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Impact of a Lifshitz transition on the onset of spontaneous coherence
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Lifshitz transitions are topological transitions of a Fermi surface, whose signatures typically appear in the
conduction properties of a host metal. Here, we demonstrate, using an extended Falicov-Kimball model of a
two-flavor fermion system, that a Lifshitz transition which occurs in the noninteracting limit impacts interaction-
induced insulating phases, even though they do not host Fermi surfaces. For strong interactions we find a first-
order transition between states of different polarization. This transition line ends in a very unusual quantum
critical endpoint, whose presence is stabilized by the onset of interflavor coherence. We demonstrate that the
surfaces of maximum coherence in these states reflect the distinct Fermi-surface topologies of the states separated
by the noninteracting Lifshitz transition. Experimental realizations of our results are discussed for both electronic
and optical lattice systems.
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I. INTRODUCTION

In recent years, topology has become increasingly ap-
preciated in condensed matter physics as a framework for
understanding diverse physical phenomena. These include
the Thouless pump [1,2], topological defects [3–9], quan-
tized Hall effects [10–18], magnetic breakdown [19–22], and
topological insulators [23–33]. In addition to its utility for
theoretical understanding, topology is physically significant
because it leads to phenomena that are robust with respect to
various perturbations [34–38].

Lifshitz transitions [39–44] are an example of this. They
occur when the topology of a Fermi surface changes with sys-
tem parameters such as pressure, doping, or external magnetic
field [40–42,44], and typically are observable as anomalies in
magneto-oscillation periods as the system passes through such
transitions. Because a Lifshitz transition is a Fermi-surface
phenomenon, its impact is normally only expected in metallic
systems. In this paper, we demonstrate that such transitions
can also impact systems when spontaneous symmetry break-
ing takes them outside their metallic regime, leaving a clear
and unique signature in the phase diagram.

To show this, we examine a two-flavor system with inter-
actions such that interflavor coherent phases can be supported.
This system supports different phases where the loops of
maximum coherence in the Brillouin zone are topologically
distinct. An example of this is presented in Fig. 1. The
topologies of the Fermi surfaces on either side of the Lifshitz
transition mirror the topologies of these maximum coherence
loops, demonstrating that the Lifshitz transition “seeds” the
quantum phase transition of the interacting system. Impor-
tantly, the two different coherent states are separated by a
first-order transition for relatively strong interactions. Most
surprisingly, within the models we examine, the transition
line ends at a quantum critical endpoint (QCEP) [45], rem-
iniscent of a thermodynamic Z2 critical point [9,46]. Beyond
the endpoint the evolution between coherent phases becomes

continuous, with no sharp distinction between the states. An
example of a phase diagram with such a QCEP is illustrated in
Fig. 1(c). As we explain below, the presence of the QCEP re-
sults directly from the interplay of the changing Fermi-surface
topology associated with a noninteracting Lifshitz transition,
and the tendency towards spontaneous symmetry breaking in
interacting multicomponent systems at zero temperature.

The QCEP structure we find is relatively robust: For ex-
ample, it is present both in systems where the first-order line
separates states which are both trivial, and ones in which
one of the two states is topological [47,48]. We find that the
first-order line for strong interactions can separate states of
different topologies, but near the QCEP, states on either side
of the transition are always topologically equivalent. As we
discuss below, this phenomenology is in principle relevant to
multicomponent electron systems, including ones in which
populations of spin, valley, or layer index can vary, as well
as in optical lattice systems hosting more than one species of
fermionic atoms.

II. MODEL HAMILTONIAN

Our study focuses on a minimal model which captures
the physics of interest, while allowing some flexibility to
demonstrate its generality across different types of bands.
The noninteracting part of our Hamiltonian is a Bernevig-
Hughs-Zhang (BHZ) model [17], which supports nontrivial
band topology [29–33]. The electrons have a flavor index
� for which we allow two values, and at momentum k this
Hamiltonian is

h�,k = s�(h̄v sin kxσx + h̄v sin kyσy + M�,kσz ) + ��1, (1)

where s� = ±1 is an index used to fix the Chern numbers of
the lowest-energy bands, the lattice constant a = 1, �� is a
flavor-dependent potential which we set to � for one flavor
and −� for the other, σi (i ∈ {x, y, z}) are Pauli matrices act-
ing on two internal orbitals associated with each tight-binding
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FIG. 1. (a), (c) Interflavor coherence as a function of crystal mo-
mentum, for interaction strengths U and biases � on either side of the
first-order transition line. Regions of largest coherence form closed
loops which surround either the center or corner of the Brillouin
zone, with a sharp change in this topology. The BZ high-symmetry
points �, M, and X are labeled. (b) Phase diagram for the model
defined by Eq. (2). Open circles represent numerical results; lines
are guides to the eye. The solid line indicates first-order transition;
dashed lines are continuous transitions. × indicates the position of
QCEP. Phases include one continuously connected to a noninteract-
ing gap phase (NIG); two distinct coherent phases Coh I and Coh II,
distinguished by the topologies of their maximum coherence loops,
and a polarized phase (LP) in which all the fermions are in the same
discrete state.

site, and v is the Fermi velocity. In units where h̄v = 1,
M�,k = m� + 2 − cos kx − cos ky. For −4 < m� < 0, the two
bands of each flavor have a Chern number C = ±1; outside
this interval their Chern numbers are zero. For simplicity we
take m� = −0.5, and we focus on total fermion densities such
that the system is at half filling. Occupation of the two flavors
of electrons is controlled by varying the bias parameter �, and
we focus on ranges of this parameter such that (in the absence
of interactions) the lower-energy band of one flavor crosses
the upper energy band of the other.

For �� = 0 this Hamiltonian has eigenvalues Ek =√
sin2 kx + sin2 ky + M2

k and corresponding eigenstates χk,±1

[see Supplemental Material (SM) [49] for concrete forms]. It
terms of these, the interacting model we study is

Ĥ =
∑

k

∑
�

∑
p=±1

[pEk + ��]ĉ†
k,�,pĉk,�,p + U

∑
k

ρ̂−k,t ρ̂k,b,

(2)

where ĉ†
k,�,p=±1 creates a particle in an eigenstate of h�,k

with energy pEk + ��. The second term is an interlayer

contact interaction [16,30] that involves density operators
ρ̂k,� = ∑

q,p=±1 χ
†
k+q,p · χq,pĉ†

q+k,�,pĉq,�,p. Equation (2) pre-
serves the total number of fermions of each flavor separately,
thus supporting a U (1) flavor symmetry. Such models belong
to the general class of extended Falicov-Kimball mod-
els (EFKM), which have been studied as candidates for
describing electronic bilayers, excitonic physics, and ferro-
electricity [50–59].

The model can be interpreted as a bilayer system without
tunneling between layers [60–63]), in which intralayer inter-
actions have been neglected. In what follows we adopt this
realization as a paradigm for such systems, and refer to the
flavors as layers, with t and b in Eq. (2) denoting the top and
bottom layers. We expect the behavior of this model at half
filling to apply when bands of each flavor are relatively far
apart energetically, while there is a crossing of bands of two
different flavors: With short-range interactions, Fermi statis-
tics suppresses short-range intraflavor interactions, allowing
interflavor interactions to dominate. Beyond this, the model
can also be mapped onto a two-species fermionic atomic gas
system in an optical lattice, as we discuss below.

III. HARTREE-FOCK ANALYSIS

We consider ground states of Ĥ within the Hartree-Fock
(HF) approximation, in situations where the system is half
filled. Details of the analysis may be found in the SM [49].
For � = 0 (implying flavor-degenerate bands), the spectrum
consists of one filled and one empty band for each layer,
with an intervening gap that is present even in the absence of
interactions. With increasing |�|, bands from different layers
approach one another, eventually crossing when spontaneous
symmetry breaking is not considered [49]. The Fermi surfaces
consist of matching loops in each layer, surrounding the �

point of the square Brillouin zone (BZ). With growing |�|
these loops eventually touch the M points at the BZ edge,
signaling a Lifshitz transition. For still larger |�| the loop
topology changes, now surrounding the X points (corners) of
the BZ [49].

Multiflavor systems with matching Fermi surfaces are
known to be unstable to spontaneous interflavor coherence in
the presence of interactions [64,65]. Figure 1(b) illustrates the
phase diagram, within our HF analysis, when two bands pass
fully through one another as a function of � for the situation
s�=t = −s�=b in Eq. (1), for which the crossing bands have
the same Chern number. Results for st = sb are qualitatively
similar, as discussed in the SM [49]. The resulting phases
include a noninteracting gap (NIG) phase, which is continu-
ously connected to the � = 0 noninteracting state; interlayer
coherent phases (Coh I and II); and a layer-polarized (LP)
phase. Continuous transitions are indicated as dashed lines
while solid lines indicate first-order transitions.

Two types of order are important in characterizing the
phases. The first is a layer polarization, which we quan-
tify with a polarization function P(k) ≡ ∑4

i=1〈ψi(k)|τz ⊗
1|ψi(k)〉 f (EHF

i (k)) ≡ ∑4
i=1 Pi(k) f (EHF

i (k)), where |ψi(k)〉
are the four HF wave functions at wave vector k with energy
EHF

i (k), f is the Fermi function, and τz is a Pauli matrix acting
in layer space. Spontaneous coherence in the system arises
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FIG. 2. Plot of P vs 1/� for different values of U , illustrating a
discontinuous polarization jump which gets smaller as the QCEP is
approached. Inset: Detail of the polarization jump near QCEP.

when order parameters of the form 〈c†
k,�,pck,�′,p′ 〉 	= 0 for � 	=

�′. This always entails values of Pi(k) which are not equal to
either −1 or 1, so that nonvanishing values of a coherence
function, C(k) ≡ ∑

k

∑4
i=1(1 − |Pi(k)|) f (EHF

i (k)), signal the
presence of interlayer coherence.

Figures 1(a) and 1(b) illustrate the behavior of C(k) as a
function of k for two coherent states on opposite sides of a
first-order transition. The loci of maximum C(k) have two
different topologies, reflecting the behavior of the Fermi sur-
faces on either side of the noninteracting Lifshitz transition.
For small U the evolution from one behavior to the other as a
function of � is continuous, while for larger values there is a
first-order transition between them. The transition line is quite
interesting, and its behavior represents a main point of our
study. It hosts a very unusual QCEP, which at the mean-field
level is highly analogous to the critical point of a thermal
Z2 transition. Indeed, the behavior of the full polarization,
P = ∑

k P(k), when the bias � is varied, displays a jump that
continuously vanishes at the QCEP, as illustrated in Fig. 2.
This behavior is highly analogous to that of, for example, the
density jump in a thermal liquid-gas transition [66].

IV. TWO-BAND MODEL

To understand the origin of the QCEP and its connection
to the noninteracting Lifshitz transition, it is convenient to
simplify this system to a two-band model, in which only the
bands that cross one another as a function of � are retained.
These can have the same or opposite topologies; for simplic-
ity we discuss the former case, although results in the latter
case are quite similar. Figure 3 illustrates the resulting phase
diagram. Although there is a change in the locations of the
phase boundaries, particularly at large U , the system retains
the same basic phases and features of the four-band model.
Most prominent is the first-order transition line dropping from
large U , ending at a QCEP.

The phases of this model are characterized by two order
parameters: (i) Bp ≡ U

2V

∑
k〈ĉ†

k,t ĉk,t − ĉ†
k,bĉk,b〉, where ĉk,�

annihilates a particle in the retained band of layer �, which
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FIG. 3. Phase diagram for the two-band model. Open circles
represent numerical results; lines are guides to the eye. Dashed lines
are represent continuous transitions, and the solid line is a first-order
transition, ending at a QCEP, indicated by the × symbol.

is a measure of the polarization of the system; and (ii) an
interlayer coherence Btb(k) ≡ U

V

∑
k1

|χ†
k,t · χk1,b|2〈c†

k1,t
ck1,b〉.

(V is the system area.) Defining ξ̃ (k) = Ek + � + Bp, the
mean-field self-consistent equations for these have the form
[49]

Bp

U
= 1

2V

∑
k2

ξ̃ (k2)√
|̃ξ (k2)|2 + |Btb(k2)|2

≡ F (Bp + �), (3)

Btb(k1) = U

2V

∑
k2

(
cos2 θk1/2

)(
cos2 θk2/2

)
Btb(k2)√

|̃ξ (k2)|2 + |Btb(k2)|2
, (4)

where ξ̃ (k2) = Ek2 + � + Bp, and, setting m� to the same
value for both layers, so that M�,k ≡ Mk is independent of the
layer index, cos θk/2 = (Ek + Mk )/

√
2Ek(Ek + Mk ) [49]. In

Eq. (4) we have assumed that 〈c†
k1,t

ck1,b〉 is real and has C4

rotational symmetry in the HF ground state, as we indeed find
in our more general numerical analysis.

Equation (3) provides particular insight into the connection
between the first-order transition line in Fig. 3 and a thermal
Z2 transition. Figure 4 illustrates the left-hand side (Bp/U )
and right-hand side [F (Bp + �)] of the equation, with solu-
tions occurring where they cross. At large positive (negative)
values of the bias parameter �, one finds a single solution
with maximal negative (positive) values of Bp, while in a
transition region there are three solutions. The physical state
of the system jumps between two of the three solutions with
changing �, when their energies cross. This behavior is highly
reminiscent of what one finds in a mean-field treatment of, for
example, the liquid-gas transition [66]. The jump is always
present at some � provided maxx

dF (x)
dx > 1

U .
There is a remarkable relationship between the Lifshitz

transition and behavior of the first-order transition. Consider
the situation for states with Btb = 0. It is not difficult to show
in this case that the slope of F (Bp + �) in Eq. (3) diverges
at Bp + � = 0. The origin of this divergence is precisely
the Lifshitz transition itself: The change in Fermi-surface
topology leads directly to this singularity. In this situation,
maxx

dF (x)
dx = ∞, and, for U = 0, the first-order transition line
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FIG. 4. Left- and right-hand (RH) sides of Eq. (3) for different
values of �, for Btb = 0. For small and large � the curves cross
once, while for intermediate � they cross three times. Circles in-
dicate solutions to the self-consistent equation at intermediate �.
The existence of three solutions indicates a first-order transition.
Because of the Lifshitz transition (energy indicated by −εLT for the
lowest �), a divergence occurs in the slope of the RH side curve,
yielding a first-order transition for arbitrarily small U . Coherence
(Btb 	= 0) lowers this maximum slope to a finite value, eliminating
the first-order transition at small U and stabilizing the QCEP.

will end precisely at the Lifshitz transition point. In this situ-
ation there is no QCEP. This is what one commonly finds in
zero-temperature phase diagrams of multicomponent fermion
systems [67–70]. Figure 4 illustrates how Eq. (3) generates a
first-order jump for any positive value of U .

Interlayer coherence (i.e., |Btb| > 0) changes this phe-
nomenology. A nonvanishing Btb smooths the integrand in
Eq. (3) and lifts the divergence in F (x). Because maxx

dF (x)
dx <

∞ in this situation, for sufficiently small (but nonvanishing)
U there will be only one solution to Eq. (3). Thus for small
U , the first-order jump gives way to a continuous crossover,
whereas it is still present for larger values of U . In this way, a
QCEP is stabilized.

The phenomenology of Eq. (3) bears a strong similar-
ity to what one finds in classical mean-field theories, for
example, in the finite-temperature theory of the liquid-gas
transition [66]. In such settings, a critical point at the end
of a first-order transition line is a well-known and important
physical phenomenon. Remarkably, in order to be realized in
this zero-temperature setting, spontaneous coherence, a purely
quantum phenomenon, must be manifested between layers.

V. DISCUSSION

The impact of the Lifshitz transition on the phase dia-
gram of an interacting system applies beyond the specific
model we have discussed. For example, one may consider
different topologies of crossing bands which host Lifshitz
transitions. We find that the appearance of a QCEP is again

manifested, although details of the coherence onset, as well as
the evolution of the band topology, differ in interesting ways.
This is discussed more fully in the SM [49].

The phases of multiflavor fermion systems and the transi-
tions among them are relevant to a broad range of fermion
systems, including magnets [45,68,71,72], exciton conden-
sates [73–76], bilayer electron systems [67,77–80], and
multicomponent quantum Hall systems [81–85]. In the vast
majority of cases, nothing analogous to the QCEP we find
arises. Two exceptions are metallic ferromagnets [45], where
gapless fermion excitations help stabilize a QCEP, and inter-
acting topological systems [47,75,86], in which a first-order
topological transition line evolves into a second-order one.
In both cases, fluctuations are key to stabilizing a critical
point. By contrast, our study uncovers a very different path
to a QCEP, seeded by the proximity of a Lifshitz transition,
and stabilized by the onset of interflavor coherence. It arises
already at the mean-field level.

These results suggest a number of interesting questions.
For example, the presence of a broken U (1) symmetry and its
accompanying Goldstone mode in the vicinity of the QCEP
suggests that its critical behavior will be different than that
of a classical thermal Z2 transition. Effects of real thermal
fluctuations on the system, and the form a quantum critical
region [87,88] takes, are important to understand in settings
where temperature effects cannot be ignored. Another set of
questions involve how the specific system we have studied
might be physically manifested. One interesting possibility
involves an optical lattice [89] hosting two species of atoms
with an interspecies Feshbach resonance [90,91]. A particle-
hole transformation maps this onto an EFKM; under such a
transformation, superconductivity manifested by the system
is equivalent to interflavor coherence of the states discussed
above. Indeed, the parameter Btb essentially becomes the
superconducting gap function under the particle-hole transfor-
mation. For appropriate parameters, we expect two states, with
different solutions for the superconducting gap, separated by
a first-order transition. Beyond this, van der Waals materi-
als [92] offer platforms for electron bilayer realizations of this
system, which support layer polarized states [93,94] and/or
interlayer coherence [85,95–98], whose interaction and com-
petition could lead to novel quantum phase boundaries and
transitions such as those we have described in this paper.
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