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Motivated by the importance of studying topological superconductors beyond the mean-field approximation,
we here investigate mesoscopic islands of time-reversal-invariant topological superconductors. We characterize
the spectrum in the presence of strong order-parameter fluctuations in the presence of an arbitrary number of
Kramers pairs of Majorana edge states and study the effect of coupling the Coulomb blockaded island to external
leads. In the case of an odd fermionic parity on the island, we derive an unconventional Kondo Hamiltonian in
which metallic leads couple to both topological Majorana degrees of freedom (which keep track of the parity in
different leads) and the overall spin 1

2 in the island. For the simplest case of a single wire (two pairs of Majorana
edge states), we demonstrate that anisotropies are irrelevant in the weak coupling renormalization group flow.
This permits us to solve the Kondo problem in the vicinity of a Toulouse-type point using Abelian bosonization.
We demonstrate a residual ground-state entropy of ln(2), which is protected by spin-rotation symmetry, but
reduced to ln(

√
2) (as in the spinless topological Kondo effect) by symmetry-breaking perturbations. In the sym-

metric case, we further demonstrate the simultaneous presence of both Fermi-liquid and non-Fermi-liquid-like
thermodynamics (depending on the observable) and derive charge and spin transport signatures of the Coulomb
blockaded island.

DOI: 10.1103/PhysRevB.110.035136

I. INTRODUCTION

Band structure topology has become a pillar of modern
condensed matter physics, with implications for both quan-
tum technologies and quantum materials [1]. In particular,
unconventional spin-triplet superfluids and superconductors,
as realized in 3He [2,3], uranium based heavy fermion su-
perconductors [4–6], and possibly in twisted van der Waals
multilayers [7], are important candidates to host topological
fermionic boundary and low-energy states. While the emer-
gent single-particle band structure of these phases is by now
theoretically well understood, the additional complexity of
strong electronic correlations leads to much richer physics
[8,9] and is the object of ongoing research. This particularly
concerns the interplay of fermionic boundary states (Majorana
fermions) with quantum fluctuations of the order parameter.

As a prime example, strong quantum fluctuations of the
superconducting phase in mesoscopic effectively spinless
Majorana Cooper-pair boxes (MCPB) can be induced by a
large charging energy [10]. These devices are floating is-
lands of Josephson-connected spinless (i.e., spin-polarized)
p-wave superconducting chains [11,12] and allow to im-
plement a paradigmatic topological qubit, the tetron [13].
While arrays of such tetrons emulate exotic fractionalized
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many-body phases with topological order [13–17], a single
spinless MCPB coupled to metallic leads realizes a topologi-
cal quantum impurity problem, the topological Kondo effect
[18–25], hosting non-Fermi-liquid-like low-energy charac-
teristics and an irrational residual entropy reminiscent of a
nontrivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively for
the past 40 years both theoretically [26–36], most recently
in the prospect of quantum information [37–41], and exper-
imentally, in particular in mesoscopic quantum electronics
devices [42–44]. For this symmetry group, non-Fermi-liquid
behavior occurs only in the overscreened multichannel case
[45]. The Majorana based topological Kondo effect is spe-
cial, inasmuch it realizes an impurity spin transforming under
O(M) (where M denotes the number of Majorana zero modes
coupled to external leads). Very recently, Majorana-free se-
tups of orthogonal [46,47] and symplectic symmetry [48–50]
were proposed, mathematically completing the set of possible
classical Lie groups. Interestingly, in the single-channel case,
both orthogonal and symplectic Kondo models display exotic
physics, including fingerprints of bound anyons, already [51].

Within the superconducting Altland-Zirnbauer classes, two
nontrivial topological phases exist in one dimension. Apart
from spinless p-wave superconductors (e.g., the “Kitaev
chain” [11], class D), there is a spinful p-wave time-reversal-
invariant topological superconductor (TRITOPS [52], class
DIII). In this work, we study TRITOPS islands in the
Coulomb blockade regime and, when the fermionic parity
on the island is odd, uncover an unconventional topological
Kondo effect of spinful Majorana fermions. Using Abelian
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FIG. 1. (a) Schematic of physical setup. The gray box represents
the Majorana Cooper-pair box, which harbors a one-dimensional
time-reversal-invariant SC (black line) that hosts four Majorana zero
modes (yellow and red dots). The device is coupled to leads (blue
lines). (b) Schematic representation of the effective Kondo Hamil-
tonian (20). The even ψ+ and odd ψ− superpositions of the lead
electrons are coupled to an effective quantum impurity with four
internal states (rectangle). The angular momentum Ĵ of the super-
conducting condensate (blue ellipse) acts as an effective spin 1

2 . The
spin of the lead electrons (black arrows) is coupled to the impurity
via the orbitals formed by the MZMs (red and yellow circles). The
Kondo coupling to Ĵ is effective only when the orbital next to the
lead electrons is occupied. (c) Schematic renormalization group flow
diagram based in the plane of effective Kondo coupling λ and relative
strength of Cooper-pair spin fluctuations Es and polarizing field Ez.
The parameter g = eSimp is defined through the zero-temperature
impurity entropy Simp. (d) Absolute value of the charge conductance
between the left and right wires in the limit Es/Ez � 1.

bosonization, we solve this problem in the simplest and most
relevant case of two pairs of Majorana edge states coupled to
two spinful leads, Fig. 1. We characterize the phase diagram
and demonstrate that the topological Kondo effect of spinful
Majorana fermions is protected by spin-rotation symmetry,
but flows to the fixed point of the spinless topological Kondo
effect in the presence of symmetry-breaking perturbations.
Both fixed points display exotic hallmarks of non-Fermi liq-
uids. We make numerically and (potentially) experimentally
verifiable predictions for thermodynamic and transport signa-
tures of the nontrivial low-energy fixed point.

Single-particle physics in one-dimensional TRITOPS
gained substantial attention over the years [53–56], in partic-
ular regarding its unconventional transport through Josephson

junctions [57–63]. Strong order-parameter fluctuations of the
superconducting phase, i.e., spinful MCPBs in the Coulomb
blockade regime, also gained some attention [54,60], both in
their context as topological qubits [64], topological Joseph-
son junction arrays [65], and mesoscopic Kondo impurities
[66]. At the same time, to the best of our knowledge, the
impact of strong order-parameter fluctuations of the Cooper-
pair orientation d̂ in the spin sector was considered only in
Ref. [67], where it was uncovered that the band structure
topology induces a theta term [68] in the effective nonlinear
sigma model of the d̂ vector, thereby stabilizing 2e-paired
superconductivity. Here, similar fluctuations will be studied
in zero-dimensional mesoscopic islands.

The paper is organized as follows: In Sec. II we introduce
the spinful Majorana Cooper-pair box and present the solu-
tion, finding the eigenfunctions and spectrum. Building upon
that result, we discuss in Sec. III how a unique topological
Kondo effect can arise from coupling a Coulomb blockaded
MCPB to spinful normal metal leads. This is done in the cases
of dominant and subdominant spin interactions within the
MCPB. In Sec. IV, we discuss the topological Kondo effect
in more depth by means of bosonization and poor man’s scal-
ing. This allows for constructing a schematic renormalization
group (RG) flow diagram in the parameter space of Kondo
coupling and spin interaction strength [see Fig. 1(c)]. This is
followed by presenting several observables, such as transport
coefficients and thermodynamic properties, in Sec. V. We end
the paper with a conclusion and give an outlook to further
research concerning MCPBs.

II. SPINFUL MCPB

A. Setup

We consider a floating mesoscopic quantum device consist-
ing of a one-dimensional time-reversal-invariant topological
triplet superconductor in the Cartan-Altland-Zirnbauer class
DIII. We focus on the Coulomb blockade regime where the
charging energy Ec is large enough that (thermal) fluctuations
of the total charge of the island can be neglected. Also, Ec

will be the largest energy scale we assume in the system. In
analogy to the charging energy, we also consider an interac-
tion (Es) that punishes the formation of a large total angular
momentum within the island. The full Hamiltonian reads as

Ĥ = Ec
(
2N̂c + n̂ f − 2Nc

g

)2 + Es(L̂ + Ŝ)2

+ ĤBdG + Ĥz, (1a)

where

Ĥz = −Ezd̂y (1b)

and

ĤBdG =
∫

dx{ψ (x)†ε( p̂)ψ (x) + [ψ (x)T�̂ψ (x) + H.c.]},
(1c)

where H.c. denotes Hermitian conjugate and

�̂ = uσyd̂ · σeiϕ̂∂x. (1d)

This model can be thought of as a two-fluid model with
the condensate of Cooper pairs and the electrons, described
by spinor fields ψ = (ψ↑, ψ↓)T, where ψ (†)

σ (x) annihilates
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(creates) an electron of spin σ at position x; similar models
have been discussed in the context of one-dimensional su-
perconductors [67,69–71]. We chose the topological triplet
superconductor small enough that long-range interactions are
effectively all to all such that the system only incorporates
quantum (i.e., temporal) fluctuations. Additionally, we chose
the localization length ξ of MZMs much smaller as the system
size L, that is ξ � L where ξ ∼ 1/(mu) is the supercon-
ducting coherence length. These are standard assumptions
employed in mesoscopic Majorana quantum devices [72–74].
The assumptions of long-range interactions in the charge
channel are realized by Coulomb interactions, while the limit
of long-range interactions in the spin channel is met in the
vicinity of magnetic phase transition. The problem will thus
eventually turn out to be 0 + 1 dimensional. The charging en-
ergy Ec (its analog Es) penalizes the total charge (total angular
momentum) of Cooper pairs and fermions in our two-fluid
model.

The first term in Eq. (1a) corresponds to the previously
mentioned charging energy where N̂c = −i∂ϕ is the total num-
ber operator of Cooper pairs, and n̂ f = ∫

dx ψ†(x)ψ (x) is the
total number operator of electrons. Hence, the total charge
operator on the island is [71] N̂tot = 2N̂c + n̂ f and commutes
with Ĥ . The constant Nc

g = eVg

2 (e being the electron charge)
can be tuned by changing the gate voltage Vg and determines
the expected value of N̂tot.

The second term describes the spin interactions on the
island. The vectors L̂ = (L̂x, L̂y, L̂z ) and Ŝ = (Ŝx, Ŝy, Ŝz )
are the canonically conjugate operator to order parameter
d̂ ∈ S2 and the total spin operator of the fermions Ŝi =
1
2

∫
dx ψ†(x)σiψ (x), respectively. In the following, we will

refer to L̂ as the angular momentum of the superconducting
order parameter, which should not be confused with the angu-
lar momentum of the individual Cooper-pair wave function
(which is obviously absent in the present problem of one-
dimensional TRITOPS).

The third term, ĤBdG, describes the triplet superconduc-
tor. The free dynamics of the electrons is governed by the
dispersion relation ε( p̂) = p̂2

2m − μ where p̂ is the momentum
operator. The pairing operator �̂ consists of the superconduct-
ing phase ϕ̂, the Cooper-pair orientation d̂ in spin space, the
pairing strength u (units of velocity), and the partial derivative
∂x reflecting the p-wave nature of the superconductor. Fur-
thermore, the Cooper-pair orientation can be parametrized by
the two operators θ̂ and φ̂, which eigenvalues can take the
values θ ∈ [0, π ] and φ ∈ [0, 2π ). A possible parametrization
in terms of θ̂ and φ̂ is given as follows:

d̂ =
⎛
⎝sin(φ̂) sin(θ̂ )

cos(θ̂ )
cos(φ̂) sin(θ̂ )

⎞
⎠. (2a)

Another representation of d̂ that will be heavily used in this
work can be given in terms of a unitary operator, that is

Û †σyÛ = d̂ · σ, (2b)

where

Û = ei θ̂
2 σx ei φ̂2 σy . (2c)

Finally, the term Ĥz in Eq. (1a) is a spin-rotation symmetry-
breaking perturbation, which will be used to quantify the
dominance of spin fluctuations within the MCPB. This term
can be understood as a Zeeman coupling that favors a po-
larization of the d̂ vector in the y direction. Thus, there are
two competing terms in the Hamiltonian. The first term, EsĴ

2
,

attempts to fix the angular momentum, resulting in strong
fluctuations in d̂, while Ĥz tries to localize d̂, leading to strong
fluctuations in Ĵ. The two aforementioned limiting cases cor-
respond to situations where either Es � Ez or Es � Ez. In the
first case, Ĵ is pinned while d̂ fluctuates strongly, while in the
other case, d̂ is pinned, and Ĵ freely fluctuates.

B. Spectrum of the spinful MCPB

In order to find the spectrum of Hamiltonian (1a), we
transform the electrons into a comoving basis, which follows
the fluctuations of the condensate. Thus, the transformed elec-
trons become essentially chargeless, and their spin will be
fixed to either point up or down without any fluctuation. The
canonical transformation that achieves this goal reads as

U = exp

(
−i

ϕ̂

2
n̂ f

)
exp(−iφ̂Ŝy) exp(−iθ̂ Ŝx ). (3)

This transformation applied to the Hamiltonian (1a) yields

U †ĤU |Ez=0 = 4Ec(N̂c − Nc
g )2 + EsĴ

2

+
∫

dx{ψ (x)†ε( p̂)ψ (x)

+ u[ψ (x)T∂xψ (x) + H.c.]}, (4)

where Ĵ = L̂ + Ŝy

sin(θ̂ )
[d̂ + cot(θ̂ )eθ ] with eθ being the unit

vector in θ direction.
A few comments are in order: First, the transformation

U decouples the spin-up and -down sectors of the fermions
and diagonalized ĤBdG in spin space. Now, the superconduct-
ing part consists of two copies of a one-dimensional p-wave
superconductor of spinless fermions per wire. Each system
is a Kitaev topological superconductor and is known to host
Majorana zero modes (MZMs) at the edges. Thus, the MCPB
can host up to four MZMs, which we will call γL↑, γL↓, γR↑,
and γR↓. Note that the symbols ↑ and ↓ should not be taken
too seriously since the MZMs do not carry a spin anymore,
and the reader may think of them as mere labels. The labels
R and L denote whether an MZM is localized at the right or
left edge of the wire [see Fig. 1(a)]. Furthermore, we define
nonlocal fermions

�σ = 1
2 (γLσ + iγRσ ). (5)

Second, due to the canonical transformation, the total
electron charge vanished from the Hamiltonian. However, it
enters implicitly through N̂c, whose quantization properties
have changed. The total number operator of the Cooper-
pair operator is usually integer quantized. However, after the
transformation N̂c is half-integer quantized, as it physically
describes the total charge on the island, including the con-
tribution of unpaired electrons. A technical explanation of
the change in the quantization condition is contained in Ap-
pendix A 1.
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TABLE I. Classification of the three lowest-energy eigenstates
of Hamiltonian (4) by their quantum numbers: charge Nc (in units of
2e), magnetic quantum number jy, total angular momentum J as de-

termined by the Ĵ
2

eigenvalue J (J + 1), fermion parity Pf = (−1)n̂ f ,
and magnetic quantum number of the fermions sy. The second last
column shows the total energy of a particular state as a function of Nc

g

while the last column shows the corresponding degeneracy of each
state.

Nc jy J Pf sy E No.

0 0 0 1 0 4Ec(Nc
g )2 2

1
2 ± 1

2
1
2 −1 ± 1

2 4Ec( 1
2 − Nc

g )2 + Es
3
4 4

0 0,±1 1 1 0 4Ec(Nc
g )2 + 2Es 6

Third, in contrast to the total charge, the spin operator Ŝ
did not fully disappear since the spin is a vector quantity.
Instead, the fermion spin survives as a background field for
the angular momentum L̂ of the order parameter d̂. Suppose
one understands d̂ as the coordinate of a particle on a sphere.
Then, due to the fermions, this particle feels a magnetic
monopole of charge sy (being an eigenvalue the Ŝy operator)
as can straightforwardly be calculated by taking the rotation of
Ĵ − L̂. Analogously, one can show that the action correspond-
ing to the Hamiltonian EsĴ

2
takes the shape of a nonlinear

sigma model with a topological Wess-Zumino-Witten term.
As a consequence of the background field, and somewhat in
analogy to the Cooper-pair charge N̂c, the angular momentum
L̂ is integer quantized while its transformed version Ĵ is half
odd integer quantized if the fermion parity is odd.

Finally, we can find the spectrum of the Hamiltonian (4).
The total Hilbert space H of the MCPB can be decomposed
as a tensor product of three subspaces. That is,

H = Hn ⊗ H j ⊗ H f , (6)

where Hn is the Hilbert space spanned by the eigenstates of
N̂c, H j is spanned by the eigenstates of Ĵy, and H f is the
Fock space of the fermionic neutral excitations in the wire.
Since we are interested in the low-temperature behavior of
the system, we assume that Bogoliubov quasiparticles in the
superconductor can not be created. However, the nonlocal
electrons �σ formed from the MZMs are accessible even at
zero temperature. Thus, we project H f down to the Fock
space, which in the case of a single wire w = 1 is

PT =0H f PT =0 = span(|0〉 , �†
σ |0〉 , �†

↑�
†
↓ |0〉), (7)

where the state |0〉 is the vacuum destroyed by the
operators �σ .

Furthermore, the Hamiltonian (4) commutes with the mu-
tually commuting operators N̂c and Ĵ. Therefore, we can
construct the energies and energy eigenstates by solving the
eigenvalue equation for N̂c and Ĵ

2
separately. The low-energy

spectrum of the MCPB is summarized in Table I for the case
w = 1 and plotted in Fig. 2. In the case of multiple wires,
w > 1, the low-energy spectrum of Table I is the same and
characterized by the very same quantum numbers as displayed
in the first four columns of Table I. However, at w > 1, the
entries for sy and for the degeneracy of the various states

FIG. 2. The spectrum of Hamiltonian (4) as a function of Nc
g in

the case Ec > 3Es/4. The labeling of parabolas corresponds to eigen-
values (Nc, J ) of total charge and total angular momentum as defined
in Table I. The crossing point of two red, solid parabolas denotes the
value of Nc

g where it becomes favorable to add one unit of charge
(one Cooper pair) onto the island and corresponds to Ec where Ec

is the charging energy. The two black arrows denote a second-order
process of virtual transitions from a state with odd fermion parity
to a state with even fermion parity and reverse and determine the
superexchange interaction. The energy gap �E = Ec − 3Es/4 must
be overcome for such a process.

may be higher. In particular, the ground-state degeneracy is
4, 16, 204, . . . for w = 1, 2, 3, . . . .

III. SPINFUL TOPOLOGICAL KONDO EFFECT

This section explains the setup that gives rise to a topolog-
ical Kondo effect by coupling leads to an MCPB. We model
the system with two free-electron gases that are brought into
the vicinity of an MCPB, where electrons from a left and
right lead can tunnel via the tunneling amplitude t into the
Majorana edge states on the left and right sides of the super-
conductor, respectively. A schematic of the setup for w = 1
can be found in Fig. 1(a). The Hamiltonian of the full system
reads as

Ĥ = Ĥdot(γ ) + Ĥ0(ψ ) − t Ĥt (ψ, γ ) + Ĥz. (8)

Here, Ĥdot denotes the Hamiltonian (4), and Ĥ0 is the
Hamiltonian of free electrons ψR/L of the left and right leads.
The Hamiltonian Ĥt couples the electrons to the MZMs and is
given by

Ĥt =
∑

i=R/L

[ψ†
i,σ e−iϕ̂/2(U †)σσ ′γiσ ′ + H.c.]. (9)

Here, the operator ψ
†
i,σ (x) creates an electron in the ith lead

with spin σ . To straighten up the notation, we define ψ
(†)
iσ ≡

ψ
(†)
iσ (0) where we assume that the MCPB is located at x = 0.

This setup is readily generalized to w > 1 where we assume
a spinful lead coupled to each of the 2w Kramers pairs of
Majoranas on the island.

We choose the gate charge Nc
g = 1

2 such that the ground
state of the quantum dot has an odd fermion parity, i.e., one
nonlocal fermion �σ is occupied. Therefore, the ground state
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corresponds to the blue parabola in Fig. 2 and the second row
in Table I. Thus, the ground state is fourfold degenerate in
the w = 1 wire case. In this exemplary case, the restriction to
the odd fermion parity operator imposes a constraint on the
MZMs of the form

γL↓γL↑γR↓γR↑ = −1. (10)

The objective is to develop an effective low-temperature
theory for the ground-state manifold spanned by the four
degenerate states. Processes in which fermions tunnel into
and away from the MCPB change the fermion parity from
Pf = −1 to Pf = 1. The first mentioned process adds charge,
while the second process removes charge from the box. These
tunneling events correspond to transitions in higher-energy
eigenstates (see Fig. 2).

We account for these processes in the low-energy regime
by treating them as virtual and integrating out the higher
excited states using a Schrieffer-Wolff transformation [75].
To illustrate this procedure and as a preliminary problem, we
first apply it to the limiting case where Ec � Es. Thus, the
timescale on which the superconducting phase ϕ̂ fluctuates is
much smaller compared to the timescale of the fluctuations
of d̂ (Û ). Therefore, we first only perform a Schrieffer-Wolff
transformation in the charge sector Hn of the condensate
Hilbert space.

While in all of the previous discussions, a single TRITOPS
wire on the island is assumed (see Fig. 1), the problem is
readily generalized to a spinful MCPB with w wires (w > 1),
all of which are coupled to two leads and to the same order-
parameter field by introducing a wire index to the fermions
and assuming the mean field Hamiltonian is diagonal in wire
space (see [18] for the discussion of the analogous situation
without spin fluctuations). We will suppress the wire index in
what follows but occasionally comment on the case w > 1.
The such derived, effective Hamiltonian reads as

ĤK = −λ

2

∑
i, j

∑
σ,ρ

[ψ†
i Û †]σ γi,σ γ j,ρ[Ûψ j]ρ, (11)

where λ = 4t2

Ec
. This expression holds for an arbitrary number

of wires (in which case i, j ∈ {1, . . . , 2w}). In the simplest
case w = 1 (in this case we use labels i, j ∈ {L,R}) this ex-
pression can be further simplified as follows:

ĤK = λ(ψ†
+Û †σÛψ+ + ψ

†
−σyÛ

†σyσσyÛσyψ−) · Ŝ, (12)

where

ψ+ = 1√
2

(ψL + iψR),

ψ− = iσy√
2

(ψL − iψR) (13)

with ψL/R = (ψL/R↑, ψL/R↓)T being spinors in spin space.
The impurity spin Ŝ = (Ŝx, Ŝy, Ŝz )T contains the fermion spin
operators Ŝi = 1

2�
†σi�, where � = (�↑, �↓)T. These spin op-

erators can be expressed in terms of the MZMs. Using the
parity constraint (10), we obtain

Ŝx = X

2
, X = iγL↓γR↑ = iγL↑γR↓ (14)

Ŝy = Y

2
, Y = iγL↓γL↑ = iγR↓γR↑ (15)

Ŝz = Z

2
, Z = iγL↑γR↑ = iγR↓γL↓ (16)

where the operators X , Y , and Z fulfill an SU(2) algebra. Since
the spin quantum number of the MZMs behaves more like a
static quantum number than an actual spin, we should rather
think of Ŝ as an impurity that acts on the orbital (charge parity)
space spanned by γ↑/↓ than an actual spin.

A. Limit Ez � Es

We take Es and Ec of the same order of magnitude but also
take the perturbation Ĥz into account where we work in the
limit Ez � Es. Thus, the d̂ vector is polarized and, again, fluc-
tuates on a much larger timescale than the superconducting
phase ϕ̂. Therefore, we can continue working with Eq. (12).

In the case where Es/Ez → 0, Û does not display any
quantum fluctuations (it is a constant of motion). We can
thus choose U = 1, and the Hamiltonian (11) becomes an
O(4w) topological Kondo model [18]. Moreover, in view of a
well-established equivalence between O(4) topological Kondo
effect and two-channel SU(2) Kondo effect (cf. Appendix B),
the w = 1 Hamiltonian (12) becomes a two-channel Kondo
Hamiltonian

Ĥ2CK = λ
∑
a=±

ψ†
a σψa · Ĵ. (17)

It is well known that the two-channel Kondo model has a
quantum critical point at a finite Kondo coupling λ [28–30].
Emery and Kivelson [76] already formulated an exact solu-
tion to this problem with bosonization methods and found
that fractionalized (Majorana fermions) excitations govern the
system.

However, in the case of fluctuating Û (i.e., finite Es/Ez), the
situation becomes more complex. As discussed previously, in
the limit Es/Ez → 0 we expect two-channel Kondo physics,
Eq. (17), for the w = 1 spinful topological Kondo effect. This
is illustrated as a red star in Fig. 1(c). Here, we consider small
Es/Ez corrections and find that the two-channel Kondo fixed
point is stable concerning this perturbation.

We assume that the vector d̂ is predominantly polarized
in the y direction of the “north pole” and weakly fluctuates
around this state. Mathematically, this can be expressed as
follows:

d̂ = ey + δd̂,

δd̂ = (δd̂x, 0, δd̂z ) = (θ̂ sin(φ̂), 0, θ̂ cos(φ̂)). (18)

The d̂ vector has been linearized with respect to the
deviation angle θ̂ . This linearization yields the effective two-
dimensional vector δd̂ that characterizes the spin sector of the
condensate, confined to a tangent plane attached to the north
pole of the sphere encompassing all possible configurations
of d̂.

To determine the spectrum of the vector d̂, we expand
the Hamiltonian of the MCPB (including the Ez term) to
the first nontrivial order in θ . This leads to a Hamilto-
nian Ĥθ�1, in which the Schrödinger equation resembles the
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radial part of a harmonic oscillator in two dimensions (see
Appendix A 2 a). The level spacing of the energy eigenstates
is �En = √

2EsEz. The fourfold degeneracy of the MCPB
ground state for Ez = 0 gets lifted by the presence of a fi-
nite Ez with a new twofold-degenerate ground-state manifold
where sy = jy = ± 1

2 . Furthermore, the ground-state expec-
tation value of δd̂ is 0. A comprehensive derivation of the
spectrum can be found in Appendix A 2 a.

To derive the effective Kondo Hamiltonian in the limiting
case θ � 1 (i.e., Ez � Es), we use Eq. (12) as a starting
point and, similarly, linearize U . Initially, we introduce a new
parametrization Û = exp(i Ŵ

2 ), where Ŵ = ∂φδd̂ · σ. Expand-
ing Û to first order in Ŵ , we arrive at a linearized version of
the Hamiltonian (12), that is

ĤK = λ
∑
a=±

ψ†
a σψa · (1 + a ∂φδd̂×)Ŝ. (19)

From this expression, it becomes evident that even at the
first order in d̂ fluctuations, the effective Hamiltonian ex-
hibits a more intricate structure than a two-channel Kondo
Hamiltonian.

However, if Ez � ( λ4

Es
)

1
3 the system effectively stays in

the ground-state manifold. Consequently, we can replace the
operator δd̂ with its ground-state expectation value, which is
zero. Second-order processes in the first excited state and back
into the ground state modify the Hamiltonian such that the
isotropic 2CK Hamiltonian becomes anisotropic in SU(2) spin
space, but still preserves channel isotropy. Furthermore, they
add an interaction term coupling the relative spin densities be-
tween the two types of lead electrons. However, the interaction
term has a scaling dimension of two and is deemed irrelevant
in the renormalization group (RG) sense. The anisotropic 2CK
model flows towards isotropy and, consequently, converges to
the same fixed point as the isotropic 2CK model [76]. There-
fore, the two-channel Kondo effect remains stable against
small fluctuations in d̂.

B. Limit Ez � Es

If, conversely, the magnitude of Es greatly surpasses that
of Ez, the phases ϕ̂ and Û experience rapid fluctuations and,
necessarily, need to be treated on equal footing. Within the
low-energy domain, the system is confined to the fourfold-
degenerate ground-state manifold in Table I (blue parabola
in Fig. 2). Details concerning the precise computation
are presented in Appendix B. Employing the Schrieffer-
Wolff transformation, we arrive at the effective Hamiltonian
given by

Ĥeff = λ
∑
a=±

ψ†
a σψa · 1 − aY

2
Ĵ − Ez

3
Z. (20)

The vector Ĵ is projected onto the ground-state manifold
and can be expressed as Ĵ = ( Jx

2 ,
Jy

2 ,
Jz

2 ), with Ji denoting the
Pauli matrices acting within the space spanned by the states
| j = ± 1

2 , J = 1
2 〉 in the Hilbert space H j . The Kondo coupling

parameter is now defined as λ = 4t2

Ec−3/4Es
. The disparity from

the Kondo coupling discussed in the previous section arises
from including virtual processes in the angular momentum

sector. Of course, in the limit Ec � Es, which was assumed
to derive Eq. (12), this disparity vanishes.

At first glance, one might mistake the Hamiltonian (20)
for twice a conventional SU(2) Kondo Hamiltonian, given
that the projector Pa = 1−aY

2 projects the impurity Ĵ onto two
independent sectors. In other words, the two effective impu-
rities Ĵa = PaĴ commute with each other, i.e., [Ĵ i

+, Ĵ j
−] = 0.

However, the distinction to two SU(2) Kondo effects lies in the
fact that the entire impurity transforms under SU(2) ⊕ SU(2)
rather than SU(2) ⊗ SU(2), as it is the case for two instances
of a standard SU(2) Kondo effect. To give Hamiltonian (20)
a physical meaning, one can understand the projector 1−aY

2 as
an operator that distinguishes between the occupation of the
two orbitals formed by the four MZMs. The lead electrons
ψa can only interact with the impurity if the orbital assigned
by the projection operator is occupied. Therefore, the MZMs
act as gatekeepers, limiting access to the impurity for the lead
electrons [see Fig. 1(b) for an illustration].

For further use in the remainder of the paper, we generalize
the isotropic Hamiltonian to an anisotropic model as follows:

ĤK =
∑
a=±

⎛
⎝∑

i∈x,z

ψ†
aσiψa (λ1

⊥ − a λY
⊥Y )Ĵi

+ ψ†
aσyψa

(
λ1

y − a λY
y

)
Y Ĵy

)
−Ez

3
Z. (21)

We employ a poor man’s scaling [77] analysis (see Ap-
pendix C) for Eq. (21) and obtain the following flow
equations to leading order in g,Ez:

dg⊥
dl

= g⊥
(
g1

y + gY
y

)
, (22a)

dg1
y

dl
= 2g2

⊥, (22b)

dgY
y

dl
= 2g2

⊥, (22c)

dEz

dl
= Ez, (22d)

where l = ln( D0
D ) is the RG time and D0 being the bare

bandwidth. We introduced the dimensionless g1/Y
⊥/y = νλ

1/Y
⊥/y

coupling constants, with ν denoting the density of states at
the Fermi level and set g1

⊥ = gY
⊥ = g⊥. Figure 3 displays the

RG flow created by Eq. (22), where it is clearly visible that
the couplings flow towards strong coupling and isotropy. In
particular, this is true for the red trajectory, which starts at
the parameter values corresponding to the Toulouse point
introduced in the next section. This result suggests that the
Toulouse point and weak isotropic coupling points in param-
eter space reside in the basin of attraction of the same strong
coupling fixed point. This observation will have significance
in the next section, where we present an exact solution of
the model at the Toulouse point: It can be expected that the
Toulouse point solution correctly describes the strong cou-
pling physics of Eqs. (20) and (21), alike.
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FIG. 3. RG flow for anisotropic coupling constants. In the lower-
left corner, all couplings are zero. In contrast, the upper-left corner
symbolizes the point where all coupling constants are infinity, which
is the strong coupling fixed point. The red trajectory reflects the
RG flow for which the Toulouse point is the starting point. A more
detailed discussion on how this figure is created can be found in
Appendix C.

IV. SINGLE WIRE AT THE TOULOUSE POINT

Generalizing the protocol of Emery and Kivelson [76],
we can exactly solve Hamiltonian (21) at a specific hyper-
plane in parameter space called “Toulouse point.” For this, we
bosonize the lead fermions, apply a nonlocal canonical trans-
formation UE.K., and refermionize the lead electrons as well as
expressing the impurity in terms of Majorana fermions.

A. Bosonization and refermionization

We take the usual bosonization approach and decompose
the fields ψaσ , with respect to the lattice constant a0, into slow-
varying right and left-moving fields:

ψaσ (x) = eikF xRaσ (x) + e−ikF xLaσ (x), (23)

where kF is the Fermi wave vector. Note that ψ+σ (x) and
ψ−σ (x) only have support on one half-axis. Thus, one can
represent the two fields by only one chiral (right-moving) field
that extends over the whole real axis [78]. This new chiral
fermion, written in terms of the chiral Bose fields φaσ (x),
reads as

ψ̃aσ (x) = Faσ√
2πa0

ei
√

4πφaσ (x), (24)

where Faσ is a Klein factor that ensures the correct fermionic
statistics. The bosonic field follows the commutation relation

[∂xφi(x), φ j (y)] = i

2
δ(x − y)δi j, (25)

where i, j are multi-indices of the shape (a, σ ). Again, we
define ψ̃aσ (0) ≡ ψ̃aσ and φaσ (0) ≡ φaσ .

It will be convenient to introduce a new basis of Bose fields
that are related by⎛

⎜⎜⎝
φs

φs f

φc

φc f

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
φ+↑
φ+↓
φ−↑
φ−↓

⎞
⎟⎟⎠. (26)

A similar basis transformation can also be done for the Klein
factors with the identities [47,79,80]

F †
s f F †

s = F †
+↑F+↓, Fs f F †

s = F †
−↑F−↓,

F †
s f F †

c f = F †
+↑F−↑, F †

c F †
s = F †

+↑F †
−↑. (27)

Also, the Kondo Hamiltonian can be rewritten in the form

ĤK = λ⊥
2

[(I+
+ + I+

− )Ĵ− + (I+
− − I+

+ )Y Ĵ− + H.c.]

+ λ1
y (Iy

+ + Iy
−)Ĵy + λY

y (Iy
− − Iy

+)Y Ĵy, (28)

where

I+/−
a = ψ̃

†
a↑/↓ψ̃a↓/↑ and Iy

a = 1
2 (ψ̃†

a↑ψ̃a↑ − ψ̃
†
a↓ψ̃a↓).

(29)
Note that we work in a basis in which σy is diagonal and, thus,
the spin indices ↑ / ↓ refer to spins quantized in the y direc-
tion. We used the notation Ĵ± = Ĵz ± iĴx. We next bosonize
according to Eq. (24) and perform a nonlocal unitary rotation
(see Appendix D) to simplify the Hamiltonian. It is convenient
to define the new fermions

χr = Fr√
2πa0

ei
√

4πφr and d = F †
s Ĵ− (30)

(r = s, s f , c, c f ) one can show that the effective Kondo
Hamiltonian becomes

Ĥ ′
K = λ⊥√

8πa0
(χs f + χ

†
s f )(d − d†)

− λ⊥√
8πa0

(χs f − χ
†
s f )(d + d†)Y

+ δλy : χ†
s χs :

(
d†d − 1

2

)

+ λY
y : χ†

s f χs f : Y

(
d†d − 1

2

)
, (31)

where δλy = λ1
y − 2πvF and vF is the Fermi velocity.

The former Hamiltonian takes a more convenient shape if
one rewrites the fermions in terms of real Majorana fermions.
Let us consider the following decomposition:

χr = 1
2 (ξr + iζr ) and d = 1

2 (α + iβ ) (32)

of the complex fermions into real Majorana fermions. Note
that in the present basis, the number of Majorana fermions that
describe the four-dimensional impurity is represented by the
six Majorana fermions and one constraint. Namely, the four
MZMs (i.e., γL↑, γL↓, γR↑, and γR↓) and the two Majorana
fermions α and β that describe Ĵ. It is useful to represent every
term in Hamiltonian (31) in terms of four composite Majorana
fermions without constraint, i.e.,

η = β, ηx = αX, ηy = αY, and ηz = αZ. (33)
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FIG. 4. Schematic representation of Hamiltonian (34). The red
dots denote the impurity Majorana fermions while the black symbols
represent the lead Majorana fermions. The hybridization terms are
represented by colored lines (solid magenta for λ⊥, dashed blue for
Ez). The interaction terms are given by rectangles (red for λY

y , green
for δλy).

These four fermions allow for a faithful representation of the
Hamiltonian (31) that preserves all mutual commutation rela-
tions of the different operators appearing in the Hamiltonian.
Using this representation, the Hamiltonian becomes

Ĥ ′
eff = i

λ⊥√
8πa0

ξs f η + i
λ⊥√
8πa0

ζs f ηy

+ i
δλy

4
ξsζsηxηyηzη + λY

y

4
ξs f ζs f ηyη + i

Ez

3
ηyηx. (34)

Thus, the spinful topological Kondo effect for a single wire
maps to a special interacting resonant level model of Majorana
fermions (see Fig. 4 for illustration).

B. Toulouse point and strong coupling fixed point

In this section, we investigate the Hamiltonian at the
Toulouse point and the stability of the emergent strong cou-
pling fixed point by means of the symmetry-breaking Zeeman
term as well as small perturbations away from the Toulouse
point. The Toulouse point [81] is defined as the point in
parameter space where interactions in the resonant level
Hamiltonian (34) are absent, i.e., δλy = λY

y = 0. As was al-
ready discussed in the previous section, the poor man’s scaling
reveals that the different coupling constants flow towards
strong coupling and isotropy. This is also true if we choose
the Toulouse point as the starting point for the RG flow (see
Fig. 3). Thus, we expect that the physics that is present in
the Hamiltonian at the exact solvable Toulouse point extends
towards the strong coupling fixed point.

Figure 4 shows a schematic of the Hamiltonian (34). At
the Toulouse point and in the case of Ez = 0, only two im-
purity Majorana fermions hybridize with the lead electrons,
namely, ηy and η. Physically, that means that the two sectors
spanned by the MZMs are degenerate. Thus, there are two
dangling Majorana fermions. This translates into a twofold
ground-state degeneracy. However, the moment one has a
finite Ez, regardless of how small, ηx hybridizes with ηy and
there is only one Majorana fermion dangling anymore. Thus,
the twofold ground-state degeneracy reduces to a noninteger
degeneracy of

√
2.

C. Renormalization group flow

In the following, it is useful to invoke the impurity entropy
defined by

Simp = Stot − Sbulk ≡ ln(g), (35)

where the quantity g can be interpreted as a generalized
ground-state degeneracy which can take noninteger values.
We remind the reader that, generally under RG unstable fixed
points flow towards stable fixed points with lower g (“g theo-
rem” [82]).

We are now in the position to discuss the stability of the
Toulouse point solution in a renormalization group sense and
to construct the schematic RG flow diagram [Fig. 1(c)]. For
the case Ez = 0 and at the Toulouse point, we found a twofold
degeneracy g = 2 (represented by a blue star). We repeat-
edly argued that anisotropy (i.e., unequal λ1,Y

y,⊥) is irrelevant
within poor man’s scaling. The effective interacting resonant
level model (34) corroborates this statement from the strong
coupling perspective since λY

y , δλy terms are RG irrelevant
(the corresponding operators have scaling dimension 4 and 2,
respectively).

While the Toulouse point is stable towards restoring
isotropy, it is unstable towards the inclusion of Ez, which
couples to an operator of scaling dimension 1

2 (ηy acquires the
scaling dimension of lead electrons through λ⊥ hybridization)
and generates a state of g = √

2. We have thus demonstrated
that the Kondo fixed point at infinite Es/Ez, blue star in
Fig. 1(c), is unstable and, given that our bosonization solution
is valid for any Ez, flows towards a fixed point with g = √

2.
As we had previously argued, this fixed point may be inter-
preted as an O(4) topological Kondo effect (or, equivalently, a
two-channel Kondo effect).

V. OBSERVABLES

Within this section, we present a comprehensive overview
of specific observables derived from the application of the
Hamiltonian (34) at the Toulouse point, with a fixed value of
Ez = 0. Details are relegated to Appendix E. At this point we
would also like to point out that similar calculations have been
carried out for the case where Ez → ∞ [18–21].

A. Thermodynamics

We first focus on the correction to the free energy denoted
by δF . To determine the scaling dimension of the interac-
tion terms, we analyzed the operators Os and Os f defined
as follows:

Os = i
δλy

4
ξsζsηxηyηzη, (36)

Os f = λY
y

4
ξs f ζs f ηyη. (37)

By calculating the expectation value

〈Or (τ )Or (0)〉 ∼
(

1

τ

)2�x

, (38)

where �r represents the scaling dimension, we found that the
scaling dimensions of Os and Os f are �s = 2 and �s f = 4,
respectively. Following [78], we inferred that the correction
to the free energy scales as

δF ∼ O (T 2), (39)
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which relates to the thermodynamic entropy and specific heat,
respectively:

S = − ∂

∂T
F ∼ S0 + κT and Cv = T

∂

∂T
S ∼ κT, (40)

where S0 = ln(2) with κ being some constant. This behavior
resembles Fermi-liquid characteristics.

Furthermore, we evaluated the susceptibilities at zero tem-
perature for the impurity, of which we have six different kinds,
three in the orbital space and three in the angular momentum
space. The susceptibilities are as follows:

χX ∼ ln(�/T ), χJx ∼ const, (41)

χY ∼ 1/T , χJy ∼ const, (42)

χZ ∼ ln(�/T ), χJz ∼ const, (43)

where �= λ2
⊥ν

2a0
. In the angular momentum sector, we observed

Pauli susceptibility with constant values akin to those in a
Fermi liquid. However, in the orbital space, the susceptibilities
diverge as T → 0. Specifically, χX,Z diverges logarithmically,
while χY exhibits an algebraic divergence. This anisotropic
behavior is possibly due to the explicit breaking of the SU(2)
symmetry in the orbital space by the Kondo Hamiltonian (20).
These divergences signal non-Fermi-liquid behavior akin to
the physics of the two-channel Kondo effect.

B. Transport properties

Next, we consider various transport coefficients of our
mesoscopic setup, notably the DC conductance denoted as
Gc

i j and the spin current conductance represented by Gs
i j . We

remind the reader that the indices i, j ∈ {L,R} correspond to
the left and right leads. At the smallest temperatures, the DC
conductance can be expressed as

Gc
i j = (2δi j − 1) (2 + O (T 2))︸ ︷︷ ︸

G(T )

Gc
0, (44)

where Gc
0 = e2/h is the perfect conductance. This equation re-

veals that both channels within the impurity contribute to the
charge transfer. In parallel, when examining the spin conduc-
tance, we arrive at a comparable outcome:

Gs
i j = (2δi j − 1)

1

h
G(T ). (45)

In the small coupling regime where the impurity is not
screened (i.e., above the Kondo temperature TK ) we find for
both conductances a dependence on the square of the Kondo
coupling λ, which scales as

λ ∼ 1

ln(T/TK )
. (46)

The temperature dependence G(T ) of the transport coeffi-
cients is illustrated in Fig. 1(d).

VI. OUTLOOK AND CONCLUSIONS

In summary, we have studied a floating mesoscopic topo-
logical superconductor of symmetry class DIII, which realizes
the spinful Majorana Cooper-pair box. In contrast to the

more prominent spinless Majorana Cooper-pair boxes, the
present system is subject to strong quantum fluctuations of
the non-Abelian order parameter describing the Cooper-pair
orientation d̂ in spin space. We carefully characterized the
spectrum of such a box. After coupling the device to external
leads, we uncovered a spinful topological Kondo problem in
the Coulomb blockade regime. This problem has an SU(2) ⊕
SU(2) symmetry in the simplest situation of just two external
leads.

We study the spinful topological Kondo problem in the
isotropic case, but also in the presence of anisotropies and
in the presence of a perturbation polarizing the d̂ vector.
At weak coupling, we find that the unperturbed anisotropic
model flows to isotropy. We argue that this justifies solving
the problem at an anisotropic Toulouse point. We use the
Abelian bosonization technique to solve the problem and
demonstrate that the unperturbed spinful topological Kondo
problem realizes a non-Fermi-liquid fixed point and deter-
mines its thermodynamic and transport observables. We also
determine that this fixed point is unstable to the d̂-polarizing
perturbation, i.e., it relies on symmetry protection.

Beyond its apparent relevance in the context of realizing
strongly correlated phases in mesoscopic topological devices,
we hope that this work with further help understanding the
nontrivial interplay of topology and strong correlations in
triplet superconductors. Future directions of research could
involve the spinful topological Kondo effect with more leads,
multichannel versions thereof [24], and arrays of spinful Ma-
jorana Cooper-pair boxes. In the long run, the latter could
be valuable emulators of the phases of matter in quantum
materials with triplet pairing tendency.
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APPENDIX A: SPECTRUM OF THE SPINFUL MCPB

In this Appendix, we present the calculation of the spec-
trum of the spinful MCPB. The starting point is Hamiltonian
(4), where the model has already been transformed into the
comoving frame of the condensate

Ĥdot = 4Ec
(
N̂c − Nc

g

)2 + EsĴ
2

+
∫

dx{ψ (x)†ε( p̂)ψ (x) + u[ψ (x)T∂xψ (x) + H.c.]}.
(A1)
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1. Boundary condition and quantization
of condensate operators

First, we demonstrate how the quantization condition of the
operator N̂c and Ĵ change with respect to their transformed
counterparts. Let be the Cooper-pair number operator before
the transformation that is

U †(2N̂c + n̂ f )U = 2N̂c. (A2)

Before the transformation, the operator N̂c is integer quantized
and has the eigenstates |�〉N with eigenvalue N , which de-
notes the number of Cooper pairs. We can project the state
into the basis of the superconducting phase, that is, 〈ϕ|�〉N =
�N (ϕ). Note that, due to the missing hat, ϕ is a quantum
number and not an operator. Since the phase is only defined up
to 2π , the wave function has to fulfill the boundary condition

�N (ϕ) = �N (ϕ + 2π ). (A3)

The transformed wave function reads as

U †�N (ϕ) = ei ϕ2 n̂ f �N (ϕ). (A4)

There, we can see that for an even number of electrons,
the wave function is 2π periodic, and for an odd number
of electrons 4π periodic. Thus, the operator N̂c after the
transformation is half-integer quantized since we changed the
boundary condition by U .

A similar effect can also be observed in Ĵ. The operator
L̂y = −i∂φ has, since it is an angular momentum opera-
tor, integer eigenvalues ly with eigenfunctions �ly (φ). These
eigenfunctions are also 2π periodic. After the transformation,
the new eigenfunctions read as

U †�ly (φ) = eiφŜy�ly (φ), (A5)

where these are eigenfunctions of Ĵy = −i∂φ and Ŝy is the spin
operator of the fermion excitation in the y direction. Similar
to the superconducting phase and the Cooper-pair number, in
the case of an odd fermion number (i.e., Ŝy has half-integer
eigenvalues), the eigenfunctions of Ĵy are 4π periodic and
have half-integer eigenvalues.

2. Spectrum and eigenfunctions

As already discussed in the main text, the fermion sector
does not contribute to the energy and is spanned by a four-
dimensional Hilbert space in the case of a single wire w = 1.

In the condensate sector, we note that the two operators N̂c

and Ĵ commute with the Hamiltonian, and hence, the spectrum
can be constructed using their eigenvalues and eigenfunctions.
The charge eigenfunctions are straightforwardly constructed
by the eigenvalue equation

N̂c |�〉N = N |�〉 N ⇐⇒ −i∂ϕ�N (ϕ) = N�N (ϕ), (A6)

where the solutions are �N (ϕ) = eiNϕ , and N is a half-integer.
For the angular momentum sector, the energy eigenstates

correspond to the eigenstates of the operator Ĵ
2
. Since Ĵ is

an angular momentum or spin operator, we can construct
the spectrum and the eigenfunctions using standard methods.
That is, we choose the operator Ĵy to commute with Ĵ

2
, and

the eigenstates are given by the following two eigenvalue
equations:

Ĵy |�〉 = jy |�〉 , (A7)

Ĵ
2 |�〉 = J (J + 1) |�〉 . (A8)

To construct the corresponding differential equation, we
note that L̂ is the angular momentum operator that is canon-
ically conjugate to d̂. Thus, in terms of coordinates, the L̂
operator can be written as

L̂ = −id̂ × ∇ = −id̂ ×
(

eθ ∂θ + eφ
sin(θ )

∂φ

)
, (A9)

where ei are unit vectors. Note that in coordinate space,
d̂ ≡ er . From this, we can calculate

U †L̂U = L̂ − eφ Ŝx + cot(φ)eθ Ŝy − eθ Ŝz. (A10)

On the other hand, the fermion spin transforms as

U †ŜU = er Ŝy + eφ Ŝx + eθ Ŝz. (A11)

Now, we can conclude

U †(
L̂ + Ŝ

)
U = L̂ + Ŝy

sin(θ̂ )

⎛
⎝sin(φ̂)

0
cos(φ̂)

⎞
⎠ ≡ Ĵ. (A12)

In order to solve the two eigenvalue equations (A7) and
(A8), we use the separation of variables as an ansatz, that
is, 〈θ, φ|�〉 = �(θ, φ) = �(θ )�(φ). This ansatz leads to the
equation

−i∂φ�(φ) = jy�(φ) (A13)

with the solution �(φ) = ei jyφ . Note that Ŝy also commutes
with the Hamiltonian. Therefore, we can replace the op-
erator Ŝy with its eigenvalue sy. The second eigenvalue
equation yields the differential equation:[

(1 − x2)∂2
x − 2x∂x − ( jy − syx)2

1 − x2
+ [

J (J + 1) − s2
y

]]
× P(x) = 0, (A14)

where x = cos(θ ) and P(x) = P[cos(θ )] = �(θ ). This corre-
sponds to the eigenvalue equation of “monopole harmonics,”
i.e., the generalization of spherical harmonics to sy �= 0 [83].

Assuming Nc
g = 1

2 , the ground-state manifold is given by
the second row in Table I. Inserting the corresponding quan-
tum numbers in Eq. (A14), we find the normalizable solutions

�(θ ) = √
1 + 4 jysy cos(θ ). (A15)

Thus, the full wave function of the condensate (charge and
spin part) in the ground state manifold reads as

� 1
2
(ϕ)�sy, jy (φ, θ ) = eiϕ/2ei jyφ

√
1 + 4 jysy cos(θ ). (A16)

In the first excited states, the condensate wave function takes
a trivial shape:

�N=0,1(ϕ)�0,0(φ, θ ) = exp(iNϕ)1. (A17)
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a. Spectrum in the limit of a strong perturbation

We now consider a regime in which the perturbation Ez is
large and find the spectrum in the limit Ez � Es, and, hence,
θ � 1. To do so, we expand the Hamiltonian

Ĥ = EsĴ
2 − Ezd̂y

= Es

(
−∂θ [sin(θ )∂θ ·]

sin(θ )
+ j2

y − 2sy jy cos(θ ) + s2
y

sin2(θ )

)

− Ez cos(θ )

≈ Es

(
−∂θ (θ∂θ ·)

θ
+ n2

θ2

)
+ 1

2
Ezθ

2, (A18)

up to the first nontrivial order in θ and ignoring the constant
shift in energy. Note that n = jy − sy. After applying the ap-
proximation θ � 1, the differential equation for the �(θ ) part
of the condensate wave function changed, which, therefore,
needs to be adopted. The Hamiltonian (A18) resembles the
radial part of a harmonic oscillator. The spectrum for the
two-dimensional harmonic oscillator in polar coordinates is
well known and reads as

En = ω(|n| + 1 + 2nθ ), (A19)

with energy eigenstates

�n,nθ
(θ ) = Cn,nθ

θ |n| exp
(
−mω

2
θ2

)
Ln

nθ
(mωθ2). (A20)

In analogy to the harmonic oscillator we identify ω = √
2EzEs

and m = 1
2Es

. The quantum number nθ describes the quantiza-
tion of radius in the x-z plane. However, in the low-energy
sector, we can choose nθ = 0. Cn,nθ

is a normalization con-
stant, and Ln

nθ
are the generalized Laguerre polynomials.

The total condensate wave function is most conveniently ex-
pressed in terms of n and sy as

�n,sy (θ, φ) = �n,0(θ )ei(n+sy )φ. (A21)

The ground state has n = 0, from which it follows that sy =
jy = ± 1

2 . Hence, the ground-state manifold is twofold degen-
erate. The first excited states have n = ±1 and are, therefore,
four states. Furthermore, it follows immediately that

〈�0,sy | δd̂i |�0,sy〉 = 0. (A22)

APPENDIX B: SECOND-ORDER PERTURBATION
THEORY AND EMERGENT KONDO EFFECT

In this Appendix, we describe how we obtained an effec-
tive Kondo Hamiltonian in the low-energy sector. First, we
demonstrate the application of the Schrieffer-Wolff transfor-
mation to the warmup problem in the limit where Ec � Es,
and we also assume Ez � Es. This will be followed by a
discussion of how to obtain the effective Kondo Hamiltonian
in the limit where Ec ∼ Es and Ez � Ec.

To derive the effective low-energy Hamiltonian, we apply a
Schrieffer-Wolff transformation, treating the hopping param-
eter t of lead electrons onto the quantum dot as a perturbation,
which implies that Ec � t .

1. Limit Ec � Es

In this limiting case, the fluctuations in the superconduct-
ing phase (ϕ̂) are much faster than the spin fluctuations (Û ).
Thus, we absorb the Û matrix into the lead electrons:

�i = Ûψi, (B1)

where ψi = (ψi↑, ψi↓) are spinors of the lead electrons. The
hopping Hamiltonian becomes

−t Ĥt = −t
∑

i

(�†
i e−iϕ̂/2γi + H.c.). (B2)

The low-energy sector is mostly determined by the charge on
the island. If we choose Nc

g = 1
2 , the ground-state manifold

in the charge sector can be classified by the total charge
|GS〉 = |Nc = 1

2 〉. The states with the next higher energy are
the states where a fermion takes some charge from the con-
densate and tunnels into an electron state in the wire or an
electron that tunnels into the MZMs and donates its charge
to the condensate. These states can be written as |0〉 and |1〉,
respectively.

Applying the Schrieffer-Wolff transformation, Hamilto-
nian (8) becomes

Ĥ = Ĥdot + Ĥ0 + Ĥz − t2

Ec

〈
1

2

∣∣∣∣ ∑
n=0,1

Ĥt |n〉 〈n| Ĥt

∣∣∣∣1

2

〉
︸ ︷︷ ︸

�Ĥ

. (B3)

The last term will become the effective Kondo Hamiltonian.
Hence, we will focus on this term and drop the other parts of
the Hamiltonian. If we expand the Hamiltonian, it becomes

�Ĥ = − t2

Ec

∑
i, j

〈
1

2

∣∣∣∣ [(�†
i e−iϕ̂γi + H.c.) |0〉 〈0| (�†

j e−iϕ̂/2γ j + H.c.) + (�†
i e−iϕ̂γi + H.c.) |1〉 〈1| (�†

j e−iϕ̂/2γ j + H.c.)]

∣∣∣∣1

2

〉
.

(B4)

The operator e±iϕ̂/2 are translation operators in charge
space that destroy (create) charge in the condensate. The
matrix elements of the charge translation operators are
straightforwardly calculated and read as

〈1/2| e−iϕ̂/2 |0〉 = 0, 〈1/2| eiϕ̂/2 |0〉 = 1,

〈0| e−iϕ̂/2 |1/2〉 = 1, 〈0| eiϕ̂/2 |1/2〉 = 0,

〈1/2| e−iϕ̂/2 |1〉 = 1, 〈1/2| eiϕ̂/2 |1〉 = 0,

〈1| e−iϕ̂/2 |1/2〉 = 0, 〈1| eiϕ̂/2 |1/2〉 = 1. (B5)

Applying these rules, the effective Hamiltonian collapses to

�Ĥ = − t2

Ec

∑
i, j

(
γ T

i �i �
†
j γ j + �

†
i γi γ

T
j � j

)
. (B6)
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This expression is the origin of Eq. (11) of the main text; note
that i = 1, . . . ,w.

In the case w = 1 we use the notation

�Ĥ = − 2t

Ec
�†(γ γ T)�, (B7)

where we introduced the four-component spinor � =
(�L↑, �L↓, �R↑, �R↓)T and the symbol (γ γ T) that represents
the matrix

(γ γ T) =

⎛
⎜⎜⎝

1 γL↑γL↓ γL↑γR↑ γL↑γR↓
γL↓γL↑ 1 γL↓γR↑ γL↓γR↓
γR↑γL↑ γR↑γL↓ 1 γR↑γR↓
γR↓γL↑ γR↓γL↓ γR↓γR↑ 1

⎞
⎟⎟⎠

= −2

⎛
⎜⎜⎝

0 −iŜy iŜz iŜx

iŜy 0 iŜx −iŜz

−iŜz −iŜx 0 −iŜy

−iŜx iŜz iŜy 0

⎞
⎟⎟⎠ + 14x4. (B8)

Decomposing this matrix further into Pauli matrices yields

(γ γ T) = −2(1τ σyŜy − τyσzŜz − τyσxŜx ) + 1τ1σ , (B9)

where σi and τi act in the spin and left and right space,
respectively. In the next step, we change into the eigenbasis
of −τy and obtain

�Ĥ = 4t2

Ec

(
�

†
+ �

†
−

)(
σ 0
0 σ

)(
�+
�−

)
· Ŝ − 2t2

Ec
�†�,

(B10)
where �+ = 1√

2
(�L + i�R) and �− = iσy√

2
(�L − i�R). The

vector Ŝ = (Ŝx, Ŝy, Ŝz ) contains the bilinears of the MZMs.
The second term is nothing but a potential term that we will
omit from now on. Separating the U matrix from the spinors,
the Kondo Hamiltonian evaluates to

ĤK = λ(ψ†
+Û †σÛψ+ + ψ

†
−σyÛ

†σyσσyÛσyψ−) · Ŝ, (B11)

where λ = 4t2

Ec
, ψ+ = 1√

2
(ψR + iψL ), and ψ− = iσy√

2
(ψR −

iψL ).

2. Limit Ez � Es

In this section, we build upon the derivations from the
previous section, assuming that Ez � Es, and that d̂ only
experiences weak fluctuations around the y axis. Our strategy
is to expand the unitary matrix Û in terms of θ̂ . We introduce
a new representation of Û using Pauli matrices to achieve
this. We utilize the gauge freedom within Û and redefine it
as follows:

Û = e−iφ̂/2σy eiθ̂/2σx eiφ̂/2σy = eiŴ /2, (B12)

where

Ŵ = θ̂ cos(φ̂)︸ ︷︷ ︸
∂φδd̂x

σx − θ̂ sin(φ̂)︸ ︷︷ ︸
∂φδd̂x

σz. (B13)

We can now expand Û in powers of θ̂ since the fluctuations
in this angle are small. Therefore, up to the first order, we

obtain

Û †σÛ ≈
(
1 − i

2
Ŵ

)
σ

(
1 + i

2
Ŵ

)
= σ + ∂φδd̂ × σ + O (θ̂2), (B14)

where δd̂ = (δd̂x, 0, δd̂z )T. Similarly, we can calculate

Û †σyσσyÛ ≈ σy(σ − ∂φδd̂ × σ )σy. (B15)

The Hamiltonian can be expressed compactly as

ĤK = λ
∑
a=±

ψ†
a σψa · (1 + a ∂φδd̂×)Ŝ. (B16)

This is the origin of Eq. (19) of the main text.

3. Limit Ez � Es

In this limit, we also consider transition in higher excited
states induced by angular momentum and orbital fluctuations.
We chose the third row in Table I to be the ground-state
manifold (again setting Nc

g = 1
2 ). The energy ground states

can be written as

|GS〉 = ∣∣Nc = 1
2 , jy, J = 3

4

〉
sy︸ ︷︷ ︸

condensate sector

⊗ |sy〉︸︷︷︸
fermion sector

≡ ∣∣ 1
2 , jy, sy

〉
, (B17)

where jy = ± 1
2 and sy = ± 1

2 are the eigenvalues of the
two operators Ĵy and Ŝy, respectively. As it will be shown,
the ground-state wave function of the condensate sector
also depends on sy due to the implicit dependence of Ĵ
on Ŝy. The two excited states can be written in a similar
fashion as

|l, k = {0, 2}〉 ≡ |Nc = l, jy = 0, J = 0〉

⊗ {|0〉 , �†
↑ �

†
↓ |0〉}. (B18)

The effective Hamiltonian after the Schrieffer-Wolff trans-
formation reads as

�Ĥ = −t2
∑
ξ,η

|GS〉ξ 〈GS|ξ
∑
l,k

Ĥt |l, k〉 〈l, k| Ĥt

�El

× |GS〉η 〈GS|η , (B19)

where �El = El − E0. El is the energy of the first excited
state, and E0 is the ground-state energy. The projector onto
a ground state can also compactly be written as

|GS〉sy
〈GS|sy

= ∣∣ 1
2 , jy, sy

〉 〈
1
2 , jy, sy

∣∣
= ∣∣ 1

2 , jy
〉
sy

〈
1
2 , jy

∣∣
sy

⊗ |sy〉 〈sy|︸ ︷︷ ︸
�sy

. (B20)

Now, we can rewrite the effective Hamiltonian as

�Ĥ = −t2
∑
m,m′

∣∣∣∣1

2
,m

〉
�Hm,m′

〈
1

2
,m′

∣∣∣∣ , (B21)
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where

�Hm,m′ = −t2
∑

l,k,ξ ,η

�ξ

×
〈

1

2
,m

∣∣∣∣
ξ

Ĥt |l, k〉 〈l, k| Ĥt

�El

∣∣∣∣1

2
,m′

〉
η

�η

= −t2
∑
l,ξ ,η

�ξ

×
〈

1

2
,m

∣∣∣∣
ξ

Ĥt |l〉 (
∑

k |k〉 〈k|) 〈l| Ĥt

�El

∣∣∣∣1

2
,m′

〉
η

�η,

(B22)

where
∑

k |k〉 〈k| = 1 in the subspace of even electron parity.
The sum over the charge sector is equivalent to what was done
in the last section. The effective Hamiltonian becomes

�Hm,m′ = − t2

�E
�ξ

∑
i, j

{〈m|ξ γ T
j Ûψ j |0〉 〈0|ψ†

i Û †γi |m′〉η

+〈m|ξ ψ†
i Û †γi |0〉 〈0| γ T

j Ûψ j |m′〉η
}
�η, (B23)

where �E = Ec − Es
3
4 . In order to evaluate the matrix ele-

ments that appear in Eq. (B23) we introduce a partition of
unity of the form 1 = ∫ θ

0 dθ
∫ 2π

0 dφ sin(θ )
4π |φ, θ〉 〈φ, θ |. Also

we decompose the lead electrons in eigenvectors of the σy

matrix, that is, ψi = ∑
n=± ψnen, where en = 1√

2
(1, in)T and

n being the eigenvalue n = ±1. Applying these two steps the
Hamiltonian (B23) becomes

�Hm,m′ = − t2

�E
�ξ

∑
i j

{
γ T

i U ξm
θ emψi,mψ

†
j,me†

m′
(
U ηm′

θ

)†
γim′

+ ψ
†
im̄e†

m̄

(
U ξm

θ

)†
γi γ T

j U ηm′
θ em̄′ψ j,m̄′

}
�η, (B24)

where m̄ = −m and

U ξm
θ = 〈m|ξÛ |0〉 =

∫
dθ sin(θ )

2
〈m|ξ θ〉 eiθ/2σx . (B25)

The projector in the orbital and Majorana space can explicitly
be written in terms of Majorana fermions as

�ξ = 1 + 2ξ Ŝy

2
= 1

2

(
1 + ξ

i

2
γ T

i σyγi

)
, (B26)

where i can either be R or L. Due to the parity constraint, both
are equally good. As we did for the lead electrons, we expand
the Majorana fermions in terms of eigenvectors of σy. It is
straightforward to show that

e†
n · γi �ξ = δξnγin, (B27)

e†
n · �ξγi = δξ̄nγin, (B28)

γ T
i �ξ · en = δξ n̄γin̄, (B29)

�ξγ
T
i · en = δξ̄ n̄γin̄. (B30)

Now, we are in a position to evaluate the sums of the shape∑
ξ

�ξγ
T
inene†

n′U
ξm
θ em

=
∑
ξ

∫ π

0

sin(θ )

2
〈m|ξ θ〉 e†

neiσx θ/2em︸ ︷︷ ︸
cos(θ/2)δnm−2m sin θ/2δnm̄

γin̄δξ̄ n̄

=
∫ π

0

sin(θ )

2
(〈m|m |θ〉 cos(θ/2)δnm

− 2m 〈m|m̄ |θ〉 sin(θ/2)δnm̄)γin̄. (B31)

The two integrals are∫ π

0
dθ

sin(θ )

2

√
1 + cos θ cos(θ/2) = 1√

2
(B32)

and ∫ π

0
dθ

sin(θ )

2

√
1 − cos θ sin(θ/2) = 1√

2
. (B33)

After calculating the other three sums of the shape of sum
(B31) the effective Hamiltonian becomes

�Hmm′ = − t2

2�E

∑
i, j

(ψimψ
†
im′ (γim̄ − 2mγim)

× (γ jm′ − 2m′γ jm̄′ )

+ ψ
†
im̄ψ jm̄′ (γim̄ + 2mγim)(γ jm′ + 2m′γ jm̄′ )).

(B34)

In the next step, we evaluate each matrix element in angular
momentum space separately. That is, we set up the matrix

�H =
(
�H++ �H+−
�H−+ �H−−

)
. (B35)

The matrix elements can be written in a compact way as

�H++ = − 2t2

�E
+ t2

�E
ψ†σyψ + t2

�
ψ†σyτyψZ,

�H−− = − 2t2

�E
− t2

�E
ψ†σyψ + t2

�E
ψ†σyτyψZ,

�H+− = 2t2

�E
(ψ†σ−ψY − iψ†τyσ−ψ ),

�H−+ = 2t2

�E
(ψ†σ+ψY + iψ†τyσ+ψ ), (B36)

where we introduced the spinor ψ = (ψL↑, ψL↓, ψR↑, ψR↓)T

and τi are Pauli matrices that act on the R/L space. Fur-
thermore, we introduced the matrices σ± = 1

2 (σz ± iσx ) The
Kondo Hamiltonian can be found by decomposing the matrix
in Pauli matrices, which correspond to the components of J
projected down onto the ground-state manifold, that is,

�Ĥ =
3∑

i=0

1

2
Tr[�HJi]Ji. (B37)
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Such a decomposition leads to (neglecting inessential con-
stants)

ĤK = t2

�E
[ψ†τyσyψZ + ψ†σyψJy

+ (ψ†σxψY + ψ†τyσzX )Jx

+ (ψ†σzψY + ψ†τyσxψX )Jz]

= t2

�E
(ψσψ + ψ†στyψZJy) · S , (B38)

where

S =
⎛
⎝Y Jx

Jy

Y Jz

⎞
⎠ (B39)

and σ is a vector with the Pauli matrices as components. Note
that we chose the y axis as the quantization axis, which means
that in angular momentum space

Jy =
(

1 0
0 −1

)
, Jz =

(
0 1
1 0

)
, and Jx =

(
0 −i
i 0

)
.

(B40)

Further progress can be made by changing to a basis in
which

−τy =
(

1 0
0 −1

)
(B41)

leaving us with the Hamiltonian

ĤK = 2t2

�E

∑
a=±

ψ†
a σψa · 1 − aZJy

2
S , (B42)

where ψ+ = 1√
2
(ψL + iψR) and ψ− = i√

2
(ψL − iψR). Fi-

nally, we diagonalize the matrix structure of ĤK with respect
to projector 1−aZJy

2 by applying the transformation T =
Jyei π4 XJy which yields the Kondo part of Hamiltonian (20):

ĤK = 4t2

�E

∑
a=±

ψ†
a σψa

1 − aY

2
· Ĵ, (B43)

where Ĵ = ( Jx
2 ,

Jy

2 ,
Jz

2 )T is a vector of angular momentum op-
erator. To achieve Eq. (B43) we absorbed a σy in the definition
of ψ− (i.e., σyψ− → ψ−)

The operator Ĥz = −Ezn̂y can be projected onto the
ground-state manifold as well. Again, we introduce the parti-
tion unity 1 = ∫ π

0 dθ
∫ 2π

0 dφ sin(θ )
4π |φ, θ〉 〈φ, θ |. Applying one

identity from both sides on Ĥz gives the matrix

Ĥz = −Ez

⎛
⎜⎜⎝

I1 I3 0 0
I3 I2 0 0
0 0 I2 I3

0 0 I3 I1

⎞
⎟⎟⎠ = −Ez

3
JyY, (B44)

where⎧⎪⎨
⎪⎩

I1 = ∫ π

0
dθ
2 [1 + cos(θ )] cos θ = 1

3 , m = ξ = η

I2 = ∫ π

0
dθ
2 [1 − cos(θ )] cos θ = − 1

3 , m �= ξ = η

I3 = ∫ π

0
dθ
2 sin(θ ) cos θ = 0, m = ξ �= η.

(B45)

Applying the transformation T yields

Ĥz = −Ez

3
Z. (B46)

Adding the Hamiltonians (B46) and (B43) gives rise the the
effective Hamiltonian (20).

APPENDIX C: POOR MAN’S SCALING

We employ a small coupling renormalization group (RG)
scheme to Eq. (21). The high-energy states are integrated
out in second-order perturbation theory. We assume the lead
electrons can only access states with energies D above and
below the Fermi energy. One RG step reduces the bandwidth
D by δD.

In second-order perturbation theory, the Hamiltonian, after
integrating out the high-energy modes, takes the form

Ĥ = Ĥ0 + ĤK + �Ĥ, (C1)

where

�Ĥ = |a〉 〈a|�Ĥ |b〉︸ ︷︷ ︸
�Hab

〈b| . (C2)

Here, Ĥ0 is the free Hamiltonian of the lead electrons, and
ĤK is the Kondo Hamiltonian (B43). The states |a/b〉 are
energy eigenstates with energies Ea/b ∈ [−D + δD,D − δD].
The matrix

�Hab = 〈a| 1
2 [T̂ (Ea) + T̂ (Eb)] |b〉 Ea≈Eb=E= 〈a| T̂ (E ) |b〉

(C3)
incorporates the T matrix that describes the scattering events
from low-lying energy states into the high-energy (integrated
out) states. It can formally be written as

T̂ (E ) = ĤK P̂H Ĝ0(E )P̂H ĤK , (C4)

where P̂H is a projector into the Hilbert space of energetically
high-lying states (i.e., ε ∈ [D − δD,D] or ε ∈ [−D,−D +
δD]), and Ĝ0(E ) = (E − Ĥ0)−1. The transition matrix T̂ can
be diagrammatically calculated by adding the two diagrams in
Fig. 5.

We will follow the strategy outlined above with an
anisotropic version of Hamiltonian (B43), which reads as

ĤK = 1

2

∑
a

[
ψ†

aσiψa

(
λ1

i − aλY
i Y

)
Ĵi

]
, (C5)

where we use the Einstein convention for an implicit sum over
i ∈ x, y, z. The sum of both diagrams is

�Ĥab = T̂ (I )
ab + T̂ (II )

ab

= −νδD

2D

∑
a

{
λ1

i λ
j
j[σi, σ j]ĴiĴ j − aλ1

i λ
Y
j Y [σi, σ j]ĴiĴ j

− aλY
i λ

1
j [σi, σ j]Y ĴiĴ j + λY

i λ
Y
j [σi, σ j]ĴiĴ j

}
, (C6)

where we approximate the integrals over energies that are
integrated out by the factor − νδD

D . Using the relation

[σi, σ j]ĴiĴ j = −2σk Ĵk with k �= i, j, (C7)
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FIG. 5. Scattering processes that contribute to the renormaliza-
tion of the Kondo Hamiltonian �Ĥ are as follows: (a) Particle
excitation: In this process, a low-energy electron state |b〉 scatters
at the impurity, denoted by Ĵ, into a high-energy state |c〉 which, in
turn, scatters back into a low-energy state |a〉. (b) Hole excitation:
In this scenario, a low-energy state |b〉 scatters into a high-energy
hole state |c〉. The hole then scatters back into a low-energy electron
state |a〉.

the result simplifies to

�Ĥ = −νδD

D

∑
a

{(
λ1

i λ
1
j + λY

i λ
Y
j

)
σk Ĵk

− a
(
λ1

i λ
Y
j + λY

i λ
1
j

)
σkY Ĵk

}
. (C8)

From Eq. (C8), we can see that the renormalized coupling
constants take the form

λ̃1
k = λ1

k + νδD

D

(
λ1

i λ
1
j + λY

i λ
Y
j

)
,

λ̃Y
k = λY

k + νδD

D

(
λ1

i λ
Y
j + λY

i λ
1
j

)
. (C9)

These equations can be rewritten as a differential equation:

dλ1
k

dD
= lim

δD→0

λ̃k1 − λ1
k

−δD
= − ν

D

(
λ1

i λ
1
j + λY

i λ
Y
j

)
,

dλY
k

dD
= lim

δD→0

λ̃Y
k − λY

k

−δD
= − ν

D

(
λ1

i λ
Y
j + λY

i λ
1
j

)
. (C10)

Setting λ1/Y
x = λ1/Y

z = λ⊥ and defining the RG times l =
ln(D0/D), where D0 is the initial bandwidth, the flow equa-
tions read as

dg⊥
dl

= g⊥
(
g1

y + gY
y

)
, (C11)

dg1
y

dl
= 2g2

⊥, (C12)

dgY
y

dl
= 2g2

⊥. (C13)

Here, g1/Y
⊥/y = νλ

1/Y
⊥/y are dimensionless coupling constants. In

order to visualize the three-dimensional RG flow, we define

new parameters of the shape

y1/Y
⊥,y = g1/Y

⊥,y

1 + g1/Y
⊥,y

, (C14)

such that the g1/Y
⊥,y → ∞ corresponds to y1/Y

⊥,y → 1. The flow
equation for the new parameters follows from Eqs. (C11)–
(C13) and read as

dy⊥
dl

= (y⊥ − 1)y⊥
[
y1

y

(
2yY

y − 1
) − yY

y

](
y1

y − 1
)(

yY
y − 1

) , (C15)

dy1
y

dl
= 2

(
y1

y − 1
)2

y2
⊥

(y⊥ − 1)2
, (C16)

dyY
y

dl
= 2

(
yY

y − 1
)2

y2
⊥

(y⊥ − 1)2
. (C17)

This equation has been used to create Fig. 3 where we iden-
tified the point (1, 1, 1) with the strong coupling fixed point,
which we called ∞.

APPENDIX D: BOSONIZATION
AND REFERMIONIZATION

This Appendix contains details for the Emery-Kivelson
solution of Eq. (21) and thereby is a supplement to Sec. IV A.

First, we define the spin operator of the lead electrons in
terms of the chiral fermions ψ̃R/L as follows:

Ia = ψ̃†
a σψ̃a

2
, I±

a = Iz
a ± iIx

a . (D1)

Additionally, it is worth noting that

I · Ĵ = 1
2 (I+

a Ĵ− + H.c.) + Iy
a Ĵy. (D2)

Now, the Hamiltonian can be rewritten in terms of these spin
operators as follows:

ĤK = λ⊥
2

[(I+
+ + I+

− )Ĵ− + (I+
− − I+

+ )Y Ĵ− + H.c.]

+ λ1
y (Iy

+ + Iy
−)Ĵy + λY

y (Iy
− − Iy

+)Y Ĵy. (D3)

Here, we introduce an anisotropy in the Kondo coupling con-
stants. The lead electrons are bosonized in the following way:

ψ̃aσ = Faσ√
2πa0

ei
√

4πφaσ

⇒ I+
a = ψ

†
a↑ψa↓ = F †

a↑F †
a↓

2πa0
ei

√
4π (φa↓−φa↑ ) (D4)

and

Iy
a = 1

2
(ψ†

a↑ψa↑ + ψ
†
a↓ψa↓) = 1

2
√
π
∂x[φa↑(x) + φa↓(x)]|x=0.

(D5)

Using the rules to transform the operators into the s/s f /c/c f
basis as outlined in Eqs. (26) and (27), the bosonized
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Hamiltonian reads as follows:

ĤK = λ⊥√
8πa0

[(χ†
s f + χs f )F †

s e−i
√

4πφs Ĵ−

+ (χs f − χ
†
s f )F †

s e−i
√

4πφsY Ĵ+ + H.c.]

+ λ1
y√
π
∂φs(x)|x=0Ĵy + λY

y√
π
∂xφs f (x)|x=0Y Ĵy. (D6)

Here, we introduce the new fermion χa = Fs√
2πa0

ei
√

4πφa . We

apply an Emery-Kivelson transformation UE.K. = ei
√

4πφs Ĵy

which manages to decouple the s f from the s bosons and
fermions. The operators affected by the Emery-Kivelson
transformation transform as follows:

U †
E.K.Ĵ−UE.K. = Ĵ−ei

√
4πφs ,

U †
E.K.∂xφs(x)UE.K. = ∂xφs(x) − √

π Ĵyδ(x). (D7)

The transformed and fully fermionized Hamiltonian reads as
follows:

Ĥ ′
K = λ⊥√

4πa0
((χ†

s f + χs f )(d − d†)

+ (χs f − χ
†
s f )(d + d†)Y )

+ δλy : χ†
s f χs f :

(
d†d − 1

2

)

− λY
y : χ†

s f χs f : Y

(
d†d − 1

2

)
, (D8)

where F †
s Ĵ− = d , Ĵy = (d†d − 1

2 ), and δλy = λY
y − 2πvF .

The contribution of the Fermi velocity enters vF since the free
Hamiltonian of the φs gets also transformed. We also used the
fact that the derivative of the Bose fields becomes in fermionic
language the following:

∂xφa(x) =: χ†
x χx :, (D9)

where : · · · : denotes normal ordering. This is the origin of
Eq. (31).

APPENDIX E: OBSERVABLES

1. Green’s function at the Toulouse point

In this Appendix, we calculate the Green’s functions of the
constituents in Hamiltonian (34) at the Toulouse point, which
involves setting the coupling constants of the interaction terms
to zero. In our case, this means we choose λY

y = 0 and λ1
y =

2πvF (i.e., δλy = 0).
First, we introduce some conventions. The retarded and

imaginary-time correlation functions of two observables, de-
noted as A and B, are defined as

CR
AB(t ) = −iθ (t ) 〈[A(t ),B(t )]〉 (E1)

and

CAB(τ ) = −〈TτA(τ )B(τ )〉 , (E2)

respectively. The transformation from imaginary time to Mat-
subara frequencies at zero temperature is given by

CAB(τ ) = 1

β

∑
m

e−iωmτCAB(iωm)

T →0−→ 1

2π

∫ ∞

−∞
dωme−iωmτCAB(iωm) (E3)

and

CAB(iωm) =
∫ β

0
dτ eiωmτCAB(τ )

T →0−→ 1

2

∫ ∞

−∞
dτ eiωmτCAB(τ ), (E4)

where β is the inverse temperature. The retarded and
imaginary-time correlation functions are related by analytical
continuation, which means

CR
AB(ω) = lim

iωm→ω+i0+
CAB(iωm). (E5)

Now we calculate the free local Green’s function of the
lead fermions: G(0)(τ, x) = −〈Tτ χa (τ, x)χ†

a (0, 0)〉. In a diag-
onal basis, the Green’s function reads as

G(0)(iωm, k) = 1

iωm − εk
. (E6)

The local Green’s function at x = 0 is

g(0)(iωm, x = 0) =
∫

dk

2π

1

iωm − εk
=

∫
dε

ρ(ε)

iωm − ε
, (E7)

where ρ(ε) = ν is the density of states, which can be
well modeled as being constant within the bandwidth 2D,
leading to

g(0)(iωm) = ν

∫ D

−D
dε

1

iωm − ε
= −i2ν arctan

(
D

ω

)
. (E8)

In the limit ωm � D, the asymptotic behavior of the Green’s
function becomes

g(0)(iωm) = −iνπ sign(ωm). (E9)

To calculate the Green’s function for the Majorana
fermions η and ηx,y,z we introduce complex fermions which
can be chosen in a very suggestive and physical way, that is,

f = i

2
(η + iηy), s = 1

2
(ηz + iηx ) = α

2
(Z + iX ) = αŜ+.

(E10)
The f electron can be understood as a ladder operator within
the Hilbert space that belongs to the order-parameter angular
momentum Ĵ. However, it acts differently on the subspaces
defined by the MZMs. On the other hand, the s fermion acts
as a ladder operator in the orbital space.

The Hamiltonian (34) can be expressed in terms of these
new fermions and becomes

Ĥeff = λ⊥√
2πa0

(χ†
s f f + H.c.) + λy : χ†

s f χs f :

(
f † f − 1

2

)

+ 2δλy : χ†
s χs :

(
f † f − 1

2

)(
s†s − 1

2

)
, (E11)

where we ignored the Zeeman term for a moment. One can
observe that in the case of no interaction (i.e., λy = δλy = 0),
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the Hamiltonian (E11) collapses to a resonant level model
that describes a regular Kondo effect. However, the presence
of the orbital space in which the f fermion acts differently
distinguishes our system from “just” a regular Kondo effect.

Now we can write the local action for the Kondo Hamilto-
nian (E11) at the Toulouse point in terms of the new fermions:

SK =
∫

dωm(χ̄s f f̄ )

(−g(0)(iωm) λ̃

λ̃ −iωm

)(
χs f

f

)

+
∫

dωms̄ (−iωm) s, (E12)

where λ̃ = λ⊥√
2πa0

. From the action, we can read off the
Green’s function:

G =
[(

i
νπ

signωm −λ̃

λ̃ iωm

)]−1

= −1

|ωm| + �

(
iωmπν λ̃πν

λ̃πν i sign(ωm)

)
, (E13)

where � = λ̃2νπ . Collecting everything leads to the following
list of Green’s functions:

G0(iωm) = −iπν sign(ωm) (Green’s function χs,c,c f ),

(E14)

G(iωm) = −iωmπν

|ωm| + �
(Green’s function χs f ), (E15)

D0(iωm) = 1

iωm
(Green’s function of s), (E16)

D(iωm) = −i sign(ωm)

|ωm| + �
(Green’s function f ), (E17)

F (iωm) = −λ̃πν

|ωm| + �
( f ↔ χs f matrix element). (E18)

We also find the Green’s functions in imaginary time by ap-
plying the Fourier transform (E3). If we assume that |ωm| �
�, the imaginary-time Green’s functions behave asymptoti-
cally at large τ as follows:

G0(τ ) ≈ −ν

τ
, (E19)

G(τ ) ≈ − 2ν

�2τ 3
, (E20)

D0(τ ) ≈ − sign(τ )

2
, (E21)

D(τ ) ≈ − 1

π�τ
, (E22)

F (τ ) ≈ − λ̃ν

�2τ 2
. (E23)

Furthermore, we deduce the Majorana Green’s function
from the fermionic one. We note that

〈Tτ f (τ ) f (0)〉 = 1
4 〈[η(τ ) + iηy(τ )][η(0) − iηy(0)]〉

= 1
4 [〈Tτ η(0)η(τ )〉 + 〈Tτ ηy(τ )ηy(0)〉]

≡ −D(τ ), (E24)

where it has been used that 〈Tτ η(τ )ηy(0)〉= 〈Tτ ηy(τ )η(0)〉 =0
since the Hamiltonian at the Toulouse point does not have

terms which enable such processes. Also, the phase of the f
fermion is a gauge degree of freedom from which we con-
clude that 〈Tτ ηy(τ )ηy(0)〉 = 〈Tτ η(0)η(τ )〉. Hence, to fulfill
Eq. (E24)

〈Tτ ηy(τ )ηy(0)〉 = 〈Tτ η(0)η(τ )〉 = −2D(τ ) (E25)

must hold. It is straightforward to verify that similar relations
also hold for ξs,s f ,c,c f , ζs,s f ,c,c f , ηx and ηy.

2. Correlation functions at finite temperature

Correlation functions of the operator at zero temperature
with gapless constituents show an algebraic decay in confor-
mal field theories [e.g., Eqs. (E19)–(E23)]. Using conformal
transformations, the zero-temperature correlation functions
can be mapped onto their finite-temperature counterparts as

〈TτO(τ )O(0)〉 ∼
(

1

τ

)2�
conf. trafo.−→

(
πT

sin(πT τ )

)2�

, (E26)

where � is the scaling dimension of the operator O(τ ) and T
is the temperature. Integrals over these correlation functions

I (�) =
∫ β−τ0

τ0

dτ

(
πT

sin(πT τ )

)2�

= 2
∫ β/2

τ0

dτ

(
πT

sin(πT τ )

)2�

(E27)

can be expressed in a more convenient form by the coordinate
transformation x = tan(πT τ ) and become

I (�) = 2(πT )2�−1
∫ ∞

x0

dx
(1 + x2)�−1

x2�
, (E28)

which can be done exactly and evaluates to

I (�) = 2(πT )2�−1

x0
2F1

(
1

2
, 1 − �,

3

2
,− 1

x2
0

)
, (E29)

where x0 = tan(πT τ0) and 2F1 is the hypergeometric func-
tion. We have introduced a regularization τ0 = 1

�
since the

correlation functions are only valid for long imaginary times.
For further reference, we list a couple of special cases for
T � � (i.e., x0 ≈ πT τ0) to leading order in T :

(1) � = 1
2

I

(
1

2

)
= 2

[
ln

(
T

�

)
+ ln

(
2

π

)]
; (E30)

(2) � = 1

I (1) = 2�; (E31)

(3) � = 3
2

I

(
3

2

)
= �2 − π2 ln(T )T 2 + O (T 2); (E32)

(4) � = 2

I (2) = 2

3
�3 + 2π2�T 2 + O (T 3); (E33)

(5) � > 2

I (�) = const + O (T 2). (E34)
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3. Thermodynamics

a. Susceptibilities

The local impurity susceptibility of V̂ ∈
{X,Y,Z, Ĵx, Ĵx, Ĵx} is defined as

χV̂ (T, iωm) = −
∫ β

0
dτ 〈TτV̂ (τ )V̂ (0)〉 eiωmτ , (E35)

where T and β are the temperature and inverse temperature,
respectively. Later on, we are only interested in the static
susceptibility

χV̂ (T ) = lim
ωm→0

χV̂ (T, ωm). (E36)

However, for further reference, it will be beneficial to calcu-
late the dynamical susceptibility for the Ĵy operator.

The calculation of the static susceptibilities is straightfor-
ward and relies on the decomposition into the four Majorana
fermions η, ηy, ηx, ηz. One finds

Ĵy = iαβ

2
= 1

2
ηxηyηzη. (E37)

Thus, the time-dependent correlation function evaluates to

(E38)
where we used η(τ ) = ητ as a shortcut notation. Using the
former result, we obtain the static susceptibility

χĴy
(T ) = −

∫ β−τ0

τ0

dτ D(τ )2 = −
(

1

π�

)2

I (1) = − 2

π2�
,

(E39)

where we introduced the cut of τ0 = 1
�

to regularize the
integral.

The dynamical susceptibility can be calculated along the
same line, except that the integral reads as

δχĴy
(T, iωm) = −

∫ β

0
dτ D(τ )2(eiωmτ − 1)

= −
(

1

π�

)2 ∫ β

0
dτ (πT )2 cos(ωmτ ) − 1

sin2(πT τ )

= |ωm|
2π�2

.

(E40)

Hence, the full dynamical susceptibility evaluates

χĴy
(T, iωm) = − 1

π�

(
2

π
− |ωm|

2�

)
. (E41)

In the following, we only consider the static susceptibili-
ties. For Ĵx and Ĵz, the calculation is slightly more complicated
since these operators are affected by the Emery-Kivelson

transformation. According to Eq. (D7), we find that

U †
E.K.ĴzUE.K. = 1

2
U †

E.K.(J
+ + J−)UE.K.

= 1

2
(e−i

√
4πφs Ĵ+ + ei

√
4πφs Ĵ−)

=
√

πa0

2
(d†χs + H.c.)

=
√

πa0

8
(iξsη + ζsηxηyηz ), (E42)

where we inserted the identity 1 = Fs F †
s . A similar calcula-

tion yields

U †
E.K.ĴxUE.K. =

√
πa0

8
(iζsηy + ξsηxηyηz ). (E43)

To calculate the susceptibility, we need the correlator of the
transformed spin operators:

〈TτU
†
E.K.Ĵx/z(τ )UE.K.U

†
E.K.Ĵz(0)UE.K.〉 = πa0G0(τ )D(τ ).

(E44)

Thus, the susceptibility can be calculated by

χĴx,z
= −πa0

∫ β−τ0

τ0

dτ G0(τ )D(τ ) = a0ν

�
I (1) = 2a0ν.

(E45)

The second part of the impurity is given by the orbital
degrees of freedom X,Y,Z and follows the same strategy
as for the condensate. Note that none of these operators are
affected by the Emery-Kivelson transformation

χY (T ) = −
∫ β−τ0

τ0

dτ 〈TτY (τ )Y (0)〉

=
∫ β−τ0

τ0

dτ 〈Tτ ηx(τ )ηz(τ )ηx(0)ηz(0)〉

= −
∫ β−τ0

τ0

dτ (−2D0)2 = −
∫ β−τ0

τ0

dτ ∼ 1

T
,

(E46)

where we introduced the cut of τ0 = 1
�

to regularize the inte-
gral. Furthermore,

χZ (T ) = −
∫ β−τ0

τ0

dτ 〈TτZ (τ )Z (0)〉

=
∫ β−τ0

τ0

dτ 〈Tτ ηy(τ )ηx(τ )ηy(0)ηx(0)〉

= −
∫ β−τ0

τ0

dτ [−2D(τ )][−2D0(τ )]

= − 1

π�
I

(
1

2

)
= 2

π�
ln

(
�

T

)
− 2

π�
ln

(
2

π

)
.

(E47)

χX (T ) can be calculated along the same line, which yields the
same result as for χZ (T ).
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b. Finite-temperature corrections to the free energy

The scaling dimension of the interaction operators Os f and
Os is determined by investigating the algebraic decay of their
correlations:

(E48)

and

(E49)

where we used ξ τ
s = ξs(τ ) as a shorthand notation. Equa-

tions (E48) and (E49) show that the scaling dimensions of Os

and Os f are �s = 2 and �s f = 4, respectively.
Since both operators are irrelevant in an RG sense, we

can incorporate them perturbatively into the calculation of
the finite-temperature corrections to the free energy. Since the
operator Os has the lower scaling dimension, we will focus on
that one.

In the leading order, the corrections to the free energy are
given by the expression

δF (T ) = −1

2

∫ β−τ0

τ0

dτ 〈Os(τ )Os(0)〉

= −δλ2
y

( ν

π�

)2
I (2)

= − (δλyν)2

�
T 2 − 1

3

(
δλyν

π

)2

�. (E50)

Thus, we obtain the final result:

δF (T ) − δF (0) = − (δλyν)2

�
T 2. (E51)

The correction leads directly to the expression for the thermo-
dynamic entropy and the specific heat:

S(T ) = − ∂

∂T
F (T ) = 2

(δλyν)2

�
T (E52)

and

Cv (T ) = T
∂

∂T
S(T ) = 2

(δλyν)2

�
T . (E53)

4. Transport

In the following chapter, we aim to calculate the conduc-
tance for both spin and charge currents. To achieve this, we
employ the Kubo formula, which is expressed as

G = lim
ω→0

Re
i

ω
CR

II . (E54)

Here, the symbol I represents the current operator, defined as

I = ∂t Q = −i[Q,H], (E55)

where the variable Q can represent either the total charge
or spin of the lead electrons. When expressed in terms of
Matsubara frequencies, the Kubo formula takes the form

G = lim
ω→0

Re
1

iω
lim

iωm→ω+i0+

∫ β/2

−β/2
dτ eiωmτ 〈Tτ I (τ )I (0)〉 .

(E56)

a. Charge and spin current

The total charge in the left and right wires is given by

QL/Rc = −e
∫

dx ψ̃
†
L (x)ψ̃L (x), (E57)

where ψ̃L = (ψ̃L↑, ψ̃L↓)T is a right-moving field that has been
extended to the whole real axis. A basis change into the ±
basis results in

QL/Rc = − e

2

∫
dx[ψ̃†(x)ψ̃ (x) ± ψ̃†(x)σyτ̃yψ̃ (x)], (E58)

where ψ̃ = (ψ̃+, ψ̃−)T and τ̃i acts in ± space. After bosoniza-
tion and refermionization, the total charge expressed in terms
of Majorana fermions becomes

QL/Rc = − e

2

∫
dx (iξcζc ± iξs f ξc f ). (E59)

Equation (E55) for the charge current yields

IL/Rc = − e

2

(
±iλ̃ξc f η + λY

y

2
ξc f ξs f ηyη

)
T.P.= ∓i

λ̃e

2
ξc f η,

(E60)

where we used that we are evaluating the conductance at the
Toulouse point (T.P.).

In full analogy to the charge current, we express the total
spin of one wire first in chiral fermions with support on the
whole axis. Thus, we have

QL/Rs =
∫

dx ψ̃
†
L (x)σyψ̃L (x)

= 1

2

∫
dx[ψ̃†(x)σyψ̃ (x) ± ψ̃†τ̃yψ̃ (x)], (E61)

where we changed into the ± basis after the second equal sign.
The first part becomes

ψ̃†(x)σyψ̃ (x) = 2√
π
∂xφs(x) (E62)

and, thus, is affected by the Emery-Kivelson transformation.
The total magnetization becomes after the transformation

QL/Rs = 1

2

∫
dx

(
2√
π
∂xφs(x) ± ψ̃†(x)τ̃ ψ̃ (x)

)
− Jy

= 1

2

∫
dx(iξsζs ± iζs f ζc f ) − ηxηyηzη

2
. (E63)

With the corresponding current,

IL/Rs
T.P.= λ̃

2
[±iζc f ηy + ηxηz(ξs f ηy − ζs f η)], (E64)

where the second term corresponds to J̇y.
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b. Charge conductance in strong coupling limit

Knowing the charge currents, we can calculate the conduc-
tances Gc

i j , where i, j ∈ R,L. The current-current correlator is
expressed as

(E65)
where xi j = (1 − 2δi j ). Thus, the current correlation function
expressed in Matsubara frequencies reads as

CII (iωm) = −xi j
(λ̃e)2

β

∑
n

G0(iωm − iεn)D(iεn), (E66)

where ωm and εn are bosonic and fermionic Matsubara fre-
quencies, respectively. The main task will be to evaluate the
Mastubara sum

�(iωm) = 1

β

∑
n

G0(iωm − iεn)D(iεn)

= −iνπ

β

∑
n

sign(ωm − εn)

iεm + i� sign(εn)
. (E67)

Note that this sum does not converge. However, we can regu-
larize the sum by subtracting the ωm = 0 part, which gives an
imaginary contribution and will, thus, vanish in the conduc-
tance anyway. Hence, we are left with the sum

δ�(iωm) = −iνπ

β

∑
n

sign(ωm − εn) + sign(εn)

iεn + i� sign(εn)

= −2νπ

β

m−1∑
n=0

1

εn + �

= −ν

[
ψ

(
1

2
+ ωm + �

2πT

)
− ψ

(
1

2
+ �

2πT

)]

= − ν

2πT
ψ ′

(
1

2
+ �

2πT

)
ωm + O

(
ω2

m

)
,

(E68)

where ψ is the digamma function and ψ ′ is its first derivative.
Since we are interested in the low-temperature correction, we
expand the result up to the first leading order in the tempera-
ture and obtain

δ�(iωm) ≈ − ν

�

[
1 − π2

3

(
T

�

2)]
ωm. (E69)

Therefore, we find the current correlation function to be

CII (iωm) = −xi j (λ̃e)2δ�(iωm)

= xi j
e2

π

[
1 − π2

3

(
T

�

)2
]
ωm.

(E70)

Inserting this result into the Kubo formula (E54) leads to the
final result for the DC conductance as

Gc
i j = Re lim

ω→0

1

iω
lim

iωm→ω+i0+
xi j

e2

π
ωm

[
1 − π

3

(
T

�

)]

= Re lim
ω→0

1

iω
xi j

e

π
(−iω) ×

[
1 − π

3

(
T

�

)]

= −xi jG
c
0 2

[
1 − π

3

(
T

�

)2
]

︸ ︷︷ ︸
G(T )

, (E71)

where Gc
0 = e2/h is the perfect conductance. Note that h̄ = 1

and, thus, h = 2π .

c. Spin conductance

The calculation of the spin conductance is analogous to that
of charge conductance, with the key difference being the more
intricate shape of the spin current. To compute Gs

i j , we first
introduce a new notation

IL/Rs = iL/Rs − J̇y, (E72)

where iL/Rs = ±i λ̃2 ζc f ηy. The current-current correlator es-
sentially involves a sum over three distinct correlators:
〈Tτ iL/Rs(τ )iL/Rs(0)〉, 〈Tτ iL/Rs(τ )J̇y(0)〉, and 〈T τ J̇y(τ )J̇y(0)〉. It
is straightforward to show that

〈Tτ iis(τ )i js(0)〉 = 〈Tτ Iic(τ )I jc(0)〉
e2

(E73)

and that 〈Tτ iL/Rs(τ )J̇y(0)〉 = 0. Thus, only the last correlator
〈Tτ J̇y(τ )J̇y(0)〉 remains to be calculated.

First, we express the correlator in terms of Matsubara fre-
quencies

CJ̇yJ̇y
(iωm) = −

∫ β

0
dτ dτ ′eiωm (τ−τ ′ ) 〈J̇y(τ )J̇y(τ ′)〉

= −
∫ β

0
dτ dτ ′eiωm (τ−τ ′ )∂τ ∂τ ′δχĴy

(τ, τ ′)

= −ω2
mδχĴy

(iωm) = ω2
m|ωm|

2π�2
. (E74)

Here we implicitly subtracted the CJ̇yJ̇y
(0) by using δχĴy

(iωm)
instead of χĴy

(iωm). The third equality is achieved by partial
integration. We see that the CJ̇yJ̇y

correlator is of third order in
ω and, thus, does not contribute to the DC conductance since
the term vanishes in the limit ω → 0.

d. Conductance at weak coupling

Finally, we aim to determine the temperature dependence
of conductance at weak coupling (i.e., temperatures above the
Kondo temperature). To achieve this, we express the Kondo
Hamiltonian in a slightly different form:

ĤK = λ

2
ψ†(1 − τ̃zY )σψ · Ĵ, (E75)

where ψ = (ψ+, ψ−)T. The charge current expressed in terms
of the ± fermions is given by

IL/Rc = ∓eλ

2
ψ†(ε2nmτ̃yσm − δ2nτ̃xY )ψ Ĵn. (E76)
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The current correlator evaluates as follows:

〈Tτ Iic(τ )I jc(0)〉 = 3 xi j (λe)2G0(τ )G0(−τ ), (E77)

where the free Green’s function of the electrons at finite tem-
perature is

G0(τ ) = −〈ψγ (τ )ψ†
γ (0)〉 = −ν

πT

sin(πT τ )
. (E78)

Note that 〈ψγ (τ )ψ†
σ (0)〉 = 0 if γ �= σ . Inserting the current-

current correlator into the Kubo formula leads to the integral

lim
iωn→ω+i0+

∫ β

0
dτ G0(τ )G0(−τ )eiωnτ = −iπν2ω, (E79)

which is valid for small ω. This result yields the conductance
at weak coupling:

Gc
i j = −6xi j

e2

h
(λπν)2. (E80)

The spin current in the basis of the ± lead fermions is
defined as

IL/Rs = λ

2
{ε2nmψ

†σmψ Ĵn − ψ†(ε2nmτ̃zσm ± τ̃xσn)ψY Ĵn}.
(E81)

For this case, the current-current correlator reads as

〈Tτ Iis(τ )I js(0)〉 = −λ2(4 − 3xi j )G0(τ )G0(−τ ). (E82)

This results in the spin conductance

Gs
i j = (4 − 3xi j )

2

h
(λπν)2. (E83)
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