

ρ )2 =
∑

j

[(d
√

λ j )
2| j〉〈 j| + √

λ jd
√

λ j (|d j〉〈 j| + | j〉〈d j|)] +
∑

jk

√
λkd

√
λ j (| j〉〈 j|dk〉〈k| + |k〉〈dk| j〉〈 j|)

+
∑

j

λ j |d j〉〈d j| +
∑

jk

√
λkλ j (|dk〉〈k|d j〉〈 j| + |k〉〈dk| j〉〈d j| + |k〉〈dk|d j〉〈 j|). (I1)

When taking trace with respect to the basis {|i〉}, the first term gives
∑

i(d
√

λi )2, the second and third terms vanish, the fourth
term becomes ∑

i j

λ j〈i|d j〉〈d j|i〉 =
∑

j

λ j〈d j|
∑

i

|i〉〈i|d j〉 =
∑

j

λ j〈d j|d j〉, (I2)

and the last term gives∑
i j

√
λiλ j (〈i|d j〉〈 j|di〉 + 〈di| j〉〈d j|i〉) +

∑
i

λi〈di|di〉 = 2
∑

i j

√
λiλ j〈i|d j〉〈 j|di〉 +

∑
i

λi〈di|di〉. (I3)

Collecting all the results, we finally get Eq. (75).
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