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Nematic, chiral, and topological superconductivity in twisted transition metal dichalcogenides
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We introduce and study a realistic model for superconductivity in twisted bilayer WSe2, where electron pairing
arises from spin-valley fluctuations in the weak-coupling regime. Our model comprises both the full continuum
model moiré band structure and a short-ranged repulsive interaction. By calculating the spin-valley susceptibility,
we identify a significant enhancement of the spin-valley fluctuations near half filling of the topmost moiré
band. We then analyze the dominant Kohn-Luttinger pairing instabilities due to these spin-valley fluctuations
and show that the leading instability corresponds to a two-component order parameter, which can give rise to
nematic, chiral, and topological superconductivity. As our findings are asymptotically exact for small interaction
strengths, they provide a viable starting point for future studies of superconductivity in twisted transition metal
dichalcogenide bilayers.
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I. INTRODUCTION

Two-dimensional transition metal dichalcogenides
(TMDs) have in recent years emerged as a promising
material platform for realizing a plethora of new electronic
phases [1]. Prominent examples of these electronic phases in
monolayer TMDs include the quantum spin Hall effect [2–5],
arising due to the strongly spin-orbit coupled band structure,
and Ising superconductivity [6–9], which is realized as a
result of the substantial effective electron mass that enhances
the importance of interaction effects.

Beyond the TMD monolayers, another research frontier
that is currently evolving at a rapid pace is moiré lattices
realized with multilayer TMDs [10–18]. In these systems,
a lattice mismatch or a rotational misalignment generates
an effective superlattice that can be utilized for simulat-
ing strongly correlated electron states [19–28]. For example,
in WSe2/WS2 heterobilayers, experiments have identified
Mott insulators [10,11], Wigner crystals [10], and stripe-
ordered states [12]. Moreover, in twisted WSe2 (tWSe2)
homobilayers, experiments have found evidence for quantum
criticality [13] and correlated insulating states [14]. Notably,
the discovered correlated insulators in tWSe2 appeared at
half filling for a broad twist angle range, θ ∼ 4◦–5.1◦, for
which the bandwidth is likely comparable to the interaction
strength. This weak- to intermediate-coupling scenario is fur-
ther supported by a resistivity enhancement upon tuning a van
Hove singularity to half filling via an external displacement
field. Both features highlight the importance of band-
structure effects for understanding correlated electron states in
tWSe2 [29].

In addition to the discovery of correlated insulators, an
experiment on tWSe2 also found a “zero-resistance state”
when doping away from half filling at θ ∼ 5.1◦ [14]. The
appearance of this zero-resistance state indicates that, similar
to graphene-based superlattices [30–36], tWSe2 can also host

superconductivity. However, it is so far unclear what proper-
ties of the band structure can effect the candidate supercon-
ducting state in tWSe2. Moreover, it is also an open question
on what constitutes the pairing mechanism and pairing sym-
metry.

Here, we address these questions by introducing a model
for superconductivity in tWSe2, where electron pairing arises
from spin-valley fluctuations. Our model comprises both the
moiré band structure of tWSe2 and a short-ranged repulsive
interaction. Near half filling of the topmost moiré band, we
demonstrate that the Fermi surfaces of the ±K valleys exhibit
a strong nesting feature. This nesting maps the occupied states
of one valley onto the other valley’s unoccupied states, leading
to strong spin-valley fluctuations especially near the insulating
state [29]. We show that, interestingly, electron pairing medi-
ated by such enhanced spin-valley fluctuations can give rise to
nematic, chiral, and topological superconductivity. Our find-
ings are asymptotically exact in the weak-coupling limit [37]
and provide a starting point for studies of superconductivity
in TMD systems.

II. MODEL

A. Continuum model Hamiltonian

We consider two layers of WSe2 that are initially aligned in
the AA-stacking configuration and, subsequently, rotated by a
small twist angle θ [see Fig. 1(a)]. In this situation, the ±K
valleys of the layers have comparable energy so that interlayer
tunneling becomes effective, which leads to a layer-hybridized
moiré band structure. For the discussion of this moiré band
structure, we focus separately on the spin-up (spin-down)
valence bands of the +K (−K) valleys. This approach is jus-
tified by the substantial valley-dependent spin splitting in the
valence bands and the effective decoupling of the valleys due
to their large momentum space separation. The Hamiltonian
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FIG. 1. (a) WSe2 layers at twist angle θ forming a triangular
moiré lattice. (b) The band structure E along high-symmetry lines
for (θ,Vz,V, ψ,w) = (5.1◦, 0 meV, 9 meV, 128◦, 18 meV). The in-
set shows the moiré Brillouin zone at the +K valleys. (c) Same as
(b) but for Vz = 42 meV. The spin-up (blue) and spin-down (red)
bands at the ±K valleys are split by the finite displacement field.
(d) DOS with a maximum near nmax ≈ 0.9.

for the continuum model moiré bands of spin-up electrons at
the +K valleys then reads [20]

H↑ =
∫

dr �
†
↑(r)

(
ht

k↑(r) �T (r)

�
†
T (r) hb

k↑(r)

)
�↑(r), (1)

where �↑(r) = [ct
↑(r), cb

↑(r)]T is an electron spinor with com-
ponents corresponding to the top/bottom (t/b) layer. The
Hamiltonian for spin-down electrons at the −K valleys is
obtained from H↑ via a time-reversal operation.

First, we discuss the diagonal components of H↑, which
represent the individual layers. They are given by

ht/b
k↑ (r) = − h̄2(k − κ±)2

2m∗ ± Vz

2
+

∑
j=1,3,5

2V cos(b j · r ± ψ ).

(2)
Here, the first term describes the kinetic energy with effec-
tive mass m∗ = 0.43m0 (m0 is the bare electron mass) and
momentum shifts κ± = [4π |θ |/(3a0)](−√

3/2,∓1/2) (a0 =
3.317 Å is the monolayer lattice constant), that account for
for the layer rotation in momentum space. The second term
corresponds to a layer potential difference Vz due to an out-
of-plane displacement field. The third term models the moiré
potential with amplitude V , phase offset ψ , and recipro-
cal lattice vectors b j = C j−1

3 (4π |θ |/√3a0, 0) (C3 is a 2π/3
rotation).

Besides the individual layer terms, H↑ also includes off-
diagonal terms for interlayer coupling. They read

�T(r) = w(1 + e−ib2·r + e−ib3·r), (3)

where w corresponds to the interlayer coupling strength.
Having defined the continuum model Hamiltonian, we

now proceed by analyzing its spatial symmetries. We find
that the continuum model exhibits a threefold rotation

symmetry given by U †
C3

(r)HC3(k)↑(C3(r))UC3 (r) = Hk↑(r) with
the Hamiltonian density Hk↑(r), UC3 (r) = ei(1+τz/2)b2·r2 eib3·r,
and a layer-space Pauli matrix τz. Besides the rotation
symmetry, which is also a microscopic symmetry of the
moiré lattice, the continuum model exhibits an emergent
mirror symmetry along y = 0 given by HMx (k)↑[Mx(r)] =
Hk↓(r). Interestingly, this mirror symmetry flips the two
valleys.

B. Moiré band structure

As a final step, we plot the moiré bands along the high-
symmetry lines of the Brillouin zone for (θ,V, ψ,w) =
(5.1◦, 9 meV, 128◦, 18 meV) [26] with Vz = 0 meV and Vz =
42 meV [see Figs. 1(b) and 1(c)]. We find that finite dis-
placement field induces an approximate saddle point in the
topmost moiré bands ξ↑/↓(k) at κ±. At these points, the Fermi
velocity is greatly reduced, which leads to an enhancement of
the density of states (DOS) for a filling of n ≈ 0.9 electrons
per moiré unit cell [see Fig. 1(d)]. The emergence of an
enhanced DOS near n ≈ 1 is in accordance with experiments
[14] and signals that correlation effects due to spin-valley
fluctuations may be amplified. In our further analysis, we
will fix the above choice for (θ,V, ψ,w) that we obtained
from density functional calculations [26] and the field value
Vz = 42 meV.

III. SPIN-VALLEY FLUCTUATIONS

We now discuss the ordering instabilities that arise from
the spin-valley fluctuations. To identify the spin-valley fluctu-
ations with dominant modulation vectors, we will analyze the
maxima of the spin-valley susceptibility,

χαβ (q, ω) = − 1

βN

∑
k

Tr[σαG(k, iω)σβG(k + q, iω)]. (4)

In this definition, σα,β ∈ {σz, σ± = (σx ± iσy)/2} are
spin/valley-space Pauli matrices, “Tr” denotes the trace
over the spin/valley indices, β is the inverse temperature, and
N is the number of superlattice unit cells. Furthermore, the
noninteracting Green’s function is given by

Gs1s2 (k, iω) = δs1s2

[
iω − ξs1 (k) + μ

]−1
. (5)

Here, ξs(k) are the dispersions for the topmost moiré band
of the ±K valleys with ξ↓(k) = ξ↑(−k) due to time-reversal
symmetry, μ is the chemical potential, and ω corresponds to a
fermionic Matsubara frequency.

Having defined the spin-valley susceptibility, we will now
investigate its static longitudinal and transversal components,
χzz(q) = χzz(q, 0) and χ+−(q) = χ+−(q, 0). In our system,
ξzz(q) and ξ+−(q) are different because of the broken SU(2)
valley rotation symmetry.

First, we focus on the filling of n ≈ 1 electron per moiré
unit cell because it is the experimentally most relevant case.
In this situation, the Fermi surfaces have the shape of triangles
centered around the γ point of the Brillouin zone as shown
in Fig. 2(a). As shown in Fig. 2(b), we numerically find that
χ+−(q) is enhanced near q ≈ Q j with Q j = C j−1

3 κ+, indicat-
ing an instability towards an intervalley excitonic insulator
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FIG. 2. (a) Dispersion ξ↑(q) of the topmost band at the +K
valleys. The +K (−K) valley Fermi surfaces are shown with
solid (dashed) black lines. (b) Transversal spin-valley susceptibility
χ+−(q) at 1/β = 100 meV. (c) Longitudinal spin-valley susceptibil-
ity χzz(q) at 1/β = 100 meV.

that pairs electrons and holes of opposite valleys [29]. How-
ever, due to the broken SU(2) valley rotation symmetry, the
same features are not present in the longitudinal valley sus-
ceptibility. Instead, as shown in Fig. 2(c), χzz(q) is enhanced
near q ≈ 0, suggesting that the excitonic instability competes
with a spin/valley-polarized state [26].

We now compare these results with the situation away
from n ≈ 1. For fillings n � 0.9, the Fermi surfaces shrink
to smaller triangles and the dominant modulation vectors in
the spin-valley susceptibility are modified. For example, at
n ≈ 0.5, χ+−(q) is enhanced near q ≈ Q′

j with Q′
j = C j−1

3 κ−,
while χzz(q) shows maxima near the Brillouin zone bound-
aries. For n > 1, the Fermi surfaces are center at the Brillouin
zone corners. At n ≈ 1.5, χ+−(q) is enhanced near q ≈ 0,
while χzz(q) is again enhanced near the Brillouin zone edges.

IV. SUPERCONDUCTIVITY

A. Kohn-Luttinger mechanism

We will now demonstrate that spin-valley fluctuations can
mediate superconductivity by a Kohn-Luttinger mechanism
that realizes Cooper pairing from a nominally repulsive in-
teraction term in the weak-coupling regime [37–40].

Before discussing the details of our approach, we highlight
that the Kohn-Luttinger mechanism has also been valuable
for understanding unconventional superconductivity in the
intermediate-coupling regime and has already been applied to
graphene systems [41–45]. For tWSe2, band-structure effects
remain critical for understanding correlated states in these
samples. In particular, by tuning the van Hove singularity in
the moiré band structure close to half filling, a significant
increase in the longitudinal resistance peak was noted, which

indicates the emergence of the correlated insulator state [14].
Therefore, we expect that the Kohn-Luttinger mechanism can
offer qualitative insights into the realized superconducting
pairing symmetry.

To start, we introduce the Hubbard Hamiltonian,

H =
∑

ks

ξs(k)c†
kscks + U

N

∑
k,p,q
s,s′

c†
qsc

†
p+k−qs′cps′cks, (6)

where the quadratic part comprises the dispersion ξs(k) of the
topmost moiré band of the continuum model and cks is the
electron annihilation operator with momentum k and spin s.
In particular, as we omit multiband effects, there is an emer-
gent mirror symmetry My along x = 0 with ξs(Myk) = ξs(k).
The interaction term in the Hamiltonian is taken as a local
(compared to moiré scale) repulsive interaction with a strength
U > 0.

Next, we compute the Cooper channel interaction vertex,
which describes the scattering of electrons with spin polar-
ization s and s′ from the Fermi-surface momenta (k̂

′
,−k̂

′
) to

(k̂,−k̂). In general, the interaction vertex comprises a contri-
bution from opposite-spin and equal-spin scattering. However,
the equal-spin scattering leads to pairing with a “d vector”
pointed orthogonal to the spin polarization [46]. Such an
equal-spin pairing exhibits a suppressed critical temperature
[47,48] and, hence, our focus will be on opposite-spin scatter-
ing. To second order in U , we find that the interaction vertex
[49],

�(k̂, k̂
′
) = U + U 2χ+−(k̂ + k̂

′
). (7)

Notably, this result is different for TMD monolayers, where
a parabolic dispersion induces a momentum dependence only
at order U 3 [50].

Next, we perform a mean-field decoupling of the effective
pairing interaction and compute the superconducting order
parameter from the self-consistency equation [49],∫

FS↑

d k̂
′

v↑(k̂
′
)
�(k̂, k̂

′
)�(k̂

′
) = λ�(k̂), (8)

Here, v↑(k) = ||∂ξ↑(k)/∂k|| is the Fermi velocity and �(k̂)
is the superconducting order parameter along the +K val-
ley Fermi surface, ξ↑(k) = μ. The order parameters at the
−K Fermi surface, ξ↓(k) = μ, is �′(k̂) = −�(−k̂). Three
remarks about Eq. (8) are in order:

(1) The negative eigenvalues λ < 0 correspond to sectors
with an attractive interaction in the Cooper channel and grow
in magnitude under renormalization. In particular, the most
negative eigenvalue λ(0) is most relevant in the renormal-
ization group sense, triggering the leading superconducting
instability at Tc ∝ exp(−1/|λ(0)|) [37].

(2) The eigenvectors �(k) correspond to form factors of
the superconducting order parameters and transform as ir-
reducible representations {A1, A2, E} of the point group C3v

that is generated by C3 and My. In particular, since C3v

has no inversion center, singlet and triplet pairings mix in
tWSe2 [50,51].

(3) In the weak-coupling limit, the term ∝U in �(k̂, k̂
′
)

is parametrically larger than the term ∝U 2. For an attractive
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FIG. 3. (a) Pairing strength given by the most negative eigen-
value λ(0) of the self-consistency equation as a function of filling n
with t = h̄2θ 2/2m∗a2

0. For fillings 1.4 � n � 1.45, the most negative
eigenvalue is in the 1d A2 representation of the C3v point group.
At all other fillings, the most negative eigenvalue is in the 2d E
representation. (b) Critical temperature normalized by the bandwidth
W for (U/t )2 = 0.15, showing a pronounced enhancement around
n ≈ nmax = 0.9. Taking a bandwidth W ≈ 80 meV [see Fig. 1(a)],
we have Tc ≈ 1.85 K.

interaction in the Cooper channel, the eigenvectors �(k) thus
must be annihilated by the leading term ∝U exactly in the
expression for the interaction vertex of Eq. (7) [37,52]. Or,
explained differently, the eigenvectors �(k) need to be in the
null space of the matrix representation of the first-order term
∝U in Eq. (7). In particular, the s-wave pairing cannot be an-
nihilated by the first-order term and, thus, cannot be realized.
Furthermore, the absence of inversion symmetry in our system
results in a mixture of singlet and triplet pairing channels.
Consequently, the suppression of s-wave pairing extends to
other channels within the A1 representation [50]. Hence, the
pairing needs to arise from the remaining representations,
which are the 1d A2 representation or the 2d E representation.

B. Superconducting pairings

To determine the leading eigenvalue λ(0) and the repre-
sentation of the associated superconducting order parameter,
we solve Eq. (8) numerically for a broad range of fillings
n ∈ [0.4, 1.6]. As shown in Figs. 3 and 4, we find for 1.4 �
n � 1.45 that λ(0) is in the A2 representation with a single-
component order parameter �(k) ∝ �1(k). In contrast, for
all other n, we find that λ(0) is in the E representation
with a two-component order parameter, �(k) = η1�1(k) +
η2�2(k). Notably, we also observe that the magnitude of
λ(0), which we associate with the pairing strength, is greatly
enhanced for n ≈ 0.9. This enhanced pairing strength leads to
a significant enhancement in the critical temperature Tc and
suggest a pronounced tendency towards superconductivity at
n = 0.9.

C. Ginzburg-Landau analysis

Lastly, we want to identify the superconducting state η =
(η1, η2) realized in the E representation of our model. For
that purpose, we write down the (C3v-symmetric) Ginzburg-
Landau free energy for our system,

FGL = a(T − Tc) η · η∗ + b1(η · η∗)2 + b2|η · η|2 + · · · ,

(9)

FIG. 4. Linear independent gap functions of the leading super-
conducting state in the E representation.

where a > 0 induces the superconducting phase if T < Tc

and b1 > 0 ensures thermodynamic stability. The sign of b2

fixes the form of the superconducting state: If b2 < 0, FGL is
minimized by the nematic state with η = (cos ϕ, sin ϕ) and
ϕ ∈ [0, 2π ). The latter spontaneously breaks the threefold
rotation symmetry of the lattice but preserves time-reversal
symmetry. If b2 > 0, FGL is minimized by the chiral state with
η = (1,±i). The chiral state breaks time-reversal symmetry
spontaneously and is characterized by chiral Majorana edge
states at its boundaries.

Considering the possibility of both a chiral state or a ne-
matic state in tWSe2, an interesting question is how these
possible pairing states could be detected in possible future
experiments. For example, an experimental signature of the
Majorana edge modes in the chiral state is a quantized ther-
mal Hall conductivity. Another possibility is to use the polar
Kerr effect or magnetic circular dichroism to detect the time-
reversal symmetry breaking of the superconducting order
parameter in the chiral state. The nematic state, on the other
hand, could be distinguished by anisotropies in the upper
critical field and optical responses [12,53,54].

V. DISCUSSION AND CONCLUSION

Having identified the pairing symmetry for a supercon-
ducting state in tWSe2, it is now instructive to compare
our theoretical considerations to the experimental results of
Wang et al. [14]. As already discussed in Introduction, this
experiment reported the emergence of a putative supercon-
ducting state in tWSe2 upon doping away from a correlated
insulator state at half filling. In the experiment, two features
pointed towards the possible emergence of superconductivity:
(1) a significant reduction in resistance below approximately
3 K at a twist angle of 5.1◦, near half filling, and under
the influence of a displacement field, and (2) a flattening of
the current-voltage curve below about 2 K under the same
conditions. It should be noted that the zero-resistance state ob-
served in Ref. [14] “was unstable to repeated thermal cycling.”
Further experimental study is needed to establish reproducible
superconductivity in tWSe2.

In our theory work, we introduced a realistic model for
superconductivity in tWSe2 based on spin-valley fluctuations.

035143-4



NEMATIC, CHIRAL, AND TOPOLOGICAL … PHYSICAL REVIEW B 110, 035143 (2024)

We have shown that the enhancement of spin-valley fluctua-
tions around half filling can provide a mechanism for Cooper
pairing and predicted an unconventional, two-component or-
der parameter for superconductivity in tWSe2, realizing either
a chiral topological superconductor or a time-reversal in-
variant nematic superconductor. In future studies, it will be
interesting to explore experimental signatures of the predicted
two-component order parameter.

Note added. Recently, we became aware of two studies that
reported the observation of unconventional superconductivity

in tWSe2 [55,56]. In particular, Ref. [56] suggests that the
observed superconductivity in tWSe2 at 5 degree twist angle
may be mediated by spin-fluctuations, consistent with our
theory.
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