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Topological flat moiré bands with nearly ideal quantum geometry have been identified in homobilayer
transition metal dichalcogenide moiré superlattices, and are thought to be crucial for understanding the fractional
Chern insulating states recently observed therein. Previous study proposed viewing the system using an adiabatic
approximation that replaces the position dependence of the layer spinor with a nonuniform periodic effective
magnetic field. When the local zero-point kinetic energy of this magnetic field cancels identically against that of
an effective Zeeman energy, a Bloch-band version of Aharonov-Casher zero-energy modes, which we refer to as
Aharonov-Casher band, emerges leading to ideal quantum geometry. Here, we critically examine the validity of
the adiabatic approximation and identify the parameter regimes under which Aharonov-Casher bands emerge.
We show that the adiabatic approximation is accurate for a wide range of parameters including those realized in
experiments. Furthermore, we show that while the cancellation leading to the emergence of Aharonov-Casher
bands is generally not possible beyond the leading Fourier harmonic, the leading harmonic is the dominant
term in the Fourier expansions of the zero-point kinetic energy and Zeeman energy. As a result, the leading
harmonic expansion accurately captures the trend of the bandwidth and quantum geometry, although it may fail
to quantitatively reproduce more detailed information about the bands such as the Berry curvature distribution.
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I. INTRODUCTION

The recent observation of zero-magnetic field fractional
Chern insulating (FCI) states [1–5] has triggered tremendous
interest in the strongly correlated states of twisted transition
metal dichalcogenide (TMD) homobilayer moiré superlat-
tices [6–11]. In parallel-stacked homobilayer TMDs with a
small twist as we will focus on throughout this paper, the
standard continuum model [12] of TMD homobilayer moiré
superlattices predicts a magic twist-angle range [13] at which
the first valence valley-projected moiré band is nearly flat
[14–16] and topologically nontrivial [12,15,17] with nearly
ideal quantum geometry [18]. These properties are believed
to be key [19–29] to the FCI states at fractional band fill-
ings. In a recent Letter [30], some of us have proposed an
explanation for these properties based on an adiabatic approx-
imation that recognizes the nontrivial topological character
of the layer-pseudospin field in TMD homobilayers [12] and
assumes that the layer pseudospin is locked to the local direc-
tion of the model’s pseudospin field �(r) [see Fig. 1(a)]. A
similar approximation has been adopted in the past [31–34]
to speculate on the possibility of quantum Hall effects in
thin-film skyrmion crystals. In this approximation, the real-
space Berry phase of the layer pseudospin is represented by
a position-dependent effective magnetic field [35–37], which
has a nonzero average value with one flux quantum per moiré
unit cell. The adiabatic approximation is accurate in the small
twist-angle limit where the moiré period is large, and is shown
in this paper to maintain accuracy near the magic twist angles
of homobilayer TMD moiré models with experimentally real-
istic model parameters [14].

The adiabatic approximation Hamiltonian Had is that of a
two-dimensional (2D) hole with a periodic (dimensionless)
effective magnetic field B(r) and a periodic potential Z (r)
that we view as a position-dependent effective Zeeman energy
[see Fig. 1(b)]. Our picture of TMD homobilayers draws on
the observation of Aharonov and Casher [38] that a particle
in an arbitrary (not necessarily uniform) magnetic field has
a number of zero-energy states [39–41]—one for each quan-
tum of magnetic flux—when the zero-point kinetic energy
B(r)/2m cancels locally against the Zeeman energy Z (r). In
the case considered by Aharonov and Casher, this cancellation
is a property of a spin-1/2 electron with spin g factor g = 2
where Z (r) is simply the true Zeeman energy produced by

FIG. 1. An outline of various approximation regimes we use
to understand the ideal flat-band behavior of twisted homobilayer
TMDs. Here σ = (σ x, σ y, σ z ) is the layer-pseudospin Pauli ma-
trix vector p̂ = p̂x + i p̂y = −i∂x + ∂y (h̄ = 1) and A(r) = Ax (r) +
iAy(r). Details are explained in the text.
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FIG. 2. [(a),(b)] Dependence of the bandwidth of the first moiré
miniband of Had on U (r) characterized by its Fourier coefficients Ui,
where i labels a shell of reciprocal lattice vectors. We have taken the
typical WSe2 model parameter from Ref. [14] and assumed Ui = 0
for all i > 3 and (a) U3 = 0; (b) U1 = 0. [(c),(d)] The quantum ge-
ometry idealness of the first band under the same parameter settings.
Here the idealness is characterized by the minimum over the entire
moiré Brillouin zone (mBZ) of the ratio of the Berry curvature �k to
the trace of the Fubini-Study metric gk. This ratio is always smaller
than or equal to 1 [19], and is identically equal to 1 for an ideal band.
The plot ranges are selected within the region of Chern number 1.

the magnetic field. In the case of interest here, the effective
magnetic field does not couple to spin and the canceling Z (r)
must have a different origin. When cancellation does occur
[see Fig. 1(c)], a special case of the situation considered by
Aharonov and Casher is presented in which the position-
dependent magnetic field has crystal translational symmetry
and the zero-energy states therefore form a (quasi-) Bloch
band [42], which we refer to as the Aharonov-Casher (AC)
band. Since each AC zero-energy state has the form of a holo-
morphic function of z = x + iy times a common factor, the
AC band is vortexable [28] and has ideal quantum geometry,
and therefore [21,26,27] wave functions similar to those of
Landau levels.

In TMD homobilayer moirés, the local Zeeman energy
Z (r) never cancels the zero-point energy perfectly. We refer
to the difference as the residual potential U (r) [see Fig. 1(b)].
It follows from the emergent honeycomb lattice symmetry
of Had that the residual potential is characterized by Fourier
components Ui that are real and constant within each shell of
the reciprocal lattice, labeled by index i. Although a perfect
flat ideal band is realized only when all Ui = 0, we show in
this paper that U1 = 0 is usually sufficient to produce narrow
bands with nearly ideal quantum geometry. This property is
illustrated in Fig. 2. The Landau-level-like regime can there-
fore be reached by varying a single tuning parameter, for
example twist angle. Interestingly though, we find that the
higher Fourier components of U (r) can significantly alter the
wave function of the AC band while keeping the quantum
geometry nearly ideal.

This paper is organized as follows. In Secs. II A and II B
we specify the continuum model and adiabatic approximation
Hamiltonians of twisted homobilayer TMDs, respectively, and

comment on their properties and relevant model parameters
appropriate for tungsten diselenide (WSe2) and molybdenum
ditelluride (MoTe2). In Sec. II C we describe the properties
of the AC band. In Sec. II D we introduce the numerical
method we use to diagonalize Had using a Landau level
basis. In Sec. III we demonstrate the validity of adiabatic
approximation in near-magic-angle WSe2 by comparing the
adiabatic approximation and continuum model results for the
band structure, bandwidth, quantum geometry, Berry curva-
ture distribution, and full-band charge density distribution.
In Sec. IV we discuss the influence of the residual potential
U (r) on the full-band charge density distribution and Berry
curvature, taking the WSe2 parameters [14] under the adia-
batic approximation magic angle as an example. In Sec. V we
show that the adiabatic approximation accurately reproduces
the topological phases of higher energy bands as a function
of twist angle, and point to a transition between Landau-
level-like and Haldane-model-like [43] band structures, which
has been previously identified [12,16,44,45] in the continuum
model. In Sec. VI we conclude and discuss some possible
future developments.

II. MODELS

A. Continuum model

The continuum model Hamiltonian [12] of the valence
bands of TMD homobilayers has the form of a hole with
effective mass m in the presence of a spatially periodic scalar
potential �0(r) and a spatially periodic vector field �(r) that
couples to the layer pseudospin [see Fig. 1(a)]. Here

�0(r) ± �z(r) = 2V
2∑

j=0

cos(G2 j · r ∓ ψ ), (1a)

�x(r) ± i�y(r) = w

2∑
j=0

e±iq j ·r, (1b)

where q j = q( sin(2 jπ/3), − cos(2 jπ/3)) and G j =√
3q( cos( jπ/3), sin( jπ/3)) are the interlayer and intralayer

transfer momenta due to the moiré potential, q = 4π/3aM

is the radius of the mBZ, aM = a/2 sin(θ/2) is the moiré
lattice constant of the superlattice at twist angle θ and a is
the lattice constant of the single-layer material. Note that we
have chosen a C3 symmetric gauge [30] that is different than
in previous literature [12].

The material-specific model parameters w, V , and ψ

respectively characterize the strength of interlayer tunneling,
the strength of the potential energy in each layer, and a phase
angle that captures the positions at which the potential has its
extrema. We note that a sign flip in the basis on either layer
leads to w → −w, and that since the two valleys are related
by time-reversal symmetry T , a combined operation of
in-plane twofold rotation C2 and time reversal T (C2T ) does
not change the physics while it brings �(r) to �∗(−r), which
results in an overall change in model parameter ψ → −ψ .
In addition, the substitution (V, ψ ) → (−V, ψ + 180◦)
leaves the model Hamiltonian unchanged. Hereby, the
parameter space is folded into the regime w > 0, V > 0 and
0 < ψ < 180◦. A compilation of ab initio-based parameter
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TABLE I. A compilation of model parameters obtained from first principle simulations in literature. me is the free electron mass. Note that
by making symmetry transforms to the system one can always make all the parameters positive, as discussed in Sec. II A.

Reference Material a (Å) m (me) w (meV) V (meV) ψ (◦) V/w

[12] MoTe2, rigid 3.472 0.62 8.5 8 89.6 0.94
[62] MoTe2, relaxed 3.52 0.62 13.3 11.2 91 0.84
[6] MoTe2, relaxed 3.52 0.62 11.2 9.2 99 0.82
[10] MoTe2, relaxed and corrugated 3.52 0.6 23.8 20.8 107.7 0.87
[14] WSe2, relaxed 3.317 0.43 18 9 128 0.5
[18] WSe2, relaxed 3.297 0.337 8.9 6.4 115.7 0.72

values for WSe2 and MoTe2 from previous studies, after
the symmetry folding described above, is provided in
Table I in the Appendix. For simulations of WSe2 and
MoTe2, we respectively take the values from Refs. [14]
(a, m,w,V, ψ ) = (3.317 Å, 0.43me, 18 meV, 9 meV, 128◦)
(V/w = 0.5) and [10] (a, m,w,V, ψ ) =
(3.52 Å, 0.6me, 23.8 meV, 20.8 meV, 107.7◦) (V/w =
0.87), assuming them to be twist angle independent, although
they certainly do depend on the twist angle when moiré
relaxation strains are accounted for. Here me is the free
electron mass. Some studies have also taken into account
higher harmonics of moiré tunneling and potential terms
[46–48] and strain-induced gauge field correction to kinetic
energy terms [47]. Although these can improve models for
specific materials, we choose to ignore them here to focus
on the small number of parameters that have the greatest
importance.

B. Adiabatic approximation for twisted homobilayer TMDs

The adiabatic approximation Hamiltonian [30] Had is ob-
tained from a layer-pseudospin U(2) gauge transformation of
the continuum model Hamiltonian Hcont that locally rotates
the vector field �(r) to the out-of-plane +z direction,

U†(r)[σ · �(r)]U (r) = |�(r)|σ z, (2)

leading to an emergent non-Abelian connection A(r) =
−iU†(r)∇U (r), followed by a simple projection into the (ro-
tated) spin-up sector. The approximation is valid at small twist
angles, where the smooth spatial variation of the vector field
ensures good spatial adiabaticity. The detailed derivation is
presented in Appendix A. Had can be written in the following
equivalent forms:

Had = − ( p̂ + A(r))2

2m
+ Z (r) (3a)

= − ( p̂† + A∗(r))( p̂ + A(r))
2m

+ U (r) (3b)

= −	̂
†
0	̂0

2m
− 	̂

†
0A′(r) + A′∗(r)	̂0

2m
+ U ′(r), (3c)

where A(r) = A++(r) is the vector potential of the emer-
gent effective magnetic field B = ∇ × A; p̂ = p̂x + i p̂y =
−2i∂z∗ , p̂† = p̂x − i p̂y = −2i∂z, z = x + iy, A(r) = Ax(r) +
iAy(r) = A0(r) + A′(r), A0(r) = iB0z/2 is the vector poten-
tial of the spatial average B0 = −2π/AM of the magnetic field,
	̂0 = p̂ + A0(r), AM = √

3a2
M/2 is the area of the moiré unit

cell, aM = a/2 sin(θ/2) ≈ a/θ is the moiré period, a is the

lattice constant of the TMD material and θ is the twist angle.
The potential terms in Eqs. (3) have the form

Z (r) = �+(r) − D(r)

2m
= �+(r) − ωcd (r), (4a)

U (r) = Z (r) + B(r)

2m
= �+(r) − ωcξ (r), (4b)

U ′(r) = U (r) − |A′(r)|2
2m

= �+(r) − ωcξ
′(r), (4c)

where �+(r) = �0(r) + |�(r)| is the local energy of the layer
pseudospin that is aligned with the moiré skyrmion field,
ωc = |B0|/m ∝ θ2 ∝ A−1

M is the spacing between the Landau
levels defined by B0, and D(r) = |A+−(r)|2 is a kinetic poten-
tial that arises from off-diagonal elements of A(r) and turns
out to be exactly the trace of the real-space quantum metric
of the layer-pseudospin skyrmion field texture, as shown in
Appendix A [49]. The amplitude of �+(r) is independent of
twist angle for a given (w,V, ψ ) as are those of the scaled
fields,

d (r) = AMD(r)

4π
, (5a)

ξ (r) = AM

4π
[D(r) − B(r)], (5b)

ξ ′(r) = AM

4π
[D(r) + |A′(r)|2 − B(r)]. (5c)

For the WSe2 [14] and MoTe2 [10] parameter sets we have
taken, we respectively have ωc ≈ 3.56 meV(θ [◦])2 and ωc ≈
2.27 meV(θ [◦])2. The spatial structure of some real-space
fields employed in the adiabatic approximation that are calcu-
lated from these parameter sets is illustrated in Fig. 3. The two
materials have similar shapes of the functions |B(r)|, ξ (r), and
�+(r), and these are also similar to the results [30] obtained
from nonrelaxed MoTe2 parameters [12]. We note that the
fields are generally more sharply peaked in MoTe2 than in
WSe2.

C. The Aharonov-Casher band

When U (r) in Eq. (3b) vanishes identically, the analysis
of Aharonov and Casher [38,42] implies that the Hamiltonian
has a perfect zero-energy eigenspace with wave functions of
the form

ψAC(r) = f (z)eα(r) = f (z)e− r2

42 +χ (r) = eχ (r)ψLLL(r), (6)

where f is arbitrary holomorphic function, similar to those
in lowest Landau level (LLL) wave functions [50], and
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WSe2 (V/w=0.5, ψ=128°)

MoTe2 (V/w=0.87, ψ=107.7°)

(a) (b) (c)

(d) (e) (f)

AA

AB M BA

FIG. 3. [(a)–(c)] Plots of (a) the dimensionless effective mag-
netic field −B(r)AM/2π , (b) the dimensionless quantity ξ (r),
and (c) the effective Zeeman energy �+(r) (in units of w)
in the adiabatic approximation calculated using WSe2 param-
eter estimates (w,V, ψ ) = (18meV, 9meV, 128◦) [14]. [(d)–(f)]
The same plots for MoTe2 with model parameters (w,V, ψ ) =
(23.8meV, 20.8meV, 107.7◦) [10]. In all panels, the hexagon is the
Wigner-Seitz moiré unit cell. The high-symmetry positions AA, AB
(chalcogen on metal for WSe2, metal on chalcogen for MoTe2), BA,
and Wigner-Seitz edge mid-point M are marked in (a).

∂z∗α = iA/2. Out of the remaining U(1) gauge freedom from
the local diagonalization in Eq. (2), we choose a symmetric
gauge with ∇ · A = 0 such that the real periodic function
χ (r) can be found by solving ∇2χ (r) = B′(r) = B(r) − B0

[or ∇2α(r) = B(r)], where B′(r) is a periodic function with
zero average.

Since χ (r) is periodic, there exists a complete manifold
of magnetic quasi-Bloch wave functions in the zero-energy
eigenspace, ψAC

k (r) = eχ (r)ψLLL
k (r), that is reminiscent of the

quasi-Bloch construction of LLL wave functions [27,51–54],

ψLLL
k (r) = e

i
2 k·rψLLL

0 (r + 2nz × k), (7a)

ψLLL
0 (r) = π

1
4

√
2

|a1|e
1

42 (
a∗

1 z2

a1
−r2 )

ϑ1

(
z

a1

∣∣∣∣a2

a1

)
, (7b)

ϑ1(ζ |τ ) ≡
∞∑

n=−∞
eiπ[(2n+1)(ζ+ 1

2 )+(n+ 1
2 )2τ ], (7c)

where nz is the out-of-plane unit vector in +z direction,  =
1/

√|B0| = √
AM/2π is the magnetic length, a j = a jx + ia jy

for j = 1, 2 with a1, a2 the primitive basis vectors of the moiré
superlattice, and ϑ1 is the (auxiliary) Jacobi theta function.
Here we have chosen the normalization convention that

〈
ψLLL

k

∣∣ψLLL
k

〉 = 1

A

∫
d2r

∣∣ψLLL
k (r)

∣∣2 = 1 (8)

where A is the macroscopic system area. The quasi-Bloch
property of ψAC

k (and also ψLLL
k ) is captured by that it is an

eigenstate of all magnetic translational operators T̂R on the
moiré Bravais lattice,

T̂RψAC
k (r) = e

iR×r
22 ψAC

k (r − R) = ηRe−ik·RψAC
k (r), (9)

where ηR = (−1)μ+ν+μν is the parity of lattice vector R =
μa1 + νa2 in the Bravais lattice, i.e., 1 if R/2 is in the Bravais
lattice and −1 otherwise.

The quasi-Bloch manifold forms the AC band, which has
Chern number C = 1 and perfectly ideal quantum geometry
following from its holomorphic algebra inherited from the
LLL. According to well-established theories of ideal bands
[27], the AC band Berry curvature is given by

�AC
k = 2π

ABZ
+ 1

2
∇2

k ln
〈
ψAC

k

∣∣ψAC
k

〉
, (10a)

〈
ψAC

k

∣∣ψAC
k

〉 = 〈
ψLLL

k

∣∣e2χ (r)
∣∣ψLLL

k

〉
=

∑
G

ηGλG�Gei2G×k, (10b)

where ABZ = 4π2/AM = 2π/2 is the area of mBZ, ηG is the
parity of G in the reciprocal lattice (i.e., 1 if G/2 is a reciprocal
lattice vector and −1 otherwise), the magnetic form factor
λG = e−2G2/4, and �G is the Fourier component of e2χ (r).
Note that this Berry curvature is independent of twist angle
up to a factor of A−1

BZ , which is a feature specific to the AC
limit.

D. Landau level representation

The perfect AC limit is only reached when U (r) = 0,
which requires an identical cancellation between �+(r) and
ξ (r), as seen from Eq. (4b). Importantly we see in Fig. 3
that these two functions are both peaked near the Wigner-
Seitz cell boundary but at different positions. Their relative
scale is dictated by twist angle, but perfect cancellation is
impossible because of this shape mismatch. [We have iden-
tified a region in the continuum model parameter space in
which U (r) is small so that HAC is a good approximation to
Had, which is discussed in Appendix B. Unfortunately, that is
also a region where the adiabatic approximation fails]. With
the mismatch, the band structure of Had must be calculated
numerically.

We express Had in the representation of the Landau levels
defined by B0 and converge its spectrum with respect to the
Landau level cutoff. Because there is one quantum of flux in
the unit cells defined by the periodicities of A′(r) and U ′(r),
we can use a convenient Landau level quasi-Bloch basis, with
the lowest Landau level wave function ψLLL

k (r) specified by
Eqs. (7) and higher Landau level states constructed by using
Landau level raising operators

∣∣ψnLL
k

〉 = (a†
0)n

√
n!

∣∣ψLLL
k

〉
. (11)

Like |ψLLL
k 〉, the states |ψnLL

k 〉 are also eigenstates of the
magnetic translation operator with quasimomentum k, so that
states with different k’s in the mBZ are decoupled. In Eq. (11),
a†

0 = 	̂
†
0/

√
2 is the Landau level raising operator and nLL
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stands for the nth Landau level. In this representation the
first term in Eq. (3c) gives the diagonal Landau level kinetic

energy contribution, and the sum of the second and third
terms, denoted H ′, is

〈
ψnLL

k

∣∣H ′∣∣ψn′LL
k

〉 = (−1)n

√
n!n′!

∑
G

ηGλG

(
Lnn′ (�∗, �)U ′

G +
(

nL(n−1)n′ (�∗, �)

�∗ + n′Ln(n′−1)(�∗, �)

�

)B′
G

2m

)
ei2G×k. (12)

(See Appendix C for a detailed derivation.) In Eq. (12),
� = (Gx + iGy)/

√
2, the bivariate polynomial Lnn′ (x, y) =

exy∂n
x ∂n′

y e−xy is related to the generalized Laguerre polynomial

L(α)
n by Lnn′ (x, y) = (−1)n′

n!xn′−nL(n′−n)
n (xy), and U ′

G and B′
G

are respectively the Fourier components of U ′(r) and B′(r).
Because both U ′(r) and B′(r) have honeycomb lattice symme-
try, their Fourier expansions are specified by one real number
for each shell of reciprocal lattice vectors. The exponentially
decaying nature of λG converges the reciprocal lattice sum.
Whereas the first shell is usually sufficient to get relatively
accurate results [30] for n = n′ = 0, higher shells become
important at larger n and/or n′ because of the Lnn′ (�∗, �)
factors. Formulas for Berry curvature and other components
of the quantum geometry tensor under this Landau level basis,
which will figure importantly in our analysis, are derived in
Appendix D.

III. COMPARISON BETWEEN ADIABATIC AND
CONTINUUM MODEL BAND PROPERTIES

We have so far shown that in the adiabatic approximation
the physics of TMD homobilayer moirés is mapped to a prob-
lem of scalar electrons in a periodic potential and a periodic
magnetic field, and argued that the adiabatic approximation is
accurate in the small twist-angle limit. In this section, we will
show by comparing the explicit numerical results that for a
realistic set of parameters typical of WSe2 [14] the adiabatic
approximation accurately captures a wide range of moiré band
properties over a large range of twist angles up to the magic
angle.

Theoretical studies of homobilayer TMD moirés show that
the bandwidth narrows and the quantum geometry becomes
nearly ideal over narrow ranges of twist angle. (The cor-
respondence between these narrow ranges and experimental
FCI observations is suspected but not yet established.) Fig-
ure 4 compares the moiré band properties calculated from
the continuum model with those calculated in the adiabatic
approximation using the average field Landau level represen-
tation. Results are presented for a variety of different Landau
level truncations (NLL). For each NLL, the number of shells
(Nshell) retained in the Fourier expansions of B(r) and U ′(r)
is indicated. Figures 4(a) and 4(b) plot the bandwidths of the
first moiré valence bands of WSe2 and MoTe2 vs the measure
of twist angle, characterized here by the average-field Landau
level energy separation ωc. Bandwidths have an overall trend
of increasing with ωc as the moiré periods get shorter and
energy scales increase. In both continuum and adiabatic cases,
although, there is a sharp local minimum that interrupts the
increasing trend, which is associated with the magic angle
behavior. In Fig. 4(a) we see that the magic angle of twisted
bilayer WSe2 defined by minimum bandwidth in the adiabatic

approximation (ωad
c0/w ≈ 0.55, corresponding to θ ad

0 ≈ 1.67◦)
is somewhat larger than, but still similar to, the continuum
model result (ωcont

c0 /w ≈ 0.4, corresponding to θ cont
0 ≈ 1.42◦).

Far above the magic angle the adiabatic approximation
becomes inaccurate as expected. We find that the adiabatic ap-
proximation generally underestimates the bandwidth. Within
the adiabatic approximation, more Landau levels are required
for convergence at smaller twist angles. The single-Landau
level projection (NLL = 1) approximation fails to capture the
decrease in bandwidth as the twist angle approaches zero,
but including more Landau levels reproduces this feature cor-
rectly. For WSe2 we find that the adiabatic approximation
bandwidth near the magic angle converges after including
only a small number of Landau levels, although, as we see
in Fig. 4(c), more levels are needed to converge absolute
energies.

[deg]) [deg])

[deg])

FIG. 4. [(a),(b)] The width of the first moiré valence band of
(a) twisted bilayer WSe2 and (b) twisted bilayer MoTe2 vs twist
angle, predicted by the continuum model and the adiabatic approx-
imation. For the adiabatic approximation we use a Landau level
representation discussed in Sec. II D. The plots in (a) and (b) illus-
trate the dependence on Landau level NLL cutoff. For each NLL we
have indicated the number of momentum space shells Nshell that we
have retained in the Fourier expansions of the potentials and mag-
netic fields to achieve convergence. The color code is defined in (a).
(c) Comparison of the continuum model and adiabatic approximation
moiré band structures of twisted WSe2 at ωc/w = 0.4, plotted along
the path shown in the right panel. (d) The minimum of the trace
condition ratio �k/trgk over the mBZ as a function of twist angle
of WSe2. In (d) we relabel the (25, 15) curve as “adiabatic” since
we have assumed it to be the exact adiabatic solution. The solid- and
dashed-vertical lines mark the minimum-bandwidth magic angles in
the continuum model and the adiabatic approximation, respectively.
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We also show results for the bandwidth of the MoTe2

model, which has a larger value of V/w. As Fig. 4(b) indi-
cates, not only is the adiabatic approximation less accurate
than in the WSe2 case, but the convergence with respect to NLL

is slower. We argue that the accuracy of adiabatic approxima-
tion generally persists to larger twist angles when both V/w

and ψ are at intermediate values. The influence of V/w can be
seen by tracking the variation of the layer-pseudospin vector
field �(r) along an edge of the real-space Wigner-Seitz cell,
which can be obtained from Eq. (1),

�(rAB) = (0, 0, −3
√

3V sin ψ ), (13a)

�(rM ) =
(

w

2
,

√
3w

2
, 0

)
, (13b)

�(rBA) = (0, 0, 3
√

3V sin ψ ). (13c)

Here rAB, rBA and rM are respectively the high-symmetry po-
sitions AB, M and BA labeled in Fig. 3(a). Too large or too
small V/w values would cause the direction of �(r) to vary
abruptly with position near the real-space M point when V/w

is large or near the AB and BA points when V/w is small. In
either case adiabaticity applies only at small twist angles and
sharp peaks appear in the real-space fields −B(r) and ξ (r)
[illustrated in Figs. 3(d) and 3(e) with the MoTe2 parameter
set] that mix up more Landau levels. On the other hand,
because �0(r) ∝ cos ψ , if ψ is close to 0◦ or 180◦, the spatial
variation in the scalar field �0(r) will be strong enough to
destroy the indirect gap between the (rotated) pseudospin-up
and down branches �±(r) = �0(r) ± |�(r)|, mixing the spa-
tially extended quasi-Bloch states with opposite pseudospins.
Appendix B shows that the adiabatic approximation indeed
works less well with a larger ψ . A more formal treatment of
deviation from the adiabatic approximation based on second-
order perturbation theory is presented in Appendix E.

Figure 4(d) shows that the adiabatic approximation also
reproduces the appearance of nearly ideal quantum geometry
over a small range of twist angles, including and mostly above
those at which the bandwidth is minimized. In the rest of
the paper we will assume that adiabatic approximation results
are converged with respect to Landau level and momentum
space shell cutoffs at NLL = 25 and Nshell = 15 in WSe2 above
0.2◦. Figures 5(a) and 5(b) show that for ωc = 0.4 WSe2, the
adiabatic approximation well reproduces both the real-space
total charge density and the overall trend of momentum-space
Berry curvature of the first valence moiré band, although with
an overestimate on the Berry curvature peaks at mBZ corner
points.

IV. COMPARISONS BETWEEN AHARONOV-CASHER
AND ADIABATIC BAND PROPERTIES

In Sec. II C, we have pointed out that when the residual
potential U (r) in Eq. (3b) vanishes we are presented with a
Bloch version of AC [38] states, and that the resulting AC
bands have ideal quantum geometry. When the residual poten-
tial U (r) is nonzero, the adiabatic flat band generally develops
dispersion and the Bloch state wave functions are altered by
k-dependent mixing between the AC band and higher energy
bands. We expect that, because the flat band wavefunctions

FIG. 5. (a) The real-space charge density distribution of the filled
first band of twisted bilayer WSe2 with the twist angle ωc/w = 0.4,
calculated using both the continuum model and the full adiabatic
approximation. (b) The k-space Berry curvature distribution �k of
the first band of ωc/w = 0.4 WSe2, calculated under the same two
models. [(c),(d)] The same quantities as (a) and (b), now calculated
for the adiabatic approximation band (Had) under ωc/w = 0.55, the
hypothetical ideal band fitted from the adiabatic charge density distri-
bution (Hid) at ωc/w = 0.55, and the AC band (HAC). All real-space
and k-space plots are along the symmetric lines indicated in the
middle panel. Each plotted curve is labeled with its corresponding
model Hamiltonian with the same color. Note that in (c) the Had and
Hid curves are identical within the widths of the plotted lines. The full
2D plots for these parameter values are presented in the Appendix.

are smooth, band properties will be less sensitive to higher re-
ciprocal lattice vector shells in the Fourier expansion of U (r).
In particular, when the first (and most important) harmonic
of the potential U1 = �+,1 − ωcξ1 [see Eq. (4b)] is tuned
to zero, fractionally-filled-band many-body ground states are
still expected to exhibit lowest Landau level like correlations.
This argument is supported by Fig. 2 in the introduction, from
which we see that higher shells of U (r) very weakly affect
the bandwidth and the ideal quantum geometry when U1 = 0.
(We do note that there seems to be a line, whose origin we do
not understand at present, in the U2 − U3 plane along which
the band remains particularly flat.) We ascribe the relative
insensitivity to higher Fourier components to the smoothness
of wavefunctions in the lowest energy hole bands. The twist
angle at which U1 vanishes corresponds to ω

U1
c0 = �+,1/ξ1 ≈

0.52w under the parameter set of WSe2 we focus on, which
is close to the adiabatic approximation magic angle condi-
tion ωad

c0 ≈ 0.55w. The approximate match between these two
twist angles occurs over a wide region of the continuum model
parameter space as discussed in Appendix F.

We have noticed from Fig. 4(d) that at the adiabatic approx-
imation magic angle ωad

c0/w ≈ 0.55 the quantum geometry of
the adiabatic moiré band appears extremely close to ideal,
whereas the continuum band is slightly less close. To illustrate
the idealness of the adiabatic band, we construct a hypothet-
ical ideal band that reproduces its full charge density, using
an approximate method we will discuss shortly. The hypo-
thetical ideal band indeed has very similar wave functions
to the adiabatic band, as shown in Appendix G, but is very
different from the AC band owing to strongly spatially varying
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U (r). In the rest of this section, we examine the influence of
sub-leading Fourier components of the residual potential U (r)
on the first moiré band by comparing the charge density and
Berry curvature distributions calculated from the AC band, the
hypothetical ideal band and the full adiabatic approximation
under this magic angle.

A. Charge density distribution

In Fig. 5(c) we plot the real-space charge density distri-
bution of a full band in the three models. The charge of
the full AC band is concentrated at M points [as labeled
in Fig. 3(a)]. This is a direct result from the distribution of
effective magnetic field B(r): By the plasma analogy [55],
B(r) acts like a nonuniformly charged background with the
charge opposite to the carrier, which gives an “electrostatic
potential” −α(r) via ∇2α = B. Because of the sharp peaks
in |B(r)| at the M points, as shown in Fig. 3(a), the periodic
part of the electrostatic potential, −χ (r), has potential wells
at those points, which attracts the band carrier charge via the
factor eχ (r) in the wave function form Eq. (6).

Now, we examine the effect of U (r). We see from Figs. 3(b)
and 3(c) that the two contributing parts of U (r) in Eq. (4b),
�+(r) and ξ (r), are peaked at different real-space points,
which implies that U (r) has high peaks, or deep potential
wells in terms of holes, at the AB and BA points labeled
in Fig. 3(a). This explains the high concentration of charge
density at these points in the adiabatic approximation. On this
basis we expect that at a larger twist angle, the contribution
of �+(r), and hence the high peaks in U (r), are smaller
relative to the Landau level separation ωc and results in a more
uniform charge distribution along the Wigner-Seitz cell edge.

At the adiabatic magic angle the extremely ideal quan-
tum geometry of the adiabatic band suggests an ideal band
approximation

ψad
k (r) ≈ ψ id

k (r) = eχ id (r)ψLLL
k (r), (14)

which can be viewed as an “AC” band with a different
effective magnetic field Bid(r) = ∇2χ id. While there is no an-
alytical way to solve for the exact form of χ id(r) given its total
charge density distribution ρ id (r) = ρad(r), we make a very
accurate approximation that the charge density distribution
has the same shape as e2χ id (r), which is analytically demon-
strated in Appendix H. On this basis, we assume e2χ id (r) ∝
ρad(r), which is the adiabatic charge density distribution, and
see from Fig. 5(c) that the charge density of that ideal band is
indeed nearly identical to that of the adiabatic band, and very
different from that of the AC band.

B. Berry curvature distribution

Figure 5(d) shows that both the AC band and the fitted ideal
band have more uniform Berry curvature distributions than the
adiabatic band. The overall smoothness and the shallow dip at
the mBZ center can be easily understood from Eq. (10) for a
general AC (or ideal) band: because of the suppression [30]
provided by the λG form factors, which take the values 0.163,
4.33 × 10−3 and 7.06 × 10−4 on the first three shells of the
reciprocal lattice, all higher-shell Fourier components of the
Berry curvature variation are negligible.

FIG. 6. [(a),(b)] Dependence of Chern numbers of the first four
valence bands on the twist angle of twisted WSe2 calculated under
(a) the continuum model and (b) the adiabatic approximation. Dif-
ferent colors stand for different Chern numbers, as the color bar
on the left shows. The precision in ωc/w is 0.05 for both panels.
The minimum-bandwidth magic twist angles are marked by vertical
dashed lines. [(c),(d)] The moiré band structures of the two models
with parameters indicated on the top, along the path illustrated on the
left.

In contrast, the full adiabatic approximation Berry curva-
ture distribution has small but visible peaks at the k and γ

points, which is a signature of non-negligible second-shell
Fourier component. This indicates that it is impossible to find
an ideal band that reproduces both the charge profile and the
Berry curvature profile of the adiabatic band. In fact, it seems
unlikely that any exact ideal band could exactly reproduce this
Berry curvature distribution—if such ideal band does exist, its
e2χ (r) will have an exponentially large second-shell Fourier
component, which easily violates the positive definiteness
of e2χ (r). We do attempt to apply the inverse procedure of
Eqs. (10) to the adiabatic Berry curvature, assuming it to
be identical to that of some alternative AC band. We find
that the violation of positive definiteness in e2χ (r) persists
upon including further shells of Fourier components until the
exponentially growing numerical error turns everything mean-
ingless. While it is not to exclude the possibility that very high
spatial harmonics of its e2χ (r) could form a strange shape that
compensates for the negative parts introduced by the lower
harmonics, in this case, e2χ (r) would have exponentially high
sharp peaks that are totally inconsistent with the charge den-
sity distribution of the adiabatic band. Rather, we argue that
the second-shell Fourier component of the Berry curvature
has to mostly come from the deviation of the wave functions
from the ideal band limit (δψk). Simply speaking, the change
in the idealness of quantum geometry, 1 − �k/trgk, is second
order in δψk, while the change in Berry curvature is first order.
Details are provided in Appendix G.

V. LANDAU LEVEL TO HALDANE MODEL CROSSOVER

Figures 6(a) and 6(b) show that the twist angle dependence
of the Chern numbers of the first few valence bands are well
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reproduced by the adiabatic approximation, except at very
small twist angles where the 25-Landau-level truncation is no
longer sufficient for convergence. The critical twist angles for
topological phase transition are generally slightly underesti-
mated. While the first valence band always has Chern number
C1 = 1, the Chern number of the second band C2 transitions
from −1 to 1 at a critical twist angle that is larger than the
magic angle in the continuum model but smaller than the
magic angle in the adiabatic approximation. In both cases,
the transition is triggered by a quadratic inversion between
the second and the third bands at the γ point with 4π Berry
curvature transfer, as suggested by Figs. 6(c) and 6(d).

An effective Haldane model [43] (or Kane-Mele
model [56,57], considering both spins/valleys) describes
[12,16,44,45] the first two bands in the small twist-angle
regime where they have opposite Chern numbers. In the
continuum model, the Wannier orbitals corresponding to this
two-band truncation sit on a honeycomb lattice with the A and
B sublattices at the AB and BA stacking points in the moiré
pattern. The A and B sublattice Wannier orbitals are polarized
toward the top and bottom layers. Since the adiabatic
approximation is accurate at small twist angles, we expect
that it also captures the C2 = −1 regime of the adiabatic
approximation model. In the adiabatic approximation, the
layer polarization of localized Wannier orbitals is encoded
by the position dependence of the effective magnetic field,
which results in turn from the spatial variation of the local
layer pseudospin fields, which point in opposite directions at
the AB and BA stacking points.

At larger twist angles, the Chern numbers of the first few
bands are uniformly 1, which is a signature of a Landau-level-
like structure, at least in a topological sense. This crossover
between a Haldane-model like regime at small twist angles
and a Landau-level-like regime at large twist angles has
also been predicted under the parameters of twisted homobi-
layer MoTe2 [6,58]. Realization of a Landau-level-like regime
paves the way to engineering even-denominator FCI states
in a flat band resembling the n = 1 Landau level of a 2D
electron gas [59–61]. These states could support non-Abelian
anyons that are promising resources of topological quantum
computation.

VI. SUMMARY AND DISCUSSION

The adiabatic approximation, in which the layer degree-of-
freedom is removed and replaced by a nonuniform periodic
effective magnetic field, is an attractive alternative to direct
continuum model descriptions. We have shown that with real-
istic model parameters [14] near the magic angle, the adiabatic
approximation indeed accurately reproduces the continuum
model band properties [12]. It was first introduced [30] to
explain the appearance of ideal flat bands [18] in twisted
homobilayer TMDs in terms of minimal mixing between a flat
adiabatic-approximation lowest Landau level and higher Lan-
dau levels. By introducing the concept of Aharonov-Casher
bands, we have explicitly shown that nearly-ideal bands can
emerge even with finite Landau level mixing.

In homobilayer TMD moirés, nonperturbative many-body
methods are needed [6,8–11] to study the competition be-
tween FCI and charge-density-wave states at fractional band

fillings. The Landau level representation of the adiabatic
approximation Hamiltonian provides an attractive basis for
numerical many-body simulation methods like density ma-
trix renormalization group (DMRG) and exact diagonalization
(ED). By using Landau level basis states, it may be possible
to achieve a deeper understanding of the essential physics of
this specific FCI system.

Research directed towards deriving the most accurate con-
tinuum model Hamiltonians for specific homobilayers is still
in progress [6,10,46–48,62]. In some cases the accuracy
of adiabatic approximation can be limited by rapid spatial
variations in the Hamiltonian or small magnitudes of the
layer-pseudospin field. The adiabatic approximation can be
improved, we believe, by relaxing the strict locking invoked
here between the layer pseudospin polarization function us(r)
and the layer pseudospin field, allowing Bloch bands with
spinors of the form

ψcont
k,s (r) = us(r)ψad

k (r), (15)

where s is the layer index. Both us(r) and ψad
k (r) can in princi-

ple be obtained self-consistently using a variational approach
or by directly fitting the continuum-model wave functions so
that the effective magnetic field distribution in the adiabatic
approximation is optimized. We expect that the optimized
effective magnetic field will be smoother than in the original
simple adiabatic approximation, giving a more accurate de-
scription of the moiré band properties that works in a wider
region of parameter space.

There is evidence from experiment [1–4] that the Chern
band character of TMD homobilayer moiré bands is most ro-
bust not near zero density, but near band filling ν = −1. It may
be that the ideal bands relevant to experiment are the electron-
and hole-like quasiparticle bands of the ν = −1 states, which
are influenced by Hartree and Fock self-energies. Because the
Fock self-energies are nonlocal, the simple adiabatic approx-
imation can no longer be applied to this Hamiltonian, but the
generalization imagined in the preceding paragraph can still
be applied. The Hartree potential of the hole-filled bands at
ν = −1 will tend to smooth the layer skyrmion field, and may
give rise to a more uniform effective magnetic field and a more
uniform effective potential. With smoother magnetic field, the
adiabatic approximation is expected to converge at a smaller
Landau level cutoff, which would allow future DMRG and ED
simulations to give more accurate results.

The adiabatic approximation can be directly generalized
to multilayer systems. One example is symmetric twisted
homotrilayer TMDs, which can be decoupled into an effec-
tive bilayer and an effective monolayer based on the mirror
symmetry about the middle layer in analogy to ABA twisted
trilayer graphene [63,64]. Another example is the twisted
homobilayer TMD proximitized with a third layer of a dif-
ferent type of TMD, in which the twist-angle-tuned interplay
between homobilayer and heterobilayer moiré patterns, analo-
gous to a similar interplay in twisted bilayer graphene aligned
with hexagonal boron nitride [65–67], could lead to inter-
esting physics. Both types of systems could potentially host
triangular and/or sublattice-staggered hexagonal lattices of
atomic-like Wannier orbitals that could potentially lead to
frustrated Hubbard models and to exotic strongly correlated
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phases upon doping, possibly including unconventional su-
perconductivity. At the same time, flat ideal bands and FCI
states are still in principle possible to engineer at certain
band filling if the hexagonal sublattice-staggered potential is
properly screened, pushing the physics picture towards the
Haldane-model regime of twisted homobilayers. It may even
be possible to engineer higher-Chern number ideal bands
[68–73] in multilayer TMDs, which have more interesting
color-entangled wave functions [74,75] that can be mapped to
multilayer Landau levels, and can be topologically classified
based on the motion of zeros in their wave functions.

In this paper we have argued that the nearly ideal bands
of homobilayers are related to the Aharonov-Casher states
[38] of a 2D electron gas with g factor 2. The cancellation
between zero-point kinetic energy and Zeeman energy in the
Aharonov-Casher case is replaced by a vanishing first-shell
Fourier component of the residual potential U (r). We have
shown that under this circumstance the effect of the a real-
istic residual potential U (r) on the flat dispersion and ideal
quantum geometry of the AC band is generally small, despite
the band mixing effects from the subleading Fourier shells. It
will be interesting to seek a more complete analytical under-
standing of this property and to explore under what conditions
it still holds upon introducing the exchange potential and/or
interaction-induced band mixing effects.

Based on our findings, we suggest that projection onto AC
bands that includes only the first reciprocal lattice shell of the
magnetic field can be used to construct a minimal model for
the nearly ideal bands in TMD homobilayer moiré materials.
In these models the charge is concentrated near, and relatively
evenly distributed along, the Wigner-Seitz cell edge. Correc-
tions to the charge density distribution, band dispersion, and
deviations from band ideality can be modeled by adding first-
shell residual potentials and also including second- and/or
third-shell Fourier components of either the potential or the
magnetic field. We expect that phenomenological models in
this class will be able to describe all C6-symmetric TMD
moiré materials, and that many-body simulations on this
model will be able to draw a relatively complete picture of
the interplay between bandwidth, quantum geometry, charge-
density distributions, and other factors in the FCI states of
these materials.
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APPENDIX A: ADIABATIC APPROXIMATION

In this Appendix, we start from a generalized version of the
continuum model for twisted homo-N-layer TMDs, where the
valence bands are described by nonrelativistic holes moving
under an N × N layer-pseudospin entangled potential. The
holes have two spin-valley locked flavors and N layer pseu-

dospins. The projected Hamiltonian in valley K (or spin up)
writes

H = − p̂2

2m
1N + �(r), (A1)

where m is the effective hole mass in the valence band of the
material, 1N is the N × N identity matrix and the position-
dependent N × N matrix �(r) describes the moiré potential.

For the adiabatic approximation, we do a U(N ) gauge
transformation on the continuum Hamiltonian Eq. (A1) that
locally diagonalizes �(r),

H̃ = U†HU = − ( p̂1N + A(r))2

2m
+ �̃(r), (A2)

where �̃(r) = U†(r)�(r)U (r) is a diagonal N × N matrix,
U (r) is a space-dependent N × N unitary matrix, and

A(r) = −iU†(r)∇U (r) (A3)

is the non-Abelian connection associated with the gauge trans-
formation U . The sth diagonal element of H̃ is

H̃ss = − ( p̂ + Ass(r))2

2m
− Ds(r)

2m
+ �s(r), (A4)

where �s(r) is the sth eigenvalue of �(r), and the extra term

Ds(r) =
∑
s′ �=s

Ass′ (r) · As′s(r) (A5)

comes from the off-diagonal elements of A(r). Denote the sth
column vector of U (r) as us(r), so that

Ass′ (r) = −iu†
s ∇us′ = i(∇u†

s )us′ , (A6)

hence

Ds(r) =
∑
s′ �=s

(∇u†
s )us′ · u†

s′∇us

= ∇u†
s · ∇us − (∇u†

s )us · u†
s ∇us, (A7)

which is exactly the trace of quantum metric of the sth eigen-
state manifold of �(r).

If we are interested only on the highest energy valence
band states we can truncate to the highest-eigenstate manifold.
For the N = 2 case appropriate to homobilayers, we label this
as “+” so that Had = H̃++. In this case, Eq. (A4) becomes
Eq. (3a) in the main text, where A(r) = A++(r) and Z (r)
is given by Eq. (4a). Now we have �+(r) = �0(r) + |�(r)|
and it can be shown, regardless of the U(1) gauge freedom
remaining after rotating the pseudospins to alignment, that the
effective magnetic field B(r) and the function D(r) = D+(r)
are given respectively by

B(r) = ∇ × A(r) = n · (∂xn × ∂yn)

2
(A8)

and

D(r) = A+−(r) · A−+(r) = |∂xn|2 + |∂yn|2
4

, (A9)

where n(r) = �(r)/|�(r)| and “−” is the label of the lower
eigenstate of �(r).

In Fig. 7 we show the resulting band properties under
different levels of approximation introduced in the main text,
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FIG. 7. [(a)–(e)] 2D color plots of the real-space charge density of the filled first band calculated from the model parameters associated
with WSe2: (a) the continuum model under the minimum-bandwidth magic twist angle ωc/w = 0.4, (b) the adiabatic approximation under the
same twist angle, (c) the adiabatic approximation under the adiabatic magic angle ωc/w = 0.55, (d) the ideal band fitted from the adiabatic
charge density distribution under ωc/w = 0.55, and (e) the AC band under arbitrary magic angle. [(f)–(j)] 2D color plots of the k-space Berry
curvature under the same model and parameter settings as (a)–(e).

including the continuum model, the adiabatic approximation,
the AC band and the “hypothetical” ideal band described in
Sec. IV.

APPENDIX B: RELATIONSHIP BETWEEN MODEL
PARAMETERS AND RESIDUAL POTENTIAL

The first few Fourier components of �+(r) and ξ (r), the
two parts of the residual potential U (r) as defined in Eq. (4b),
are presented in Fig. 8 as maps of the continuum model
parameter space. The points in the parameter space that corre-
spond to the explicit parameter sets on which we focus are
marked on these plots and give a sense of the part of the
space that is most experimentally relevant. We see that since
ξ1 is negative definite because the effective magnetic field is
peaked on the Wigner-Seitz cell boundary, the favorable re-
gion for Landau level like physics is the part of the parameter
space in which �+,1 is negative, so that U1 can be tuned to

zero at some particular twist angle ω
U1
c0 = �+,1/ξ1. In this

region both the signs of �+,i and ξi are generally opposite
for both the i = 2 and the i = 3 sub-leading shells, implying
that they cannot cancel. Nevertheless, the deviation from the
AC limit is expected to be smaller within the narrow region of
the phase diagram near where �+,i and ξi are small for both
i = 2 and i = 3 indicated in Fig. 8.

To verify this argument, we take an example parameter
set (V/w, ψ ) = (0.5, 150◦) from this region and see from
Figs. 9(a) and 9(b) that for this parameter set, the AC band
does reproduce the wave function of the first adiabatic band
well—at least better than in the WSe2 case discussed in the
main text [see Figs. 5(c) and 5(d)]. However, the rest of Fig. 9
shows that for this parameter set, the adiabatic approxima-
tion reproduces the continuum model band properties less
well than in the WSe2 case [only the charge density distri-
bution is well reproduced; See Figs. 4(a), 4(d), 5(a), and 5(b)
for comparison with WSe2]. Also, the quantum geometry of

(a) (b) (c) (d)

(g)

(e) (f)

V/w

0.87 107.7° –0.307 0.247 –0.141 –0.262 –0.408 0.574

0.5 128° –0.145 0.075 –0.063 –0.281 –0.13 0.34

0.5 150° –0.21 0.016 –0.038 –0.314 0.037 0.221

ψ Δ+,1/w ξ1 ξ2 ξ3Δ+,2/w Δ+,3/w

FIG. 8. [(a)–(f)] Maps of the first three harmonic shells of Fourier components of (a)–(c) �+(r)/w and (d)–(f) ξ (r), the two contributions to
the residual potential U (r) in Eq. (4b). The red-dashed lines are the zero contour lines. The positions of the MoTe2 parameter set (V/w, ψ ) =
(0.87, 107.7◦), the WSe2 parameter set (0.5, 128◦) and the extra parameter set (0.5, 150◦) are respectively marked by square, circle, and
rhombus in each channel. The region where ω

U1
c0 = �+,1/ξ1 > 0 and |�+,i| and |ξi| are small for both i = 2 and 3 are roughly indicated by

dashed grey circles in (b), (c), (e), and (f). (g) The table of local values of the plotted quantities in (a)–(f) at the marked points.
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FIG. 9. (a) The real-space charge density distribution of the filled
first band, and (b) the k-space Berry curvature distribution �k of the
first band of the adiabatic approximation and the AC band derived
from the system under continuum model parameters (V/w, ψ ) =
(0.5, 150◦), under the twist angle ωc/w = 0.6, which is near the
adiabatic magic angle. [(c),(d)] The same quantities as (a) and (b),
now calculated for the continuum model and adiabatic approxima-
tion bands under ωc/w = 0.4, which is near the continuum magic
angle. All real-space and k-space plots are along the symmetric lines
indicated in the middle panel. (e) The bandwidth and (f) the quantum
geometry idealness characterized by min(�k/trgk ) of the first band
of the system under (V/w, ψ ) = (0.5, 150◦), as a function of twist
angle, calculated under both the continuum model and the adiabatic
approximation. In all adiabatic approximation results, the convergent
Landau level and reciprocal space shell truncations (NLL, Nshell ) =
(25, 15) are used, as in the main text.

the first continuum-model band here is generally less ideal
than in WSe2, suggesting that systems near this parameter
regime is not a better candidate than materials like WSe2 to
realize FCI.

APPENDIX C: DERIVATION OF LANDAU-LEVEL-BASIS
HAMILTONIAN ELEMENTS

We start our derivation by substituting Eq. (7a) and the ex-
pression of Landau level raising operator, a†

0 = (/
√

2)(p† +
A∗

0(r)) = (i/2
√

2)(z∗ − 42∂z ), to Eq. (11) in the main text,

ψnLL
k (r)

= 1√
n!(2

√
2)n

(iz∗ − 4i2∂z )n
(
e

i
2 k·rψLLL

0 (r + 2nz × k)
)

= e
i
2 k·r

√
n!(2

√
2)n

(iz∗ + 2k∗ − 4i2∂z )n ψLLL
0 (r + 2nz × k)

= e
i
2 k·r

√
n!(2

√
2)n

(iz∗ + 2k∗ − 4∂k )n ψLLL
0 (r + 2nz × k)

= eik·r
√

n!(2
√

2)n
(2k∗ − 4∂k )nuLLL

k (r), (C1)

where

uLLL
k (r) = e−ik·rψLLL

k (r) = e− i
2 k·rψLLL

0 (r + 2nz × k). (C2)

Next, we define the notation

IG
kp = 〈

uLLL
k

∣∣eiG·r∣∣uLLL
p

〉
, (C3)

which can be calculated with the assist of the formula for the
LLL wave function form factor [27]〈

uLLL
k

∣∣uLLL
k+q

〉 = e2( i
2 k×q− q2

4 ) (C4)

and the k-space quasiperiodicity

uLLL
k+G(r) = ηGe−iG·r+ i2

2 G×kuLLL
k (r), (C5)

where ηG is the parity of the reciprocal lattice vector G as
described just after Eqs. (10). The ultimate expression of IG

kp
is

IG
kp = ηGe

2

2 ((k+G)∗ p−k∗G)− 2

4 (G2+k2+p2 ). (C6)

In calculating the matrix element of U ′(r) in Eq. (3c)
between Landau levels, we use the following equation:

(2k − 4∂k∗ )n(2 p∗ − 4∂p)n′IG
kp

= (−1)n(2
√

2)n+n′
ηGe

2

2 ((k+G)∗ p−k∗G)− 2

4 (G2+k2+p2 )

× Lnn′

(
√
2

(G + k − p)∗,
√
2

(G + k − p)

)
(C7)

to obtain〈
ψnLL

k

∣∣U ′(r)
∣∣ψn′LL

k

〉
= 1√

n!n′!(2
√

2)n+n′

∑
G

U ′
G(2k − 4∂k∗ )n

× (2 p∗ − 4∂p)n′IG
kp

∣∣
p=k

= (−1)n

√
n!n′!

∑
G

U ′
GηGLnn′

(
G∗
√

2
,

G√
2

)
e2(iG×k− G2

4 ), (C8)

where Lnn′ (x, y) = exy∂n
x ∂n′

y e−xy. The contribution of the other
parts of H ′ can be obtained by noting that from the relation
between 	̂0 and a0,

〈
ψnLL

k

∣∣	̂†
0A′(r)

∣∣ψn′LL
k

〉 =
√

2n



〈
ψ

(n−1)LL
k

∣∣A′(r)
∣∣ψn′LL

k

〉
, (C9)

and by rewriting Eq. (C8) in terms of A′(r). All combined
gives Eq. (12) in the main text.

APPENDIX D: BERRY CURVATURE AND QUANTUM
GEOMETRY UNDER LANDAU LEVEL BASIS

We use [76,77]

ln〈uk− q
2
|uk+ q

2
〉 = iq · R(k) − q · gq

2
+ O(q3) (D1)

to approximate the quantum geometry on a 48 × 48 mesh in
the mBZ, where R(k) = −i〈uk|∇kuk〉 is the Berry connection
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and g is the 2 × 2 Fubini-Study metric. In particular, the
average Berry curvature in the triangle {k, k ± q1, k ± q2} is
obtained by accumulating the Berry phase along its perime-
ter, and the average Fubini-Study metric is solved from the
obtained values of q · gq/2 along the three edges, where
q j = G j/48. This approach is used to calculate both real-
space and momentum-space quantum geometries, and in the-
ory always gives exact integer values of Chern number [78].

For a band with wave functions expressed upon the Landau
level basis

|uk〉 =
NLL−1∑

n=0

cnk

∣∣unLL
k

〉
(D2)

where according to Eq. (C1)

unLL
k (r) = e−ik·rψnLL

k (r) = (2k∗ − 4∂k )nuLLL
k (r)√

n!(2
√

2)n
, (D3)

the form factor 〈uk|uk+q〉 can be obtained from the Landau
level form factor

〈
unLL

k

∣∣un′LL
p

〉 = (2k − 4∂k∗ )n(2 p∗ − 4∂p)n′I0
kp√

n!n′!(2
√

2)n+n′ , (D4)

where the notation I is defined in Eq. (C3). By formula
Eq. (C7), we get

〈
unLL

k

∣∣un′LL
k+q

〉 = (−1)n′

√
n!n′!

Lnn′

(
q∗
√

2
,

q√
2

)
e2( i

2 k×q− q2

4 ). (D5)

APPENDIX E: BEYOND ADIABATIC APPROXIMATION:
PERTURBATION THEORY TREATMENT

In this Appendix we attempt a perturbative estimate of
the bounds of the twist-angle regime where the adiabatic
approximation is accurate. We employ second-order pertur-
bation theory to address the difference between the adiabatic
approximation and the continuum model. For N = 2 the
gauge-transformed continuum model Hamiltonian [Eq. (A2)]
is given explicitly by

H̃ = − 1

2m

(
( p̂ + A++(r))2 + D(r) p̂ · A+− + A+− · p̂ + A+− · trA

p̂ · A−+ + A−+ · p̂ + A−+ · trA ( p̂ + A−−(r))2 + D(r)

)
+

(
�+(r) 0

0 �−(r)

)
, (E1)

where we have used ± to label the rotated pseudospin up/down components, D(r) = D+(r) = D−(r) and �±(r) = �0(r) ±
|�(r)|. Locking the U(1) gauges of the two pseudospin sectors by the pseudo-time-reversal symmetry u−(r) = iσ yu∗

+(r)
guarantees that trA = 0 and that A+−(r) is bound in space. For any eigenstate |ψ̃+〉 of the adiabatic approximation Hamiltonian
Had = H̃++ with eigenvalue Ẽ+, the energy shift due to virtual occupation in the pseudospin-down subspace can be captured by
a Schrieffer-Wolf-like transformation,

δE = 〈ψ̃+|H̃+−(Ẽ+ − H̃−−)−1H̃−+|ψ̃+〉. (E2)

From a semiclassical point of view, both p̂ and A−+(r) scale linearly with the twist angle θ , while (Ẽ+ − H̃−−)−1 ∼
(�+ − �−)−1 does not scale with θ , which tells us that δE (δE/ωc) scales with θ4 (θ2), indicating breakdown of the adiabatic
approximation by large δE/ωc when the twist angle exceeds a certain limit.

To estimate δE , we employ a simplified formulation where the pseudospin-up state is taken as an LLL state,

δEk =
〈
ψLLL

k

∣∣( p̂ · A+− + A+− · p̂)(E+ − H̃−−)−1( p̂ · A−+ + A−+ · p̂)
∣∣ψLLL

k

〉
4m2

. (E3)

Next we replace p̂ · A−+ + A−+ · p̂ with �̂0 · A−+ + A−+ ·
�̂0, where �̂0 = p̂ − A0 is the time-reversal counterpart of
�̂0 = p̂ + A0, A0 is the vector potential of the uniform part
of the effective magnetic field in the pseudospin-up subspace.
It can be shown from the quasiperiodicity of A−+(r) that
A−+(r) acting on any magnetic translational eigenstate in
the pseudospin-up subspace yields a magnetic translational
eigenstate with the same quasimomentum k in the pseudospin-
down subspace, whose effective magnetic field is exactly
the opposite of the pseudospin-up one. In addition, �̂0 is
associated with the Landau level raising and lowering oper-
ators by 	̂0x + i	̂0y = 	̂0 = √

2â0/ (see Sec. II D), which
does not change the quasiperiodicity of the pseudospin-up

magnetic translational eigenstate. Similarly, �̂0 is associ-
ated with the Landau level raising and lowering operators in
the pseudospin-down subspace. Hereby we have proved that

�̂0 · A−+ + A−+ · �̂0 conserves the quasimomentum while

switching the pseudospin, which justifies replacing the mid-
dle Green’s function in Eq. (E3) with its quasimomentum-k
sector.

Now we take a further simplification that replaces the
Green’s function with that of a uniform Landau level system
with a global energy downshift from the pseudospin-up one
by the indirect spatial gap �g = min �+(r) − max �−(r),

〈
ψ̃nLL

−,k

∣∣(E+ − H̃−−)−1
∣∣ψ̃n′LL

−,k

〉 ∼ δnn′

�g + nωc
, (E4)

where ψ̃nLL
−,k (r) = ψ̃nLL∗

+,(−k)(r) = ψnLL∗
−k (r) is the wave function

of the nth Landau level in the pseudospin-down subspace
with quasimomentum k, which is the complex conjugate of
that of the nth Landau level in the pseudospin-up subspace
with quasimomentum −k. We truncate the Green’s func-
tion within the first N ′

LL = 50 Landau levels and get the
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WSe2: 1.0

(150º, 0.5):
0.3

MoTe2: 0.45

FIG. 10. The estimated ωc of the threshold twist angle under
which the adiabatic approximation is expected to work well accord-
ing to our second-order perturbation theory treatment, as a map of
the continuum model parameters. The positions of MoTe2 and WSe2

parameter sets and the extra parameter set (0.5, 150◦) are respec-
tively marked by square, circle and rhombus, with their local values
of estimated threshold ωc/w marked on the side.

formula

δEk =
N ′

LL−1∑
n=0

∣∣〈ψ̃nLL
−,k

∣∣(�̂0 · A−+ + A−+ · �̂0)
∣∣ψLLL

k

〉∣∣2

4m2(�g + nωc)
,

(E5)

in which the numerator is numerically computed for each
(n, k) and some specific twist angle by summing up 48 × 48
real-space sample points, and obtained for other twist angles
by the θ4 (or ω2

c ) scaling law. The “overall” energy shift δE is
taken as the maximum of δEk over the mBZ.

Although the perturbation theory becomes inaccurate for
small or negative �g, we do expect in other cases that δEk

qualitatively well captures the dependence of deviation from
the adiabatic approximation on the model parameter and twist
angle. When �g > 0, we define the “threshold” twist angle
below which the adiabatic approximation is good as the twist
angle at which δE/ωc = 0.2. Otherwise, we specify that this
threshold twist angle is 0. The map of threshold ωc/w over
the model parameters is shown in Fig. 10. Our formulation
predicts a parameter window of V/w between 0.2 ∼ 0.5 and
ψ between 30◦ ∼ 150◦, within which a relatively wide range
of twist angle is accepted for good adiabatic approximation.
The map correctly captures our previous observation that the
adiabatic approximation gives a better estimate of the magic
angle with the WSe2 parameter set than with the MoTe2 pa-
rameter set or the extra parameter set (V/w, ψ ) = (0.5, 150◦).
It also reproduces the tendency of adiabatic approximation to
break down at side values of V/w and ψ as we have argued in
Sec. III.

APPENDIX F: AC LIMIT OF THE ADIABATIC
APPROXIMATION

Here we approximate the dispersion of the first band by
projecting the potential U (r) into the AC ideal band subspace.

FIG. 11. The magic angle, defined as the twist angle with mini-
mum bandwidth, as a function of the model parameter ψ , calculated
with (a) V/w = 0.5 and (b) V/w = 0.87 in various approximations
including the full continuum model, the full adiabatic approximation
[(NLL, Nshell ) = (25, 15)], the lowest Landau level projection [30],
the AC band projection [Eq. (F3)] and ω

U1
c0 , as indicated by the inset

of (b). The ψ values of the MoTe2 and WSe2 models discussed in the
main text, as well as the (V/w, ψ ) = (0.5, 150◦) point, are marked
by grey-vertical-dashed lines.

From Eq. (6) we have

EAC
k =

〈
ψAC

k

∣∣U (r)
∣∣ψAC

k

〉
〈
ψAC

k

∣∣ψAC
k

〉 =
〈
ψLLL

k

∣∣e2χ (r)U (r)
∣∣ψLLL

k

〉
〈
ψLLL

k

∣∣e2χ (r)
∣∣ψLLL

k

〉
=

∑
G ηGλGŨGei2G×k∑
G ηGλG�Gei2G×k

, (F1)

where ŨG and �G are respectively the Fourier components of
e2χ (r)U (r) and e2χ (r). [See Eq. (12) and associated definitions.]
Assuming that the exponentially decaying nature of λG allows
us to truncate the reciprocal space summation after the first
shell,

EAC
k ≈ EAC1

k = Ũ0 − λ1Ũ1
∑5

j=0 ei2G j×k

�0 − λ1�1
∑5

j=0 ei2G j×k
. (F2)

According to the expression of U in Eq. (4b), the flat
band condition Ũ0/�0 = Ũ1/�1 implies that the bandwidth
vanishes for

ωAC1
c0 = �0�̃+,1 − �1�̃+,0

�0ξ̃1 − �1ξ̃0
, (F3)

where �̃+,n and ξ̃+,n are the nth-shell Fourier components of
e2χ (r)�+(r) and e2χ (r)ξ (r), respectively.

This formula differs quantitatively in two ways from the
one proposed previously [30] based on the (NLL, Nshell ) =
(1, 1) limit, which gives ωLLL1

c0 = �+,1/ξ
′
1 [see Eq. (4c)].

First, replacing the AC wave function with the LLL wave
function flattens the space-dependent factor eχ (r), leading to
�1 → 0, ξ̃1 → ξ1 and �̃+,1 → �+,1, and yields ω

U1
c0 , defined

in Sec. IV, as the optimal value of ωc. Second, the extra
term −|A′(r)|2/2m in Eq. (4c), which takes magnetic field
variation into account, replaces ξ1 with ξ ′

1. From Figs. 11(a)
and 11(b), we see that all three (ωLLL1

c0 , ω
U1
c0 , and ωAC1

c0 ) are
generally good approximations to the magic angle of the full
adiabatic approximation ωad

c0. At larger ψ’s, ωAC1
c0 matches ωad

c0
particularly well, which is another verification of our argu-
ment in Appendix B that the deviation of the full adiabatic
approximation from the AC limit is relatively small in this
regime due to small higher Fourier components of U (r).
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FIG. 12. [(a)–(d)] Plots of the real-space complex functions
φ̄k(r) = ψ̄ ad

k (r)/ψLLL
k (r) where ψ̄ ad

k (r) is the normalized wave func-
tion of the state |ψ ad

k 〉 calculated under the adiabatic approximation
of twisted bilayer WSe2 with ωc/w = 0.55, (NLL, Nshell ) = (25, 15)
and k is taken as various points in the mBZ as indicated in (g): (a) γ

point (k = 0), (b) some general nonsymmetric point k1, (c) k point,
and (d) m point. (e), (f) The same plots taking U (r) ≡ 0, i.e., the AC
limit, but still using the Landau level formulation with (NLL, Nshell ) =
(25, 15), at (e) γ point and (f) k1. (g) The positions of the k points in
the mBZ, under which other panels are plotted. [(h)–(k)] The plots
of δūk(r), which is the component of ūad

k (r) = e−ik·rψ̄ ad
k (r) that is

orthogonal to uid
k (r) = e−ik·rψ id

k (r). The bottom panels show the color
scales used in various complex number maps. In (a)–(f) and (h)–(k),
the black hexagons are the real-space Wigner-Seitz moiré cell.

APPENDIX G: WAVE FUNCTIONS OF NEARLY IDEAL
BANDS IN ADIABATIC APPROXIMATION

We look into the wave functions ψad
k (r) of the nearly ideal

band identified in the adiabatic approximation of twist bilayer
WSe2 in Fig. 4(d) in the main text. Figures 12(a)–12(d) show
that the function φk(r) = ψad

k (r)/ψLLL
k (r) has about the same

shape at all k points plotted, which is approximately consistent
with the common factor of a perfectly ideal C = 1 band.
Figures 12(b)–12(d) show that the main difference between
φk(r) and φ0(r) is near the spatial point −2nz × k (and its
translational images), which are the spatial zero points of
ψLLL

k (r). For example, the wavefunction ratio φk1 (r) at the
low symmetry point k = k1, illustrated in Fig. 12(b), has a
singularity at −2nz × k1 due to a slight deviation of the zero
in ψad

k (r) from the ideal band zero position.
As a comparison, we reset U (r) = 0 in the system and

recompute this function. Figures 12(e) and 12(f) show per-
fect correspondence between φk(r) functions two different k
points to within numerical accuracy limited by the truncation

of the Hilbert space into 25 Landau levels. [There is a slight
zero shift for k = k1 case at the zero points of ψLLL

k1
(r).] The

plotted functions accurately approximate the function eχ (r) de-
fined in Sec. II C, which has peaks at the real-space M points
due to the potential wells caused by the effective magnetic
field pockets in the plasmon analogy. The term U (r) moves
the peaks to the corners of the Wigner-Seitz cell, at which the
hole potential wells of U (r) sit. These behaviors arise from the
same mechanism as the shift in charge density peaks discussed
in Sec. IV A.

To observe the deviation of the wave functions from the
ideal limit in the presence of U (r), we define

∣∣δψad
k

〉 = ∣∣ψad
k

〉 −
∣∣ψ id

k

〉〈
ψ id

k

∣∣ψad
k

〉
〈
ψ id

k

∣∣ψ id
k

〉 , (G1)

where |ψ id
k 〉 is the perfect C = 1 ideal band constructed from

the adiabatic charge density ρad(r) via

ψ id
k (r) = φid (r)ψLLL

k (r) ∝
√

ρad(r)ψLLL
k (r). (G2)

[We have redefined the notation φid(r) = eχ id (r). See Eq. (14)
and around.] We plot δuad

k (r) = e−ik·rδψad
k (r) in Figs. 12(h)–

12(k) under the normalization choice that |ψad
k (r)|2 averages

to 1. We see that not only are the amplitudes of δuad
k (r) at least

one order of magnitude smaller than ψ id
k (r), but the ranges

of δuad
k (r) are also in general somewhat small compared to

the mBZ and mostly concentrated near the zeros of ψLLL
k (r)

[which are also zeros of ψ id
k (r)].

To roughly understand the behavior of quantum geometry,
we start by presenting the following general formulas:

trgk + �k

4
= 〈∂kuk|∂kuk〉

〈uk|uk〉 − |〈uk|∂kuk〉|2
〈uk|uk〉2 , (G3a)

trgk − �k

4
= 〈∂k∗uk|∂k∗uk〉

〈uk|uk〉 − |〈uk|∂k∗uk〉|2
〈uk|uk〉2 , (G3b)

where �k is the Berry curvature, trgk is the trace of the
Fubini-Study metric, |uk〉 = e−ik·r|ψk〉 is the cell (quasi-) pe-
riodic part of the band wave function of a general band, and
k = kx + iky. In our notation, 〈∂kuk| is the adjoint of |∂kuk〉,
which means that 〈∂kuk| = ∂k∗ 〈uk|. Equations (G3) hold for
arbitrary k-space gauge, including the unnormalized ones.

We next apply these formulas to our adiabatic approxima-
tion band where∣∣uad

k

〉 = e−ik·r∣∣ψad
k

〉 = ∣∣uid
k

〉 + ∣∣δuad
k

〉
,

〈
uid

k

∣∣δuad
k

〉 = 0. (G4)

We first choose the gauge so that the ideal band |uid
k 〉 is

holomorphic in k (i.e., has no k∗ derivative) and apply
Eq. (G3b). From |∂k∗uad

k 〉 = |∂k∗δuad
k 〉 it is clear that trgk −

�k is second order in |∂k∗δuad
k 〉, giving the extremely ideal

quantum geometry. Then we select another gauge where
uid

k (r) = φid (r)uLLL
k (r) [from Eq. (G2)] with no k dependence

further than the normalized cell-quasiperiodic LLL function
uLLL

k (r) = e−ik·rψLLL
k (r). Because of orthogonality, the contri-

bution of |δuad
k 〉 to the denominators of all terms of Eq. (G3a)

is second order, thus negligible. We also assume that trgk ≈
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�k, hence we have

�ad
k − �id

k

4
≈

〈
∂kuid

k

∣∣∂kδuad
k

〉
〈
uid

k

∣∣uid
k

〉 −
〈
∂kuid

k

∣∣uid
k

〉〈
uid

k

∣∣∂kδuad
k

〉
〈
uid

k

∣∣uid
k

〉2 + c.c..

(G5)

Although both terms in Eq. (G5) are first order in |∂kδuad
k 〉,

the function ∂kδuad
k (r) tends to localize near the zero points

of uid
k (r) as we have observed in Figs. 12(i)–12(k), further

suppressing the second term. On the other hand, ∂kuid
k (r) tends

to have large absolute values near the zero points of uid
k (r),

making the first term relatively significant. Furthermore, since
∂kuid

k (r) contains a k-independent factor φid (r), which has
peaks at the corners of the Wigner-Seitz cell, the inner product
on the numerator of the first term tends to be larger at those
k points where ∂kδuad

k (r) are localized near the Wigner-Seitz
cell corners, which are the mBZ corners. In the meantime, the
denominator of the first term cannot have significant peaks
at the mBZ corners due to suppression from the magnetic
form factor λG when applying the formula (10b) to the ideal
band. These observations explain the occurrence of the Berry
curvature peaks at the mBZ corner upon deviation from the
ideal band limit.

APPENDIX H: RELATION BETWEEN CHARGE DENSITY
AND COMMON FACTOR OF IDEAL BANDS

Under the normalization convention we define in Sec. II C,
the charge density of a full ideal band with wave function
ψ id

k (r) specified in Eq. (14) is

ρ id (r) = 1

A

∑
k∈mBZ

∣∣ψ id
k (r)

∣∣2〈
ψ id

k

∣∣ψ id
k

〉

= e2χ id (r)

A

∑
k∈mBZ

∣∣ψLLL
k (r)

∣∣2〈
ψLLL

k

∣∣e2χ id (r)
∣∣ψLLL

k

〉 , (H1)

where A is the total system area. The Fourier components of
the spatial function |ψLLL

k (r)|2 can be obtained from Eqs. (C3)
and (C6),

1

A

∫
d2re−iG·r∣∣ψLLL

k (r)
∣∣2 = I−G

kk = ηGλGei2k×G, (H2)

and the denominator in the summation in Eq. (H1) can be
directly copied from the AC case presented in Eq. (10b),
which then gives

ρ id (r) = e2χ id (r)

A

∑
k∈mBZ

∑
G ηGλGei(G·r+2k×G)∑

G ηGλG�id
Gei2G×k

, (H3)

where �id
G is the Fourier component of e2χ id (r).

Now we apply the first-shell approximation to both the
numerator and the denominator in the summation of Eq. (H3)
as we did in Appendix F, and then do a Taylor expansion over
λ1,

ρ id (r) ≈ e2χ id (r)

A�id
0

∑
k∈mBZ

⎛
⎝1 − λ1

5∑
j=0

ei(G j ·r+2k×G j )

⎞
⎠

×
⎛
⎝1 + λ1�

id
1

�id
0

5∑
j′=0

ei2G j′×k + O
(
λ2

1

)⎞⎠. (H4)

Since all nontrivial harmonic terms in k (i.e., that depend on
k as ∼ ei2k×G with nonzero reciprocal lattice vector G) are
integrated out by summation over the mBZ, up to the leading
term of r dependence we get

ρ id (r) ≈ e2χ id (r)

AM�id
0

⎛
⎝1 − λ2

1�
id
1

�id
0

5∑
j=0

eiG j ·r

⎞
⎠. (H5)

We see that compared to e2χ id (r), the spatially varying part
of the bracket in Eq. (H5) is suppressed by a factor of λ2

1 ≈
0.027, hence conclude that ρ id (r) has almost identical shape
as e2χ id (r).
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