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An electrodynamic (ED) theory for 2D particle arrays that undergo a slow rigid rotation � and observed
in their rest frame of reference R� is developed. The theory holds for both transverse electric (TE) and
transverse magnetic (TM) excitations. Analytical and numerical techniques are applied, in conjunction of a
suitable Greens function, to study the effect of rotation on electrically small 2D scatterers such as dielectric
cylinders of arbitrary isotropic material and cross-section geometry, and to derive the polarizability matrix in
R� and the corresponding discrete dipole formulation. The formulation is then used for a preliminary study
of particle arrays and tested against full wave numerical solutions of rotating structures that hold in R�. The
basic physical mechanisms that govern the rotation footprint on the array response are explored and discussed,
and their ramifications on TE and TM cases are contrasted. These mechanisms hold in general and are not
idiosyncratic to 2D. It is shown that the ED is mainly due to the excitation of a large number of Sagnac loops
created inside the structure as a result of the multiple scattering events between the array inclusions. However,
the collective interactions of a large number of loop exhibit a net dynamics that is far more intricate than that
of a single Sagnac loop, and even contradicts it in some aspects. The rotation footprint on the collective ED
properties of a 2D periodic structure such as stop-band location, induced nonreciprocity, and the role of the
structure symmetries in these effects are explored.
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I. INTRODUCTION

The electrodynamics (ED) of moving, accelerating, or ro-
tating structures and particle arrays supports unique effects
of light-matter interaction such as dynamically controlled
bianisotropy and nonreciprocity [1–3], vacuum-friction [4],
and gain and instabilities [5–7]. These may potentially serve
as platforms for new technologies and applications such as
isolators and circulators, energy harvesting devices, rotation
sensors, and more. Of particular interest is the case of struc-
tures rotating at a given angular velocity �, as rotation is
inherently noninertial, thus it exhibits a wide class of unique
physical phenomena. Furthermore, compared to linear trans-
lation, rotation can be manifested in smaller physical settings.
The ED of rotating structures as observed in the laboratory
(inertial) frame of reference has been investigated extensively.
Pioneering studies can be found, e.g., in Refs. [5,8–11],
dealing with structures that are large compare to the electro-
magnetic wavelength λ, with interest mainly in the far-field
scattering. However, advances in fabrication technologies,
photonic crystals, microcavities, and metamaterials in the last
decades have spurred the interest in rotating nanoparticles and
microstructures whose electrical dimensions are small with
respect to the wavelength λ, or λ-comparable, with much
larger rotation rates; experiments achieving mechanical ro-
tation exceeding 1 GHz were reported [12,13]. Theoretical
studies of rotating photonic crystals and microcavities [14,15]
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have shown the manifestation of the fundamental Sagnac ef-
fect [16] in nontrivial structures where the electromagnetic
field cannot be described as a mere ray-optical light wave.
The roles of mode degeneracy and symmetry in the Sagnac
effect, with applications to rotation sensing were explored in
Refs. [15,17–20]. Dichroism of rotating particles, in response
to the special excitation of impinging wave of circular polar-
ization and the corresponding scalar polarizability have been
explored in Ref. [21].

One way to classify the analytical approaches of the studies
mentions above is the frame of reference (FoR) used for the
governing theoretical formulation. At first glance the labo-
ratory inertial FoR RI may seem to be a natural choice.
However, if the system possesses a complex nonsymmetri-
cal structure with arbitrary rotation axis, then the analysis
in RI may become insurmountable, merely by the fact that
one needs to follow complex time-dependent geometries and
boundaries. Indeed, most of the studies above that were
formulated in RI are limited to highly symmetric particles—
bodies of revolution—rotating around their own symmetry
axis, thus alleviating the need to deal with time-dependent
geometries. The challenges associated with bodies of richer
inner structure or boundaries rigidly rotating around an ar-
bitrary axis at the angular velocity �, is more conveniently
addressed by formulating the problem in the rotating structure
rest FoR R�. This approach is invoked in Refs. [7,14,15,17–
20], where microstructures of arbitrary shape and rotation
axis were studied. We note that there is a class of important
applications that is naturally suitable for analysis in R�—
namely optical gyroscopes and inertial navigation systems, in
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FIG. 1. A 2D particle array of arbitrary geometry, and a source
that excites it, rotate rigidly at an angular velocity � = ẑ�. It con-
sists of electrically small dielectric scatterers located at an arbitrary
distances from the rotation axis z. The structure is observed in its rest
frame of reference (FoR) R�. We study the structure ED in R�.

which both the structure excitation and response measurement
are executed in the rotating platform. Furthermore, even if
the rotating system is intended to be excited and measured
by a source and/or an observer that are stationary in RI ,
the transformation of the incident/scattered field from RI to
R� and back can be done using standard explicit expressions
[22], while the significantly more difficult task of solving the
scattering problem itself—the heart of the matter—still can be
done in R� where it possesses static boundaries. We note that
the transformations RI → R� → RI may generate a set of
higher harmonics; then our formulation can be applied to each
of these harmonics independently, and sum up the results.

The goal of the present study is to develop a framework
governing the ED of two-dimensional structures and particle
arrays that undergo slow rigid rotation, in their rest FoR R�,
as shown schematically in Fig. 1. The structures consist of
arbitrary arrays of 2D dielectric microscatterers of arbitrary
cross section geometry, with arbitrary location of the rotation
axis. The incident fields or sources that excite the structure,
and the observation points, are all defined in R�. Thus, for
example, a point-source excitation corresponds to the field due
to a point source that rotates together with the structure. We
approach the problem via two routes. One is purely numeri-
cal, in which an exact solution for the scatterers polarization
currents is achieved. While this approach is robust, it becomes
impractical when the number of scatterers is very large. The
second route is based on the polarizability theory and discrete
dipole approximation adopted to hold in R�. First, the po-
larizability matrix of an individual scatter is investigated both
numerically and analytically, and its dependence on � and
on the distance from the rotation axis, is explored. Then, it
is used to formulate a discrete dipole approximation (DDA)
governing the response of an entire arbitrary array under rigid
rotation, in R�. This approach can handle the rotation of ar-
rays consisting of a very large number of scatterers. A critical
comparison between these two routes, and the ensuing study
of these structures, reveal the physical mechanisms underlying
the rotation-induced effects and their footprint on the structure
response. We define this response as the polarization currents
In, n = 1, . . . N excited in the N � 1 electrically small inclu-
sions consisting the structure. Specifically, we observe that

(1) The rotation footprint on the response is dominated by
the interferences of the large number of Sagnac loops created
by the multiple scattering events between the inclusions.

(2) The response magnitudes |In| may possess an intricate
nonmonotonic dependence on �. However, these magnitudes
are independent of the location of the rotation axis.

(3) The phases of In, n = 1, . . . N incorporate information
about the distance from the rotation axis through a linear
relationship. This is unlike the conventional Sagnac effect
where this information is not available at all.

(4) The sensitivity of the particle array response to rota-
tion depends on the background material. This effect even
contradicts the classical Sagnac effect that is known to be
independent of the background material [16]. It is attributed
to the multiplicity of independent and yet interfering Sganac
loops.

(5) The collective properties of periodic structures such
as the frequency stop-band and the resulting optical trans-
mission, become nonreciprocal. The effect of rotation
on these properties—in particular on the nonreciprocity
manifestation—depends on the structure’ geometrical sym-
metries.

(6) The response sensitivity under transverse magnetic
(TM) excitation is significantly higher than that of the trans-
verse electric (TE) excitation.

Clearly both routes—the numerical and the semianalyti-
cal DDA—require the development of analytic infrastructure
common to classical problems in applied EM, namely rigor-
ous Greens function theory in R� and boundary conditions,
and both will be discussed here. An exact spectral represen-
tation of the former has already been developed in Ref. [23];
we show below that it encapsulate the Sagnac effect, as well
as the instabilities induced by rotation discussed previously
within RI [5,6] and R� [7,8] formulations.

II. FORMULATION

We develop a formulation governing the ED of rigidly
rotating particle arrays (PA’s); the entire structure rotates at
an angular velocity � = ẑ� relative to the inertial frame RI .
Here and henceforth, a bold (overhat) letter denotes a vector
(a unit vector). We define the frame of reference R� as the
system at which the structure appears at rest. The z axis of
R� coincides with that of RI , and the coordinates in R�

normal to the rotation axis are denoted by ρ = x̂x + ŷy = ρρ̂.
We always observe the ED as seen in R�, and the corre-
sponding problem is termed here as the “R� problem.” The
specific case of R0 and the “R0 problem” corresponds to
� = 0 indicating that both the observer and the structure are
at rest in the FoR RI , rendering R0 and RI the same. Since
R� is noninertial for � �= 0, an observer at rest there sees
formally curved space-time. However, it can be considered
locally flat for distances D satisfying D � c2/A where A is
the acceleration of R� and c is the speed of light in vacuum
[24]. Here A = �2D that yields the slow rotation condition
�D � c. Our study is restricted to this regime.

We assume that the material in the corresponding R0 prob-
lem is characterized by the scalar permittivity ε(r) = ε0εr (r)
and permeability μ(r) = μ0μr (r). They can possess disper-
sion of arbitrary form as well as resonances, such as, e.g.,
in plasmonic materials. Under the slow rotation condition
articulated above, the R� problem is still governed by the
conventional set of Maxwell equations (ME) of R0 problem,
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where the rotation footprint is manifested only via the modi-
fied constitutive relations. Up to first order in � they are given
by [1]

D = εE − c−2(� × r) × H, (1a)

B = μH + c−2(� × r) × E. (1b)

Note that the rotation footprint in B, D is medium indepen-
dent (c is the speed of light in vacuum). For homogeneous
εr, μr and z-independent excitations the resulting set of ME
can be separated into independent TE and TM fields and rig-
orous 2D Green’s function can be obtained [23]. As shown in
Appendix A it can be extended to hold for nonhomogeneous
z-independent media, i.e., where ε = ε(ρ), μ = μ(ρ). For
convenience we summarize these results below. In both polar-
izations the complete EM field can be obtained uniquely from
a z-directed field Fz satisfying the modified scalar Helmholtz
equation (time dependence e−iωt is assumed and suppressed)(

τ∇t · 1

τ
∇t + k2

0n2

)
Fz − ik2

0�̄

(
∂θ + τ∂θ

1

τ

)
Fz = S, (2)

where �̄ = �/ω, k0 = ω/c, and n2 = εr (ρ)μr (ρ). In the
equation above only terms that are up to first order in � are
kept (see Appendix A).

The TE polarization consists of Hz = Fz, Et = x̂Ex + ŷEy

with τ = εr (ρ) and

iωεEt = JE
t − ∇t × ẑHz + i�̄k2

0ρHz (3a)

and with the source term

S = STE = −iωεJM
z − i�̄k2

0ρ · JE
t − ẑ · ε∇t × 1

ε
JE

t . (3b)

Likewise, TM consists of Ez = Fz, H t with τ = μr (ρ) and

iωμHt = JM
t + ∇t × ẑEz − i�̄k2

0ρEz, (4a)

S = STM = −iωμJE
z + i�̄k2

0ρ · JM
t

+ ẑ · μ∇t × 1

μ
JM

t , (4b)

where we have used the cylindrical system r = (z, ρ) =
(z, ρ, θ ). Clearly, for any scalar S, the fields can be ob-
tained via a superposition integral of the scalar Green
function G�(ρ, ρ′) defined as the impulse response of Eq. (2)
with S �→ −δ(ρ − ρ′) = −1

ρ ′ δ(ρ − ρ ′)δ(θ − θ ′). Note that for

a thin wire electric (magnetic) current JE = ẑIE
z δ(ρ − ρ′)

[JM = ẑIM
z δ(ρ − ρ′)] the excited field is only of the TM

(TE) polarization, with the electric (magnetic) field Ez =
iωμIE

z G�(ρ, ρ′) [Hz = iωεIM
z G�(ρ, ρ′)].

It has been shown in Ref. [23] that a complete and exact
expression for G� in a homogeneous medium is given by the
spectral summation

G�(ρ, ρ′) = i

4

∞∑
m=−∞

Jm(k0nγmρ<)H (1)
m (k0nγmρ>)eim(θ−θ ′ ),

(5)

where γm =
√

1 + 2m�/(ωn2) and ρ≷ = max
min(ρ, ρ ′). Below

we discuss some of its basic properties.

A. Nonreciprocity, rotation-induced gain, and a uniform
approximation of G�

The expansion in Eq. (5) is exact and contains the entire
spectrum of the problem, meaning it encapsulates all the phys-
ical effects that can take place. For example, rotation-induced
nonreciprocity is manifested by the Bessel and Hankel argu-
ments that depend nonsymmetrically on the sign of m� via
γm, leading to G�(ρ, ρ′) �= G�(ρ′, ρ). Rotation-induced gain
and instabilities are also presented. They are manifested by
the spatial harmonics that satisfy 2m� < −ωn2, rendering
γm imaginary and hence exponential growth of Jm and H (1)

m .
This is consistent with the observation in Refs. [5,8]. To esti-
mate the magnitudes of the exponentially growing harmonics,
assume that ρ > ρ ′ and that k0nρ ′|γm| � 1. Then these mag-
nitudes scale as

Jm(k0n|γm|ρ ′) 	 (k0n|γm|ρ ′)|m|

2|m||m|! . (6)

For applications in the optical frequencies (e.g., λ = 1 µm)
this number practically vanishes; even if � is in the GHz
domain, we get |m| = O(106). Thus, rotation-induced gain
in 2D optical PA of finite spatial extent is extremely hard to
observe. Note, however, that in the limit of low ω and 3D
structures operating in the quasistatic limit, such gain and
instabilities may be less difficult to observe. This is studied
in Ref. [7].

Finally, note that the rotation footprint in G� vanishes
if the source is located exactly at the rotation axis, i.e., if
ρ ′ = 0. In this case Eq. (5) reduces to the celebrated 2D Green
function for R0 problem. This does not mean, however, that
the rotation has no effect on the fields; � is still present in Et

(H t ) for TE (TM) polarization, as seen in Eq. (3a) [Eq. (4a)].
The presentation of G� in Eq. (5) has several practical

drawbacks. First, G�(ρ, ρ′) diverges logarithmically as ρ →
ρ′ (as any Greens function of a 2D PDE). This singular
behavior is not present in each of the summed terms above
(unless ρ ′ = 0). Thus, in the near fields as ρ → ρ′ the series
converges very slow. The second difficulty stems from the
fact that we are interested not only in near fields, but also
in far-field behavior to accommodate for nonlocal interac-
tions between remote particles. This requires the evaluation
of Jm, H (1)

m for large argument and order, that is also quite
difficult to attain in sufficient accuracy. In light of these is-
sues, and recalling that the spatial harmonics representing the
rotation-induced gain in the optical frequencies correspond to
extremely large m and is impractical here, one may limit m.
Thus, we approximate γm 	 1 + m�/(n2ω), that for practical
values of �/ω still holds for a large range of m, and apply the
addition theorem. This procedure was invoked in Ref. [23],
and it yields

G�(ρ, ρ′) = G0(ρ, ρ′)eik2
0 �̄ẑ·(ρ′×ρ), (7a)

where

G0(ρ, ρ′) = GST(ρ, ρ′) = i

4
H (1)

0 (k0n|ρ − ρ′|) (7b)

GST is the Green’s function of the R0 problem. Note that
the singularity of G� as ρ → ρ′ is fully encapsulated in GST,
since the other term is regular in this limit. This is quite ex-
pected since both the stationary and rotating medium Green’s
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functions satisfy a PDE that possesses exactly the same form
of the higher (second-order) derivatives—see Eq. (2)—and
therefore must have the same singularity. Despite its simplic-
ity, this expression provides a good approximation for the
rotating medium Green’s function. A detailed comparison is
performed in Refs. [23,25]. Furthermore, note that the rotation
footprint in Eq. (7a) is present only in the exponent that is
medium-independent, and the exponential term ẑ · (ρ′ × ρ) is
nothing but twice the area of the triangle whose vertexes are
ρ, ρ′ and the origin. Thus, this term eventually provides the
Sagnac effect [25]. In fact, Eq. (7a) is a uniform approxima-
tion of the exact expression in Eq. (5) as �/ω → 0, valid from
near to far fields, and it excludes only the rotation-induced
instability. This Green function is used throughout the rest of
this work.

Finally note the inversion, shift, and mirroring properties
of both the exact and the approximated G� in Eq. (5) and
Eqs. (7a) and (7b).

Inversion:

G�(ρ, ρ′) = G−�(ρ′, ρ) (8a)

that is equivalent to inversion of rotation.
Shift:

G�(ρ − ρ0, ρ
′ − ρ0) = G�(ρ, ρ′)eik2

0 �̄ẑ·[ρ0×(ρ′−ρ)]. (8b)

Mirroring: Let ρ̃ be the mirroring of ρ over a line that
passes though the origin (=rotation axis) at angle θ . We
have ρ̃ = Mθρ with M11 = −M22 = cos 2θ, M12 = M21 =
sin 2θ, ∀ θ . Then

G�(ρ̃, ρ̃′) = G−�(ρ, ρ′) (8c)

that again is equivalent to inversion of rotation. The proof of
this identity is straightforward; under mirroring G0 is invari-
ant, while ρ′ × ρ merely changes sign. Likewise, the proof for
G� in Eq. (5) is easily obtained by observing that the operator
Mφ leaves ρ, ρ ′ unchanged, but reverses the sign of θ − θ ′.
These relations are used below to deduce symmetry properties
of the ED of particle arrays.

B. Green’s Dyad

For infinitesimal current sources, the formulation in
Eqs. (3a)–(5) can be wrapped in a compact form via the Green
function dyad G�. The former are defined by

JE
t = IE

t δ(ρ − ρ′), JM
z = IM

z δ(ρ − ρ′) (9a)

for the TE case, and

JE
z = IE

z δ(ρ − ρ′), JM
t = IM

t δ(ρ − ρ′) (9b)

for the TM case. Then, the fields at ρ due to these currents are
given by

F(ρ) = G�(ρ, ρ′)I, (10)

where

F = (Fz, Ft )
T =

{
(Hz, Et )T , TE,
(Ez, H t )T , TM,

(11a)

likewise,

I = (Iz, It )
T =

⎧⎨
⎩

(
IM
z , IE

t

)T
, TE,(

IE
z , IM

t

)T
, TM,

(11b)

and where G�(ρ, ρ′) is given by

G� =

⎧⎪⎪⎨
⎪⎪⎩

(
iωε L′

−L i
ωε
LL′

)
G�(ρ, ρ′), TE,

(
iωμ −L′

L −i
ωμ

LL′

)
G�(ρ, ρ′), TM,

(11c)

with

L = ∇t × ẑ − i�̄k2
0ρ, L′ = ∇′

t × ẑ + i�̄k2
0ρ

′. (11d)

C. Boundary and continuity conditions for R� problem
and numerical solutions

The boundary and continuity conditions (BCs) for the
fields follow directly from ME. Since the rotation footprint
appears only via the constitutive relations in Eqs. (1a) and
(1b), it follows that the BCs for the tangential E and H in R�

problem are precisely the same as those for the conventional
R0 problem, thus they do not carry any effects of �. The
normal components BCs may carry such an effect, as they
satisfy (see Appendix B for details)

n̂ · (ε1E1 − ε2E2) = ηf − c−2�ρθ̂ · Kf, (12a)

n̂ · (μ1H1 − μ2H2) = 0, (12b)

where ηf, Kf are the surface densities of the free electric
charge and current. It is interesting to note that the rotation has
no effect on the BCs for normal μH (not B) for R� problem.
Furthermore, the only presence of rotation in the BCs for nor-
mal εE is via the last term on the right of Eq. (12a). This term
vanishes if the boundary cannot support free electric current.
Therefore, if the structure consists of dielectric materials only,
then it follows that the BCs for the complete E and H fields
are the same as in conventional R0 problems. The practical
importance of this observation cannot be overemphasized; it
means that one may use conventional legacy numerical codes
developed initially for R0 problems (such as the method of
moments [26]), and apply them to solve R� problems merely
by replacing the Green function with the one provided here in
Eq. (5) or Eq. (7a). This approach is applied in the examples
below.

D. Scattering and polarizability theory in R�

The response of a scatterer to an incident field consists
of electric and magnetic polarization currents only. These are
given by JEP = −iωP and JMP = −iωμ0M, where P, M are
the electric and magnetic polarization densities, respectively.
In conventional R0 problems they are related to D, B via
D = ε0E + P and B = μ0(H + M). In R� problems these
relations do not hold since the �-dependent components in
Eqs. (1a) and (1b) are in fact a result of space-time transfor-
mation of the fields and do not contribute directly to actual
radiation. This fundamental property is derived and pointed
out in Ref. [1] by using an electron-theoretic analysis in
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FIG. 2. (a) A single scatterer of homogeneous material εs and
cross section area A of arbitrary shape, embedded in a background
homogenous medium εb. The scatterer center of mass location ρc

is arbitrary. The entire structure (scatterer and background) rotates
rigidly around the origin at angular velocity � = ẑ�. We observe it at
its rest FoR R�. (b) Canonical examples of symmetries with respect
to the rotation axis. The rotation footprint on σ TM

zz (σ TM
zρ ) is always

second (first) order in �. However, the footprint on σ TM
zθ is second

order in � for scatterers possessing reflection symmetry across the
line ρc, scatterers #1,2, and first order in � for scatterers lacking
this symmetry, e.g., scatterers#3,4 for β �= 0, π/2 (see details in
Appendix D).

noninertial FoR. The polarization densities that generate po-
larization currents are [1]

P = D − ε0E + c−2(� × r) × H, (13a)

μ0M = B − μ0H − c−2(� × r) × E, (13b)

that together with Eqs. (1a) and (1b) yield JEP = −iωε0χeE
and JMP = −iωμ0χmH , identical in form to the R0 polariza-
tion currents. The rotation footprint is manifested implicitly
only, through the dependence of E, H on �. Consider now a
scatterer made of a material with χ s

e , χ
s
m embedded in a homo-

geneous background with χb
e , χb

m. The polarization currents
that radiate the scattered fields are given by

JEP
rad = −iωε0

(
χ s

e − χb
e

)
E, (14a)

JMP
rad − iωμ0

(
χ s

m − χb
m

)
H, (14b)

where E, H are the full EM fields in the presence of the
scatterer. These polarization currents are spatially limited to
the domain of the scatterer, and radiate in the background
medium. A scattering problem can be effectively represented
by Eqs. (2)–(4b) written for the background medium and with
the currents above used to synthesize the sources STE, STM.
As we show below, this is consistent with an independent and
exact solution procedure of Eqs. (2)–(4a).

Consider the homogeneous scatterer shown schematically
in Fig. 2, with cross-section area A and center of mass ρc
defined via ∫

A
(ρ − ρc)ds = 0. (15)

If the scatterer is electrically small, then we can relate its
spatially averaged internal fields (F̄z, F̄t ) = (H̄z, Ēt ) [or =
(Ēz, H̄ t )] for TE (or TM), to the incident fields at the scatterer
center of mass ρc, namely F i

z (ρc), F i
t (ρc). We express this

relation via the internal scattering matrix σ(�, ρc)(
F̄z

F̄t

)
=

(
σzz σzt

σtz σtt

)(
F i

z

F i
t

)
. (16)

σ can be obtained either numerically by using conven-
tional codes developed initially for solving R0 problems (see
Sec. II C) or by approximate analytical methods; both are
examined below. It depends not only on the scatterer “conven-
tional” properties (e.g., geometry, material, etc...) but also on
� and ρc; the latter signifies its location with respect to the ro-
tation axis. A word of caution is in order. The above formally
holds if σ is written in a coordinate system that is not curved,
at least locally. A cartesian system is appropriate. Since R�

problems conform naturally with the cylindrical system it
may be more convenient to use the latter, if the scatterer
transverse dimensions (e.g., diameter) are much smaller than
its distance from the rotation axis. Without loss of generality,
assume it is located on the x axis. Then within the scatterer
cross-section x̂ 	 ρ̂, ŷ 	 θ̂. For an electrically small scatterer
this assumption is reasonable, unless its center coincides with
the rotation axis. In the latter case the rotation-induced effects
are vanishingly small (see below). Under these assumptions,
the scatterer polarizability matrix α that relates the incident
fields to the net currents is

α = −iωAζσ, (17a)

where A is the scatterer cross-section area, and with

ζ =
{

diag(μ0�χm, ε0�χeI2), TE,
diag(ε0�χe, μ0�χmI2), TM.

(17b)

Here I2 is the 2 × 2 identity matrix, and �χe,m = χ s
e,m − χb

e,m.
Consider now the structure shown in Fig. 1. In consists of

N scatterers, with center of mass locations ρn and polarizabil-
ities αn, n = 1, . . . N . The latter may depend on � as well as
on ρn due to the rotation, via the corresponding dependence of
σn. The structure response to an incident field F i is governed
by

In = αn

N∑
m �=n

G�(ρn, ρm)Im + αnF i(ρn), n = 1, . . . N, (18)

where In are the polarization currents excited in the nth scat-
terer, defined in accordance to Eq. (11b). Below we study this
formulation for dielectric structures.

III. TM EXCITATION

A. Electrically small scatterers

Since the structure is dielectric only, we have �χm = 0 and
no magnetic polarization currents exist. Furthermore, we have

αTM = −iωAε0�χe

(
σ TM

zz σTM
zt

0 0

)
. (19)

Then the formulation in Eq. (18) reduces to (spatially aver-
aged internal fields are assumed, and the over-bar is ommitted
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for convenience)

IEP
z n = − iωCn

N∑
m �=n

(
iωμσ TM

zz n + σTM
zt n · L)

G�(ρn, ρm)IEP
z m

− iωCn
[
σ TM

zz n E i
z (ρn) + σTM

zt n · H i
t (ρn)

]
, (20a)

where

Cn = Anε0(�χe)n. (20b)

The term LG�(ρn, ρm) in Eq. (20a) is in fact the transverse
magnetic field H t at ρ = ρn due to a ẑ-directed unit electric
current at ρ′ = ρm. It is given explicitly in Appendix C. σ TM

zz n
and σTM

zt n are the σ matrix components that correspond to the
nth scatterer, constituting the crucial part of the polarizability
operator α. It is interesting to note that σzt represents the cou-
pling between the incident Ht and the scatterer’s internal Ez.
In R0 problems this element vanishes if the scatterer is elec-
trically small and nonmagnetic (i.e., if �χm = 0). However,
as we show below in R� problems it is formally non zero—
albeit perhaps small—due to the inherent rotation-induced
electric-magnetic coupling. This coupling has been observed
even for static fields in R� problems [7]. Below we turn to
study the scattering matrix σ (and consequently, the polariz-
ability α) and its components for an individual scatterer.

We assume that the scatterer of arbitrary cross section area
A(ρc) is made of a uniform dielectric material with suscepti-
bility χ s

e = εs
r − 1, embedded in a homogeneous medium with

χb
e = εb

r − 1, and with center of mass ρc. From Eq. (2) Ez

satisfies the integral equation

Ez(ρ) = Ei
z (ρ) + k2

0C
∫

A(ρc )
G�(ρ, ρ′)Ez(ρ′)ds′, (21)

where C = n2 − n2
b = μr�χe is the scatterer contrast, and

G�(ρ, ρ′) is the background medium Greens function, i.e.,
it is given by Eqs. (7a) and (7b) with the refraction index
n = nb = √

μrεb
r . Note that the role of ρc in the area A is

significant since G�(ρ, ρ′) is not shift-invariant. This exact
integral equation, that follows rigorously from Eq. (2), shows
that the radiating current that generates the scattered field is
indeed given by Eq. (14a).

Since the scatterer is electrically small, any electric field
quantity (whether incident or total) Ez is approximately uni-
form within A(ρc). The local spatial variations of Ez within
the scatterer cross section can be expressed effectively via
the corresponding local Ht . To correctly capture the rotation
footprint on both Ez, H t and hence on σ TM

zz and σTM
zt , we

endeavor to establish an �̄-induced point-wise connection
between Ez(ρ) and Ei

z (ρc), H i
t (ρc). This relation is derived

in Appendix D, resulting in the explicit expressions for the
scattering matrix in Eqs. (D4a)–(D4c). We also study the
dominant behavior of σ TM

zz and σTM
zt in terms of a power series

in �. Its importance is twofold. It indicates which entry of
σTM may potentially be important in the limit of slow rotation
(e.g., second-order terms are negligible). Furthermore, �2 is
insensitive to rotation direction, while � dependence changes
sign when direction is reversed, meaning it senses direction;
the power-series study reveals novel physical properties.

Examples based on exact computations of Eqs. (D4a)–
(D4c) are shown in Fig. 3. The results are consistent with

FIG. 3. Entries of the scattering matrix σTM vs �̄, for dielectric
cylindrical scatterers with radius a = 0.02 µm and εs = 11.4 in a
vacuum background and for λ = 1 µm. ρc is the distance of the scat-
terer center from the rotation axis. The results were obtained using
the explicit analytic expressions in Eqs. (D4a)–(D4c). (a) |σ TM

zz |. For
� = 0 it reduces to the scattering matrix value of the corresponding
R0 problem. The rotation footprint is second order in � and its effect
on σ TM

zz is O(10−7) relative to its R0 value. (b) |σ TM
zθ |. (c) |σ TM

zρ |.
(d) The phase of σ TM

zρ in radians.

the general predictions derived in Appendix D. As seen from
the analysis and the figures, the rotation footprint on σ TM

zz
and on σ TM

zθ is second order in �ρc for circular cylinders,
thus negligible in the limit of slow rotation. We note that this
second-order dependence holds also for the phase of σ TM

zz (not
shown). The rotation footprint on σ TM

zρ is linear with �, thus
representing a new rotation-induced physical effect. Further-
more, it affects the magnitude only, while the phase of σ TM

zρ

is independent of � or ρc. The π phase jump across �̄ = 0
indicates that this response is indeed essentially a straight
line passing through the origin, and thus it is sensitive to the
rotation direction. However, up to �̄ = 5 × 10−5 with λ =
1 µm, the corresponding rotation rate is about 15 GHz, far be-
yond realistic frequencies for a PA structure. For ρc = 100λ,
that correspond to linear speed of O(0.03c), this footprint
is O(10−2). A realistic comparison to |σ TM

zz | should be done
with the normalized value η−1|σ TM

zρ | so both elements have
the same physical units. For realistic rotation rates the effects
of the latter is well below 10−5 compare to the former. Thus,
although novel, it is generally too weak to have a significant
impact on a PA response.

The above observations do not necessarily mean that the
rotation does not have a significant effect on a rotating struc-
ture that consists of a large number of electrically small
inclusions. We show below that the effect of rotation is mani-
fested essentially via the propagation of the multiply scattered
fields inside the structure.

Figure 4 shows the same as Fig. 3, for a dielectric scat-
terer of rectangular shape with dimensions of 42 × 8.4 nm2

and the same material and wavelength, but for two different
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FIG. 4. Entries of the scattering matrix σTM vs �̄, for a dielectric
scatterer of rectangular shape with dimensions of 42 × 8.4 nm and
εs = 11.4 in a vacuum background and for λ = 1 µm. ρc is the dis-
tance of the scatterer center from the rotation axis. The results were
obtained using the explicit analytic expressions in Eqs. (D4a)–(D4c).
(a–c) |σ TM

zz |, |σ TM
zθ | and |σ TM

zρ |, when the larger dimension is normal
to ρc. (d–f) The same as panels (a–c) but with inclination angle
β = π/6. Breach of symmetry with respect to ρc results in first-order
dependence of σzθ on �.

inclinations with respect to ρc. It is seen that breach of sym-
metry with respect to the latter indeed changes fundamentally
the dependence of σzθ on �—it becomes first order in �.
However, the rotation footprint on the scattering parameters
is still too small to be significant in realistic rotation rates of
PAs.

We turn to demonstrate the main features of σTM(�̄, ρc)
by using a purely numerical approach. As pointed out in
Sec. II C, legacy codes can be adapted to solve R� problems
merely by replacing the Green function routine. Here we use
the volumetric method of moments (MoM) to obtain numer-
ical solutions of integral equations of the type presented in
Eq. (21)—see Ref. [26] for details of this approach. From
the set of numerical solutions to different excitations one
may extract the scattering matrix entries. Since the rotation
footprint numerical values are widely separated, spanning a
large range of orders, we exercise special care to stabilize
the computation by applying suitable preprocessing and post-
processing procedures. Details are provided in Appendix E.
Figure 5 shows the results for the same scatterer of Fig. 3.
There is a mutual consistency with respect to the general
properties of the rotation footprint and numerical agreement
within the range of 10–25%.

FIG. 5. The same as described in the caption of Fig. 4, but as
obtained by the volumetric method of moments numerical approach
in conjunction with the procedure described in Appendix E.

B. Particle array dynamics

The electrodynamics of an array consisting of a large num-
ber of electrically small 2D scatterers can now be studied
using the formulation in Eqs. (18)–(20b), with σTM(�, ρc)
and α(�, ρc) discussed in Sec. III A. Although their
dependence on � and ρc can be somewhat simplified by
the power-series approach discussed there, it may pose a
significant practical challenge when dealing with structures
consisting of a large number of inclusions and attempting to
compute α(�, ρc) individually for each one. This difficulty
may be alleviated if the contribution of α(�, ρc) to the ro-
tation footprint on the PA response is subdominant compare
to that due to the inter-particle propagations as manifested by
G�. Then α(�, ρc) can be replaced by its value in the cor-
responding R0 problem, namely α(0, 0), without significant
effect on the rotation-induced dynamics. Then the formulation
in Eqs. (18)–(20b) reduces to

In = iωμαn

N∑
m �=n

ImG�(ρn, ρm) + αnE i
z (ρn),

n = 1, . . . N, (22)

where αn is the scalar polarizability of the nth inclusion in the
R0 problem. In the above formulation rotation is manifested
only via G�. We tested the simplified formulation in Eq. (22)
and compared it to exact numerical simulations using two in-
dependent numerical methods. The first is the aforementioned
volumetric MoM used in the previous subsection. The second
is the multifilaments methods [27]—a special variant of the
method of moment. As mentioned in Sec. II C, legacy codes
can be adapted to solve R� problems merely by replacing
the Green function routine—as has already been applied suc-
cessfully in Ref. [15] to study rotating photonic crystals. The
array is shown in Fig. 6(a). The total number of scatterers is
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FIG. 6. Rotating array response in R�. (a) The array geometry.
The cylinders properties are the same as those of Fig. 3. The red
circle shows the cylinder with the highest sensitivity to rotation in
the limit of � → 0. (b) The electric field in the cylinders centers,
using three different and independent computations; the volumetric
method of moments (MoM), the method of filaments (Fil), and the
polarizability theory approach in Eq. (22) (Pol) where α is the R0

problem polarizability (i.e., α of nonrotating scatterers). (c, d) Zoom
into the indicated regions.

relatively small to keep the full-wave numerical solutions
within reasonable computation times. Thus, we have N = 15
dielectric cylinders with the same parameters as those of
Fig. 3. To concentrate our attention on the rotation-induced
effects only, we minimize any long-range order effects by
choosing an array that is not periodic nor quasiperiodic. The
golden angle spiral is such an array that was previously stud-
ied in photonic crystal applications [28]. The nth particle
location is given by the cylindrical coordinates (ρn, φn) =
(a0

√
n, nφ), where φ = 8π/(1 + √

5)2 is the Golden An-
gle. a0 is an arbitrary reference distance here chosen to be
a0 = 200λ. The structure is excited by a ẑ-directed electric
line source at the origin, with λ = 1 µm. Figures 6(b)–6(d)
show the absolute value of the electric field excited at the
center of each cylinder, as a function of the normalized ro-
tation rate �̄ = �/ω, obtained by using three independent
methods; the two independent numerical methods and the
reduced formulation of polarizability theory (Pol) in Eq. (22).
Excellent agreement between the methods is evident, over the
extremely large range of rotation rates. This internal electric
field is related to the cylinders polarization current densities
via Eq. (14a). It is of interest to zoom into the range of
extremely small rotation rates. Figure 7 shows |In(�)| nor-
malized to their respective values at � = 0 (or the electric
fields). Generally, the response is a complex and nonsym-
metric function of �, but as � → 0 it becomes linear. This
behavior suggests to define the array sensitivity to rotation as

FIG. 7. Rotating array response in R� normalized to their values
at � = 0. Note the linear behavior at the origin. The cylinder with the
largest slope satisfies Eq. (23). It is marked by a red circle in Fig. 6.

the maximal slope at � = 0,

S = max
n=1,...N

lim
�→0

1

�̄

∣∣∣∣ In(�)

In(0)
− 1

∣∣∣∣, (23)

where, to avoid extreme values due to division by vanishing
currents, we exclude all cylinders with |In| smaller than 1%
of the average current in the array. This sensitivity figure may
form a basis for a new class of metamaterial based rotation
sensors, as explored in Ref. [29].

Since the solution of Eq. (22) with αn of the corresponding
R0 problem agrees so well with the full wave exact nu-
merical solutions, we conclude that the reduced formulation
in Eq. (22) carries the essential physics of particle arrays
ED in R� problems for any practical rotation rate and for
electrically small inclusions. This formulation can be used to
study analytically the effect of rotation axis shift. Consider the
system shown in Fig. 8. An array with scatterers locations ρn
is excited by a line current source Is at ρ′. Thus, it is governed
by

anIn −
N∑

m �=n

G�(ρn, ρm)Im = G�(ρn, ρ
′)Is, (24a)

FIG. 8. Shift by ρs of the entire array and the exciting source.
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FIG. 9. The normalized currents for different background index
(a) εr b = 0.2. (b) εr b = 3.

where an = (iωμαn)−1. If the structure and the source are
shifted by ρs, then the new currents Is

n are governed by

anIs
n −

N∑
m �=n

G�(dn, dm)Is
m = G�(dn, d ′)Is, (24b)

where dn = ρn − ρs and d ′ = ρ′ − ρs. Using now Eq. (8b) it
is straightforward to show that In and Is

n are related by the
diagonal transformation

Is
n = Ineik2

0 �̄ẑ·[ρs×(d ′−dn )], ∀ n, (24c)

that is phase-only. Hence, the currents magnitude is invariant
with respect to the rotation axis; |In| = |Is

n| ∀ n. This was veri-
fied by numerical simulations. Figures 6(b)–6(d) that show |In|
is invariant with respect to the location axis. The transforma-
tion in Eq. (24c) reveals an appealing property; a metamaterial
based rotation sensor can be used not only to extract the
rotation rate and its direction as seen from Fig. 7 and Eq. (23)
[29], but once � is determined one may use Eq. (24c) to
extract the distance from the rotation axis by measuring the
currents relative phases.

It is interesting to contrast the result in Eq. (24c) with the
phase of the response of a single inclusion—see Fig. 3 and the
pertaining discussion in Sec. III A. While the latter is second
order in �ρc, the former is linear with �ρ0.

The transformation in Eq. (25c) carries on also to the scat-
tered field Ez(ρ) at any observation point ρ. These fields, in
the original and in the shifted system are given, respectively,
by

Ez(ρ) = iωμ
∑

n

InG�(ρ, ρn), (25a)

Es
z (ρ − ρs) = iωμ

∑
n

Is
nG�(ρ − ρs, dn). (25b)

Using Eqs. (24c) and (8b) in Eq. (25b) leads to

Es
z (ρ − ρs) = Ez(ρ)eik2

0 �̄ẑ·[ρs×(ρ′−ρ)], ∀ ρ. (25c)

It is also interesting to note that this relative phase is inde-
pendent of the background material index nb. The background
material, however, does affect the PA sensitivity to rotation.
Figure 9 shows the normalized response currents for low index
background (a) and for high index background. The slopes
and hence the sensitivity S in Eq. (23) decrease (increase)
when the background refraction index increases (decreases).

To conclude the above observations note the following
interesting points.

(1) The rotation footprint is almost exclusively dominated
by the propagations taking place between the multiple scat-
tering phenomena, presented rigorously by G�. It has been
shown that G� is consistent with the Sagnac effect [25],
and reconstructs the celebrated Sagnac phase shift φs within
any closed loop of scattering events. Furthermore, φs is in-
dependent of the rotation axis location, and of the medium
properties. This is consistent with the observations made in
Eqs. (24a)–(24c).

(2) The system sensitivity depends on the background re-
fraction index. This is in contrast to the classical Saganac
shift φs. However, it is also known that the rotation-induced
shifts of the resonance frequencies of rotating closed loops
do depend on their refraction index, as seen in conventional
ring-laser gyroscopes (RLG’s) [30]. It is the result of the
infinite multiplicity of interferences of the waves resonating
in the structure. Thus, one may conclude that the internal ED
of rotating particle arrays is dominated by the multiplicities
of Sagnac loops created within the structure and their mutual
interferences on two levels: first, between a large number of
different loops (that are met on each scatterer), and second, on
the self-interference and resonances of a loop that is repeating
itself within the structure. This picture is further explored in
Ref. [29].

(3) The system response is a highly nonsymmetric and
nonmonotonic function of �. In the limit of slow rotation,
however, the response of each scatterer is linear with � and
it can be used to determine the sign of � and its value. Unlike
the conventional Sagnac effect, however, here the information
of the rotation axis location can also be extracted.

C. Resonances and collective effects

In the previous sections we dealt with electrically small
scatterers that are far from their internal resonances, and with
arrays that do not possess any strong collective resonance
effects within the range of parameters shown. Here we turn
to study the effect of rotation on the resonance of the single-
inclusion scattering matrix, e.g., σ TM

zz , and on the collective
effect of stop-band in a finite-size photonic crystal (PhC)
structure.

The cylinders with moderate dielectric contrast studied
in previous sections possess wave resonances at higher fre-
quency and/or contrasts. To explore the rotation-induced
effect on such resonances we have used the formulation devel-
oped in Appendix D for cylinders of the same radius of a =
0.02 µm but with εrs = 20. The results are shown in Fig. 10.
Figure 10(a) shows σ TM

zz versus k0a for the corresponding
R0 problem (no rotation, laboratory frame). The resonance
frequency is rigorously defined as the frequency at which
�{σ TM

zz } = 0. Figure 10(b) shows the resonance frequency in
terms of k0a versus �/ω∗ for various values of ρc, where ω∗ is
the frequency corresponding to λ = 0.5 µm. It is seen that the
rotation-induced shift of resonance is second order in both �

and ρc. This dependence is in fact a direct result of the second-
order dependence of the function ψ and the pertaining anal-
ysis in Appendix D and Eqs. (D3)–(D7). Furthermore, within
the range of parameters tested here, the shift is considerably
smaller than the natural line width of the resonance itself seen
in Fig. 10(a). Thus, the effect of rotation on the microscopic
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FIG. 10. The effect of rotation on the resonance of a single
cylindrical scatterer with εrs = 20. (a) σ TM

zz without rotation. The res-
onance occurs at �{σ TM

zz } = 0. (b) Shift of the resonance frequency
vs rotation rate for several values of ρc. ω∗ is the optical frequency
corresponding to λ = 0.5 µm.

wavelike resonances is relatively weak. The case of quasistatic
LC-like resonance under rotation is studied in Ref. [7].

The effect of rotation on the collective properties of a
periodic particle array is studied next. Due to the specific
r-dependent constitutive relations in Eqs. (1a)–(1b) the con-
ventional Floquet-Bloch theorem and the ensuing band theory
formally do not hold and cannot be used to solve our wave
equation (2) even if ε(r), μ(r) are perfectly periodic. How-
ever, for finite-size PhC structure the stop-band still survives
and can be observed in R� problems. Furthermore, the in-
herent nonreciprocity of R� affects the band-gap in a unique
way.

We used the formulation in Eq. (22) to explore the rotation-
induced effects on the band-gap of the finite PhC shown
in Fig. 11(a). It consists of 27 × 11(x × y) dielectric cylin-
ders of radius a = 0.1 µm and εrs = 11.4, arranged on a
square lattice with period of 0.375 µm. The structure center
is at the origin, coinciding with the rotation axis. The exter-
nal points P1 = (x1, y1) = (0,−5) µm and P2 = (x2, y2) =
(1, 6) µm are used interchangeably for source and observation

FIG. 11. The effect of rotation on the collective properties of a
finite photonic crystal. (a) The PhC structure and the interchanging
source/observation points. The PhC possesses mirroring symmetry
over the dashed lines. P̃2 is the mirroring of P2 over the y axis. (b) S12

and S21 vs the optical wavelength for several values of �/ω∗ where
ω∗ corresponds to λ = 1 µm. When � �→ −� the curves S12 and S21

interchange. The same happens when P2 is replaced by its mirror
image P̃2. |Si j | are independent of the rotation axis location.

locations. The reason for the asymmetric placement of P2
becomes clear below. We define Si j (�) as the field measured
at Pi due to a point source at P j in the presence of the PhC—
the R� problem, normalized to the reference field Eref that
is the same quantity but in the absence of the PhC and with
no rotation at all (R0 problem, no PhC). Figure 11(b) shows
20 log10 |S12| and 20 log10 |S21|, for �/ω∗ ranging between
0 and 4 × 10−5. Here ω∗ is the frequency corresponding to
λ = 1 µm. At � = 0 the lines of S12 and S21 coincide due to
reciprocity. For � > 0, S12 red-shifts (slides rightward, shown
in red) and S21 blue-shifts (slides leftward, shown in blue),
at a rate that is linear in �. In addition, the deepest point
in S12 (S21) becomes deeper (shallower) as � increases. At
the deepest point of S12 there is nearly an order of magnitude
difference between S12 and S21 for the largest � shown. The
magnitudes of Si j are independent of the rotation axis, as
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FIG. 12. The same as Fig. 11(b) for identical range of rotation
rates, but different source and observation points. (a) S13 and S31

for the points P1 = (0, −5) µm, P3 = (0, 6) µm shown in Fig. 11(a);
both points reside on the same PhC mirroring symmetry line. Con-
sequently, the transmission is symmetrical and is not affected by
rotation. (b) S45 and S54 for the points P4 = (−2,−3.5) µm, P5 =
Mπ/2M0P4 = (2, 3.5) µm shown in Fig. 11(a). Again, the transmis-
sion is symmetrical and is not affected by rotation.

predicted by Eq. (25c) and tested numerically for the same
structure but with a rotation axis shifted 500 µm leftward.

1. Symmetries

Several general symmetries of the rotation-induced PhC
dynamics can be deduced directly from Eqs. (8a)–(8c) and
Eqs. (24a)–(25c), in conjunction with the matrix form of
Eq. (22) whose entries are nothing but G�(ρn, ρm). These are

(1) Due to the inversion property in Eq. (8a), upon revers-
ing the rotation direction � �→ −� the lines of S12 and S21

precisely interchange.
(2) The PhC structure discussed above is symmetric under

mirroring over the y axis. Then for any pair of the PhC points
Eq. (8c) holds with Mθ = Mπ/2. Define E�(Pi, P j) as the
field at Pi due to a source at P j, for rotation rate �. Then

E�(Pi, P j) = E−�(P̃i, P̃ j). (26a)

In the example in Fig. 11(a) P1 resides on a mirroring
symmetry line, so P̃1 = P1. Thus, by replacing P2 by its
Mπ/2 mirror image P̃2, the transmissions S12 and S21 precisely
interchange.

(3) If P2 is shifted to the y axis, then P2 and P̃2 coalesce
to a single point P on the axis. It follows then that

E�(P1, P) = E−�(P1, P) = E−�(P, P1), (26b)

whose only admissible solution, up to first order, is
E�(P1, P) = E0(P1, P) ∀�. Thus, if both source and ob-
server reside on the line of the PhC mirror symmetry, then
� has no effect on the transmission properties and the asym-
metry disappears. An example is shown in Fig. 12(a).

(4) Equation (8c) holds for multiple mirroring over differ-
ent lines. Any even number of operations leaves the rotation
footprint in G� unchanged. We generally have

Mθ1 Mθ2 = R2(θ1−θ2 ), (27)

where Rθ is a rotation by θ . Of particular interest are the
two consecutive mirroring about the two lines of symmetry
of the PhC; the y and x axes that correspond to Mπ/2 and M0,
respectively. Mπ/2M0 yields an inversion through the center,
that amounts to rotation by π . Let P3 and P4 two points
satisfying P3 = Mπ/2M0P4. Then, from Eq. (8a), Eq. (8c),

and the fact that our PhC structure is invariant under Mπ/2M0,
we have

E�(P3, P4) = E�(Mπ/2M0P3, Mπ/2M0P4)

= E−�(P4, P3), ∀�, (28)

whose only admissible solution up to first order is
E�(P4, P3) = E�(P3, P4) = E0(P3, P4) ∀�. Thus, if both
source and observer are precisely interchangeable under an
even number of mirroring operations over mirror-symmetry
lines, then � has no effect on the transmission properties and
the asymmetry disappears. An example is shown in Fig. 12(b).

IV. TE EXCITATION

Symmetry between TE and TM polarization exists only
under the interchange ε ↔ μ. If the structure remains dielec-
tric, then such symmetry cannot be exploited. Unfortunately,
for dielectric structures Eq. (2) cannot be converted to a pure
integral equation of the form of Eq. (21), but to an integrod-
ifferential equation. Then, the scattering matrix σ (and hence
the polarizability matrix α) cannot be studied by invoking the
same tools; it will be addressed in a separate study. However,
the results for TM polarization suggests that also in the TE
case one may use the R0 problem polarizability and still
convey the fundamental physics associated with the rotation
of the entire MM structure, and with practically no sacrifice
of accuracy.

From Eqs. (14a) and (14b) it follows that the radiating
current is still due to the electric polarization. However, as
in the R0 case, this current is a vector in the (x, y) plane thus
α is a 2 × 2 matrix. The Fz ≡ Hz component in the general
formulation in Eq. (18) can be omitted, leaving only the
transverse fields Ft ≡ Et . Likewise, only the 2 × 2 diagonal
block of G� in the TE branch of Eq. (11c), i.e., i

ωε
LL′,

survives. For isotropic scatterers α = αI2 where α is a scalar
and I2 is the 2 × 2 identity, and for circular cross section we
have α = −8ib1/(ωμ0) where b1 is the Mie series expansion
coefficient of the first-order cylindrical harmonic function
H (1)

1 (k0nsρ) cos θ in the expansion of the scattered magnetic
field.

We use this formulation to test the response of the ro-
tating array shown in Fig. 6(a), under TE excitation. For a
fair comparison, the exciting source is a ẑ-directed magnetic
line source at the origin, with λ = 1 µm, thus generating an
essentially isotropic Hz. The corresponding E i

t for each of the
cylinders is shown in Fig. 13, as derived in Appendix C. For
a reference, the currents obtained from the reduced polariz-
ability theory are compared to an exact full-wave numerical
solution based on the multifilaments method, as in the TM
example. Since an integral equation of the form of Eq. (21)
is not available in TE, we didnot pursue a volumetric MoM
solution. The results are shown in Fig. 14. There is an excel-
lent agreement between the methods.

Note that the rotation-induced fluctuations of |In| in the TE
case are orders of magnitude smaller than in the TM case;
they are below the graphical resolution of Fig. 14 but can be
observed by zooming in. Furthermore, a close examination of
the results reveals that In change direction monotonically as
a function of � as seen in Figs. 14(c) and 14(d). This effect,
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FIG. 13. The incident electric field at each of the cylinders, for
the array in Fig. 6(a) in the TE case. (a) |E i

t |. (b) Its transverse
components.

however, is merely induced by the change of strength and di-
rection of the incident electric field E i

t as a function of �; see
Fig. 13. This is also the reason for the apparent slight increase
of the currents at higher rotation rates. Hence, fluctuations of
In as a function of � due to the array TE-internal dynamics,
are significantly smaller compared to those for the TM case.

We have observed the same dynamics in more simulations
and with other arrays; the rotation sensitivity of the TE case
is generally inferior to that of the TM case. An explanation
of the physics behind this phenomenon, that is consistent with
the picture of excitation of Sagnac loops in the particle array
and their mutual interferences as described in points #1 and #2
in Sec. III B, is schematized in Fig. 15. In TM, the polarization
current excited in a scatterer is ẑ directed hence it radiates
isotropically in the (x, y) plane, maximizing the potential for
excitation of Sagnac loops. In the TE case the polarization
current is parallel to the (x, y) plane, thus possessing a non-
isotropic radiation pattern in that plane, that maximizes at the

FIG. 14. The polarization current for the same array as in
Fig. 6(a), but for TE excitation. (a) |In|. (b) Zoom into the selected
domain. The relative vertical scales are the same as the corresponding
graphs in Fig. 6. The rotation-induced fluctuations in the response
currents are orders of magnitude weaker than those for TM excita-
tions. (c), (d) The polarization current x, y components.

FIG. 15. Potential excitation of Sagnac loops. (a) The TM case.
The polarizarion current is normal to the (x, y) plane, thus each
scatterer radiates isotropically in the plane and excites all its neigh-
bors. (b) The TE case. The polarization current is parallel to the
(x, y) plane and radiates as a short dipole that possesses a selective
radiation pattern. Consequently, less neighbors are excited.

broadside direction, and nullifies in end fire; a sequence of
broadside scatterings cannot close a loop. Then the number of
Sagnac loops that can be excited and their excitation intensity
are reduced. We note that this phenomenon is not idiosyn-
cratic to the two-dimensionality of our system. The picture
described in Fig. 15 holds also when the structure is finite in
the ẑ direction. The TM excitation with respect to the rotation
plane, would possess a superior sensitivity to rotation also in
full 3D structures.

V. CONCLUSIONS

We developed a 2D theory governing the rest-frame
electrodynamics of rotating scaterrers and particle arrays.
Specifically, a formulation governing the scattering from a
rotating dielectric structure of arbitrary shape and geometry,
that holds in the rotating structure rest frame R� is developed
and applied to electrically small scatterers. Then a polarizabil-
ity theory and discrete dipole approximations are developed
and introduced in Eqs. (19)–(20b). The formulation is used
to study the internal dynamics of rotating scatterers and ar-
rays. The TM polarizability matrix α of dielectric cylinders of
arbitrary cross section is presented, and the rotation-induced
footprint is studied in the limit of electrically small cross-
section. Rotation modifies the conventional entries of α, as
well as introduces new off-diagonal terms, all depend for-
mally on � and on the distance from the rotation axis ρc as
shown in Figs. 3–5. However, within the range of parameter
shown, the rotation footprint on α is extremely small. Thus,
we show that the conventional polarizability of R0 problem
(no-rotation) can be used where the effect of rotation is man-
ifested via the inter-particle propagations presented by the
appropriate Green’s function G�, as expressed by Eq. (22). A
comparison of Eq. (22) with rigorous numerical simulations is
provided—see Fig. 6—and it supports this conclusion. Then,
using this formulation the rotation-induced footprint on the
array response and the governing physical mechanisms are
explored. In the regime of parameters studied, it is shown
that this footprint is dominated by the interference of the
large number of Sagnac loops excited in the array. The array
dynamics possesses unique properties such as invariance of
the currents magnitude with respect to the distance from the
rotation axis, while its relative phases carry information about
this distance; the phase is linear with �, and with the rotation
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axis shift, as predicted in Eq. (24c). Unlike the conventional
Sagnac effect that is independent of the background medium,
the rotation-induced changes of the polarization current are
sensitive to the background dielectric constant.

A preliminary study of the rotation-induced footprint
on the collective properties of a finite-size PhC array of
dielectric cylinders with square periodicity is also provided.
In the corresponding R0 problem, such arrays are reciprocal
and possess a stop-band at a frequency regime that lies in the
vicinity of Bragg condition. We show that the corresponding
R� problem possesses a strong nonreciprocity. The trans-
mission Si j from a point Pi to point Pj satisfies S ji(�) �=
Si j (�) = S ji(−�), as shown in Fig. 11. Furthermore, for
specific point pairs determined by the structure’s reflection
symmetries lines, the dependence on � disappears as well as
the nonreciprocity of Si j , where it satisfies Si j (�) = S ji(�) =
Si j (0) ∀�, as shown in Figs. 11 and 12.

Finally, sensitivities to rotation of TE and TM polarizations
are studied and contrasted.

APPENDIX A: PDE GOVERNING NONHOMOGENOUS
2D THEORY

We define the transverse operator ∇t = x̂∂x + ŷ∂y. Like-
wise, any vector can be decomposed into its transverse and
z-directed components; e.g., E = Et + ẑEz. Then

∇ × E = ∇t × Et + ∇t × ẑEz + ∂z ẑ × Et . (A1)

Since we deal with z-independent problem the last term van-
ishes. By applying Eq. (A1) to ME with the constitutive
relations in Eqs. (1a) and (1b), one can separate Faraday and
Amper laws into their transverse and z-directed components.
The results are

ẑ : ∇t × Et = iωμẑHz − i
ω�

c2
ρ ẑEρ − ẑJM

z , (A2a)

t̂ : ∇t × ẑEz = iωμH t + i
ω�

c2
ρEz − JM

t (A2b)

for Faraday law, and

ẑ : ∇t × H t = −iωεẑEz − i
ω�

c2
ρ ẑHρ + ẑJE

z , (A2c)

t̂ : ∇t × ẑHz = −iωεEt + i
ω�

c2
ρHz + JE

t (A2d)

for Amper law. In the above JE, JM are the electric and
magnetic current densities, respectively. It is seen that the
equations above can be separated to two independent sets of
fields and sources. The fields Hz, Et with the currents JM

z , JE
t

appear only in Eq. (A2a) and Eq. (A2d)—the TE set. The
fields Ez, H t with the currents JE

z , JM
t appear only in Eq. (A2b)

and Eq. (A2c)—the TM set.
We develop first the TE set. From Eq. (A2d) we have

Et = i

ωε

(
∇t × ẑHz − i

ω�

c2
ρHz − JE

t

)
(A3)

substituting to Eq. (A2a), and rearranging we obtain

εr∇t · 1

εr
∇t Hz + k2

0 ñ2Hz + i
ω�

c2

(
∂θ + ε∂θ

1

ε

)
Hz = STE,

(A4a)

where

ñ2 = εr (ρ)μr (ρ) + (�ρ/c)2 (A4b)

and

STE = −iωεJM
z + i

ω�

c2
ρ · JE

t − ẑ · ε∇t × 1

ε
JE

t . (A4c)

In the above we used the identities ρ̂ · (∇t × ẑu) = ρ−1∂θu
and ∇t × (p∇t × ẑu) = −ẑ∇t · (p∇t u) for any scalar fields
p, u. Up to first-order terms in � Eqs. (A3)–(A4c) are iden-
tical to the TE set in Eqs. (2)–(3b) of the main text. The
governing equations for the TM case are obtained similarly.

APPENDIX B: BOUNDARY
AND CONTINUITY CONDITIONS

The boundary or continuity conditions (BCs) for the tan-
gential E and H are the same as in R0 problem, since ME do
not change their structure. Thus,

n̂ × (E1 − E2) = 0, (B1a)

n̂ × (H1 − H2) = Kf, (B1b)

where Kf is the surface density of the free electric current.
Likewise, the normal components of D and B satisfy the same
BCs as in R0 problem,

n̂ · (D1 − D2) = ηf, (B2a)

n̂ · (B1 − B2) = 0, (B2b)

where ηf is the surface density of the free electric charge.
However, when the latter BCs are written in terms of the nor-
mal E and H (instead of normal D, B) they take on a different
form and carry an explicit dependence on �. We substitute the
constitutive relations of Eqs. (1a) and (1b) into the BCs for the
normal fields. Now recall that � = ẑ�, thus (� × r) × H =
�ρθ̂ × H . Then use n̂ · (θ̂ × H ) = −θ̂ · (n̂ × H ), and apply
the same procedure for (� × r) × E. Finally make use of the
tangential BC in Eqs. (B1a) and (B1b). We end up with

n̂ · (ε1E1 − ε2E2) = ηf − c−2�ρθ̂ · Kf, (B3a)

n̂ · (μ1H1 − μ2H2) = 0. (B3b)

This is the set used in the main text.

APPENDIX C: TM (TE) FIELDS DUE TO IE
z (IM

z )

For ẑ-directed electric current, the excited field is of TM
polarization. For the current JE

z of Eq. (9b) the electric and
magnetic fields are given by

Ez

IE
z

= −iωμG�
(
ρ, ρ′), (C1a)

and using Eq. (4a)

H t

IE
z

= i

4

k0n

R
[x̂(y − y′) − ŷ(x − x′)]

× H (1)
1 (k0nR)eik2

0 �̄ẑ·(ρ′×ρ)

+ i�̄k2
0

(
ρ − ρ′)G�(ρ, ρ′), (C1b)

where G�(ρ, ρ′) is given in Eqs. (7a) and (7b), ρ − ρ′ =
x̂(x − x′) + ŷ(y − y′) and R = |ρ − ρ′|. It is interesting to
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note that |Ez| is not affected by rotation, while H t changes
its magnitude and direction as a function of �.

The TE fields due to ẑ-directed magnetic current are ob-
tained symmetrically by ε ↔ μ, E → H, H → −E.

APPENDIX D: DERIVATION OF σTM
zz , σTM

zt

Our starting point is the integral equation (21). Since the
scatterer is electrically small Ez(ρ′) is approximately uniform
within A(ρc), while G�(ρ, ρ′) is singular at ρ′ = ρ. Thus,
Eq. (21) can be approximated by

Ez(ρ) ≈ Ei
z (ρ) + Ez(ρ)k2

0C
∫

A(ρc )
G�(ρ, ρ′)ds′. (D1)

The local spatial variations of Ei
z within the scatterer cross

section are effectively expressed via the corresponding local
H t . To correctly capture the rotation footprint on Ez and hence
on σ TM

zz and σTM
zt , we endeavor to establish an �̄-induced

pointwise connection between Ei
z (ρ) and Ei

z (ρc), H i
t (ρc). To-

ward this end, we first expand

Ei
z (ρ) 	 Ei

z (ρc) + ∇t E
i
z (ρc) · (ρ − ρc), (D2a)

where ∇t Ez(ρ) is extracted from Eq. (4a),

∇t E
i
z (ρc) = iωμẑ × H i

t (ρc) + i�̄k2
0 (ẑ × ρc)Ei

z (ρc), (D2b)

and where we have used the identities ∇t × ẑEz = −ẑ × ∇t Ez

and ẑ × ẑ × ∇t Ez = −∇t Ez. Then, the expansion of Ei
z (ρ) in

Eq. (D2a) can be written as

Ei
z (ρ) 	 [

1 + i�̄k2
0ρcθ̂c · (ρ − ρc)

]
Ei

z (ρc)

− iωμ[ẑ × (ρ − ρc)] · H i
t (ρc), (D2c)

where θ̂c = ẑ × ρ̂c with ρ̂c = ρc/ρc (see Fig. 2), and where we
used the identity [ẑ × H i

t (ρc)] · (ρ − ρc) = −[ẑ × (ρ − ρc)] ·
H i

t (ρc). By substituting Eq. (D2c) in Eq. (D1), extracting
Ez(ρ) and integrating over the scatterer cross section, we get
for the spatially averaged Ez in the scatterer,

Ēz = σ TM
zz (�, ρc)Ei

z (ρc) + σTM
zt (�, ρc) · H i

t (ρc), (D3)

where

σ TM
zz (�, ρc) = 1

A

∫
A(ρc )

1 + i�̄k2
0ρcθ̂c · (ρ − ρc)

1 − ψ (�, ρ)
ds, (D4a)

σTM
zt (�, ρc) = −i

ωμ

A

∫
A(ρc )

ẑ × (ρ − ρc)

1 − ψ (�, ρ)
ds, (D4b)

and

ψ (�, ρ) = k2
0C

∫
A(ρc )

G�(ρ, ρ′) ds′. (D4c)

These explicit expressions can be evaluated easily by straight-
forward integrations. Examples are provided in Sec. III.
However, it is instructive to extract the dominant behavior of
the scattering matrix in terms of power series in �̄. This be-
havior is of interest not only from the numerical point of view.
It represents an important physical property; a second-order
dependence on � indicates that the corresponding property is
insensitive to the rotation direction, while first-order depen-
dence indicates a sensitivity to the rotation direction. Toward

this end, with (1 − ψ )−1 	 1 + ψ we write approximately

Aσ TM
zz 	

∫
A(ρc )

[
1 + i�̄k2

0ρcθ̂c · (ρ − ρc)
]

ds

+ k2
0C

∫∫
A(ρc )

[
1 + i�̄k2

0ρcθ̂c · (ρ − ρc)
]

× G�(ρ, ρ′) ds′ds. (D5)

By the definition of ρc in Eq. (15), the second summand of
the first integral does not survive the integration, hence the
first integral is nothing but A. Regarding the second integral,
we first note that since the structure is electrically small, and
|�̄| � 1, we may expand

G�(ρ, ρ′) = G0(ρ, ρ′)
{
1 + i�̄k2

0 ẑ · (ρ′ × ρ)

− 1
2

(
�̄k2

0

)2[
ẑ · (ρ′ × ρ)

]2 + · · · }. (D6)

We further note that θ̂c · (ρ − ρc) = −ẑ · (ρ × ρc) and point
the similarity to the summed terms in the expansion of G�

above. Substituting the above expansion and identity into
Eq. (D5) and rearranging as a power series in �̄, we obtain

σ TM
zz (�, ρc) 	 σ TM

zz (0, 0) + �̄σ1 + �̄2σ2 + · · · . (D7)

We now show that the first-order term vanishes, i.e., σ1 = 0
meaning that σ TM

zz (�, ρc) is second order in � at most. Specif-
ically, we have

σ1 = ik4
0CA−1

∫∫
A(ρc )

G0(ρ, ρ′)ẑ · [
ρ × (ρc − ρ′)

]
dsds′.

(D8)

The vector terms in this integral can be rewritten as the
sum ẑ · [ρ × (ρc − ρ′)] = ẑ · (ρ′ − ρ) − ρcρ · θ̂c. The former
does not survive the integration since both ρ and ρ′ span
precisely the same area, but upon exchanging ρ and ρ′ the
Greens function G0(ρ, ρ′) remains invariant while ẑ · (ρ′ − ρ)
merely change sign, thus the net integration is zero. Regarding
the latter term, we first note that for every function F (x)
the integral function I (ρ) = ∫

A F (|ρ − ρ′|)ds′ is symmetric
around ρ = ρc, while ρ · θ̂c is antisymmetric (for example, if
ρc = x̂ρc, then θ̂c = ŷ and ρ · θ̂c = y). Thus, the integration
over the former term vanishes as well. Consequently, σ1 = 0
as anticipated.

We follow essentially the same steps for σTM
zt (�, ρc). We

have

σTM
zt 	 − i

ωμ

A
ẑ ×

∫
A(ρc )

(ρ − ρc)ds

− i
ωμ

A
k2

0C ẑ ×
∫∫

A(ρc )
(ρ − ρc)G�(ρ, ρ′)ds′ds.

(D9)

The first integral vanishes by the definition of ρc—see
Eq. (15). Likewise, by using the expansion in Eq. (D6) for
G� in the second integral above, and recalling again Eq. (15),
we are left with

σTM
zt 	 ωμ

A
k4

0C�̄ ẑ
∫∫

A(ρc )
G0(ρ, ρ′)(ρ − ρc)

× ẑ · (ρ′ × ρ)ds′ds + O(�̄2) (D10)
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that generally does not vanish. Hence, the leading element of
σTM

zt is first order in �. Note the term ẑ × (ρ − ρc) = ρθ̂ −
ρcθ̂c. For scatterers possessing reflection symmetry around the
line defined by ρc, e.g., with circular cross section, or one of
their axes of symmetry is parallel to ρc, this term does not
survive the integration. This leads to σ TM

zθ that is second order
in �. This is schematized in Fig. 2(b). Thus, σ TM

zρ is first order
in �̄, while σ TM

zθ may be first or second order in �̄, depending
on the scatterer symmetries and its inclination with respect
to ρc.

APPENDIX E: EXTRACTING σ NUMERICALLY

Let F i = [Ei
z (ρ), H i

t (ρ)] be the incident electric and mag-
netic fields, and Ēz the resulting spatially averaged electric
field inside the scatterer. The latter can be obtained by solving
Eq. (21) numerically using the volumetric method of moments
[26] and spatially averaging the result. Then the scattering
matrix σ formally satisfies

σzzE
i
z (ρc) + σzρHi

ρ (ρc) + σzθ Hi
θ (ρc) = Ēz. (E1a)

Since the entries and their corresponding rotation footprint
span over wide rage of orders, and further, in σzz it appears as
an additive term of relative strength of O(10−7) compare to its
base value for R0 problem, a numerically stable and reliable
solution is challenging. To stabilize their extraction we use the

following procedure. First, let us define an auxiliary quantity
σd via

σ d
zzE

i
z (ρc) + σ d

zρHi
ρ (ρc) + σ d

zθ Hi
θ (ρc) = Ēz − Ē i

z . (E1b)

Once σd is obtained we approximate σ = (1, 0, 0) + σd .
We need at least m = 3 independent incident fields F i

n, n =
1, . . . , m and their corresponding internal Ez,n solutions to
get m equations of the form of Eq. (E1b). However, to av-
erage over numerical inaccuracies, we use a set of m = 8
different incident fields, and solve the over-determined set
of equations for the three unknown elements of σd in the
least-square sense. These incident fields are synthesized by
eight point sources of unit current located around the scat-
terer on two circles, four on a circle of radius 5λ at angles
0◦, 90◦, 180◦, 270◦ and four on a 50λ circle, at the same
angles. The corresponding F i

n, n = 1, . . . , 8 are calculated
using Eqs. (C1a) and (C1b). Finally, we note that to correctly
capture the effect of the fine-details variation of Ei

z on the re-
sulting internal field, the field solution to each of these sources
is obtained by a two-step solution of Eq. (21). For each of the
sources, we rewrite the incident field as the sum of its spatially
averaged value and a reminder, i.e., Ei

z (ρ) = Ē i
z + �Ei

z (ρ).
Then we solve Eq. (21) with Ei

z (ρ) replaced by each of the
latter components, and sum up the corresponding solutions
for the scatterer internal field Ez(ρ). This field is then used in
Eq. (E1b).
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