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Information scrambling in free fermion systems with a sole interaction
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It is well established that the presence of single impurity can have a substantial impact on the transport
properties of quantum many-body systems at low temperature. In this work, we investigate a close analog of this
problem from the perspective of quantum information dynamics. We construct Brownian circuits and Clifford
circuits consisting of a free fermion hopping term and a sole interaction. In both circuits, our findings reveal the
emergence of operator scrambling. Notably, the growth of the operator can be mapped to the symmetric exclusion
process in the presence of a source term localized at a single point. We demonstrate that in the one-dimensional
system, both the operator and entanglement exhibit diffusive scaling. Conversely, in scenarios characterized by
all-to-all hopping, the operator’s size undergoes exponential growth, while the entanglement exhibits a linear
increase over time.
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I. INTRODUCTION

The past few years have witnessed remarkable advance-
ments in the realm of many-body quantum information
dynamics, spanning both the integrable free fermion systems
[1–4] and the nonintegrable interacting systems [5–12]. In the
free fermion systems, the spreading of the information hinges
upon the propagation of quasiparticle pairs [1,13]. Conversely,
in an interacting system, the dynamics are governed by in-
formation scrambling [14–23]. A seemingly simple operator,
when subjected to time evolution, can evolve into an ex-
ceedingly complex operator—this phenomenon is famously
referred to as the quantum butterfly effect [16]. Motivated by
these developments, in this paper, we explore the quantum in-
formation dynamics in a one-dimensional free fermion system
with only a sole interaction.

Similar problem has been investigated in the conventional
condensed matter physics, which is known as the Kondo
problem, where itinerant fermions interact with a sole mag-
netic impurity [24,25]. Even when the interaction initially
begins as weak, the metallic phase can experience significant
modifications if the interaction becomes relevant under the
renormalization group flow, resulting in an anomalous in-
crease in resistivity as the temperature decreases. The insights
gained from studying the Kondo problem have far-reaching
implications in various areas, including heavy-fermion sys-
tems, quantum dots, and topological materials.

To understand the information dynamics in a free fermion
system with only a sole interaction, we consider the Heisen-
berg evolution of a simple operator. For the free fermion
system, the operator remains simple under time evolution.
However, for an interacting system, as time progresses, the
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operator can transform into a highly entangled and compli-
cated nonlocal operator. This so-called operator scrambling
dynamics can be quantitatively measured by the out-of-time-
ordered (OTO) commutator [26,27],

C(t ) = 〈|[O(t ),Y ]|2〉, (1)

where O(t ) = U †(t )OU (t ) is the Heisenberg operator and 〈·〉
represents the thermal average at infinite temperature. The
commutator should be replaced by an anticommutator if both
O and Y are fermionic operators. In some large-N systems
with all-to-all interactions, the operator shows exponential
growth at early time [19]. Concrete examples include the
Sachdev-Ye-Kitaev (SYK) model [27–29] and its Brownian
version [30]. For qubit systems evolved under local unitary
dynamics, the operator size grows linearly in time, with the
front diffusively broadening [10–12]. In this work, we concen-
trate on scenarios where the interaction randomly fluctuates
in the temporal dimension. Our findings reveal that in such
instance, the quasiparticle picture [1,13] in the free fermion
system breaks down. The solitary interaction term can induce
information scrambling, albeit at a significantly slower pace.
We obtain these results based on the two solvable models:
(i) We construct Brownian circuits that incorporate time-
dependent randomness. By extending techniques developed
in Refs. [31–35], we derive a generic master equation for
the operator dynamics and simulate an associated classical
stochastic process. (ii) We build Clifford circuits, in which
both operator spreading and entanglement growth can be ef-
ficiently simulated by monitoring the evolution of stabilizers
[36–38]. The results show that both the operator and entan-
glement exhibit diffusive scaling. Furthermore, we consider
both Brownian and Clifford circuits with all-to-all hoppings.
We show that the operator experiences exponential growth at
early times, while the entanglement entropy grows linearly.
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We anticipate that these findings describe generic features of
systems with a single interaction, accompanied by stochastic
fluctuations.

II. BROWNIAN CIRCUITS IN 1D

We first construct solvable Brownian circuits in one di-
mension (1D) [31–34]. We focus on Majorana fermions with
nearest-neighbor hopping and a sole four-body interaction
term on the first four sites. The Hamiltonian reads

dH (t ) =
∑

i

dWi,i+1(iγiγi+1) + dW1234(γ1γ2γ3γ4), (2)

where γi are Majorana fermion operators satisfying {γi, γ j} =
2δi j . Independent Brownian variables dWi,i+1 and dW1234 sat-
isfy the Wiener process, with

dWi,i+1dWi′,i′+1 = Adtδii′ ,

dW1234dW1234 = Bdt . (3)

In a short interval dt , the unitary evolution is given by dU =
e−idH . This setup is similar to Ref. [39], in which exact diago-
nalization was used to study level repulsion, characterizing the
many-body chaos transition of a similar model on graphs. Our
main interest is the dynamics of simple operators. Following
Refs. [32–34], we expand O(t ) in a complete orthonormal ba-
sis of Hermitian operators {Bμ} = {iq(q−1)/2γi1γi2 . . . γiq} (1 �
i1 < i2 < · · · < iq � L, where L is the number of sites):

O(t ) =
∑

μ

αμ(t )Bμ. (4)

Here, the sum of μ is over all 2L elements in the basis. αμ(t )
can be viewed as a wave function in the operator space and
the expression of αμ(t ) is

αμ(t ) = 1

tr(BμBμ)
tr[BμO(t )]. (5)

With 〈O†O〉 = 1, the coefficients |αμ(t )|2 satisfy the normal-
ization condition

∑
μ |αμ(t )|2 = 1. We can assign a height

for each basis operator as follows: the ith component hi for
operator Bμ is 0 if Bμ is identity on site i and 1 if it is
the γi operator. Therefore, hi forms an L-component vector
h ∈ {0, 1}L and the site-resolved height distribution f (h, t )
can be defined as

f (h, t ) = |αμ(t )|2|height(Bμ )=h, (6)

whose change in an infinitesimal amount of time dt is
given by

df (Bμ, t ) = 2αμ(t )dαμ(t ) + dαμ(t )dαμ(t ). (7)

We can further introduce the operator size by 〈h(t )〉 ≡∑
h h f (h, t ), with h counting the value 1 in h, which is equal

to the summation over OTO correlators [21,40,41],

〈h(t )〉 = 1

4

∑
i

〈|{O(t ), γi}|2〉. (8)

For example, for operator O = 1√
2
(γ1 + iγ1γ2), f (h =

{1, 0, 0, . . . }) = f (h = {1, 1, 0, . . . }) = 1/2 and the opera-
tor size is 〈h〉 = 1/2(1 + 2) = 3/2. For an initial Majorana

fermion operator O = γ j , the height distribution is a δ func-
tion at h = (0, 0 . . . , h j = 1, 0, . . . ) and h(0) = 1. Under
chaotic evolution, the height distribution approaches a uni-
form distribution in the operator space in the long-time limit,
with the restriction of fermion parity. The change of the height
distribution at time t is determined by using the Heisenberg
equation

dO(t ) = eidH (t )O(t )e−idH (t ) − O(t ). (9)

In the context of Brownian circuits, a significant simpli-
fication arises from the dephasing effect induced by the
time-dependent randomness, and we can expand Eq. (9) and
keep terms to the second order,

dO(t ) = [idH (t ), O(t )] + 1
2 {idH (t ), [idH (t ), O(t )]}. (10)

With the expression of dO(t ), the time evolution of the expan-
sion coefficient αμ(t ) is

dαμ(t ) = 1

tr
(
B2

μ

) tr[BμdO(t )]. (11)

Plugging this into the change of the height distribution (7)
and using Eq. (2) leads to a closed form for the Markovian
dynamics of f (h, t ) described by a master equation. Leaving
the details to the Appendix [42], the result reads

∂ f (h, t )

∂t
= 4A

∑
i

δhi⊕hi+1,1

× [ f (h ⊕ ei ⊕ ei+1, t ) − f (h, t )]

+ 4Bδh1⊕h2⊕h3⊕h4,1

× [ f (h ⊕ e1 ⊕ e2 ⊕ e3 ⊕ e4, t ) − f (h, t )],
(12)

where ei represents an L-component vector that takes the
value 1 on site i and 0 at all other sites. The sum ⊕ is taken
modulo 2. The first term on the right-hand side of Eq. (12)
represents the hopping of fermions. Any γi operator in the
original configuration h can move one site to the left or right
with a rate of 4A, provided that the target site is unoccu-
pied. Since there is no change in the number of Majorana
operators, this term preserves the operator size. Indeed, this
corresponds to the symmetric exclusion process (SEP) [43,44]
and can be reduced to an unbiased random walk problem
when there is only a single fermion operator [42]. The second
term is the contribution from the interaction term and only
has a nontrivial operation on bases that contain one or three
Majorana fermions on the first four sites. This constraint is
described by the Kronecker δ function. As an example, h =
{1, 0, 0, 0, 0, . . . } can transform to hnew = {0, 1, 1, 1, 0, . . . }
under the operation of the second term. This results in an
increase in the operator size by 2.

f (h, t ) contains exponentially many components, which
makes a direct analytical or numerical study of Eq. (12) for
large system size impractical. Therefore, we first construct a
classical stochastic particle dynamics described by Eq. (12)
and then perform a Monte Carlo simulation to understand
operator growth. (In the Appendix [42], we compare exact
results with classical simulations for small systems.) The clas-
sical model is defined on a 1D chain with L empty sites and
periodic boundary condition. Each site can have, at most, one
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FIG. 1. Operator size growth in models with spatial locality.
(a) Operator size growth of 1D Brownian circuits with A = B = 1/4.
The results are obtained by classical simulation. (b) Operator size
growth of 1D Clifford circuits. The black dashed lines in both fig-
ures indicate linear behavior. The data collapse demonstrates a clear
diffusive scaling in both models. In both models, the operator’s initial
location is randomly selected from a uniform distribution across the
lattice. Note that in Clifford circuits, L is the number of qubits and
there are 2L Majorana fermions.

particle. At the beginning, we put a particle on a randomly
chosen site, which corresponds to the initial condition with
a single Majorana operator. The dynamics of the particles is
governed by the following update rule: (1) If there are one or
three particles on the first four sites, we empty the occupied
sites and occupy the remaining empty sites with probability
pB = 4Bδt . (2) Implement a random walk on each particle
with probability pA = 4Aδt . (3) Repeat step (1) and step (2).
This classical model can be understood as particles undergo-
ing a SEP with a source at one point, which can change the
number of particles. We then compute the particle number
after 2N steps, which corresponds to the operator size at t =
Nδt . The results for different system size L are presented in
Fig. 1(a). We observe that the particle number grows linearly
at early times and approaches a nearly half-filled state in the
long-time limit. In addition, we plot 〈h(t )〉/L as a function of
t/L2, and find nice data collapse for different L for the entire
dynamics.

III. CLIFFORD CIRCUITS IN 1D

To explore the universality of the dynamics witnessed
within the Brownian circuit, we introduce a second model
based on the Clifford circuits [45]. Like the Brownian cir-
cuits, this model also describes Majorana fermions with the
interaction taking place exclusively among the first four sites.
Unlike a continuous Brownian Hamiltonian evolution, the
system progresses through a sequence of Clifford gates, fa-
cilitating a stabilizer representation for the quantum state.
In a system comprising L qubits, this necessitates L distinct
Pauli string operators, wherein the quantum state manifests
as an eigenstate with an eigenvalue of +1. As a result, the
Clifford dynamics can be translated into the classical dynam-
ics of stabilizers, making it amenable to efficient simulation
on classical computers [37,38]. We consider a setup with 2L
Majorana fermions, which corresponds to a L-qubit system.
The Pauli operator is related to the Majorana fermion repre-
sentation by the Jordan-Wigner transformation,

Xi = iγ2i−1γ2i,

Yi =
∏
j<i

Xjγ2i. (13)

(a)

(b)

FIG. 2. (a) The cartoon picture for the 1D Clifford circuits in the
Majorana fermion representation. The initial state is stabilized by
pairing up {(γ1, γ2), (γ3, γ4), . . . , (γ2L−1, γ2L )}. In the simulation, we
take the periodic boundary condition. (b) The possible operations in
the Clifford circuits.

According to this transformation, a Pauli string can be mapped
to a Majorana string up to a phase factor. The initial state
is stabilized by {iγ1γ2, iγ3γ4, . . . , iγ2L−1γ2L}, which corre-
sponds to pairing up γ2i−1 and γ2i. In this quantum dynamics,
each time period is composed of three steps (also see Fig. 2):
(1) Apply a random two-qubit Clifford gate on the first
two qubits, which corresponds to an interaction term in the
Majorana fermion representation. (2) Perform a swap U1 =
ei π

4 (iγ2i−1γ2i ) between Majorana fermion modes γ2i−1 and γ2i

with probability p. This corresponds to a Clifford gate. (3)
Perform a swap U2 = ei π

4 (iγ2iγ2i+1 ) between Majorana fermion
modes γ2i and γ2i+1 with probability p. This is also a Clifford
gate. Steps (2) and (3) together describe a free Majorana
fermion dynamics. We focus on the growth of the stabilizer
operator, computed in the Majorana fermion representation.
The results are depicted in Fig. 1(b). In the early stages,
the operator size shows a linear growth, with the growth
rate proportional to 1/L. Furthermore, 〈h(t )〉/L is a scaling
function f (t/L2) for the entire dynamics. Both the early-time
linear growth and the diffusive scaling are consistent with
the results observed in the classical model extracted from the
Brownian circuit. In both models, the operator dynamics can
be understood in terms of SEP in the presence of a source
term at the boundary. We are also interested in the quantum
entanglement growth in this Clifford dynamics. The Rényi
entanglement entropy (EE) of a subsystem A is defined as

S(n)
A = 1

1 − n
log2 trρn

A, (14)

where ρA is the reduced density matrix of the subsystem
A. In this paper, we use the logarithm with base 2. For the
stabilizer state, EE is independent of the Rényi index and
therefore we can ignore the superscript n. Unlike the operator
dynamics, which only grows in the presence of the interaction,
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FIG. 3. Entanglement growth of subsystem A in 1D Clifford
circuits with periodic boundary condition. We present results for
(a) the free model and (b) the free model with a single random
two-qubit gate. Inset: A comparison between these two models. We
bipartite the system into A and A. The subsystem A is chosen from the
(L/4 + 2)-th qubit to the (3L/4 + 1)-th qubit so that the two-qubit
interacting gate lies in the middle of the subsystem A.

the results in Fig. 3 exhibit
√

t growth for both interacting and
noninteracting cases [evolved without step (1)]. However, the
entanglement structures of these two cases are quite different.
In interacting systems, the half-system EE eventually saturates
to approximately half of the system size, constituting the
maximum possible EE for the half system. In noninteracting
systems, it only saturates to about one-fourth of the system
size. This can be explicitly understood by counting the num-
ber of fermion arcs crossing the entanglement cut. Each arc
of a fermion-pair stabilizer (γi, γ j ) has a 1/2 probability of
connecting region A to its exterior, contributing 1/2 to the
EE. Consequently, roughly half of the L stabilizers will collec-
tively contribute L/2 × 1/2 = L/4 for EE. For completeness,
we also investigate a Floquet free fermion Clifford circuit with
a fluctuating sole interaction in the Appendix [42].

IV. NONLOCAL MODEL

Here we turn to models with all-to-all hopping. In the
Brownian circuit, the Hamiltonian is now

dH (t ) =
∑
i< j

dWi, j (iγiγ j ) + dW1234(γ1γ2γ3γ4), (15)

where dWi j and dW1234 satisfy the Wiener process,

dWi jdWi′ j′ = Adtδii′δ j j′ ,

dW1234dW1234 = Bdt . (16)

For this model, the operator dynamics can once again be
described by the classical master equation for the height dis-
tribution f (h, t ). This master equation is similar to Eq. (12)
with the details given in the Appendix [42]. It describes the
classical nonlocal random walker in the presence of a source
term. Therefore the growth of the particle/operator dynamics
is governed by the following update rule: (1) If there are one
or three particles on the first four sites, empty the occupied
sites and occupy the remaining empty sites with probability
pB = 4Bδt . (2) Implement a reshuffle on all sites. Specifically,
we randomly permutate the L sites. (3) Repeat step (1) and
step (2). Here, the random permutation among all sites in step
(2) arises from the presence of a finite constant A in the large-L
limit. This leads to a classical dynamics that is independent
of A. For this dynamics, the particle number at 2N steps
corresponds to the operator size at t = Nδt . The results for

FIG. 4. Operator size growth of nonlocal 1D Brownian circuits
with B = 1/4. (a) The results are obtained by classical simulation,
which show that the operator size grows exponentially as a function
of t/L at early times. The black dashed line indicates 〈h〉 = e8t/L .
(b) The comparison between the solution of the master equation (19)
and the results from the classical particle simulation.

different system size L are presented in Fig. 4(a). We observe
that the particle number grows exponentially at early times
with the growth rate ∼1/L. This can be understood as follows:
Following this nonlocal random walk process, the probability
that one site is occupied by a particle is 〈h〉/L. At early times,
when 〈h〉/L 
 1, the probability of only one site among the
first four sites being occupied far outweighs the probabilities
associated with other nonzero particle configurations on those
initial four sites. The interaction gate can increase the size of
such size-one operator by a constant 2. Since there are four
such configurations, we can obtain

d〈h〉
dt

= 4 × 2〈h〉/L, (17)

with B = 1/4. The solution of the above equation is propor-
tional to an exponential function 〈h〉 ∝ e8t/L. Moreover, given
the absence of locality in this model, we can combine f (h, t )
with the same operator size and define the size distribution as
follows:

f (h, t ) ≡
∑

{h|size of h=h}
f (h, t )

= f (h, t ) × number of h|size of h = h, (18)

for which we can derive a master equation,

df (t )

dt
= A f f (t ), (19)

with a pentadiagonal matrix A f [42], where f (t ) is an L-
dimensional array with elements f (1, t ), . . . , f (L, t ). We can
directly solve this master equation. In Fig. 4(b), we compare

FIG. 5. Nonlocal model in 1D Clifford circuits. (a) Operator size
growth. The inset shows that the operator size grows exponentially as
a function of t/L at early times. (b) The data collapse of entanglement
growth of subsystem A for different L. The size of subsystem A is half
of the whole system.
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TABLE I. Summary of the main results in free fermion models with a sole interaction. All the models here exhibit stochastic randomness.

Spatial locality Model Operator size 〈h(t )〉 Entanglement entropy (EE)

〈h(t )〉/L is a function of t/L2

Local Brownian circuits [Eq. (2)] for the entire dynamics, /

〈h(t )〉 ∝ t/L at early times [Fig. 1(a)]

〈h(t )〉/L is a function of t/L2 EE/L is a function of t/L2

Clifford circuits (Fig. 2) for the entire dynamics, for the entire dynamics,
〈h(t )〉 ∝ t/L at early times [Fig. 1(b)] EE ∝ √

t at early times [Fig. 3(b)]

Nonlocal Brownian circuits [Eq. (15)] log2〈h(t )〉 ∝ t/L at early times [Fig. 4(a)] /

EE/L is a function of t/L
Clifford circuits log2〈h(t )〉 ∝ t/L at early times [Fig. 5(a)] for the entire dynamics,

EE ∝ t at early times [Fig. 5(b)]

the solution of the master equation (19) with the direct simula-
tion of the particle dynamics and find that these two methods
give the same result for the entire dynamics. We also offer an
analytical solution to the master equation at early times in the
Appendix [42], which is consistent with Eq. (17).

In a Clifford circuit, a similar all-to-all model is explored,
with each time step including two parts: (1) Apply a random
two-qubit Clifford gate on the first two qubits. (2) Apply a
reshuffle on all fermions. Specifically, we randomly permutate
the 2L fermions. The growth of the stabilizer operator in the
Majorana fermion representation is calculated for different
system size L in Fig. 5(a). The inset of Fig. 5(a) shows that
〈h〉 grows exponentially as a function of t/L at early times,
which is again consistent with the results in the Brownian
circuit. Here, the coefficient before t/L is 34/15, which is
explained in the Appendix [42]. We also investigate the quan-
tum entanglement growth in the Clifford dynamics and find
that the EE shows a linear growth with a speed independent
of the system size and eventually saturates to the maximum
possible EE for the half system [see Fig. 5(b)]. This indicates
that the stabilizers initially supported on the subsystem A
spread over the entire system.

V. DISCUSSION

In this work, we have considered one-dimensional and
all-to-all free fermion models with a sole interaction. We
analyze the operator dynamics within a Brownian circuit and
derive the master equation for it. Our investigation reveals that
the single interaction term can induce operator scrambling,
albeit more slowly than an extended interaction. In the local

model, the operator size shows a diffusive scaling, while in
the extended case, the operator size shows a linear behavior
[10,11]. In the nonlocal model, the exponent for the early
dynamics is suppressed by the system size compared to the
extended case [32]. We verify these results with large-scale
simulations in the Clifford circuit. Additionally, we investi-
gate the entanglement dynamics within the Clifford circuits.
Our findings reveal that in the one-dimensional model, the
entanglement entropy exhibits diffusive growth over time,
while in the model featuring all-to-all hopping, it demon-
strates linear growth over time. We make a summary of our
main results in Table I. It is worth noting that the models un-
der investigation in this paper exhibit stochastic randomness.
We anticipate that the findings presented here can be applied
to other analogous random quantum dynamics with a single
interaction term. Nevertheless, a crucial question emerges:
Does a similar phenomenon manifest itself in models with-
out stochastic randomness? We leave this question for future
study.
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APPENDIX A: MASTER EQUATION OF HEIGHT DISTRIBUTION IN BROWNIAN CIRCUITS

In this Appendix, we give a detailed derivation of the master equation in a generic Brownian quantum circuit. The Hamiltonian
reads

dH (t ) =
∑
i< j

dWi j (iγiγ j ) +
∑

i< j<k<l

dWi jkl (γiγ jγkγl ), (A1)

where Wi j and Wi jkl satisfy the Wiener process, with

dWi jdWi′ j′ = Ai jdtδii′δ j j′ ,

dWi jkl dWi′ j′k′l ′ = Bi jkl dtδii′δ j j′δkk′δll ′ . (A2)
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First, we consider Bi jkl = 0, which corresponds to the hopping Majorana fermions without four-body interaction. We can expand
the evolution of the operator O(t ) to second order,

dO(t ) = eidH (t )O(t )e−idH (t ) − O(t )

= [idH (t ), O(t )] + 1

2
{idH (t ), [idH (t ), O(t )]}

= i[dH (t ), O(t )] − 1

2
{dH (t )dH (t ), O(t )} + dH (t )O(t )dH (t )

= i[dH (t ), O(t )] −
∑
i< j

O(t )Ai jdt +
∑
i< j

γiγ jO(t )γ jγiAi jdt . (A3)

We choose Bμ to be a complete orthonormal basis of Hermitian operators {Bμ} = {iq(q−1)/2γi1γi2 · · · γiq} and the expansion
coefficient αμ(t ) is

αμ(t ) = 1

tr(BμBμ)
tr[BμO(t )]. (A4)

Its time evolution is given by

dαμ(t ) = 1

tr
(
B2

μ

) tr[BμdO(t )]

= i

tr
(
B2

μ

) tr{Bμ[dH (t ), O(t )]} −
∑
i< j

αμ(t )Ai jdt + 1

tr
(
B2

μ

) ∑
i< j

tr[Bμγiγ jO(t )γ jγi]Ai jdt, (A5)

where

1

tr
(
B2

μ

) ∑
i< j

tr[Bμγiγ jO(t )γ jγi]Ai jdt = 1

tr
(
B2

μ

) ∑
i< j

tr[γ jγiBμγiγ jO(t )]Ai jdt

=
∑
i< j

qμ,i, jαμ(t )Ai jdt, (A6)

where qμ,i, j = 1 if γi, γ j ∈ Bμ or γi, γ j /∈ Bμ; qμ,i, j = −1 if γi ∈ Bμ, γ j /∈ Bμ or γ j ∈ Bμ, γi /∈ Bμ, and we finally get

dαμ(t ) = i

tr
(
B2

μ

) tr{Bμ[dH (t ), O(t )]} −
∑
i< j

αμ(t )Ai jdt +
∑
i< j

qμ,i, jαμ(t )Ai jdt

= i

tr
(
B2

μ

) tr{Bμ[dH (t ), O(t )]} − 2
∑

{i< j|qμ,i, j=−1}
αμ(t )Ai jdt . (A7)

Define f (Bμ, t ) to be the average probability at time t ,

f (Bμ, t ) = |αμ(t )|2 = α2
μ(t ). (A8)

The evolution is given by

df (Bμ, t ) = 2αμ(t )dαμ(t ) + dαμ(t )dαμ(t ). (A9)

We have

df (Bμ, t ) = 2
i

tr
(
B2

μ

) tr{Bμ[αμ(t )dH (t ), O(t )]} − 4
∑

{i< j|qμ,i, j=−1}
α2

μ(t )Ai jdt − 1

tr2
(
B2

μ

) tr2{Bμ[dH (t ), O(t )]}

− 4
i

tr
(
B2

μ

) tr{Bμ[αμ(t )dH (t ), O(t )]}
∑

{i< j|qμ,i, j=−1}
Ai jdt + 4α2

μ(t )(
∑

{i< j|qμ,i, j=−1}
Ai j )

2dt2

= −4
∑

{i< j|qμ,i, j=−1}
f (Bμ, t )Ai jdt − 1

tr2
(
B2

μ

) tr2{O(t )[Bμ, dH (t )]}
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= −4
∑

{i< j|qμ,i, j=−1}
f (Bμ, t )Ai jdt +

∑
ν

∑
i< j

1

tr2
(
B2

μ

) tr2(Bν[Bμ, γiγ j]) f (Bν, t )Ai jdt

= −4
∑

{i< j|qμ,i, j=−1}
f (Bμ, t )Ai jdt + 4

∑
{i< j|qμ,i, j=−1}, {ν||Bμγiγ j |=|Bν |}

f (Bν, t )Ai jdt, (A10)

where, on the right of the first equality, the first and fourth terms are zero from Wiener process (A2), and the fifth term is ignored
when considering dt to the first order. The second equality uses the definition of the average probability (A8) (height distribution
of Bμ) and the cyclicity of trace,

tr{Bμ[dH (t ), O(t )]} = tr{O(t )[Bμ, dH (t )]}. (A11)

Now we can consider the operator height distribution function,

f (h, t ) = |αμ(t )|2|height(Bμ )=h, (A12)

which satisfies the master equation,

∂ f (h, t )

∂t
= −4

∑
i< j

δhi⊕h j ,1Ai j f (h, t ) + 4
∑
i< j

δhi⊕h j ,1Ai j f (h ⊕ ei ⊕ e j, t )

= 4
∑
i< j

δhi⊕h j ,1Ai j[ f (h ⊕ ei ⊕ e j, t ) − f (h, t )]. (A13)

1. Symmetric exclusion process (SEP)

When Ai j = Aδ j−i,1, Eq. (A13) reduces to

∂ f (h, t )

∂t
= 4A

∑
i

δhi⊕hi+1,1[ f (h ⊕ ei ⊕ ei+1, t ) − f (h, t )]. (A14)

We can consider an initial operator γi, whose corresponding height distribution is f (ei, 0) = 1, plug it into Eq. (A14), and we
get

∂ f (ei, 0)

∂t
= 4A f (ei−1, 0) + 4A f (ei+1, 0) − 8A f (ei, 0)

= 4A{[ f (ei+1, 0) − f (ei, 0)] − [ f (ei, 0) − f (ei−1, 0)]}

≈ 4A
∂2 f (ei, 0)

∂x2
, (A15)

where
∂ f (ei, 0)

∂x
≡ lim

	x→0

f (ei+	x, 0) − f (ei−	x, 0)

2	x
. (A16)

This diffusion equation (A15) indicates that the hopping model can be described by a SEP model.

2. Master equation for generic Brownian Hamiltonian

When Bi jkl �= 0, we can derive a more generic master equation including four-body interaction,

∂ f (h, t )

∂t
= 4

∑
i< j

δhi⊕h j ,1Ai j[ f (h ⊕ ei ⊕ e j, t ) − f (h, t )]

+ 4
∑

i< j<k<l

δhi⊕h j⊕hk⊕hl ,1Bi jkl [ f (h ⊕ ei ⊕ e j ⊕ ek ⊕ el , t ) − f (h, t )]. (A17)

If we let Ai j = Aδ j−i,1 and Bi jkl = Bδi1δ j2δk3δl4, we get the master equation for Majorana fermions with nearest-neighbor
hopping and a sole four-body interaction,

∂ f (h, t )

∂t
= 4A

∑
i

δhi⊕hi+1,1[ f (h ⊕ ei ⊕ ei+1, t ) − f (h, t )] + 4Bδh1⊕h2⊕h3⊕h4,1[ f (h ⊕ e1 ⊕ e2 ⊕ e3 ⊕ e4, t ) − f (h, t )]. (A18)
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FIG. 6. Operator size growth of 1D Brownian circuits with spatial locality. The parameters are the same as those in the main text with
A = B = 1/4. (a) Results from simulations of classical stochastic dynamics extracted from the original Brownian circuit with δt = 0.5 (labeled
“classical model”) and results from solving the master equation (12) (labeled “master equation”). (b) Results from simulations of classical
stochastic dynamics extracted from the original Brownian circuit with δt = 1 and δt = 0.1. We observe diffusive dynamics for both cases. In
the main text, we use δt = 1.

3. Master equation for nonlocal model

When Ai j = A, Bi jkl = Bδi1δ j2δk3δl4, Eq. (A17) describes
an all-to-all hopping model with a sole four-body interaction.
Given the absence of locality in the model, the height distri-
bution function f (h, t ) now only depends on the size h. The
master equation is now given by

∂ f (h, t )

∂t
= 4Bδh1⊕h2⊕h3⊕h4,1[ f (h ⊕ e1 ⊕ e2 ⊕ e3 ⊕ e4, t )

− f (h, t )]. (A19)

The master equation of the size distribution f (h, t ) is

df (t )

dt
= A f f (t ), (A20)

with a pentadiagonal matrix A f :

(A f )h,h−2 = 4B × p(h − 2, 1),

(A f )h,h−1 = 0,

(A f )h,h = −4B × [p(h, 1) + p(h, 3)], (A21)

(A f )h,h+1 = 0,

(A f )h,h+2 = 4B × p(h + 2, 3),

where

p(h, i) ≡
(

4

i

)(
L − 4

h − i

)/(
L

h

)
. (A22)

At early times, or large-L limit, the master equation sim-
plifies to

df (h, t )

dt
= 16B

L
[(h − 2) f (h − 2, t ) − h f (h, t )]. (A23)

The coefficient of f (h, t ) is the rate of height increase, which
is proportional to the height itself, indicating an initial expo-
nential growth. A similar equation was proposed for the height
growth in the SYK model [21]. Taking the continuum limit of

the master equation, we get

∂ f (h, t )

∂t
= 16B

L
(−2)∂h[h f (h, t )]. (A24)

After multiplying Eq. (A24) by h on both sides and integrat-
ing, we see that the mean size obeys

∂t 〈h〉 = −32B

L

[
h2 f (h, t )

∣∣∣L

0
− 〈h〉

]
≈ 32B

L
〈h〉. (A25)

When B = 1/4 and h(0) = 1, the solution of Eq. (A25) is

〈h(t )〉 = e8t/L. (A26)

APPENDIX B: COMPARISON BETWEEN EXACT
RESULTS AND CLASSICAL SIMULATIONS IN LOCAL

BROWNIAN CIRCUITS

For small systems in local Brownian circuits, we find that
the classical stochastic dynamics gives the same results as
Eq. (12). As shown in Fig. 6(a), we find that the classical
dynamics’ results align with those from the original master
equation. However, in such a small system, we cannot observe
diffusive dynamics and the data for L = 8 and L = 12 do not
collapse into a single curve. As we increase the system size,
the height distribution f (h, t ) contains exponentially many
components, making a direct numerical study of the master
equation impractical. Therefore, we simulate the classical
stochastic particle model governed by the master equation. We
can observe diffusive dynamics when L is large, as shown in
Fig. 6(b).

APPENDIX C: FLOQUET DYNAMICS
IN 1D CLIFFORD CIRCUITS

We consider a setup with 2L Majorana fermions which
corresponds to a L-qubit system. The initial state is stabilized
by {iγ1γ2, iγ3γ4, . . . , iγ2L−1γ2L} and each time period is com-
posed of three steps (also see Fig. 7):
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(a)

(b)

FIG. 7. (a) The cartoon picture for the 1D Floquet Clifford circuits in the Majorana fermion representation. The initial state is stabilized
by pairing up {(γ1, γ2), (γ3, γ4), . . . , (γ2L−1, γ2L )}. In the simulation, we take the periodic boundary condition. (b) The possible operations in
the Clifford circuits.

(1) Apply a random two-qubit Clifford gate on the first
two qubits, which corresponds to an interaction term in the
Majorana fermion representation.

(2) Perform a swap U1 = ei π
4 (iγ2i−1γ2i ) between Majorana

fermion modes γ2i−1 and γ2i.
(3) Perform a swap U2 = ei π

4 (iγ2iγ2i+1 ) between Majorana
fermion modes γ2i and γ2i+1.

For the noninteracting case [evolved without step (1)], the
operator size remains the initial value 2, and the half-system
EE oscillates in a linear speed and periodically reaches the
maximum possible EE [see Fig. 8(a)]. The oscillation is a
manifestation of the periodic spreading of the two ends of the
pair (γi, γ j ).

For the interacting case, the operator size grows nearly lin-
early at early times and 〈h(t )〉/L is a scaling function f (t/L2)
for the entire dynamics [see Fig. 8(b)]. The EE grows in an
oscillating way with the mean value growing linearly at early
times [see Fig. 8(c)]. After a timescale of ∼L2, the oscillating
behavior of EE disappears, which indicates that information
scrambling makes the entanglement structure different from
that in the noninteracting case.

APPENDIX D: EXPLANATION OF THE COEFFICIENT
34/15 IN NONLOCAL CLIFFORD CIRCUITS

Similar to that in nonlocal Brownian circuits, in the Majo-
rana fermion representation, at early times, when 〈h〉/L 
 1,
the probability of only one site among the first four sites
being a nonidentity Majorana fermion operator far outweighs
the probabilities associated with other nonidentity operators
on those initial four sites. The interaction gate can randomly
shuffle the 15 nonidentity operators on the initial four sites,
with the resulting operator being a size-one operator with
probability 4/15, a size-two operator with probability 6/15, a
size-three operator with probability 4/15, and a size-four op-
erator with probability 1/15. Effectively, the interaction gate
can increase the size of the size-one operator by a constant
17/15. Since there are four such size-one operators, we can
obtain

d〈h〉
dt

= 4 × 17/15 × 〈h〉/2L = 34/15 × 〈h〉/L, (D1)

the solution of which is proportional to an exponential func-
tion 〈h〉 ∝ e34/15×t/L.

FIG. 8. Floquet dynamics in 1D Clifford circuits. Free model: (a) Entanglement growth of subsystem A. Free model with a single random
two-qubit gate: (b) Operator size growth, (c) Entanglement growth of subsystem A. The inset shows the entanglement growth when L = 400;
the black dashed line indicates linear behavior. We bipartite the system into A and A. The subsystem A is chosen from the (L/4 + 2)-th qubit
to the (3L/4 + 1)-th qubit so that the two-qubit interacting gate lies in the middle of the subsystem A.
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