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Viscoelastic response and anisotropic hydrodynamics in Weyl semimetals
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We study viscoelastic response in Weyl semimetals with broken time-reversal symmetry. The principal finding
is that topology and anisotropy of the Fermi surface are manifested in the viscoelasticity tensor of the electron
fluid. In the dynamic (interband) part of this tensor, the anisotropy leads to a qualitatively different, compared
with isotropic models, scaling with frequency and the Fermi energy. The components of the viscosity tensor
determined by the Fermi-surface properties agree in the Kubo and kinetic formalisms; the latter, however,
misses the anomalous Hall viscosity originating from filled states below the Fermi surface. The anisotropy
of the dispersion relation is also manifested in the acceleration and relaxation terms of the hydrodynamic
equations providing means to probe the anisotropy in transport experiments.
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I. INTRODUCTION

Experimental discovery of hydrodynamic transport in
graphene [1–9] reignited the interest to electron hydrody-
namics first observed in GaAs heterostructures [10,11]. This
is particularly fascinating since the foundation of electron
hydrodynamics was laid down in the 1960s in the seminal
works of Gurzhi [12,13]. Being an interesting regime with
strong electron-electron interactions, electron hydrodynamics
has several manifestations including the Gurzhi effect [12],
Poiseuille profile of electric current, formation of vortices of
electron fluid; see Refs. [14–16] for a review.

A characteristic and very important property of any fluid
is its viscosity. Viscosity is a rank-4 tensor that relates the
fluid stress to coordinate derivatives of the fluid velocity. In
continuum mechanics, the viscoelastic stress tensor combines
the response to strain (elasticity) and the time derivative of
strain (viscosity); in what follows, we use viscoelastic and
viscous tensors interchangeably. In systems with rotational
invariance, such as most fluids, the structure of the shear
viscosity tensor is fixed by symmetry, and viscous response
is determined only by two coefficients [17]: bulk and shear
viscosities. However, solid-state materials are rarely isotropic
where the rotational symmetry is commonly reduced only to
certain angles of rotation.

Manifestations of anisotropy of the band dispersion in
electron hydrodynamics were considered in Refs. [18–25]. In
anisotropic metals, the reduced symmetry can lead to unusual
viscosity tensors with additional components. Using a lattice
regularization proposed in Ref. [19], the nondissipative Hall
viscosity was analyzed in Ref. [24], however, other com-
ponents of the viscosity tensor and the dynamic viscosity
received less attention.

*Contact author: pavel.sukhachov@gmail.com

In addition to the anisotropy of the band dispersion, certain
materials allow for the nontrivial topology of their electron
wave functions. Topological aspects of viscoelastic response
were addressed in Refs. [19,20,23,24,26–31]. The main atten-
tion, however, was paid to nondissipative or Hall responses
[19,32–35] in mainly two-dimensional (2D) systems. Three-
dimensional (3D) topological materials exemplified by Weyl
semimetals may also demonstrate nontrivial hydrodynamic
response related to their topology [36–43]; experimental sig-
natures of the hydrodynamic behavior in the Weyl semimetal
WP2 were reported in Ref. [44]. As an example of the topol-
ogy manifestation in the viscoelasticity tensor in time-reversal
symmetry (TRS) broken Weyl materials, we mention the
anomalous Hall viscosity determined by the separation of the
Weyl nodes in the Brillouin zone [28]. However, the calcula-
tion of the complete viscoelastic response that goes beyond
the anomalous Hall viscosity, includes both dissipative and
nondissipative parts, and accounts for the Weyl node topol-
ogy in 3D Weyl semimetals as well as their Fermi-surface
anisotropy is still lacking.

In this paper, we fill this gap and calculate the viscoelastic
response of TRS-broken Weyl semimetals. One of our main
findings is that the band structure of Weyl semimetals, exem-
plified by the separation of the Weyl nodes in the Brillouin
zone, and their anisotropy is manifested in both nondissipa-
tive (i.e., anomalous Hall) and dissipative components of the
viscoelasticity tensor. Using the Kubo framework [45], we
calculate both static and dynamic viscoelastic responses in
linearized and two-band models of Weyl semimetals. In our
calculations, we use two formulations of the stress tensor:1

1Two formulations of the stress tensor were recently used in
Ref. [24] for chiral magnetic materials, which realize the so-called
spin-1 fermions.

2469-9950/2024/110(3)/035133(27) 035133-1 ©2024 American Physical Society

https://orcid.org/0000-0002-5453-2681
https://orcid.org/0000-0002-2684-1276
https://orcid.org/0000-0003-2280-8249
https://ror.org/02aaqv166
https://ror.org/05q1wf970
https://ror.org/05xg72x27
https://ror.org/03s65by71
https://ror.org/03v76x132
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.035133&domain=pdf&date_stamp=2024-07-11
https://doi.org/10.1103/PhysRevB.110.035133


HERASYMCHUK, GORBAR, AND SUKHACHOV PHYSICAL REVIEW B 110, 035133 (2024)

the canonical stress tensor, which follows from the coupling
to mechanical strains [27,28], and the Belinfante-like tensor,
which follows from the momentum continuity equation and
includes contributions connected with the internal angular
momentum [19,29]; it also agrees with the result obtained via
Noether’s second theorem. We found that both definitions of
the stress tensor give the same result for the static part of the
viscoelastic response but differ, in general, for the dynamic
part. Physically, this corresponds to two different types of
viscosity and can be probed by different types of observ-
ables: thermal transport and acoustic-phonon dispersion for
the canonical stress tensor and hydrodynamic transport for the
Belinfante-like tensor.

In the kinetic approach, our calculations of the static
electron viscosity agree with those for both canonical and
Belinfante stress tensors. However, being sensitive only to
the Fermi-surface contributions, the kinetic approach ex-
cludes the anomalous Hall viscosity, which has a topological
origin; the latter is reproduced in the Kubo approach. The
results for the dynamic (interband) viscoelastic response show
a more dramatic difference between the two definitions of
the stress tensor: internal degrees of freedom are crucial in
restoring the standard tensor structure of the viscoelasticity
tensor [19,29]. In addition to the viscoelasticity tensor, the
anisotropy of the dispersion relation of Weyl materials quanti-
fied by the separation of the Weyl nodes is also manifested
in acceleration and relaxation terms of the hydrodynamic
equations. In view of their different dependence on the Fermi
energy, these terms can be important in Weyl semimetals with
well-separated nodes leading to the suppression of fluid flow
along the separation vector.

The viscosity tensor can be mapped out via transport mea-
surements akin to those discussed in Refs. [18,23,46]. Such
transport measurements are readily accessible in graphene
[3,4,6,7]; see also Refs. [14,16] and references therein. As
an example of such measurements, we mention the study of
the current magnitude and its profile in crystals cut along dif-
ferent crystallographic directions. Experimentally accessible
signatures of the anisotropy of the viscosity tensor are further
discussed in Sec. III.

The paper is organized as follows: In Sec. II, we summarize
the Kubo framework for viscoelastic response and apply it

to linearized and two-band models of 3D Dirac and Weyl
materials. We rederive the hydrodynamic equations and cross-
verify the viscosity tensor in the kinetic framework in Sec. III.
The results are discussed and summarized in Sec. IV. A few
technical details are presented in Appendixes A, B, C, D, and
E. Throughout this paper, we use h̄ = kB = 1.

II. KUBO APPROACH TO VISCOELASTIC RESPONSE

A. Viscoelasticity tensor

Besides the linear response to external electromagnetic
fields, the Kubo approach can be applied to calculating other
responses of the system including the viscoelastic response to
static and time-dependent strain. The viscoelasticity tensor is
defined via the stress tensor Tμν and the strain transformation
generator Jμν (see Appendix A) as follows [45]:

ημναβ (�) = 1

� + i0
[〈[Tμν (0), Jαβ (0)]〉 + iδαβ〈Tμν〉

− iδμνδαβκ−1 − iCμναβ (�)], (1)

where Cμναβ (�) is the Fourier transform of the stress-stress
correlation function

Cμναβ (t − t ′) = i lim
ε→+0


(t − t ′)〈[Tμν (t ), Tαβ (t ′)]〉e−ε(t−t ′ ).

(2)

In writing the above expressions, we assumed the long-
wavelength limit, i.e., the response to uniform strains, which
allowed us to set the wave vector of perturbation to zero;
this is explicitly manifested in Eq. (3) below. Unfortunately,
the stress tensor and strain transformation generator are not
uniquely defined and different expressions are used in the
literature. The key issue is the form and structure of the pseu-
dospin angular momentum, which is connected to the internal
degrees of freedom. Furthermore, κ−1 = −V (∂P/∂V )N is the
inverse isentropic compressibility defined as the derivative
of pressure with respect to volume of fluid V taken at fixed
particle number N and � is frequency.2

By using the spectral function A(ω; k), see Appendix B for
its definition, in the stress-stress correlator, the viscoelasticity
tensor can be rewritten as follows [45]:

ημναβ (�) = 1

� + i0

{
[〈[Tμν (0), Jαβ (0)]〉 + iδαβ〈Tμν〉 − iδμνδαβκ−1]

− i
∫ +∞

−∞
dω

∫ +∞

−∞
dω′ f (ω) − f (ω′)

ω′ − ω − � − i0

∫
d3k

(2π )3
tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)]

}
. (3)

Here, f (ω) = 1/[e(ω−μ)/T + 1] is the Fermi-Dirac distribu-
tion function, μ is the chemical potential, T is temperature.
Henceforth, to simplify our calculations, we assume the zero-
temperature limit T → 0 unless otherwise stated.

In the following few sections, we calculate the viscoelas-
ticity tensor (3) for linearized models of Dirac and Weyl
semimetals as well as more a realistic two-model of Weyl

semimetals; the corresponding electron energy dispersions for
Weyl semimetals are shown in Fig. 1.

2As is discussed in Ref. [45], it is crucial to subtract the inverse
isentropic compressibility in order to obtain finite bulk viscosity.
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FIG. 1. (a) The 3D dispersion relation ε = ε(kx, 0, kz ) for the
two-band model of Weyl semimetals (26). (b) The 2D dispersion re-
lation ε(0, 0, kz ) for the two-band model of Weyl semimetals shown
by solid green lines with the dashed lines corresponding to the dis-
persion relation in the linearized model (13). The distance between
the Weyl nodes is 2b = 2

√
m.

B. Dirac semimetals

As a warm-up, let us start with Dirac semimetals whose lin-
earized Hamiltonian for gapless electron quasiparticles reads

H = diag(H+, H−), Hλ = λvF σ · k, (4)

where λ = ± is chirality, vF is the Fermi velocity, and σ are
the Pauli matrices in the pseudospin space. This Hamiltonian
possesses full rotation symmetry, therefore, we use the follow-
ing strain transformation generator and symmetric Belinfante
stress tensor [47,48]:

Jαβ = − 1

2
{xβ, kα} + i

8
[γβ, γα], (5)

Tμν = vF

2
(γ0γνkμ + γ0γμkν ), (6)

respectively. Here, γα are the standard Dirac-γ matrices, xβ is
the coordinate operator, {, } is the anticommutator, and [, ] is
the commutator. By calculating the real part of the viscoelas-

ticity tensor in the Kubo approach, Eq. (3), we find

Re η
(B)
μναβ

(�) =
[

�3

320πv3
F


(� − 2μ) + μ4

15πv3
F

δ(�)

]

×
(

δμαδνβ + δναδμβ − 2

3
δμνδαβ

)
. (7)

For a rotationally invariant d-dimensional system, the vis-
coelasticity tensor has only two independent components [17]

ημναβ = ζ δμνδαβ + ηsh

(
δμαδνβ + δμβδνα − 2

d
δμνδαβ

)
.

(8)

Comparing with Eq. (7), we obtain the trivial bulk viscosity
ζ = 0 and the following shear viscosity:

ηsh = �3

320πv3
F


(� − 2μ) + μ4

15πv3
F

δ(�). (9)

These findings agree with the results obtained in Refs. [31,41].
By starting with a lattice model and studying the response

to strain, one obtains a different strain transformation genera-
tor [27]

Jαβ = − 1
2 {xβ, kα}, (10)

which, compared with Eq. (5), does not contain the pseu-
dospin part. This strain transformation generator leads to a
nonsymmetric canonical stress tensor

Tμν = vF γ0γνkμ, (11)

and, as a result, to a different viscoelasticity tensor

Re η
(C)
μναβ

(�) = �3

192πv3
F


(� − 2μ)(δμαδνβ − δμβδνα )

+ Re η
(B)
μναβ

(�), (12)

cf. Eq. (7). Therefore, while the static (intraband) part of
the viscoelasticity tensor is the same for symmetric Belin-
fante and nonsymmetric canonical stress tensors, the dynamic
(interband) part is sensitive to the choice of the stress
tensor.

Since the Belinfante and canonical stress tensor generi-
cally lead to different viscoelastic tensors, cf. Eqs. (7) and
(12), it is important to discuss the difference between them.
First, we note a different physical origin of these stress ten-
sors. As we discuss in detail in Appendix A 2, the canonical
stress tensor (11) is defined via mechanical deformations.
Therefore, it is often called the phonon stress tensor. On
the other hand, the Belinfante stress tensor follows from the
momentum continuity equation with additional contributions
due to internal angular degrees of freedom, see Appendix A 1.
Both approaches are also discussed and contrasted in
Refs. [19,24].

These two different stress tensors correspond to two differ-
ent forms of viscosity: the phonon viscosity for the canonical
stress tensor and “momentum” viscosity for the Belinfante
stress tensor. The former is manifested in thermal transport
and acoustic phonon dispersion. The momentum viscosity can
be probed via hydrodynamic transport, see the discussion in
Sec. III. Therefore, these two different definitions of the stress
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tensor are manifested in different types of viscosities and, as
a result, different observables.

C. Linearized model of Weyl semimetals

Now we are ready to address the viscoelasticity tensor in
TRS-broken Weyl semimetals. We start with a simple lin-
earized model which describes two Weyl nodes separated in
momentum space

H = diag(H+, H−), Hλ = λvF σ · (k − λb), (13)

where, without the loss of generality, we choose the momen-
tum space separation to be along the z direction, b = bzez.

We first consider the canonical stress tensor. The vis-
coelasticity tensor can be separated into three parts: the static
(intraband) part, the dynamic (interband) part, and the Hall
viscosity. The details of calculations and some intermediate
results are given in Appendix C 1.

The real part of the static part of the viscoelasticity tensor
reads

Re ηstat
μναβ (�) = μ2

3πvF
δ(�)δνβbμbα + μ4

15πv3
F

δ(�)

×
(

δμβδνα + δμαδνβ − 2

3
δμνδαβ

)
. (14)

The static part in the linearized model gets an additional
term proportional to ∝bμbα , see the first term in Eq. (14).
Therefore, the separation vector b modifies the dissipative
components of the viscoelasticity tensor. We cross-verify this
finding in Sec. II D for the two-band model as well as in
Sec. III in the kinetic approach.

The real part of the dynamic viscoelasticity tensor reads

Re η
(C),dyn
μναβ (�) =
(� − 2μ)

[
�

12πvF
δνβbμbα + �3

120πv3
F

×
(

δμαδνβ − 1

4
δμβδνα − 1

4
δμνδαβ

)]
.

(15)

Like the static part, it also contains an additional term pro-
portional to ∝bμbα , see the first term in the square brackets
in Eq. (15). As is easy to see, the limit b → 0 reproduces the
results for the Dirac semimetal obtained in the canonical stress
tensor approach, cf. Eq. (12).

The Hall viscosity is determined by the imaginary part
of trace tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)] in Eq. (3); see also
Eqs. (C1) and (C4). In the limit � → 0 and at μ = 0, we
have

Re η
(C),Hall
μναβ

(�) = 4
3∑

j=1

ε jνβI j
μα, (16)

where

I i=1,2
μα = (δμiδα3 + δμ3δαi )

bz

4π2

(
�2

z − b2
z

3

)
, (17)

and

I3
μα = δμα

bz

4π2

[
(δμ1+δμ2)

(
−�⊥�z+2�2

z +
2b2

z

3

)
−δμ3

b2
z

6

]
,

(18)

where �⊥ and �z are momentum cutoffs. Evidently,
all components are quadratically divergent except for
ηzxzy = −b3

z/(6π2).3 In the systems with axial symmetry, the
other independent component of the Hall viscosity is given
by ηxxxy. The obtained results agree with those in Ref. [28].
The expressions for � 
= 0 are given in Eqs. (C8) and (C9),
where the ηzxzy component of the viscoelasticity tensor is also
divergent albeit only logarithmically, ∝�2bz ln (2vF �z/�).

Now let us take into account the internal degrees of
freedom, which lead to the pseudospin angular momentum,
and consider the Belinfante-like stress tensor.4 According
to Eq. (13), rotational invariance is preserved only in the
plane perpendicular to the Weyl node separation b, hence,
the fully symmetric Belinfante stress tensor cannot be real-
ized. Therefore, the strain transformation generator and the
Belinfante-like stress tensor read

Jαβ = −1

2
{xβ, kα} + i

8
Cαβ[γβ, γα], (19)

Tμν = vF γ0γνkμ + Cμν

vF

2
(γ0γμkν − γ0γνkμ)

+Cμν

vF

2
(γ0γμγ5bν − γ0γνγ5bμ), (20)

where, for b = bez, coefficients Cα3 = C3α = 0 and Cαβ = 1
with α, β = 1, 2. We verified that the same result for the stress
tensor is obtained directly using Noether’s second theorem,
see the end of Appendix A 1 and, e.g., Refs. [49–51].

The real part of the static viscoelasticity tensor remains the
same as in the case of the canonical stress tensor, see Eq. (14).
On the other hand, the real part of the dynamic part of the
viscoelasticity tensor is modified:

Re η
(B),dyn
μναβ (�) =

{
δμαδνβ

[
1 − 5

8
(Cαβ + Cμν − CαβCμν )

]

−1

4
δμβδνα

[
1 − 5

2
(Cαβ + Cμν − CαβCμν )

]

−1

4
δμνδαβ

}
�3

120πv3
F


(� − 2μ)

+ �

12πvF
δνβbμbα
(� − 2μ). (21)

As one can see, compared with the viscoelasticity tensor of
Dirac semimetals given in Eq. (7), there are a few terms
related to the additional rotational symmetry of a Weyl
semimetal. Among them, we mention the last term in Eq. (21)
which is linear in � and explicitly depends on the separation
vector b.

3The cutoffs in Eqs. (17) and (18) are connected with the contribu-
tion of the states below the Fermi surface. Such terms are absent in
lattice models, see, e.g., Ref. [24].

4Unlike isotropic Dirac spectrum, see Eq. (6), rotational invariance
is commonly broken in crystals. Therefore, one should consider the
modification of the Belinfante symmetrization [19] or the Belinfante-
like stress tensor, which takes into account reduced symmetries of a
system.
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FIG. 2. The dependence of components of the real part of the
static viscoelasticity tensor on μ/γ m; see Eq. (C37) for its explicit
form. The notation η̃stat

μναβ stands for dimensionless viscosity, see the
legend.

The Hall viscosity reads

Re η
(B),Hall
μναβ (�) = (2−Cαβ )(2−Cμν )Iμναβ +Cαβ (2−Cμν )Iμνβα

+ Cμν (2 − Cαβ )Iνμαβ + CαβCμνIνμβα,

(22)

where Iμναβ = ∑3
j=1 ε jνβI j

μα with I j
μα given in Eqs. (17) and

(18). As in the case of the canonical stress tensor, see Eq. (16),
only ηzxzy is finite for � = 0; other nontrivial components are
quadratically divergent. According to the structure of coeffi-
cients Cμν , Hall components ηziz j and ηizz j are the same in
both approaches, but ηi jzz, ηi jii, and η jiii are different. Indeed,
for the Belinfante-like stress tensor, we have the following
relations for the Hall viscosity tensor components:

Re η
(B),Hall
i jii (�) = 1

2 Re η
(C),Hall
i jii (�), (23)

Re η
(B),Hall
jiii (�) = Re η

(B),Hall
i jii (�) = 1

2 Re η
(C),Hall
i jii (�), (24)

Re η
(B),Hall
i jzz (�) = 0, (25)

while Re η
(C),Hall
jiii (�) = 0 and Re η

(C),Hall
i jzz (�) 
= 0. For details

of derivation, see Appendix C 1.

D. Two-band model of Weyl semimetals

To cross-verify the obtained anomalous and anisotropic
parts of the viscoelasticity tensor, we consider the following
two-band model:

H = σ · d(k), (26)

where dx(kx ) = vF kx, dy(ky) = vF ky, and dz(kz ) = γ (k2
z −

m). This model describes a TRS-breaking Weyl semimetal
with two Weyl nodes separated by 2

√
m along the z direction.

Let us begin with the case of the canonical stress tensor.
The complete result for the real part of the static viscoelas-
ticity tensor is too bulky to be presented in the main text; it
is given in Eq. (C37). We show the dependence of the few
components of the viscoelasticity tensor in Fig. 2. As one can
see from the figure, the static part of the viscoelasticity tensor
Re ηstat

μναβ (�) shows no kink-like features at |μ| = γ m where

two pockets of the Fermi surface merge. This follows from the
fact that parts of the viscoelasticity tensor with 
(γ m − |μ|)
are ∝(γ m − |μ|)5/2, hence they have continuous derivatives.

For small Fermi energy, |μ| � γ m, the viscoelasticity ten-
sor acquires a compact form:

Re ηstat
μναβ (�) �

[
μ4

15πv3
F

(
δμβδνα + δμαδνβ − 2

3
δμνδαβ

)

+ μ4

10πv3
F

δμ3(δν3 − δν1 − δν2)δμαδνβ

+ μ2m

3πvF
δμ3δμαδνβ

]
δ(�), (27)

where we also substituted 2γ
√

m → vF . The above vis-
coelasticity tensor deviates from that in the linearized model,
cf. Eq. (14), because expansion in |μ| � γ m still al-
lows for higher-order anisotropy corrections to contribute to
Re ηstat

μναβ (�). This result shows that the linearized model of a
Weyl semimetal captures only the key qualitative features of
the viscoelastic response, such as the scaling with the chem-
ical potential and the separation between the Weyl nodes.
Numerical values of the components of the viscoelastic re-
sponse tensor, however, can be different in different models
of semimetals. The static part of the viscoelasticity tensor is
also reproduced in the kinetic approach, see Sec. III. Note
that since

√
m plays the same role as the momentum space

separation bz in the linearized model, there is a correspon-
dence between the third term in the square brackets in Eq. (27)
and a term proportional to ∝bμbα in the linearized model, cf.
Eqs. (14) and (27).

In the opposite limit of the Fermi energy away from the
Weyl nodes, |μ|  γ m, we obtain

Re ηstat
μναβ (�) � δ(�)

{
2|μ|7/2

45πγ 1/2v2
F

[
δμβδνα − 4

5
δμνδαβ

+ (δμ1 + δμ2)(δν1 + δν2)δμαδνβ

]

+ 4γ 1/2|μ|9/2

77πv4
F

(δμ1 + δμ2)δν3δμαδνβ

+ |μ|5/2

21πγ 3/2
δμ3(δν1 + δν2)δμαδνβ

+ 2|μ|7/2

15πγ 1/2v2
F

δμ3δν3δμαδνβ

}
. (28)

The inherent anisotropy of the electron energy spectrum of
the two-band model is clearly imprinted in the viscoelasticity
tensor leading to its highly anisotropic form.

The full expression for the real part of the dynamic vis-
coelasticity tensor is given in Eq. (C38). We plot a few of its
components in Fig. 3. As one can see, there is no kink-like
feature in the dynamical part of the viscoelasticity tensor at
� = 2γ m. Indeed, as follows from Eq. (C38), the interband
parts of the viscoelasticity tensor are ∝(2γ m − �)a+1/2 with
a � 1. Hence, the derivatives are continuous. The absence of
a kink-like feature in the dynamical part of the viscoelasticity
tensor differs from that of, e.g., optical conductivity studied
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FIG. 3. The dependence of components of the real part of dy-
namic viscoelasticity tensor on �/2γ m; see Eq. (C37) for its explicit
form. The notation η̃

dyn
μναβ stands for dimensionless viscosity, see the

legend. We used the canonical stress tensor.

in Ref. [52]. The latter shows a well-pronounced kink at
� = 2γ m originating from the van Hove singularities of the
density of states.

For � � 2γ m, we have the following expression for the
interband part of the viscoelasticity tensor:

Re η
dyn
μναβ

(�) �
[

�3

120πv3
F

(
δμαδνβ − 1

4
δμβδνα − 1

4
δμνδαβ

)

+ δμ3δμαδνβ

�m

12πvF
+ �3

480πv3
F

δμ3δν3δμαδνβ

− �3

80πv3
F

δμ3(δν1 + δν2)δμαδνβ

]

(� − 2μ),

(29)

where we also replaced 2γ
√

m → vF . As with the static part,
the viscoelasticity tensor expanded in �/(2γ m) in the two-
band model is not equivalent to that in the linearized model
even in the vicinity of the Weyl nodes.

In the opposite limit of large frequencies �/(2γ m)  1,
we obtain

Re η
dyn
μναβ (�) �

[
γ 1/2(δμ1 + δμ2)δν3δμαδνβ

231
√

2πv4
F

�7/2

+7(δμ1 + δμ2)(δν1 + δν2)δμαδνβ

720
√

2πγ 1/2v2
F

�5/2

+5δμ3(δν1 + δν2)δμαδνβ

336
√

2πγ 3/2
�3/2

− (δμβδνα + δμνδαβ )

360
√

2πγ 1/2v2
F

�5/2

+ δμ3δν3δμαδνβ

60
√

2πγ 1/2v2
F

�5/2

]

(� − 2μ). (30)

As one can see, the dynamical viscoelasticity tensor acquires
dependence on fractional powers of �; this is similar to the
fractional powers of μ in Eq. (28). These results show that
both static and dynamic parts of the viscoelasticity tensor can
be used to probe the anisotropy of the Fermi surface.

For the Hall viscosity, we find

Re ηHall
μναβ (�) =

3∑
j=1

ε jνβI j
μα, (31)

where

I i=1,2
μα = (δμ3δαi + δμiδα3)

×
(

− γ 2�5
z

10π2v2
F

+ γ�3
z �⊥

12π2vF
+ γ 2m�3

z

6π2v2
F

− 2γ 2m5/2

15π2v2
F

)
,

(32)

and

I3
μα = δμα

[
(δμ1 + δμ2)

(
− γ 2�5

z

20π2v2
F

+ γ 2m�3
z

6π2v2
F

+γ�3
z �⊥

24π2vF
− γ 2m2�z

4π2v2
F

− γ m�z�⊥
8π2vF

+ 4γ 2m5/2

15π2v2
F

)

+ δμ3
1

12π2

(
�3

z − 2m3/2
)]

, (33)

with �⊥ and �z being momentum cutoffs.
A similar type of divergence is present in the Hall conduc-

tivity for the two-band model. Indeed, for � = μ = 0, σ AHE
xy

reads

σ AHE
xy =

∫
d3k

(2π )3

v2
F dz

2ε3
k

=
∫ �z

−�z

dkz

8π2

dz

|dz| = �z

4π2
−

√
m

2π2
.

(34)
This linear divergence in the above expression originates from
the flux of the Berry curvature at k → ∞. This is a peculiarity
of the model at hand, Eq. (26), and is absent in lattice models,
where the flux through the whole Brillouin zone vanishes. The
subtraction

σ AHE
xy → σ AHE

xy = σ AHE
xy − σ AHE

xy

∣∣∣
m=0

(35)

allows us to remove the divergent background term and obtain
the anomalous Hall conductivity consistent with that in the
linearized model

σ AHE
xy = −

√
m

2π2
. (36)

Since the integrands of the Hall conductivity and Hall
viscoelasticity have similar structure, see the last term in
Eq. (3), the background contribution of the same origin should
be subtracted from the viscoelastic tensor (31), too. The
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FIG. 4. The dependence of the components ηi ji j and ηi j ji of the
real part of dimensionless dynamic viscoelasticity on �/2γ m for
the canonical (solid lines) and Belinfante-like (dashed lines) stress
tensors.

corresponding coefficients I j
μα in Eqs. (32) and (33) read

I
i=1,2
μα = (δμ3δαi + δμiδα3)

(
γ 2m�3

z

6π2v2
F

− 2γ 2m5/2

15π2v2
F

)

= (δμ3δαi + δμiδα3)

(
�3

z

24π2
− m3/2

30π2

)
, (37)

I
3
μα = δμα

[
(δμ1 + δμ2)

(
γ 2m�3

z

6π2v2
F

− γ 2m2�z

4π2v2
F

−γ m�z�⊥
8π2vF

+ 4γ 2m5/2

15π2v2
F

)
− δμ3

m3/2

6π2

]

= δμα

[
(δμ1 + δμ2)

(
�3

z

24π2
− m�z

16π2

−m1/2�z�⊥
16π2

+ m3/2

15π2

)
− δμ3

m3/2

6π2

]
, (38)

where we used 2γ
√

m → vF in the second expressions to
compare with linearized model. Like in the linearized model,
see Eq. (18) and the discussion after it, the only finite com-
ponent is also ηzxzy = −m3/2/(6π2). The other components
are cubically divergent, unlike the quadratic divergence in the
linearized model.

For the Belinfante-like stress tensor, the corrections to the
dynamic and static parts of the viscoelasticity are given in
Eqs. (C48) and (C37), respectively. Like in the linearized
model, the static part is the same for both definitions of the
stress tensor, see Eq. (C54) for the discussion of the differ-
ence. As for the dynamic part, ηi ji j and ηi j ji components
differ from the results of the canonical stress tensor case.
For η

(B)
i ji j , the dependence on �/(2γ m) is modified, but the

scaling for small and large frequencies � remains the same. In
addition, η

(B)
i j ji becomes positive. We compare the components

of the dynamic viscoelasticity tensor for Belinfante-like and
canonical stress tensors in Fig. 4.

The corrections to the Hall part of the viscoelasticity
tensor are given in Eq. (C39). As in the linearized model,

components ηziz j and ηizz j are the same for canonical and
Belinfante-like stress tensors. On the other hand, components
ηi jzz, ηi jii are different

Re η
(B)
i jii(�) = 1

2 Re η
(C)
i jii(�), (39)

Re η
(B)
jiii(�) = 1

2 Re η
(C)
i jii(�), (40)

Re η
(B)
i jzz(�) = 0, (41)

while Re η
(C)
jiii(�) = 0 and Re η

(C)
i jzz(�) 
= 0. For details of cal-

culations, see Appendix C 2.
Thus, the nontrivial topology of the Weyl semimetals is

manifested in the viscoelastic response leading to anoma-
lous Hall terms. These results agree with the findings in
Refs. [28,53] extended here to the case of the two-band model.

III. KINETIC APPROACH TO VISCOSITY AND
HYDRODYNAMIC EQUATIONS

In this section, to gain deeper insight into the role of the
band structure in the viscoelastic and transport responses of
Weyl semimetals, we derive the hydrodynamic equations of
motion, i.e., the continuity and Navier-Stokes equations, for
the linearized and two-band models of Weyl semimetals. We
focus on the role of the Fermi-surface anisotropy and band
structure topology. The latter is quantified by the separation
between the Weyl nodes. We show that the anomalous part
of the viscoelasticity tensor does not appear in the standard
approach based on the Boltzmann equation [54,55]. Indeed,
the stress-stress response used in Sec. II and current-current
response are not guaranteed to give the same results for the
fluid viscosity;5 see Ref. [57] for the corresponding discussion
in graphene. As we demonstrate below, while the “matter”
terms, i.e., components of the viscosity tensor determined by
the Fermi-surface properties, agree in the Kubo and kinetic
formalisms, the topological terms are absent in the latter. We
trace this difference to the contribution of the filled states be-
low the Fermi surface: while these states affect the viscoelastic
response, only the Fermi-surface properties determine the vis-
cosity of the electron fluid flow in the kinetic approach. A
similar situation is realized for the anomalous Hall effect or
Chern-Simons contributions in the electric current; see, e.g.,
Ref. [58] for a detailed discussion.

Since the derivation of the hydrodynamic equation follows
the standard scheme and is straightforward, we leave it to
Appendixes D and E. In what follows, we present the key
results and discuss the physics behind them. Among our major
findings are the manifestation of the shape (anisotropy) and
structure (separation of the Weyl nodes) of the Fermi surface
of Weyl semimetals in the hydrodynamic equations.

5For Galilean-invariant systems, one can derive microscopic ex-
pressions for the viscosity tensor by equating the current-current
response functions and the coefficients in the current response to a
vector potential [56]. The connection to a more rigorous approach
based on the stress-stress correlation function follows from the fact
that the current density is proportional to the momentum density,
therefore, its time derivative is proportional to the divergence of the
stress tensor.
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Using the linearized model of a Weyl semimetal (13), we first derive the following set of inviscid hydrodynamic equations:

∂tρ(t, r) + ∇ ·
[

u(t, r)ρ(t, r) + e2

2π2
[b × E]

]
= 0, (42)

∂t

[
w(t, r)

u(t, r)

v2
F

+ ν(t, r)(u(t, r) · b)b
]

+ ∇P(t, r) + ρ(t, r)E = − 1

τ

[
w(t, r)

u(t, r)

v2
F

+ ν(t, r)(u(t, r) · b)b
]
, (43)

∂tε(t, r) + ∇ · [u(t, r)w(t, r)] = 0, (44)

where w(t, r) = ε(t, r) + P(t, r) = 4ε(t, r)/3 is the enthalpy density, P(t, r) = ε(t, r)/3 is the pressure. Assuming T → 0,
ε(t, r) = μ4(t, r)/(4π2v3

F ) is the energy density and ν(t, r) = μ2(t, r)/(π2v3
F ) is the density of states.

In the case of the two-band model (26), we have

∂tρ(t, r) + ∇ · [u(t, r)ρ(t, r) + jAHE] = 0, (45)

∂t

[
w(t, r)

u(t, r)

v2
F

+ A(t, r)(u(t, r) · ez )ez

]
+ ∇P(t, r) + ρ(t, r)E = − 1

τ

[
w(t, r)

u(t, r)

v2
F

+ A(t, r)(u(t, r) · ez )ez

]
, (46)

∂tε(t, r) + ∇ · [u(t, r)w(t, r)] = 0, (47)

where the expressions for jAHE and A(r, r) are given in
Eqs. (D16) and (D19) respectively. Note that the Weyl nodes
are separated along the z axis in the two-band model (26); this
corresponds to b = bez in the linearized model.

The general structure of the zero-order hydrodynamic
equations is preserved for both linearized and two-band
models. However, the anisotropy of the Fermi surface
leads to the appearance of terms ∝ν(t, r)[u(t, r) · b]b and
∝A(t, r)[u(t, r) · ez]ez under in time derivative (acceleration)
and dissipative terms of the Euler equation. We note that,
in view of weaker compared with w(t, r) dependence of
ν(t, r) and A(t, r) on the chemical potential μ(t, r), these
new terms are expected to play an important role for Fermi
energies approaching Weyl nodes. In particular, at T → 0,
w(t, r)/[ν(t, r)b2] ∼ (pF /b)2; for Weyl materials with well-
separated Weyl nodes, (pF /b)2 � 1.

Let us now discuss the electron fluid viscosity, which
affects the left-hand side of Eq. (46) via the term
−ηi jkl∇ j∇l uk (t, r). The viscosity tensor ηi jkl in the linearized
model reads

ηi jkl = 4τee

15
ε(t, r)

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)

+ τeev
2
F ν(t, r)

3
bibkδ jl , (48)

see Appendix E 1 for the derivation. In the case of the two-
band model of Weyl semimetals, the viscosity tensor is given
by Eq. (E12). By comparing terms at δ(�) in Eq. (14) and at
τee in Eq. (48), we find the exact correspondence between the
static (intraband) parts of the dissipative viscoelastic response
in the Kubo and kinetic approaches. However, the kinetic ap-
proach misses the topological Hall part of the viscoelasticity
tensor and is insensitive to the internal degrees of freedom
that may affect the Hall viscosity. These results underline
important restrictions of the standard kinetic formalism.

Let us now discuss experimentally relevant ways to probe
the anisotropic viscosity and dissipation. A direct method
would be to study the flow of electron liquid in channels cut
along different crystallographic directions. For example, one
can consider a �-shaped channel cut from a single crystal.

Along one of the arms of the channel, the flow of electrons
is directed along the crystallographic direction corresponding
to the separation of the Weyl nodes along the flow velocity.
The other arm of the channel should be prepared such that the
flow velocity is perpendicular to the separation vector. In this
case, according to Eqs. (42) and (48), the fluid viscosity and
dissipation rate will be different in the different arms of the
channel. This is manifested in the redistribution of the electric
current density in the channel.

To show this, let us use Eq. (48) and obtain the steady-
state Navier-Stokes equation for incompressible fluids at low
velocities

− η0�u(r) − η1�[u(r) · b]b

+ 1

τ

[
w

v2
F

u(r) + ν(u(r) · b)b
]

= ρE. (49)

Here, η0 = τeew/5, η1 = v2
F τeeν/3, and, for simplicity, we

used the linearized model (13). At the surfaces of the channel,
we assume the no-slip boundary conditions with vanishing
tangential components of velocity u‖(r⊥ = 0, L) = 0. The so-
lution to Eq. (49) which captures the cases of flow with u ‖ b
and u ⊥ b reads

u‖(r⊥) = v2
F τ

wb
ρE

[
1 −

cosh
( L−2r⊥

2λG,b

)
cosh

(
L

2λG,b

)
]
, (50)

where wb = w + v2
F νb2

‖, λG,b = (v2
F τ (η0 + b2

‖η1)/wb)1/2 =
(15v2

F ττee[3w + 5v2
F νb2]/[w + v2

F νb2])1/2 is the Gurzhi
length, and r⊥ is the coordinate normal to the channel. As one
can see from Eq. (50), the chiral shift b affects the profile of
the fluid velocity by enhancing the Gurzhi length; the fluid
velocity profile becomes more parabolic-like at larger λG,b,
e.g., when v2

F νb2
‖  w. Therefore, the separation between

the Weyl nodes can be inferred from the curvature of flow
profiles.

Another manifestation of the nontrivial Fermi-surface
structure of Weyl materials quantified by the distance between
the Weyl nodes is suppression of the flow velocity along
the separation direction u ‖ b. Indeed, as one can see from
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Eq. (50), the fluid velocity is suppressed as ∼b2
‖/p2

F , which
can be a large factor for Weyl semimetals.

The electron fluid viscosity is also manifested in the dy-
namical response. For example, due to an interplay of viscous
and inertial properties of the electron fluid as well as the
boundary conditions, a nonuniform, double-peak profile of
the electric current appears in a channel [59,60]. The current
profile is manifested in a stray magnetic field surrounding the
channel. In the case of anisotropic viscosity and �-shaped
channel, the double-peak profile may be observed in one
arm (smaller viscosity) but not in the other (larger viscosity).
Another possible signature would be a different decay rate of
hydrodynamic collective modes propagating along different
crystallographic directions.

In passing, we note that high-quality channels of Weyl
semimetals can be prepared via focused ion beam etching;
see Ref. [61] for the use of this technique for PdCoO2 and
Ref. [62] for the Weyl semimetal WP2.

IV. DISCUSSION AND SUMMARY

Employing the Kubo formalism and chiral kinetic theory
approach, we calculated the viscoelasticity tensor in Weyl
semimetals with broken time-reversal symmetry paying spe-
cial attention to the manifestation of topology of electron
states in Weyl semimetals and their Fermi surface anisotropy.
In the Kubo formalism, we found that, in addition to the
anomalous Hall viscosity discussed in Ref. [28], the nontrivial
band structure of Weyl semimetals affects the dissipative part
of the viscoelasticity tensor.

The nondissipative topological part of the viscoelasticity
tensor, namely, the anomalous Hall viscosity, see Eqs. (16)
and (31), shares a similar origin with the Chern-Simons con-
tributions to electric current in the anomalous Hall effect in
Weyl semimetals and originates from the filled states below
the Fermi surface; see, e.g., Ref. [58] for the corresponding
discussion. Such contributions are captured in the Kubo ap-
proach and do not affect the responses solely determined by
the Fermi-surface properties, such as those obtained in the
kinetic formalism.

One of the main advances of our work is in clarifying
the impact of the nontrivial shape (anisotropy and Weyl node
position) of the Fermi surface on viscoelastic properties of
linearized and two-band models of Weyl semimetals, see
Secs. II C and II D, respectively. The Fermi-surface anisotropy
is manifested in a rich structure of both static and dynamic
parts of viscoelasticity tensors, see Eqs. (14), (15), and (21)
for the linearized model and Eqs. (27)–(30) for the two-band
model.

The static (intraband) part of the viscoelasticity tensor con-
tains additional terms determined by the momentum space
separation of Weyl nodes, see Eqs. (14) and (27). Despite
being related to the distance between the Weyl nodes, these
terms originate from the shape of the Fermi surface rather than
the nontrivial topology of electron wave functions. In partic-
ular, they are captured in both Kubo and kinetic approaches.
The anisotropy of the two-band model is manifested in the
unusual fractional scaling with the Fermi energy if the latter
is large compared with the energy at which the Fermi-surface
pockets merge; see Eq. (28).

The dynamic (interband) part of viscosity contains linear
and cubic in frequency terms in both linearized and two-band
models, see Eqs. (21) and (29), respectively. The nonlinearity
of the two-band model strongly modifies dynamic viscos-
ity for larger frequencies exceeding the energy at which the
Fermi-surface pockets merge. In this case, the interband vis-
coelasticity tensor contains fractional powers of frequencies
�3/2, �5/2, and �7/2; see Eq. (30). Such a scaling may be
manifested in dynamic responses such as those involving
time-dependent flows, see the end of Sec. III for the corre-
sponding discussion.

In our calculations, we employed two definitions of the
stress tensor: the canonical stress tensor, which follows from
the coupling to mechanical strains, and the Belinfante-like
tensor, which follows from the momentum continuity equa-
tion and includes contributions connected with the internal
angular momentum. Both definitions of the stress tensor lead
to the same result for the static part of the viscoelastic re-
sponse but differ for the dynamic part. These two stress
tensors correspond to different types of viscosity. They are
manifested in different types of observables: hydrodynamic
transport for the Belinfante-like tensor and thermal transport
and acoustic phonon dispersion for the canonical stress tensor.

In addition to viscosity, the anisotropy of the dispersion re-
lation of Weyl materials is also manifested in acceleration and
relaxation terms of the hydrodynamic equations, see Eqs. (43)
and (46). The new terms are determined by the separation
of the Weyl nodes and are parametrically larger compared
with other terms in the vicinity of the charge neutrality point.
We found no discussion of these terms in the literature. The
proposed structure of the viscosity tensor and the new terms in
the hydrodynamic equations can be investigated via transport
measurements such as those in crystals cut along the different
crystallographic directions or in a �-shaped channel discussed
at the end of Sec. III. In particular, we expect a parametrically
slower flow along the Weyl node separation direction. Fur-
thermore, the current profile of such flow should have a more
pronounced parabolic shape.

Studies of the intra- and interband viscoelastic responses of
the Fermi arc surface states or other topological materials such
as multifold or spin-1 semimetals [63] are also interesting
and will be reported elsewhere. Another possible extension of
the present work is to investigate the viscoelastic response of
the anisotropic spin-polarized Fermi surfaces of altermagnets
[64].
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APPENDIX A: STRESS TENSOR

1. Stress tensor and strain transformation generators in continuum models

In this section, we derive the stress tensor in the continuum model. Under deformations quantified by the displacement vector
u(x, t ), coordinates transform as x → x′ = x + u(x, t ) ≈ x + eμ

∂uμ

∂xν
xν , which can be rewritten in terms of homogeneous but

time-dependent invertible matrix �(t ) with positive determinant

x′ = �(t )x. (A1)

The matrix �(t ) is expressed in terms of the strain tensor λ(t ) as �(t ) = exp [λ(t )] = 1 + λ(t ) + o(λ). This allows one to obtain
the following transformed wave function ψ (x, t ) → ψλ(x, t ):

ψλ(x, t ) =
√

det �ψ (�x, t ) = ψ (x, t ) − iλμν

(
i

2
δμν + ixν

∂

∂xμ

)
ψ (x, t ) + o(λ)

= ψ (x, t ) − iλμνLμνψ (x, t ) + o(λ). (A2)

If a system has additional symmetries, the strain transformation generator Jμν is modified as [29]

Jμν = Lμν + L(int)
μν . (A3)

In other words, the generators of infinitesimal rotations are the operators of the total angular momentum which includes
pseudospin accounting for internal degrees of freedom.

By using the strain transformation

S(t ) = e−iλμν (t )Jμν = I − iλμν (t )Jμν + o(λ), (A4)

the transformed Hamiltonian can be represented as

H�(t ) = S(t )HS−1(t ) + i
∂S

∂t
S−1 = H − iλμν (t )[Jμν, H] + ∂λμν

∂t
Jμν, (A5)

where [, ] means the commutator. The above relation leads to symmetric Belinfante-like stress tensor6

Tμν = − ∂H�

∂λμν

= i[Jμν, H]. (A6)

The same result for the stress tensor can be obtained using Noether’s second theorem, see Refs. [49–51] for a recent
discussion. For the Lagrangian density L, which is a function of the field ψ , invariant with respect to the local coordinate
transformation

xμ → x′
μ = xμ + ξμ(x), (A7)

Noether’s second theorem implies

∂ν{Dμν[ψ] − gμνL} = 0, (A8)

where

Dμν[ψ] = − ∂

∂ (∂νξμ)

[
∂L
∂ψ

δψ + ∂L
∂ (∂λψ )

δ(∂λψ )

]
. (A9)

The variations of the spinor field under the symmetry transformation (A7) read

δψ = i

4
(∂αξβ )σαβψ,

δψ̄ = − i

4
(∂αξβ )ψ̄σ αβ,

δ(∂μψ ) = i

4
(∂αξβ )σαβ (∂μψ ) − (∂μξλ)(∂λψ ),

δ(∂μψ̄ ) = − i

4
(∂αξβ )(∂μψ̄ )σαβ − (∂μξλ)(∂λψ̄ ), (A10)

where σμν = i
2 [γ μ, γ ν].

6For isotropic systems, it is equivalent to the Belinfante-Rosenfeld stress-energy tensor [47,48].
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Let us apply the Noether’s second theorem to derive the energy-momentum tensor for the linear model of Weyl semimetal
(13). The corresponding Lagrangian density is

L[ψ, ψ̄] = ψ̄[γμ(i∂μ + γ5bμ)]ψ, bμ = (0, b). (A11)

Assuming b = bez, the Lagrangian L is invariant under the following local transformation:

ξ 1(x) = a1 + ω1
2x2,

ξ 2(x) = a2 + ω2
1x1,

ξ 3(x) = a3, (A12)

where ω2
1 = −ω1

2 and aμ = const. Hence, coefficients Dμν are given by

Dμν[ψ] = i

4
ψ̄γλγ5bλσμνψ

(
δ

μ
1 δν

2 + δ
μ
2 δν

1

)
,

Dμν[ψ̄] = − i

4
ψ̄σμν[γλ(i∂λ + γ5bλ)]ψ

(
δ

μ
1 δν

2 + δ
μ
2 δν

1

)
,

Dμν[∂ψ] = iψ̄γ ν (∂μψ ) − 1

4
ψ̄γ λσμν (∂λψ )

(
δ

μ
1 δν

2 + δ
μ
2 δν

1

)
,

Dμν[∂ψ̄] = 0, (A13)

and the energy-momentum tensor is

T̂ μν =Dμν[ψ] − gμνL = iψ̄γ ν (∂μψ ) −
{

1

4
ψ̄[γ λ, σμν](∂λψ ) + i

4
ψ̄[σμν, γλγ5]bλψ

}(
δ

μ
1 δν

2 + δ
μ
2 δν

1

) − gμνL. (A14)

By using the field equations for ψ and performing the Fourier transform, we finally obtain the energy-momentum tensor

Tμν = γ0γνkμ + 1
2 [γ0γμkν − γ0γνkμ + (bνγ0γμγ5 − bμγ0γνγ5)]

(
δ

μ
1 δν

2 + δ
μ
2 δν

1

)
. (A15)

The result coincides with the stress tensor in Eq. (20).

2. Canonical stress tensor in tight-binding model

Let us provide a different derivation of the stress tensor. We start with the following tight-binding Hamiltonian on cubic lattice
[27,28]:

Ĥ0 = 1

2

∑
i, j

c†
i (itγ0γ j − rγ0)ci+ j + (m + 3r)

∑
i

c†
i γ0ci +

∑
i,l

bl c
†
i γ0γlγ5ci + H.c., (A16)

where j labels the six next nearest neighbors of the site i. Strains lead to the following changes in hopping parameters:

r → r(1 − βuj j ), (A17)

tγ0γ j → t

⎛
⎝1 − β

∑
j′

∂u j

∂x′
j

γ0γ j′

⎞
⎠, (A18)

where uμν = ∂uμ/∂xν . By using Eqs. (A17) and (A18) in Eq. (A16), we obtain

Ĥu = Ĥ0 + 1

2

∑
i, j

c†
i it

(
− βu j jγ0γ j − β

∑
j′ 
= j

u j j′γ0γ j′

)
ci+ j + 1

2

∑
i, j

c†
i rβu j jγ0ci+ j

+
(

m − rβ
∑

j

u j j

)∑
i

c†
i γ0ci +

∑
i,l

blc
†
i γ0γlγ5ci + H.c. (A19)

Then, by using the standard definition of the stress tensor

T̂μν = δĤu

δuμν

∣∣∣∣
uμν=0

, (A20)

we find

T̂μν = −β

2

∑
i

c†
i (itγ0γν − rδμνγ0)ci+μ − rβδμν

∑
i

c†
i γ0ci + H.c. (A21)
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By performing the Fourier transform, taking the continuum limit, i.e., setting the lattice constant a to zero, a → 0, and replacing
ta → v, we obtain canonical stress tensor for the linearized model

Tμν = βvkμγ0γν. (A22)

It corresponds only to the orbital part of the strain transformation generator in (A3), i.e., Lμν .
By performing the Fourier transform and projecting out the high-energy states, Hamiltonian (A16) can be reduced to the

Hamiltonian of the two-band model: H = σ · d(k), see Ref. [28] for details. The corresponding stress tensor is

Tμν = βkμ∂ν (dν )σν, (A23)

where dx = vkx, dy = vky, and dz = (bz − m) − v2

m+bz
k2

z in the notation of Ref. [28]. Thus, we obtained the canonical stress tensor
for the two-band model defined in Eq. (26).7

APPENDIX B: SPECTRAL FUNCTION

The retarded (+) and advanced (−) Green’s functions read

G(ω ± i0, k) = i

ω + μ ± i0 − H (k)
, (B1)

where ω is frequency (measured in energy units), μ is the chemical potential, k is momentum, and H (k) is the Hamiltonian.
The spectral function is defined as the difference between the advanced and retarded Green’s functions at vanishing chemical

potential

A(ω; k) = 1

2π
[G(ω + i0, k) − G(ω − i0, k)]μ=0. (B2)

For the linearized model with broken TRS, see Eq. (4), the spectral function is given by A(ω; k) = ∑
λ=±

1+λτz

2 ⊗ Aλ(ω; k),
where τz acts in the nodal space and

Aλ(ω; k) = 1

2
[δ(ω − εk,λ) + δ(ω + εk,λ)] + λvF

2εk,λ

[σ · (k − λb)][δ(ω − εk,λ) − δ(ω + εk,λ)]. (B3)

Here, εk,λ = vF |k − λb| is the dispersion relation of quasiparticles with chirality λ.
Similarly, for the two-band model with H (k) = (σ · d(k)), we obtain

A(ω; k) = 1

2
[δ(ω − εk ) + δ(ω + εk )] + 1

2εk
[δ(ω − εk ) − δ(ω + εk )]H (k), (B4)

where εk = |d(k)|.

APPENDIX C: VISCOELASTICITY TENSOR IN THE KUBO APPROACH

The viscoelasticity tensor is defined in Eq. (3). Its real part reads

Re ημναβ (�) = ImCμναβ (�)

�
+ πδ(�)[Im〈[Tμν (0), Jαβ (0)]〉 + δαβ〈Tμν〉 − δμνδαβκ−1 − ReCμναβ (�)]

= 1

�
v.p.

∫ +∞

−∞
dω

∫ +∞

−∞
dω′ f (ω) − f (ω′)

ω′ − ω − �

∫
d3k

(2π )3
Im tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)]

+ π

�

∫ +∞

−∞
dω[ f (ω) − f (ω + �)]

∫
d3k

(2π )3
Re tr[Tμν (k)A(ω; k)Tαβ (k)A(ω + �; k)]

+ πδ(�) v.p.
∫ +∞

−∞
dω

∫ +∞

−∞
dω′ f (ω) − f (ω′)

ω − ω′

∫
d3k

(2π )3
Re tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)]

+ πδ(�)δαβ

∫ +∞

−∞
dω f (ω)

∫
d3k

(2π )3
tr[Tμν (k)A(ω; k)] − πδ(�)κ−1δμνδαβ

+ πδ(�)
∫ +∞

−∞
dω f (ω)

∫
d3k

(2π )3
Im tr{[Tμν, Jαβ ]A(ω; k)}

= η
(1)
μναβ (�) + η

(2)
μναβ (�) + η

(3)
μναβ (�) + η

(4)
μναβ (�) − πδ(�)κ−1δμνδαβ + η

(5)
μναβ (�). (C1)

In the subsequent sections, we calculate η
(i)
μναβ (�) in the linearized and two-band models of Weyl semimetals.

7Compared with Ref. [28], we changed sign at dz.
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1. Linearized model of Weyl semimetals

In the linearized model, we start with the following strain transformation generator:

Jαβ = −1

2
{xβ, kα} + i

8
Cαβ [γβ, γα], (C2)

whose second term includes the generic form of internal angular momentum. The corresponding stress tensor is

Tμν = vF γ0γνkμ + Cμν

vF

2
(γ0γμkν − γ0γνkμ) + Cμν

vF

2
(γ0γμγ5bν − γ0γνγ5bμ). (C3)

The canonical stress tensor (A22) is reproduced by taking Cαβ = 0.
By using the following expression for the imaginary part of the trace:

Im tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)] =
∑

λ

λ
v3

F

4εk,λ

[δ(ω + εk,λ)δ(ω′ − εk,λ) − δ(ω − εk,λ)δ(ω′ + εk,λ)]

× [Cαβ (2 − Cμν )(k j − λb j )kβkμενα j + Cμν (2 − Cαβ )(k j − λb j )kαkνεμβ j

+ CαβCμν (k j − λb j )kβkνεμα j + (2 − Cαβ )(2 − Cμν )(k j − λb j )kαkμενβ j], (C4)

we obtain the first term in Eq. (C1),

η
(1)
μναβ (�) = 1

�
v.p.

∫ +∞

−∞
dω

∫ +∞

−∞
dω′ f (ω) − f (ω′)

ω′ − ω − �

∫
d3k

(2π )3
Im tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)]

= (2 − Cαβ )(2 − Cμν )Iμναβ + Cαβ (2 − Cμν )Iμνβα + Cμν (2 − Cαβ )Iνμαβ + CαβCμνIνμβα. (C5)

Here

Iμναβ =
3∑

j=1

ε jνβI j
μα, (C6)

and

I j
μα =

∑
λ

λ

∫
d3k

(2π )3 [ f (−εk,λ) − f (εk,λ)]
v3

F (k j − λb j )kαkμ

2εk,λ

(
4ε2

k,λ − �2
) . (C7)

For μ = 0, we obtain

I i=1,2
μα = (δμiδα3 + δμ3δαi )

bz

12π2

[
3�2

z − b2
z + �2

2v2
F

(
ln

2vF �z

�
+ 1

3

)]
, (C8)

and

I3
μα = δμα

∑
λ

v3
F

(2π )3

∫ 2π

0
dφ

∫ +∞

−∞
dkz λ(kz − λbz )

{
(δμ1 + δμ2)

[
�⊥
4

+ �2 − 4v2
F (kz − λbz )2

8�

×
[

iπ

2
+ tanh−1

(
2vF |kz − λbz|

�

)]
− 1

8
vF |kz − λbz|

]
+ δμ3

k2
z v

2
F

4�

[
iπ

2
+ tanh−1

(
2vF |kz − λbz|

�

)]}

= δμα

bz

4π2

{
(δμ1 + δμ2)

(
−�⊥�z + 2�2

z + 2b2
z

3
− �2

6v2
F

)
+ δμ3

[
−b2

z

6
+ �2

12v2
F

(
ln

2vF �z

�
− 1

6

)]}
, (C9)

where �⊥ and �z are momentum cutoffs.
Combining the expressions for η

(2)
μναβ (�) and η

(3)
μναβ (�), and using the following expression for the real part of the trace:

Re tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)]

=
∑

λ

v2
F

4

{
[δ(ω − εk,λ)δ(ω′ + εk,λ) + δ(ω + εk,λ)δ(ω′ − εk,λ)]

× [δνβkαkμ(2 − Cαβ )(2 − Cμν ) + δναkβkμCαβ (2 − Cμν ) + δμβkαkνCμν (2 − Cαβ ) + δμαkβkνCαβCμν]

+ v2
F

ε2
k,λ

[δ(ω − εk,λ) − δ(ω + εk,λ)][δ(ω′ − εk,λ) − δ(ω′ + εk,λ)]

× [(2 − Cαβ )(2 − Cμν )(kν − λbν )(kβ − λbβ )kαkμ + Cαβ (2 − Cμν )(kν − λbν )(kα − λbα )kβkμ

+ (2 − Cαβ )Cμν (kμ − λbμ)(kβ − λbβ )kαkν + CαβCμν (kμ − λbμ)(kα − λbα )kβkν]

}
, (C10)
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we derive

η
(2)
μναβ (�) + η

(3)
μναβ (�) = π

�

∫ +∞

−∞
dω[ f (ω) − f (ω + �)]

∫
d3k

(2π )3
Re tr[Tμν (k)A(ω; k)Tαβ (k)A(ω + �; k)]

+ πδ(�) v.p.

∫ +∞

−∞
dω

∫ +∞

−∞
dω′ f (ω) − f (ω′)

ω − ω′

∫
d3k

(2π )3
Re tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)]

= 
(� − 2μ)

{
�3

120πv3
F

[
δμαδνβ

(
1 − 5

8
(Cαβ + Cμν − CαβCμν )

)

− 1

4
δμβδνα

(
1 − 5

2
(Cαβ + Cμν − CαβCμν )

)
− 1

4
δμνδαβ

]
+ �

48πvF
[(2 − Cαβ )(2 − Cμν )δνβbμbα

+ Cαβ (2 − Cμν )δναbμbβ + (2 − Cαβ )Cμνδμβbνbα + CαβCμνδμαbνbβ]

}

+ μ2

12πvF
δ(�)[(2 − Cαβ )(2 − Cμν )δνβbμbα + Cαβ (2 − Cμν )δναbμbβ + (2 − Cαβ )Cμνδμβbνbα

+ CαβCμνδμαbνbβ] + μ4

120πv3
F

δ(�)(5Cμν + 5Cαβ − 5CμνCαβ − 2)δμβδνα

+ μ4

120πv3
F

δ(�)(8 − 5Cμν − 5Cαβ + 5CμνCαβ )δμαδνβ − μ4

60πv3
F

δ(�)δμνδαβ. (C11)

Here, we subtracted the contribution of completely filled states in terms with δ(�).
The fourth η

(4)
μναβ (�) and fifth κ−1 terms in Eq. (C1) are

η
(4)
μναβ

(�) = πδ(�)δαβ

∫ +∞

−∞
dω f (ω)

∫
d3k

(2π )3 tr[Tμν (k)A(ω; k)] = δ(�)δμνδαβ

μ4

12πv3
F

,

κ−1 = − V
∂P

∂V
= (ε + P)

∂P

∂ε
= μ4

9π2v3
F

, (C12)

where we also subtracted the contribution of completely filled states and used

ε =
∫ +∞

−∞
dω f (ω)

∫
d3k

(2π )3 tr[H (k)A(ω; k)] = μ4

4π2v3
F

, (C13)

tr[Tμν (k)A(ω; k)] =
∑

λ

v2
F

εk,λ

[δ(ω − εk,λ) − δ(ω + εk,λ)][kμkν + Cμνλ(kμbν − kνbμ) − λkμbν]. (C14)

Here, κ is the isentropic compressibility at fixed particle number, V and P are volume and pressure, and ε is the energy density.
The last term in the last line in Eq. (C1) reads

η
(5)
μναβ

(�) = πδ(�) Im
∫ +∞

−∞
dω f (ω)

∫
d3k

(2π )3 tr{[Tμν, Jαβ ]A(ω; k)}

= δ(�)
μ4

12πv3
F

(
Cμν − Cαβ + CμνCαβ

2
δμαδνβ + 2 − Cμν + Cαβ − CμνCαβ

2
δμβδνα

)
, (C15)

where we subtracted the contribution of completely filled states and used

tr{[Tμν (k), Jαβ ]A(ω; k)} =
∑

λ

iv2
F

εk,λ

[δ(ω − εk,λ) − δ(ω + εk,λ)]

×
{

Cμν

2
(kμ − λbμ)kαδνβ + Cαβ

2

(
1 − Cμν

2

)
[(kβ − λbβ )kμδνα − (kα − λbα )kμδνβ]

+
(

1 − Cμν

2

)
(kν − λbν )kαδμβ + CαβCμν

4
[(kβ − λbβ )kνδμα − (kα − λbα )kνδμβ]

+ λ
CαβCμν

4
[(kβ − λbβ )bνδμα − (kα − λbα )bνδμβ − (kβ − λbβ )bμδνα + (kα − λbα )bμδνβ]

}
.

(C16)
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By combining terms in Eqs. (C5), (C11), (C12), and (C15), we obtain the viscoelasticity tensor whose different components
are given in Eqs. (7), (12), (14), (15), (21), and (22).

2. Two-band model of Weyl semimetals

In this section, we consider a two-band model of Weyl semimetals with the Hamiltonian H (k) = σ · d(k), where d =
{vF kx, vF ky, γ (k2

z − m)}. The strain transformation generator and the stress tensor are

Jαβ = −1

2
{xβ, kα} + i

8
Cαβ[σβ, σα], (C17)

and

Tαβ = σikα∂β (di ) + 1
2Cαβ (dβσα − dασβ ), (C18)

respectively. For the canonical stress tensor, Cαβ = 0.
In what follows, we focus on the viscoelasticity tensor for the canonical stress tensor; terms related to the internal degrees of

freedom ∝Cαβ will be discussed at the end of this section.
To calculate the viscoelasticity tensor (C1), we use

tr[Tμν (k)A(ω; k)] = 1

εk
[δ(ω − εk ) − δ(ω + εk )]di∂ν (di )kμ, (C19)

Im tr{[Tμν, Jαβ ]A(ω; k)} = 1

εk
[δ(ω − εk ) − δ(ω + εk )]

{
dikα∂β[kμ∂ν (di )] + Cμν

2
[kα∂β (dν )dμ − kβ∂α (dμ)dν]

+ Cαβ

2
[kμ∂ν (dβ )dα − kν∂μ(dα )dβ] + CμνCαβ

4
(δνβdαdμ − δμβdαdν + δμαdβdν − δναdβdμ)

}
,

(C20)

Re tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)] = [δ(ω − εk )δ(ω′ + εk ) + δ(ω + εk )δ(ω′ − εk )]

{
kαkμ∂β (di )∂ν (di )

+ Cαβ

2
[kμdβ∂ν (dα ) − kμdα∂ν (dβ )] + Cμν

2
[kαdν∂β (dμ) − kαdμ∂β (dν )]

+ CαβCμν

4
(δμαdνdβ − δναdμdβ − δμβdνdα + δνβdμdα )

}

+ 1

ε2
k

kαkμdi∂β (di )d j∂ν (d j )[δ(ω − εk ) − δ(ω + εk )][δ(ω′ − εk ) − δ(ω′ + εk )], (C21)

and

Im tr[Tμν (k)A(ω; k)Tαβ (k)A(ω′; k)] = δ(ω − εk )δ(ω′ + εk ) − δ(ω + εk )δ(ω′ − εk )

εk

[
dikαkμ∂ν (dk )∂β (dl )εkil

+ Cαβ

2
kμdi∂ν (d j )(dβε jiα − dαε jiβ ) + Cμν

2
kαdi∂β (d j )(dνεμi j − dμενi j )

+ CαβCμν

4
di(εμiαdνdβ − εμiβdνdα − ενiαdμdβ + ενiβdμdα )

]
. (C22)

For the first term in the last line in Eq. (C1), we obtain

η
(1)
μναβ (�) = v.p.

∫
d3k

(2π )3

2

εk

1 − 
(|μ| − εk )

4ε2
k − �2

dikμkα∂ν (dν )∂β (dβ )εiνβ =
3∑

j=1

ε jνβI j
μα, (C23)

where

I i=1,2
μα =

∫
d3k

(2π )3

2v2
F

εk


(εk − |μ|)
4ε2

k − �2
∂z(dz )kikαkμ, (C24)

I3
μα =

∫
d3k

(2π )3

2v2
F

εk


(εk − |μ|)
4ε2

k − �2
dzkαkμ. (C25)
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At � = 0 and μ = 0, we find

I i=1,2
μα = (δμ3δαi + δμiδα3)

∫
d3k

(2π )3

v2
F ∂z(dz )

2ε3
k

1

2
k2
⊥kz

= (δμ3δαi + δμiδα3)

(
− γ 2�5

z

10π2v2
F

+ γ�3
z�⊥

12π2vF
+ γ 2m�3

z

6π2v2
F

− 2γ 2m5/2

15π2v2
F

)
, (C26)

I3
μα = δμα

∫
d3k

(2π )3

v2
F dz

2ε3
k

[
(δμ1 + δμ2)

1

2
k2
⊥ + δμ3k2

z

]
= δμα

[
(δμ1 + δμ2)

(
− γ 2�5

z

20π2v2
F

+ γ 2m�3
z

6π2v2
F

+ γ�3
z �⊥

24π2vF

−γ 2m2�z

4π2v2
F

− γ m�z�⊥
8π2vF

+ 4γ 2m5/2

15π2v2
F

)
+ δμ3

1

12π2

(
�3

z − 2m3/2
)]

, (C27)

where �⊥ and �z are momentum cutoffs.
In the interband part of η

(2)
μναβ (�) + η

(3)
μναβ (�), we have

η
(inter)
μναβ

(�) = π

�

(� − 2μ)

∫
d3k

(2π )3 δ(� − 2εk )

{
kαkμδνβ[∂ν (dν )]2 − 1

ε2
k

kαkμdβ∂β (dβ )dν∂ν (dν )

}

= 
(� − 2μ)
(
I (inter)
1 − I (inter)

2

)
. (C28)

Here, we used the fact that in the model at hand, di = di(ki ), and, therefore, ∂μ(dν ) = ∂ν (dν )δμν . The integrals I (inter)
1 and I (inter)

2
read

I (inter)
1 = 1

32π2v2
F

∫ 2π

0
dφ

∫ +∞

−∞
dkzkαkμδνβ[∂ν (dν )]2


(
�2 − 4d2

z

)∣∣∣∣
v2

F k2
⊥= �2

4 −d2
z

= δμαδνβ

8πv2
F

{(
δμ1 + δμ2

)
(δν1 + δν2)

30

×
[

(3�2 + 2γ m� − 8γ 2m2)

√
2γ m + �

2γ
− 
(2γ m − �)(3�2 − 2γ m� − 8γ 2m2)

√
2γ m − �

2γ

]

+ δμ3δν3

5

[
(2γ m + �)2

√
2γ m + �

2γ
− 
(2γ m − �)(2γ m − �)2

√
2γ m − �

2γ

]

− γ δν3(δμ1 + δμ2)

105v2
F

[
(4γ m − 5�)(2γ m + �)2

√
2γ m + �

2γ
− 
(2γ m − �)(4γ m + 5�)(2γ m − �)2

√
2γ m − �

2γ

]

+ v2
F δμ3(δν1 + δν2)

6γ

[
(2γ m + �)

√
2γ m + �

2γ
− 
(2γ m − �)(2γ m − �)

√
2γ m − �

2γ

]}
, (C29)

and

I (inter)
2 = 1

32π2v2
F

∫ 2π

0
dφ

∫ +∞

−∞
dkz

1

ε2
k

kαkμdβ∂β (dβ )dν∂ν (dν )

(
�2 − 4d2

z

)∣∣∣∣
v2

F k2
⊥= �2

4 −d2
z

= 1

2πv2
F �2

{
[δμβδνα + δμνδαβ + (δμ1 + δμ2)(δν1 + δν2)δμαδνα]

1

1260

[
(2γ m + �)2

√
2γ m + �

2γ

× (16γ 2m2 − 20γ m� + 7�2) − 
(2γ m − �)(2γ m − �)2

√
2γ m − �

2γ
(16γ 2m2 + 20γ m� + 7�2)

]

+ δμ3δν3δμαδνβ

�2

60

[
(2γ m + �)2

√
2γ m + �

2γ
− 
(2γ m − �)(2γ m − �)2

√
2γ m − �

2γ

]

− (δμ1 + δμ2)δν3δμαδνβ

γ

13860v2
F

[
(256γ 3m3 − 320γ 2m2� + 148γ m�2 − 45�3)(2γ m + �)2

×
√

2γ m + �

2γ
− 
(2γ m − �)(256γ 3m3 + 320γ 2m2� + 148γ m�2 + 45�3)(2γ m − �)2

√
2γ m − �

2γ

]
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− δμ3(δν1 + δν2)δμαδνβ

v2
F

420γ

[
(2γ m + �)2(4γ m − 5�)

√
2γ m + �

2γ
− 
(2γ m − �)(2γ m − �)2

× (4γ m + 5�)

√
2γ m − �

2γ

]}
. (C30)

Subtracting the divergent contribution of the filled states, the intraband part of η
(2)
μναβ (�) + η

(3)
μναβ (�) reads

η
(intra)
μναβ

(�) = πδ(�) v.p.
∫

d3k

(2π )3

f (εk ) − f (−εk )

εk

{
kαkμδνβ[∂ν (dν )]2 − 1

ε2
k

kαkμdβ∂β

(
dβ

)
dν∂ν (dν )

}

= δ(�)
(
I (intra)
1 − I (intra)

2

)
, (C31)

where

I (intra)
1 = π

∫
d3k

(2π )3

1

|d(k)|kμkαδνβ (∂ν (dν ))2
(|μ| − |d(k)|) = δμαδνβ

πv2
F

{
2(δμ1 + δμ2)(δν1 + δν2)

105

[
8γ 3m7/2

+ (|μ| + γ m)2(3|μ| − 4γ m)

√
γ m + |μ|

γ
− 
(γ m − |μ|)(|μ| − γ m)2(3|μ| + 4γ m)

√
γ m − |μ|

γ

]

+ v2
F δμ3(δν1 + δν2)

15γ

[
− 2γ 2m5/2 + (|μ| + γ m)2

√
γ m + |μ|

γ
+ 
(γ m − |μ|)(|μ| − γ m)2

√
γ m − |μ|

γ

]

+ 4δμ3δν3

35

⎡
⎣−2γ 3m7/2 + (|μ| + γ m)3

√
γ m + |μ|

γ
− 
(γ m − |μ|)(|μ| − γ m)3

√
γ m − |μ|

γ

⎤
⎦

− 8γ
(
δμ1 + δμ2

)
δν3

945v2
F

[
− 8γ 4m9/2 + (|μ| + γ m)3(4γ m − 5|μ|)

√
γ m + |μ|

γ
− 
(γ m − |μ|)(|μ| − γ m)3

× (4γ m + 5|μ|)
√

γ m − |μ|
γ

]}
, (C32)

and

I (intra)
2 = π

∫
d3k

(2π )3

1

|d(k)|kμ

dν∂ν (dν )

|d(k)| kα

dβ∂β (dβ )

|d(k)| 
(|μ| − |d(k)|)

= 1

πv2
F |μ|

{
4

315
[δμβδνα + δμνδαβ + (δμ1 + δμ2)(δν1 + δν2)δμαδνβ]

×
[

12|μ|γ 3m7/2 + (|μ| + γ m)3(|μ| − 2γ m)

√
γ m + |μ|

γ
− 
(γ m − |μ|)(|μ| − γ m)3(|μ| + 2γ m)

√
γ m − |μ|

γ

]

+ 2v2
F

105γ
δμ3(δν1 + δν2)δμαδνβ

[
− 7|μ|γ 2m5/2 + (|μ| + γ m)3

√
γ m + |μ|

γ
− 
(γ m − |μ|)(γ m − |μ|)3

√
γ m − |μ|

γ

]

+ 4

315
δμ3δν3δμαδνβ

[
− 6|μ|γ 3m7/2 + 3|μ|(|μ| + γ m)3

√
γ m + |μ|

γ
− 
(γ m − |μ|)3|μ|(|μ| − γ m)3

√
γ m − |μ|

γ

]

+ 8γ

3465v2
F

(δμ1 + δμ2)δν3δμαδνβ

[
− 88γ 4m9/2|μ| + (5μ2 − 12γ m|μ| + 16γ 2m2)(|μ| + γ m)3

√
γ m + |μ|

γ

+ 
(γ m − |μ|)(5μ2 + 12γ m|μ| + 16γ 2m2)(|μ| − γ m)3

√
γ m − |μ|

γ

]}
. (C33)

035133-17



HERASYMCHUK, GORBAR, AND SUKHACHOV PHYSICAL REVIEW B 110, 035133 (2024)

The fourth and fifth terms in the last line in Eq. (C1) are

η
(4)
μναβ

(�) =πδ(�)δαβ

∫
d3k

(2π )3

1

εk
[ f (εk ) − f (−εk )]di∂ν (di )kμ

= 2

105πv2
F

δ(�)δμνδαβ

⎡
⎣8γ 3m7/2 − (γ m + |μ|)2(4γ m − 3|μ|)

√
γ m + |μ|

γ

−
(γ m − |μ|)(γ m − |μ|)2(4γ m + 3|μ|)
√

γ m − |μ|
γ

⎤
⎦ = πδ(�)δμνδαβP,

κ−1 = P(1 + α), (C34)

where α = ∂P/∂ε = ∂P/∂μ[∂ε/∂μ]−1 and

ε =
∫ +∞

−∞
dω f (ω)

∫
d3k

(2π )3 tr[H (k)A(ω; k)] = 1

105π2v2
F

[
− 16γ 3m7/2 + (8γ 3m3 − 4γ 2m2|μ| + 3γ mμ2 + 15|μ|3)

×
√

γ m + |μ|
γ

+ 
(γ m − |μ|)(8γ 3m3 + 4γ 2m2|μ| + 3γ mμ2 − 15|μ|3)

√
γ m − |μ|

γ

]
. (C35)

For the last term in the last line in Eq. (C1), we have

η
(5)
μναβ (�) = πδ(�)

∫
d3k

(2π )3

f (εk ) − f (−εk )

εk
dikα∂β[kμ∂ν (di )]

= πδ(�)
∫

d3k

(2π )3

f (ε) − f (−ε)

ε
{(δν1 + δν2)v2

F kνkαδμβ + δν3dνkα∂β[kμ∂ν (dν )]}

= πδ(�)δμβδναP + δμ3δν3πδ(�)δμαδνβP − 4γ (δμ1 + δμ2)δν3

945πv4
F

δ(�)δμαδνβ

×
[

64γ 4m9/2 − (32γ 2m2 − 26γ m|μ| + 5μ2)(γ m + |μ|)2

√
γ m + |μ|

γ

− 
(γ m − |μ|)(32γ 2m2 + 26γ m|μ| + 5μ2)(γ m − |μ|)2

√
γ m − |μ|

γ

]
. (C36)

The complete expressions for the static and dynamic parts of the viscoelasticity tensor read

Re ηstat
μναβ (�) = δ(�)

πv2
F |μ|

{
[δμβδνα + δμνδαβ + (δμ1 + δμ2)(δν1 + δν2)δμαδνβ]

2

315

[
(4γ 2m2 − 10γ m|μ| + 7μ2)

× (γ m + |μ|)2

√
γ m + |μ|

γ
− 
(γ m − |μ|)(4γ 2m2 + 10γ m|μ| + 7μ2)(γ m − |μ|)2

√
γ m − |μ|

γ

]

+ δμ3δν3δμαδνβ

2μ2

15

[
(γ m + |μ|)2

√
γ m + |μ|

γ
− 
(γ m − |μ|)(γ m − |μ|)2

√
γ m − |μ|

γ

]

− δμ3(δν1 + δν2)δμαδνβ

v2
F

105γ

[
(γ m + |μ|)2(2γ m − 5|μ|)

√
γ m + |μ|

γ
− 
(γ m − |μ|)(γ m − |μ|)2

× (2γ m + 5|μ|)
√

γ m − |μ|
γ

]
− (δμ1 + δμ2)δν3δμαδνβ

4γ

3465v2
F

[
(γ m + |μ|)2

√
γ m + |μ|

γ

× (32γ 3m3 − 80γ 2m2|μ| + 74γ mμ2 − 45|μ|3) − 
(γ m − |μ|)(γ m − |μ|)2

√
γ m − |μ|

γ

× (32γ 3m3 + 80γ 2m2|μ| + 74γ mμ2 + 45|μ|3)

]}
− πδ(�)δμνδαβ (1 + α)P, (C37)
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and

Re η
dyn
μναβ (�) =

{[
(2γ m + �)(49�3 − 72γ m�2 + 48γ 2m2� − 64γ 3m3)

√
2γ m + �

2γ

+ 
(2γ m − �)(2γ m − �)(49�3 + 72γ m�2 + 48γ 2m2� + 64γ 3m3)

√
2γ m − �

2γ

]

× δμαδνβ (δμ1 + δμ2)(δν1 + δν2)

5040π�2v2
F

−
[

(2γ m + �)2(16γ 2m2 − 20γ m� + 7�2)

√
2γ m + �

2γ

− 
(2γ m − �)(2γ m − �)2(16γ 2m2 + 20γ m� + 7�2)

√
2γ m − �

2γ

]
δμβδνα + δμνδαβ

2520πv2
F �2

+
[

(2γ m + �)2

√
2γ m + �

2γ
− 
(2γ m − �)(2γ m − �)2

√
2γ m − �

2γ

]
δμαδνβδμ3δν3

60πv2
F

+
[

(2γ m + �)(16γ 2m2 − 12γ m� + 25�2)

√
2γ m + �

2γ
− 
(2γ m − �)

× (2γ m − �)(16γ 2m2 + 12γ m� + 25�2)

√
2γ m − �

2γ

]
δμαδνβδμ3(δν1 + δν2)

1680πγ�2

+
[
γ (2γ m + �)3(16γ 2m2 − 28γ m� + 15�2)

√
2γ m + �

2γ
− 
(2γ m − �)γ (2γ m − �)3

× (16γ 2m2 + 28γ m� + 15�2)

√
2γ m − �

2γ

]
δμαδνβδν3(δμ1 + δμ2)

3465π�2v4
F

}

(� − 2μ), (C38)

respectively.
Let us calculate terms determined by the internal degrees of freedom, i.e., terms proportional to ∝Cαβ with α, β = 1, 2; we

use the in-plane rotational symmetry of the model to fix Cμ3 = C3μ = 0. At � = μ = 0, the correction for the Hall viscosity
reads

Re δηHall
μναβ (�) = (

I (1)
μναβ − I (1)

μνβα

) + (
I (1)
αβμν − I (1)

αβνμ

) + (
I (2)
μναβ − I (2)

μνβα − I (2)
νμαβ + I (2)

νμβα

)
, (C39)

where

I (1)
μναβ =Cαβ

∫
d3k

(2π )3

1

4ε3
k

kμdidβ∂ν (dν )ενiα = Cαβ

[
δμβ (δβ1 + δβ2)(δα1δν2 − δα2δν1)

×
(

− γ 2�5
z

40π2v2
F

+ γ�3
z �⊥

48π2vF
+ γ 2m�3

z

12π2v2
F

− γ m�z�⊥
16π2vF

− γ 2m2�z

8π2v2
F

+ 2γ 2m5/2

15π2v2
F

)

+ δμνδν3(δα2δβ1 − δα1δβ2)

(
− γ 2�5

z

20π2v2
F

+ γ�3
z�⊥

24π2vF
+ γ 2m�3

z

12π2v2
F

− γ 2m5/2

15π2v2
F

)]
, (C40)

I (2)
μναβ =CαβCμν

∫
d3k

(2π )3

1

8ε3
k

εμiαdidβdν = CαβCμνδνβ (δβ1 + δβ2)(δα1δμ2 − δα2δμ1)

×
(

− γ 2�5
z

80π2v2
F

+ γ�3
z �⊥

96π2vF
+ γ 2m�3

z

24π2v2
F

− γ m�z�⊥
32π2vF

− γ 2m2�z

16π2v2
F

+ γ 2m5/2

15π2v2
F

)
. (C41)
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After subtraction discussed in the paragraph before Eq. (37), we have

I
(1)
μναβ =Cαβ

[
δμβ (δβ1 + δβ2)(δα1δν2 − δα2δν1)

(
− γ 2m�3

z

12π2v2
F

+ γ m�z�⊥
16π2vF

+ γ 2m2�z

8π2v2
F

− 2γ 2m5/2

15π2v2
F

)

+ δμνδν3(δα2δβ1 − δα1δβ2)

(
− γ 2m�3

z

12π2v2
F

+ γ 2m5/2

15π2v2
F

)]
, (C42)

I
(2)
μναβ =CαβCμνδνβ (δβ1 + δβ2)(δα1δμ2 − δα2δμ1)

(
− γ 2m�3

z

24π2v2
F

+ γ m�z�⊥
32π2vF

+ γ 2m2�z

16π2v2
F

− γ 2m5/2

15π2v2
F

)
. (C43)

The correction in the dynamic part reads

δη
(2)
μναβ (�) = π

�

(� − 2μ)

∫
d3k

(2π )3
δ(� − 2|d(k)|)

{
Cαβ

2
[kμdβ∂ν (dα ) − kμdα∂ν (dβ )]

+ Cμν

2
[kαdν∂β (dμ) − kαdμ∂β (dν )] + CαβCμν

4
(δμαdνdβ − δναdμdβ − δμβdνdα + δνβdμdα )

}
. (C44)

Here, there are the following two types of integrals:

I (inter)
3 = π

�

∫
d3k

(2π )3
kμdα∂ν (dβ )δ(� − 2|d(k)|) = δμαδνβ

240πv2
F

[(δμ1 + δμ2)(δν1 + δν2) + δμ3δν3]

×
[

(3�2 + 2γ m� − 8γ 2m2)

√
2γ m + �

2γ
− 
(2γ m − �)(3�2 − 2γ m� − 8γ 2m2)

√
2γ m − �

2γ

]

≡ δμαδνβ[(δμ1 + δμ2)(δν1 + δν2) + δμ3δν3]g1(�), (C45)

and

I (inter)
4 = π

�

∫
d3k

(2π )3
dμdαδνβδ(� − 2|d(k)|) = δμαδνβ

{
(δμ1 + δμ2)

240πv2
F

[
(3�2 + 2γ m� − 8γ 2m2)

√
2γ m + �

2γ

− 
(2γ m − �)(3�2 − 2γ m� − 8γ 2m2)

√
2γ m − �

2γ

]
+ δμ3

480πv2
F

[
(3�2 − 8γ m� + 32γ 2m2)

√
2γ m + �

2γ

− 
(2γ m − �)(3�2 + γ m� + 32γ 2m2)

√
2γ m − �

2γ

]}
≡ δμαδνβ[(δμ1 + δμ2)g1(�) + δμ3g2(�)]. (C46)

Hence,

δη
(2)
μναβ (�) = (δμβδνα − δμαδνβ )
(� − 2μ)

{(
Cμν

2
+ Cαβ

2

)
[(δμ1 + δμ2)(δν1 + δν2) + δμ3δν3]g1(�)

− CμνCαβ

4
[(δμ1 + δμ2)g1(�) + δμ3g2(�)] − CμνCαβ

4
[(δν1 + δν2)g1(�) + δν3g2(�)]

}
. (C47)

The rotational symmetry with respect to the z axis allows us to set C3μ = Cμ3 = 0 and simplify the result:

Re δη
dyn
μναβ (�) = (δμβδνα − δμαδνβ )
(� − 2μ)

(
Cμν

2
+ Cαβ

2
− CμνCαβ

4

)
(δμ1 + δμ2)(δν1 + δν2)g1(�), (C48)

where g1(�) follows from Eq. (C45).
The corrections to the static part read

δη
(3)
μναβ (�) = πδ(�) v.p.

∫
d3k

(2π )3


(|μ| − |d(k)|)
|d(k)|

[
Cμν

2
(kαdνδμβ − kαdμδνβ )∂β (dβ )

+ Cαβ

2
(kμdβδνα − kμdαδνβ )∂ν (dν ) + CμνCαβ

4
(δμαdνdβ − δναdμdβ − δμβdνdα + δνβdμdα )

]
, (C49)
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and

δη
(5)
μναβ (�) = πδ(�)

∫
d3k

(2π )3


(|μ| − |d(k)|)
|d(k)|

{
Cμν

2
[kα∂β (dν )dμ − kβ∂α (dμ)dν]

+ Cαβ

2
[kμ∂ν (dβ )dα − kν∂μ(dα )dβ] + CμνCαβ

4
(δνβdαdμ − δμβdαdν + δμαdβdν − δναdβdμ)

}
. (C50)

The integrals here are

I (intra)
3 = π

∫
d3k

(2π )3

1

|d(k)|kμdα∂ν (dβ )
(|μ| − |d(k)|) = δμαδνβ

4πv2
F

[(δμ1 + δμ2)(δν1 + δν2) + δμ3δν3]

×
{

8

105

[
8γ 3m7/2 − (|μ| + γ m)2(4γ m − 3|μ|)

√
γ m + |μ|

γ
− 
(γ m − |μ|)(|μ| − γ m)2

× (4γ m + 3|μ|)
√

γ m − |μ|
γ

]}
≡ δμαδνβ[(δμ1 + δμ2)(δν1 + δν2) + δμ3δν3] f1(μ), (C51)

and

I (intra)
4 = π

∫
d3k

(2π )3

1

|d(k)|dμdαδνβ
(|μ| − |d(k)|) = δμαδνβ

4πv2
F

{
(δμ1 + δμ2)

8

105

[
8γ 3m7/2 − (|μ| + γ m)2

× (4γ m − 3|μ|)
√

γ m − |μ|
γ

− 
(γ m − |μ|)(|μ| − γ m)2(4γ m + 3|μ|)
√

γ m − |μ|
γ

]

+ δμ3
4

105

[
− 48γ 3m7/2 + (24γ 2m2 − 8γ m|μ| + 3μ2)(|μ| + γ m)

√
γ m + |μ|

γ
− 
(γ m − |μ|)

× (24γ 2m2 + 8γ m|μ| + 3μ2)(|μ| − γ m)

√
γ m − |μ|

γ

]}
≡ δμαδνβ[(δμ1 + δμ2) f1(μ) + δμ3 f2(μ)]. (C52)

Hence,

δη
(3)
μναβ (�) + δη

(5)
μναβ (�) = δ(�)

{
Cαβ

2
(δμβδνα − δνβδμα )[(δμ1 + δμ2)(δν1 + δν2) + δμ3δν3] f1(μ)

+ Cμν

2
(δμβδνα − δνβδμα )[(δμ1 + δμ2)(δν1 + δν2) + δμ3δν3] f1(μ)

+ CμνCαβ

2
(δμαδνβ − δναδμβ )[(δν1 + δν2) f1(μ) + δν3 f2(μ)]

+ CμνCαβ

2
(δμαδνβ − δναδμβ )[(δμ1 + δμ2) f1(μ) + δμ3 f2(μ)]

}
. (C53)

Employing the rotational symmetry of the system to set C3μ = 0, the correction to the static viscoelasticity tensor due to the
internal degrees of freedom reads

Re δηstat
μναβ (�) = δ(�)

(
Cμν

2
+ Cαβ

2
− CμνCαβ

)
(δμβδνα − δνβδμα )(δμ1 + δμ2)(δν1 + δν2) f1(μ). (C54)

It is straightforward to see that for certain strain transformation generators, i.e., Cμν = 1 or Cμν = 0 at μ, ν = 1, 2, the internal
degrees of freedom do not affect the viscoelasticity tensor, Re δηstat

μναβ (�) = 0.

APPENDIX D: DERIVATION OF INVISCID HYDRODYNAMIC EQUATIONS

In this section, we derive the inviscid hydrodynamic equations by using the chiral kinetic theory [65–68]. We follow the
standard approach discussed in Refs. [54,55]; see also Refs. [36,41] for a similar derivation in Weyl semimetals. The viscosity
is considered in Appendix E.
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The Boltzmann kinetic equation has the form

∂ f

∂t
+

(
ṙ · ∂ f

∂r

)
+

(
k̇ · ∂ f

∂k

)
= Icol{ f }, (D1)

where f = f (t, r, k) is the distribution function and Icol{ f } is the collision integral. In the absence of magnetic fields, the
semiclassical equations of motion are [66,67]

ṙ = vk − e[E × �] and k̇ = −eE, (D2)

where vk = ∂kεk is velocity and � is the Berry curvature which determines the anomalous velocity.
We assume the hydrodynamic ansatz for the distribution function with the fluid velocity u(t, r)8

f (u)
η (t, r, k) = 1

e[εk−ημ−(u(t,r)·k)]/T + 1
, (D3)

where η = ± corresponds to electron (η = +) and hole (η = −) states and T is the temperature. In the linear response regime
|u| � vF , we can expand the distribution function in |u|

f (u)
η (t, r, k) ≈ f (0)

η (t, r, k) − (u(t, r) · k)∂εk f (0)
η (t, r, k). (D4)

For simplicity, we consider the momentum-relaxing scattering in the relaxation-time approximation,

Icol{ fη} = − fη(t, r, k) − f (0)
η (t, r, k)

τ
. (D5)

1. Linearized model of Weyl semimetals

For the linearized model of Weyl semimetals, the kinetic equation for each Weyl node with chirality λ = ± reads

∂t fλ,η + (vk − ηe[E × �λ,η]) · ∇ fλ,η − ηe(E · ∂p) fλ,η = Icol{ fλ,η}, (D6)

where εk,λ = vF |k − λb|, vk = ∂kεk,λ = vF (k − λb)/|k − λb|, and �λ,η = [λη(k − λb)]/[2|k − λb|3].
To obtain hydrodynamic equations, we calculate moments of the Boltzmann equation. For the charge continuity equation, we

average Eq. (D6) over momentum and sum over Weyl nodes as well as particle and hole states. We obtain

∂tρ(t, r) + ∇ ·
{

u(t, r)ρ(t, r) + e2

2π2
[b × E]

}
= 0, (D7)

where the charge density is

ρ(t, r) =
∑
λ=±

∑
η

∫
d3k

(2π )3 ηe f (0)
λ,η = −

∑
λ=±

∑
η

ηeT 3

π2v3
F

Li3(−eημ/T ) = e

3π2v3
F

μ(μ2 + π2T 2), (D8)

where Lin(x) is the polylogarithm function.
The Euler equation is obtained by averaging the Boltzmann equation with the quasiparticle momentum k,

∂t

[
w(t, r)

u(t, r)

v2
F

+ ν(t, r)(u(t, r) · b)b
]

+ ∇P(t, r) + ρ(t, r)E = − 1

τ

[
w(t, r)

u(t, r)

v2
F

+ ν(t, r)(u(t, r) · b)b
]
, (D9)

where w(t, r) = ε(t, r) + P(t, r) = 4ε(t, r)/3, the energy density is

ε =
∑
λ=±

∑
η

∫
d3k

(2π )3 εk,λ f (0)
λ,η = −

∑
λ=±

∑
η

�(4)T 4

2π2v3
F

Li4(−eημ/T ) = 1

4π2v3
F

(
μ4 + 2π2μ2T 2 + 7

15
π4T 4

)
, (D10)

and we introduced the shorthand notation

ν = 1

π2v3
F

(
μ2 + 1

3
π2T 2

)
. (D11)

Finally, for the energy continuity equation, we average the Boltzmann equation with the quasiparticle energy εk,λ,

∂tε(t, r) + 4
3∇ · [u(t, r)ε(t, r)] = 0. (D12)

8The distribution function (D3) satisfies the electron-electron collision integral. This form is also known as the Callaway ansatz [11,69].
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2. Two-band model of Weyl semimetals

For the two-band model of Weyl semimetals, see Eq. (26), the Berry curvature is given by

�i,η = ηεimn
d(k) · [∂km d(k) × ∂kn d(k)]

4|d(k)|3 . (D13)

To simplify our results, in what follows, we consider the case of vanishing temperature T = 0. Then the charge continuity
equation acquires the following form:

∂tρ(t, r) + ∇ · [u(t, r)ρ(t, r) + jAHE] = 0, (D14)

where

ρ =
∑

η

∫
d3k

(2π )3 ηe f (0)
η = e sign(μ)

15π2v2
F

⎡
⎣(3μ2 + γ m|μ| − 2γ 2m2)

√
γ m + |μ|

γ

−
(γ m − |μ|)(3μ2 − γ m|μ| − 2γ 2m2)

√
γ m − |μ|

γ

⎤
⎦, (D15)

jAHE = − e2
∑

η

∫
d3k

(2π )3 [E × �η] f (0)
η = e2

2π2
(exEy − eyEx )

[(
�z

2
− √

m

)

+ sign(μ)

(
√

m − γ m + |μ|
3|μ|

√
γ m + |μ|

γ
+ 
(γ m − |μ|)γ m − |μ|

3|μ|

√
γ m − |μ|

γ

)]
, (D16)

and we used Faraday’s law to construct the full derivative. The Euler equation reads

∂t

[
w(t, r)

u(t, r)

v2
F

+ A(t, r)(u(t, r) · ez )ez

]
+ ∇P(t, r) + ρ(t, r)E = − 1

τ

[
w(t, r)

u(t, r)

v2
F

+ A(t, r)(u(t, r) · ez )ez

]
, (D17)

where w = ε + P and

ε =
∑

η

∫
d3k

(2π )3 εk f (0)
η = 1

105π2v2
F

⎡
⎣−16γ 3m7/2 + (8γ 3m3 − 4γ 2m2|μ| + 3γ mμ2 + 15|μ|3)

√
γ m + |μ|

γ

+
(γ m − |μ|)(8γ 3m3 + 4γ 2m2|μ| + 3γ mμ2 − 15|μ|3)

√
γ m − |μ|

γ

⎤
⎦, (D18)

P =
∑

η

∫
d3k

(2π )3

di∂i(di )ki

|d(k)| f (0)
η = 2

105π2v2
F

⎡
⎣8γ 3m7/2 − (γ m + |μ|)2(4γ m − 3|μ|)

√
γ m + |μ|

γ

−
(γ m − |μ|)(γ m − |μ|)2(4γ m + 3|μ|)
√

γ m − |μ|
γ

⎤
⎦, (D19)

A = γ 2m|μ|
30π2v2

F

[(
γ m + |μ|

γ

)3/2( 5

γ 2m
+ 4 − 6

|μ|
γ m

)
− 
(γ m − |μ|)

(
γ m − |μ|

γ

)3/2( 5

γ 2m
+ 4 + 6

|μ|
γ m

)]
. (D20)

Finally, the energy continuity equation reads

∂tε(t, r) + ∇ · [u(t, r)w(t, r)] = 0. (D21)

Equations (D14), (D17), and (D21) correspond to Eqs. (45), (46), and (47) in the main text, respectively.

APPENDIX E: DERIVATION OF VISCOSITY IN THE KINETIC APPROACH

To determine the viscosity of electron fluid, one has to consider the first-order correction to the distribution function fη(t, r, k)
due to the electron-electron scattering. By following the standard approach [54,55] and using the relaxation-time approximation,
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we obtain the following first-order in τee � τ correction to the distribution function:

δ fη(t, r, k) = −τee
{
∂t f (u)

η + (
vk − ηe[E × �η] · ∇ f (0)

η

) − ηe
(
E · ∂k f (0)

η

)
−(

vk − ηe[E × �η] · ∇[
(u(t, r) · k)∂εk f (0)

η

]) + (
ηeE · ∂k

[
(u(t, r) · k)∂εk f (0)

η

])}
. (E1)

Viscosity enters the Euler equation, see Eq. (D9) or (D17), as the following term on its left-hand side:

−ηi jkl∇ j∇l uk (t, r). (E2)

To obtain such a term, we focus only on terms with two spatial derivatives of u(t, r). Furthermore, we rewrite the time derivative
in Eq. (E1) as

∂t f (u)
η = −[k · ∂t u(t, r)]∂εk f (0)

η + [∂tε(t, r)]∂ε fη ∼ −∇ · [u(t, r)w(t, r)]∂ε fη. (E3)

Then, collecting the relevant terms in Eq. (E1), we obtain the following part of the distribution function responsible for the
electron viscosity:

δ f̃η(t, r, k) = τee
{∇ · [u(t, r)w(t, r)]∂ε f (0)

η + (vk · ∇[u(t, r) · k])∂εk f (0)
η

}
. (E4)

The subsequent derivations of the hydrodynamic equations follow the same steps as in Appendix D. Viscosity-related terms
originate from the second term in the kinetic equation (D6). After performing the averaging over momenta, we have the following
integrals:

I (1)
(visc) = τee

∑
η

∫
d3k

(2π )3 k (vk · ∇)
{∇ · [u(t, r)w(t, r)]∂ε f (0)

η

}
, (E5)

I (2)
(visc) = τee

∑
η

∫
d3k

(2π )3 k (vk · ∇)
[
vk · ∇(u(t, r) · k)∂εk f (0)

η

]
. (E6)

In the following two sections, we calculate these integrals in linearized and two-band models of Weyl semimetals.

1. Linearized model of Weyl semimetals

Let us start with the linearized model (13). The integrals in Eqs. (E5) and (E6) are

I(visc) = I (1)
(visc) + I (2)

(visc) = τee
4

9
∇(∇ · [u(t, r)ε(t, r)]) − τee

4

15
�[u(t, r)ε(t, r)]

− τee
8

15
∇(∇ · [u(t, r)ε(t, r)]) − τeeb

1

3
�
[
(u(t, r) · b)v2

F ν(t, r)
]
. (E7)

Therefore, linearizing in deviations from local equilibrium ε(t, r) = ε and ν(t, r) = ν, we obtain

ηi jkl = 4τee

15
ε

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)
+ τeev

2
F ν

3
bibkδ jl . (E8)

2. Two-band model of Weyl semimetals

Let us consider the two-band model of Weyl semimetals defined in Eq. (26). Leaving only terms with the second-order
derivatives of u, integrals (E5) and (E6) read

I (1)
(visc) = τeew

∂2ui

∂xi∂x j

∑
η

∂

∂ε

∫
d3k

(2π )3 kv j f (0)
η = τeew∇(∇ · u)∂εP, (E9)

I (2)
(visc) = −ei

∂2uk

∂x j∂xl
τee

∑
η

∫
d3k

(2π )3 ki v jkkvlδ(|μ| − |d(k|)

= −ei
∂2uk

∂x j∂xl
τee

∑
η

∫
d3k

(2π )3 ki
d j∂ j (d j )

|d(k)| kk
dl∂l (dl )

|d(k)| δ(|μ| − |d(k)|). (E10)

Evaluating the integral in Eq. (E10), we obtain

I (2)
(visc) = − ei

∂2uk

∂x j∂xl

τee

2π2v2
F |μ|

{
[δilδ jk + δi jδkl + (δi1 + δi2)(δ j1 + δ j2)δikδ jl ]

4

315

[
(4γ 2m2 − 10γ m|μ| + 7μ2)

× (γ m + |μ|)2

√
γ m + |μ|

γ
− 
(γ m − |μ|)(4γ 2m2 + 10γ m|μ| + 7μ2)(γ m − |μ|)2

√
γ m − |μ|

γ

]

035133-24



VISCOELASTIC RESPONSE AND ANISOTROPIC … PHYSICAL REVIEW B 110, 035133 (2024)

+ δi3δ j3δikδ jl
4μ2

15

[
(γ m + |μ|)2

√
γ m + |μ|

γ
− 
(γ m − |μ|)(γ m − |μ|)2

√
γ m − |μ|

γ

]

− δi3(δ j1 + δ j2)δikδ jl
2v2

F

105γ

[
(γ m + |μ|)2(2γ m − 5|μ|)

√
γ m + |μ|

γ
− 
(γ m − |μ|)(γ m − |μ|)2

× (2γ m + 5|μ|)
√

γ m − |μ|
γ

]
− (δi1 + δi2)δ j3δikδ jl

8γ

3465v2
F

⎡
⎣(γ m + |μ|)2

√
γ m + |μ|

γ

×(32γ 3m3 − 80γ 2m2|μ| + 74γ mμ2 − 45|μ|3) − 
(γ m − |μ|)(γ m − |μ|)2

×
√

γ m − |μ|
γ

(32γ 3m3 + 80γ 2m2|μ| + 74γ mμ2 + 45|μ|3)

⎤
⎦
⎫⎬
⎭. (E11)

The final result for the viscosity tensor in the two-band model is given by

ηi jkl = τee

π2v2
F |μ|

{
[δilδ jk + δi jδkl + (δi1 + δi2)(δ j1 + δ j2)δikδ jl ]

2

315

[
(4γ 2m2 − 10γ m|μ| + 7μ2)

× (γ m + |μ|)2

√
γ m + |μ|

γ
− 
(γ m − |μ|)(4γ 2m2 + 10γ m|μ| + 7μ2)(γ m − |μ|)2

√
γ m − |μ|

γ

]

+ δi3δ j3δikδ jl
2μ2

15

⎡
⎣(γ m + |μ|)2

√
γ m + |μ|

γ
− 
(γ m − |μ|)(γ m − |μ|)2

√
γ m − |μ|

γ

⎤
⎦

− δi3(δ j1 + δ j2)δikδ jl
v2

F

105γ

⎡
⎣(γ m + |μ|)2(2γ m − 5|μ|)

√
γ m + |μ|

γ
− 
(γ m − |μ|)(γ m − |μ|)2

×(2γ m + 5|μ|)
√

γ m − |μ|
γ

⎤
⎦ − (δi1 + δi2)δ j3δikδ jl

4γ

3465v2
F

⎡
⎣(γ m + |μ|)2

√
γ m + |μ|

γ

×(32γ 3m3 − 80γ 2m2|μ| + 74γ mμ2 − 45|μ|3) − 
(γ m − |μ|)(γ m − |μ|)2

×
√

γ m − |μ|
γ

(32γ 3m3 + 80γ 2m2|μ| + 74γ mμ2 + 45|μ|3)

⎤
⎦
⎫⎬
⎭ − τeeδi jδklP(1 + ∂εP). (E12)
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