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Interplay between short-range and critical long-range fluctuations in the out-of-equilibrium
behavior of the particle density at quantum transitions
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We address the equilibrium and out-of-equilibrium behavior of the particle density in many-body systems
undergoing quantum transitions driven by the chemical potential μ. They originate from a nontrivial interplay
between noncritical short-range and critical long-range quantum fluctuations. As a paradigmatic model, we con-
sider the one-dimensional fermionic Kitaev model, for which very accurate numerical studies can be performed,
up to O(104) chain sites. The search for dynamic scaling behaviors of the particle density is complicated by the
fact that its equilibrium (ground-state) behavior is dominated by short-range fluctuations, giving rise to regular
background terms and peculiar logarithmic terms from resonances between renormalization-group perturbations
associated with the energy and identity operator families within the conformal field theory. To study these issues,
we focus on two dynamic protocols, either instantaneous quenches or quasiadiabatic changes of μ, to the critical
value μc, unveiling out-of-equilibrium scaling behaviors of the particle density, which arise from the critical
modes, within a dynamic finite-size scaling framework.

DOI: 10.1103/PhysRevB.110.035126

I. INTRODUCTION

At continuous quantum transitions in the zero-temperature
limit [1,2], the behavior of some interesting observables dis-
plays a nontrivial interplay of contributions from (noncritical)
short-range and (critical) long-range quantum fluctuations,
which can be hard to disentangle. This is the case of the
particle density at quantum transitions driven by the chemi-
cal potential, whose critical scaling behavior gets hidden by
contributions coming from the regular (short-range) term of
the free-energy density [3]. This phenomenon may be con-
sidered as the quantum counterpart of the analogous interplay
between short-range and critical fluctuations at thermal clas-
sical transitions, where the energy density at the transition
point is dominated by a regular term arising from short-range
fluctuations (or mixing with the identity operator), while the
critical scaling terms are only subleading [4–9]. Therefore, in
equilibrium conditions, the energy density in classical transi-
tions and the particle density at quantum transitions (driven by
the chemical potential) generally display nonuniversal lead-
ing behaviors at the transition point, while critical scaling
behaviors are relatively suppressed. For this reason, they are
not considered as optimal observables to probe the universal
features at criticality.

However, despite this equilibrium behavior, some nu-
merical analyses of out-of-equilibrium behaviors of three-
dimensional N-vector models at classical (thermal) transitions
have provided evidence of a peculiar out-of-equilibrium scal-
ing of the energy density [10]. This has been observed
along the critical relaxational flow arising from instantaneous
quenches of the temperature to the critical point, under a
purely relaxational dynamics that leads to the asymptotic
large-time thermalization [11,12], starting from equilibrium

conditions. The out-of-equilibrium finite-size scaling (FSS)
behavior of the energy density (after subtracting its asymptotic
value at the critical point) can be expressed in terms of a
rescaled time variable � = t/Lz (where t is the time from the
quench, z is the dynamic exponent associated with the relax-
ational dynamics, and L is the system size), analogously to
other observables that exhibit scaling at equilibrium. This may
be related to the fact that the dynamics of short-range fluc-
tuations is characterized by a significantly shorter timescale
than the diverging timescale of critical modes. However, the
absence of a scaling behavior at equilibrium, thus at the
starting point of the quenching protocol, leaves a noticeable
imprinting in the dynamic scaling behavior as a function of �,
since scaling functions show a peculiar power-law singularity
in the � → 0 limit, and in particular a power-law divergence
when the specific-heat exponent is negative [10].

In this paper, we investigate whether analogous phenom-
ena emerge in many-body systems at quantum transitions
driven by the chemical potential, focusing on the out-of-
equilibrium behavior of the particle density arising from
instantaneous and slow quenches of the chemical-potential
parameter μ to the critical point. Although the classical-to-
quantum mapping does not apply, since its applicability is
restricted to equilibrium conditions, out-of-equilibrium scal-
ing behaviors similar to those at thermal transitions have also
been observed at quantum transitions for standard observables
showing asymptotic equilibrium scaling behaviors, such as the
correlation function of the order-parameter operator (see, e.g.,
Refs. [2,13–35]). Again, like classical transitions, the exten-
sion to observables dominated by regular terms (mixing with
the identity operator) at equilibrium is not straightforward,
because of the nontrivial competition between contributions
arising from noncritical short-range and critical long-range
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fluctuations. Moreover, quantum scenarios may substantially
differ from those observed at classical transitions under relax-
ational dynamics, essentially because the quantum dynamics
of isolated systems is qualitatively different, being unitary
and energy-conserving. Thus, further interesting features may
emerge, with respect to those observed along critical relax-
ational flows at classical transitions, always characterized by
an asymptotic large-time thermalization.

To study this issue, we focus on the one-dimensional
Kitaev chain [36] as a paradigmatic model for quantum transi-
tions driven by the chemical potential. Its equilibrium particle
density at the quantum critical point is dominated by a stan-
dard regular term [2,3] and also logarithmic terms arising
from peculiar resonances of the renormalization-group (RG)
weights of RG operators [3,6], belonging to the energy and
identity conformal families within a conformal-field-theory
(CFT) framework (see, e.g., Ref. [37]). We recall that this
resonance phenomenon is responsible for the logarithmic
divergence of the specific heat at the classical thermal transi-
tions belonging to the two-dimensional (2D) Ising universality
class [6]. We consider two relatively simple dynamic pro-
tocols: (i) quantum quenches, where μ is instantaneously
changed to the critical-point value μc, and (ii) quasiadiabatic
variations of the time-dependent parameter μ(t ) from μ �= μc

to μc, starting in both cases from equilibrium (ground-state)
conditions. We are able to uncover, and characterize, the emer-
gence of out-of-equilibrium scaling behaviors of the particle
density arising from the critical modes, within a dynamic FSS
framework.

Our numerical study shows that the particle density (af-
ter subtracting its large-volume critical-point value) develops
a dynamic scaling behavior along the postquench quantum
evolution, similar to that observed along critical relaxational
flows at classical transitions. The corresponding scaling func-
tions are characterized by a logarithmic divergence in the
� → 0 limit, where � ∼ t/τ is the rescaled time with respect
to the timescale of the critical modes [τ ∼ �c(L)−1 ∼ Lz,
where �c(L) is the gap at the critical point and z = 1 is
the dynamic exponent], somehow reflecting the fact that
the subtracted particle density does not have an asymptotic
equilibrium scaling behavior. Moreover, the scaling functions
show some further logarithmic divergence at finite �, related
to revival quantum phenomena. We also show that an out-of-
equilibrium FSS behavior emerges along protocols entailing
slow quasiadiabatic changes of the Hamiltonian parameters,
once subtracting the corresponding equilibrium particle den-
sity at the instantaneous value of μ(t ).

The paper is organized as follows. In Sec. II we present
the fermionic Kitaev wire, providing a paradigmatic model
that undergoes a quantum transition driven by the chemical
potential. In Sec. III we discuss the equilibrium behavior of
the particle density at the quantum transition, which does not
show a universal asymptotic scaling. In Sec. IV we outline the
dynamic quench protocol and discuss the out-of-equilibrium
behavior within a dynamic FSS framework; moreover, we
present numerical results showing that the particle density
develops an out-of-equilibrium FSS along the postquench
quantum evolution, with peculiar singularities of its FSS func-
tions. We also derive the corresponding out-of-equilibrium
scaling behavior in the thermodynamic limit. In Sec. V we

extend our analysis to quasiadiabatic dynamic protocols en-
tailing slow changes of the chemical potential. Finally, in
Sec. VI we summarize and draw our conclusions.

II. THE FERMIONIC KITAEV CHAIN

As a paradigmatic many-body system undergoing a con-
tinuous quantum transition driven by the chemical potential,
we consider a fermionic Kitaev wire of size L (number of
sites), whose quantum unitary dynamics is driven by the
Hamiltonian [36]

Ĥ = −J
∑

x

(ĉ†
x ĉx+1 + γ ĉ†

x ĉ†
x+1 + H.c.) − μN̂, (1)

where ĉx is the fermionic annihilation operator associated with
the xth site of the chain (x = 1, . . . , L), while N̂ is the particle-
number operator:

N̂ =
∑

x

n̂x, n̂x = ĉ†
x ĉx . (2)

The Hamiltonian parameter μ denotes the chemical potential,
while γ > 0 controls the relative strength of the terms that do
not conserve the fermionic number. In the following, we fix
the energy scale by assuming J = 1 and also set the Planck
and Boltzmann constants h̄ = kB = 1.

The Hamiltonian (1) can be straightforwardly diagonalized
into [38–41]

Ĥ =
∑

k

E (k)

(
â†

k âk − 1

2

)
, (3)

where âk are new fermionic annihilation operators, which
are obtained through a suitable linear transformation of the
original ĉx operators, and

E (k) = 2
√

(μ/2)2 + γ 2 + μ cos k + (1 − γ 2) cos2 k (4)

is their dispersion relation. In a finite system, the set of k
values to be summed over, as well as the allowed states,
depend on the boundary conditions.

By means of the Jordan-Wigner transformation (see, e.g.,
Ref. [1]), the Hamiltonian (1) can also be mapped into a so-
called quantum XY chain:

ĤXY = −
∑

x

[
1 + γ

2
σ̂ (1)

x σ̂
(1)
x+1 + 1 − γ

2
σ̂ (2)

x σ̂
(2)
x+1 + gσ̂ (3)

x

]
,

(5)
where σ̂ (k)

x are the spin-1/2 Pauli matrices (k = 1, 2, 3).
In particular, σ̂ (3)

x = 1 − 2n̂x, thus g = −μ/2. However,
although the bulk behaviors of the two models in the infinite-
volume limit (and thus their phase diagram) are analogous,
some finite-size features may differ significantly. For example,
the nonlocal Jordan-Wigner transformation of the XY chain
(5) with periodic and antiperiodic boundary conditions does
not map into the fermionic model (1) with analogous bound-
ary conditions. Indeed further considerations apply, leading
to a less straightforward correspondence, which also depends
on the parity of the particle-number eigenvalue (see, e.g.,
Refs. [3,39,40]). Therefore, the Kitaev quantum wire and
the quantum XY chain cannot be considered as completely
equivalent. However, they both undergo a continuous quantum
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transition, respectively, at μ = μc = −2 or at g = gc = 1,
independently of the parameter γ . To simplify the notation,
we define the deviation of the relevant parameter μ from its
critical value as

w ≡ μc − μ

2
= g − gc (μc = −2, gc = 1). (6)

In the following, we consider the fermionic Kitaev
chains with antiperiodic boundary conditions [28], i.e., with
ĉx = −ĉL+x, which simplify computations of the equilibrium
and out-of-equilibrium FSS behaviors, restricting the mo-
menta of the sum in Eq. (3) to

k =
{
±π

L
(2n + 1)

}
, n = 0, 1, . . . , L/2 − 1. (7)

When considering antiperiodic boundary conditions, both
phases separated by the quantum transition at μc are gapped,
i.e., the degeneracy of the vacua for μ < μc in the thermody-
namic limit (corresponding to the ordered phase of quantum
XY chains) is not realized. The reason for such a substantial
difference resides in the fact that the corresponding Hilbert
space is restricted with respect to that of the XY chain, so that
it is not possible to restore the competition between the two
vacua belonging to the symmetric/antisymmetric sectors of
the quantum XY chain [2,3,36,39].

III. EQUILIBRIUM BEHAVIOR OF THE PARTICLE
DENSITY

A. Quantum criticality

The continuous transition at μc belongs to the 2D
Ising universality class [1,2], characterized by the length-
scale critical exponent ν = 1, related to the RG dimension
yw = 1/ν = 1 of the Hamiltonian parameter w. This implies
that, approaching the critical point w → 0 at zero temper-
ature, the lengthscale ξ of the critical quantum fluctuations
diverges as ξ ∼ |w|−ν . The temperature T represents another
relevant RG perturbation at quantum transitions. At the criti-
cal point w = 0, the lengthscale increases as ξ ∼ T −1/z with
decreasing T , where z is dynamic exponent z = 1 associated
with the unitary quantum dynamics within this universality
class (it also determines the power law � ∼ ξ−z of the van-
ishing gap with increasing ξ ). Moreover, we mention that
the RG dimension of the fermionic operators ĉx and ĉ†

x at
the continuous quantum transition is yc = 1/2, and that of
the particle density operator n̂x is [1,2]

yn = d + z − yw = 2 − yw = 1. (8)

The universal critical exponents enter the asymptotic
power laws of the quantum critical behavior as a function of
the temperature T and the chemical potential μ. However,
the asymptotic critical expansions associated with the 2D
Ising universality class are also characterized by the pres-
ence of logarithmic terms [6,8,37,42–49]. They arise from
a resonance between the identity operator of RG dimension
2 and the energy operator of RG dimension 1 within the
corresponding 2D conformal field theory (CFT) with central
charge c = 1/2 [37]. In particular, such a resonance mecha-
nism is responsible for the leading logarithmic divergence of
the specific heat at the 2D Ising critical point.

Analogous logarithmic terms are found at the quantum
critical point of the quantum XY chain, equivalent to the
fermionic Kitaev wire in the thermodynamic limit or for open
boundary conditions. In particular, they appear in the free-
energy density

F (w, T, γ ) = −T

L
ln[Tr e−βĤ ], β = 1/T . (9)

In the thermodynamic limit, i.e., when L/ξ → ∞, it can be
written as [39]

F (w, T, γ ) = −
∫ π

0

dk

2π
{E (k) + 2T ln[1 + e−βE (k)]},

(10)
where E (k) is reported in Eq. (4). At the leading order in the
critical limit, it behaves as [3]

F (w, T, γ ) ≈ Freg(w, γ ) + A

4π
u2

w ln u2
w − 2A

π
u2

t f (uw/ut ),

(11)

where Freg(w, γ ) is a regular function at the critical point,
uw and ut are the scaling fields corresponding to the relevant
parameters w and T , which are given by

uw = w

A
, ut = T

2A
, A ≡

√
γ 2 + w, (12)

and f (x) is a universal scaling function (apart from a trivial
factor and a normalization of the argument) given by

f (x) =
∫ ∞

0
dz ln

(
1 + e−√

x2+z2)
. (13)

Note that the first regular term of the expansion (11) is in-
dependent of T , as generally expected at quantum transitions
[2,3], and it can be expanded in powers of w:

Freg(w, γ ) = b0(γ ) + b1(γ ) w + · · · . (14)

B. The particle density in the thermodynamic limit

The thermodynamic-limit behavior of the equilibrium
particle density �e can be derived by differentiating the free-
energy density with respect to the chemical potential,

�e ≡ L−1Tr [ρG N̂] = −∂μF = 1

2
∂wF

≈ �reg(w, γ ) + B

2π

(
uw ln u2

w + uw

) − B

π
ut g(uw/ut ),

(15)

where ρG is the density matrix associated with the Gibbs
distribution,

ρG = e−βĤ

Tr[e−βĤ ]
, (16)

and

B = A ∂wuw = 1 − w/(2A2). (17)

In Eq. (15) we only kept the most relevant terms, and g(x)
is another scaling function that can be easily derived from
f (x), cf. Eq. (13), i.e., g(x) = ∂x f (x). In the critical limit

035126-3



DAVIDE ROSSINI AND ETTORE VICARI PHYSICAL REVIEW B 110, 035126 (2024)

uw, ut → 0, keeping the ratio uzν
w /ut = uw/ut fixed, the par-

ticle density is dominated by the contribution of the regular
term, which can be expanded as

�reg(w, γ ) = a0(γ ) + a1(γ ) w + · · · , (18)

where ai are nonuniversal constants depending on γ . In par-
ticular, a0 = 1/2 − 1/π for γ = 1.

Actually, the regular background generally provides the
leading contribution to the free-energy density, and its deriva-
tive with respect to the even relevant Hamiltonian parameter
[2], analogous to μ in quantum transitions driven by the
chemical potential. In some cases, one obtains an asymptotic
scaling behavior in the FSS limit by subtracting its critical-
point value, in particular when the dynamic and lengthscale
critical exponents are such that d + z − 2/ν < 0 as it occurs
in the 2D quantum Ising model [2]. However, in the case
of the fermionic Kitaev wire, the particle-density deviation
De(w, T, γ ) from its critical-point value �c(γ ),

De(w, T, γ ) ≡ �e(w, T, γ ) − �c(γ ), (19)

where

�c(γ ) ≡ �e(0, 0, γ ) = a0(γ ), (20)

turns out to be dominated by the logarithmic term arising from
the resonance between identity and energy operators, hiding
the universal scaling behavior [2,3]

�scal ∼ T yn/zg(uw/ut ) (21)

[yn = 1 is the RG dimension of the particle-density operator
n̂x; see Eq. (8)], which remains logarithmically suppressed
with respect to the leading term.

C. Finite-size behavior of the particle density

The above scaling behaviors can be straightforwardly ex-
tended to finite-size systems, within a FSS framework (see,
e.g., Refs. [2,3,7,9,37,50–52]). Zero-temperature FSS Ansätze
can be obtained by introducing the lattice size L, rewriting
Eq. (15) in terms of the scaling variable

� = uw(w, γ ) Lyw , yw = 1/ν = 1, (22)

and taking the zero-temperature limit T ∼ ut → 0. Therefore,
keeping only the most relevant terms, the equilibrium particle
density in finite-size systems is expected to behave as

�e(w, γ , L) = �reg(w, γ ) + cl uw ln L + csL
−ynDe(�), (23)

where �reg(w, γ ) is the same regular function appearing in the
infinite-volume scaling behavior [2,3], cf. Eq. (15), and De is
a universal scaling function (apart from a trivial multiplicative
factor and normalization of the argument). Only the last term
provides the genuine universal scaling contribution of the crit-
ical modes (of course it depends on the boundary conditions),
while the other terms are not universal. An analogous behavior
is found at classical transitions of 2D Ising systems defined
on finite-size square lattices, when considering the finite-size
behavior of the energy density (i.e., the derivative of the free-
energy density with respect to the temperature) [37].

We now focus on the subtracted particle density

De(w, γ , L) ≡ �e(w, γ , L) − �c(γ ), (24)

FIG. 1. The absolute value of the equilibrium subtracted particle
density De as a function of the system size L, keeping the scaling
variable � fixed. Filled symbols denote numerical data for � = 0.5,
while empty ones are for � = 0.25. The various colors and symbols
are for different values of the Hamiltonian parameter γ (see the
legend). Lines connecting symbols are drawn to guide the eye. Note
the logarithmic scale on the x-axis, so the observed straight-line
behavior witnesses the expected large-L behavior LDe ∼ � ln L.

with �c(γ ) defined in Eq. (20), whose finite-size behavior can
be easily derived using Eqs. (23) and (18). Note that in the
FSS limit, i.e., the simultaneous limits L → ∞ and w → 0
keeping � = uwLyw fixed, the logarithmic term provides the
leading contribution. Therefore, when keeping � fixed, the
finite-size behavior (23) predicts the large-L behavior

L De(w, γ , L) ∼ � ln L. (25)

This is clearly confirmed by the numerical results shown in
Fig. 1, for various choices of � and γ .

On the other hand, a standard asymptotic FSS is expected
for the fermionic correlation functions, such as

GP(x1, x2) = Tr
[
ρG

(
ĉ†

x1
ĉ†

x2
+ ĉx2 ĉx1

)]
, (26a)

GC (x1, x2) = Tr
[
ρG

(
ĉ†

x1
ĉx2 + ĉ†

x2
ĉx1

)]
. (26b)

Indeed, assuming translational invariance, thus G#(x) ≡
G#(x1, x1 + x), and in the zero-temperature limit, their equi-
librium FSS is given by [2]

G#(x,w, L) ≈ L−2ycG#(X,�), X ≡ x/L �= 0 (27)

(yc = 1/2 is the RG dimension of the operator ĉx).
In passing, it is worth mentioning that one may also con-

sider higher derivatives of the free-energy density with respect
to the chemical potential. However, their connection with the
correlation functions of the particle-density operator n̂x is not
straightforward. In fact, due to the nontrivial derivative of the
Gibbs exponential operator [53]

d

dμ
e−βĤ = −β

∫ 1

0
e−zβĤ N̂e−(1−z)βĤ dz, (28)

the derivative ∂�/∂μ is not related to the connected expec-
tation value 〈N̂2〉c. Of course, the relation (15) can be easily

035126-4



INTERPLAY BETWEEN SHORT-RANGE AND CRITICAL … PHYSICAL REVIEW B 110, 035126 (2024)

derived using the fact that

Tr

[
d

dμ
e−βĤ

]
= −β Tr[e−βĤ N̂]. (29)

In conclusion, the above scaling analyses show that the
asymptotic behavior of the particle density at the critical point
is characterized by competing contributions from different
sources: the regular background term of the free-energy den-
sity, a peculiar logarithmic resonance term, and the critical
scaling term controlled by the critical exponents. Even the
subtracted particle density (24) does not show an asymptotic
scaling behavior, which turns out to be hidden by a logarith-
mic contribution and the regular term arising from mixings
with the identity operator. In the following we investigate
whether, and how, out-of-equilibrium conditions arising from
quantum quenches can disentangle the various contributions,
recovering a well-defined universal out-of-equilibrium FSS
behavior.

IV. DYNAMICS AFTER A QUENCH

The dynamics of quantum many-body systems is of-
ten studied by considering protocols based on instan-
taneous quantum quenches of the model parameters
(see, e.g., Refs. [2,23,26,35,54–62]), or protocols entail-
ing slow changes of such parameters like those associated
with the so-called Kibble-Zurek (KZ) problem (see, e.g.,
Refs. [2,19,20,24,32–34,63–65]).

In this section, we focus on the quantum evolution arising
from a so-called soft quench around the critical point, for
which the variation of the parameters associated with the
quench is sufficiently small to maintain the system close to
criticality. We address the out-of-equilibrium scaling behav-
ior along the postquench critical quantum evolution, paying
particular attention to the behavior of the particle density.

We also report numerical results for the out-of-equilibrium
evolution after the quench, up to very large O(104) lattice
sizes, obtained by a straightforward diagonalization of the
Hamiltonian (1) [see also Eq. (3)]. With antiperiodic bound-
ary conditions, this can be done by decoupling Ĥ into a
sum of L/2 independent terms, each of them acting in the
four-dimensional Hilbert subspace generated by the k and −k
modes, for a given value of n in Eq. (7), and then exploit-
ing the conservation of fermion parity to further reduce it
to two dimensions. Then, the unitary time evolution can be
easily computed numerically by a direct integration of the
Schrödinger’s equation on each of such subspaces.

A. Soft quench protocol

We perform an instantaneous quench of the chemical-
potential parameter, from μ �= μc to μc, or correspondingly
from w ≡ (μc − μ)/2 �= 0 to wc = 0, in such a way as to
study the critical out-of-equilibrium quantum evolution. In
practice, we consider the following protocol: (i) At t = 0
the system is prepared in the ground state |�GS(w)〉 of the
Hamiltonian Ĥ (w, γ ), cf. Eq. (1), for a given value of w �= 0.
(ii) At t > 0, the system evolves unitarily driven by the critical

Hamiltonian Ĥ (μc, γ ), i.e.,

i
d

dt
|�(t )〉 = Ĥ (wc, γ ) |�(t )〉, |�(0)〉 ≡ |�GS(w)〉. (30)

We remark that we only consider soft quenches starting from
initial conditions close to the critical point (i.e., for small
values of |w|), so that the system stays always within the
critical regime during the postquench quantum evolution.

The arising out-of-equilibrium dynamics can be monitored
using the particle density and the fermionic correlation func-
tions, analogous to the equilibrium definitions in Eqs. (15) and
(26), respectively, replacing the Gibbs density matrix with the
time-dependent density matrix of the evolving (pure) state

ρ� (t ) = |�(t )〉〈�(t )|. (31)

B. Out-of-equilibrium finite-size scaling

As shown in Refs. [2,26,33], the postquench quantum evo-
lution of standard observables characterized by an asymptotic
equilibrium FSS, such as the fermionic correlations of the
fermionic Kitaev wires and the longitudinal spin correlations
of the quantum XY chain, develops an out-of-equilibrium FSS
behavior at quantum transitions. This is essentially obtained
by adding a further dependence on the time scaling variable
� ∼ t/τ to the equilibrium FSS behaviors, where τ is the
timescale of the critical modes, which is expected to be related
to the gap �c(L) (energy difference of the lowest eigen-
modes) at the critical point, i.e., τ ∼ 1/�c(L) ∼ Lz. Actually,
since the gap corresponds to the lowest excitation energy
(for k = ±π/L) and thus its finite-size dependence at the
critical point is given by

�c(L, γ ) = E
(

k = π

L
, μ = μc, γ

)
= 2πγ

L
+ O(L−3),

(32)
where E (k, μ, γ ) is the function defined in Eq. (4), we define

� = γ t

L
∼ �c(L, γ ) t, (33)

including a γ -dependent normalization.
Then, along the quench protocol outlined in Sec. IV A,

the fixed-time two-point functions GP(t, x,w, L) and
GC (t, x,w, L) are expected to develop the out-of-equilibrium
FSS [2,26],

G#(t, x,w, L) ≈ L−2yc G#(X,�,�), yc = 1/2, (34)

asymptotically in the out-of-equilibrium FSS limit (i.e., the
large-L and large-t limits, keeping the scaling variables
X ≡ x/L, � ≡ uwLyw , and � fixed). Note that the depen-
dence on � is essentially related to the initial condition, while
no scaling variable is associated with the postquench value
of w = w f , because it is always set to zero (otherwise the
additional scaling variable � f = uw f L

yw should have been
added). The out-of-equilibrium FSS functions G# are univer-
sal, therefore they must be independent of γ , apart from a
multiplicative factor and possible nonuniversal normalizations
of the scaling variables � and �. Actually, their definitions
(22) and (33) already contain the correct γ dependence to
avoid further γ -dependent normalizations. The asymptotic
out-of-equilibrium FSS is expected to be approached with
power-law scaling corrections, like at equilibrium. Figure 2
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FIG. 2. Out-of-equilibrium FSS of the fermionic correlation GC

as a function of the rescaled time �, for fixed X = x/L = 1/4 (upper
panel) and X = 1/8 (lower panel), after a soft quench from the initial
condition � ≡ uwL = −0.5 to the critical point � = 0, for γ = 1
[cf. Eq. (34)]. The various curves correspond to different system sizes
L, as indicated in the legend. The approach to the asymptotic out-of-
equilibrium FSS is consistent with a simple 1/L power-law behavior,
as expected [2].

shows some numerical results for GC , clearly confirming the
out-of-equilibrium FSS in Eq. (34). We also note the presence
of spikes at finite values of the rescaled time �, which will be
discussed in detail later.

The above out-of-equilibrium FSS behaviors have been
obtained by a natural extension of their equilibrium scal-
ing behaviors, simply adding a time dependence through the
time scaling variable �. However, it is not straightforward to
extend this simple picture to the out-of-equilibrium time de-
pendence of quantities whose equilibrium behavior is affected
by regular and singular contributions involving the identity
operator, such as those appearing in the particle density be-
havior at the critical point. As discussed in Sec. III, the scaling
term of the equilibrium particle density �e, and also of its
subtracted definition De, is generally hidden by the analytical
background and the logarithmic resonance term; cf. Eq. (23).

The question is whether the modes related to the iden-
tity operator share the same timescale τ ∼ Lz of the critical
modes, or if their timescale τI is significantly shorter, as may
be suggested by the fact they are expected to arise from
short-range quantum fluctuations. If the ratio τI/τ vanishes in
the large-L limit, then the out-of-equilibrium particle density
may develop a scaling behavior characterized by the same
power law of the scaling term of the equilibrium particle
density; cf. Eq. (21). An analogous phenomenon occurs along
the postquench critical relaxational flow at classical thermal
transitions [10], where the energy density shows an out-of-
equilibrium FSS behavior, even though it does not scale at
equilibrium, like the equilibrium particle density at quantum
transitions driven by the chemical potential.

To investigate the out-of-equilibrium behavior of the parti-
cle density under the postquench critical quantum evolution,
we consider the subtracted particle density

D(t,w, γ , L) ≡ 1

L
Tr [ρ� (t ) N̂] − �c(γ ), (35)

where �c is the γ -dependent value of the particle density at the
critical point in the thermodynamic limit; cf. Eq. (20). If the
timescales of the different contributions differ substantially,
then the postquench quantum evolution may disentangle the
scaling contribution from the terms arising from the mixing
with the identity operator. As we shall see, the postquench
out-of-equilibrium behavior of the particle density turns out
to develop the nontrivial asymptotic out-of-equilibrium FSS

D(t,w, γ , L) ≈ L−ynD(�,�), (36)

which is analogous to a standard scaling behavior, like the
case of the fermionic correlations, cf. Eq. (34).

However, like the energy density at classical transi-
tions with negative specific-heat exponent [10], the out-of-
equilibrium FSS function D develops a nontrivial singularity
for � → 0, essentially related to the fact that at � = 0, and
therefore at equilibrium, the subtracted particle density does
not show a universal asymptotic FSS, behaving as L−1 ln L.
Indeed, by matching the out-of-equilibrium FSS of the sub-
tracted particle density, put forward in Eq. (36), with the
leading logarithmic term of the equilibrium behavior [cf.
Eq. (25)], one would predict a logarithmic divergence of the
scaling function D(�,�) when � → 0 keeping � fixed.

C. Numerical results

The typical out-of-equilibrium behavior of the subtracted
particle density D(t,w, γ , L) after a soft quench is reported
in Fig. 3 for initial conditions corresponding to a fixed scaling
variable � = −0.5 [cf. Eq. (22)]. Analogous results are ob-
tained for other values of �, both negative and positive (not
shown). The numerical data for different sizes L (upper panel)
nicely support the scaling Ansatz (36) at generic values of �.
We have also performed simulations for various values of γ

(lower panel), showing that the scaling function D(�,�) is
universal (i.e., independent of γ ). Aside from this expected
behavior, two special occurrences which correspond to spe-
cific values of � have to be carefully addressed.

First of all, at small values of �, our numerics clearly
evidences a logarithmic divergence with L of the product
L D(t,w, γ , L), which is somehow reconstructing the log-
arithmic equilibrium behavior arising from the resonance
between the energy and identity operators, as already men-
tioned at the end of Sec. IV B. This is shown in Fig. 4,
displaying a zoom of the curves in the upper panel of Fig. 3,
for � → 0. We also note that the out-of-equilibrium FSS
sets in for � � τs/L, where the timescale τs turns out to be
independent of L (see also the inset, which displays the same
data as a function of the bare time t). Thus, τs is the timescale
after which the logarithmic singularity in �, for � → 0, starts
emerging. Such time should be identified, or at least strictly
connected, with the timescale τI of the modes related to the
identity operator, which is needed to equilibrate short-range
fluctuations, i.e., τs ∼ τI ∼ O(L0) with increasing L.
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FIG. 3. Scaling of the subtracted particle density D with time,
after a quench from � = −0.5 to the critical point [cf. Eq. (36)].
Upper panel: curves are for different values of L, while γ = 1 is
kept fixed. Lower panel: curves are for different values of γ , while
L = 6400 is kept fixed: a collapse of the various curves with γ

supports universality of the scaling function D(�, �).

Second, it is worth stressing that the curves reported in
Fig. 3 for the subtracted particle density develop peculiar
spikes at finite values of �. For example, the spikes occurring
around � = 0.25 are highlighted in Fig. 5, showing strong

FIG. 4. A zoom of Fig. 3 upper panel for small values of the
rescaled time (� � 10−2). The x-axis is in log scale, such that a
straight-line behavior denotes a logarithmic divergence of the scaling
function LD ≈ D(�,�) for � → 0, as D ∼ log �. The inset shows
the same data, but with the real time t (and not the rescaled time �)
on the x-axis. Note that curves start deviating from the equilibrium
value at a time τs ∼ O(L0), which is independent of L.

FIG. 5. A zoom of Fig. 3 upper panel, around the first spike
that develops for � → �1 = 1/4 (vertical dashed line). Bottom left
panel: the location of the peak with L; the asymptotic value 1/4
is approached with O(L−2/3) corrections [73] (represented by the
dashed straight line to guide the eye; note the log-log scale of the
plot). Bottom right panel: the behavior of D with L at �1; the straight
line is a logarithmic fit LD = a + b log L for L > 103, with a and b
fitting parameters (note the log scale on the x-axis).

evidence of the presence of another logarithmic divergence
of L D, evaluated at � = 0.25, with L (bottom right panel).
Analogous results are found for � = 0.5 and, in general, for
multiples of � = 0.25 (not shown). These singularities can be
related to revival phenomena (see, e.g., Refs. [62,66–73]), due
to the finite size of the system. Indeed, they appear at times

�k ≡ γ tk
L

, tk = kL

2vm
, vm = 2γ (37)

for k = 1, 2, . . ., where vm is the maximum velocity of the
quasiparticle modes at the critical point [57,74,75]. In fact,
our numerics shows that the first emerging spikes are asymp-
totically (i.e., for L → ∞) located at �1 = 1/4 and �2 = 1/2
with a great accuracy (see Fig. 3). Such values of � cor-
respond to the rescaled time for the quasiparticle modes to
run across half lattice size (or multiple of it), thus confirming
their interpretation in terms of revival phenomena. Finite-size
corrections to the �-location of such peaks are power-law
suppressed with L, as reported in the bottom-left panel of
Fig. 5 and already found in Ref. [73] for similar revival
phenomena.

It is also worth pointing out that analogous spikes can be
observed in the postquench behavior of the fermionic corre-
lations; see Fig. 2. Again, they appear to be associated with
logarithmic divergences in L (which have been previously
overlooked [28]), as reported in Fig. 6 for the peak in the cor-
relation function GC with X = 1/4 emerging at � = 0.0625
(the upper panel is a magnification of the data in Fig. 6
around � = 0.0625, while the bottom-right panel displays the
behavior of L GC , evaluated exactly at � = 0.0625, with L).
Their location differs from those of the particle density, essen-
tially because they are nonlocal observables characterized by a
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FIG. 6. A zoom of Fig. 2 upper panel, for � ∈ [0, 0.08], which
highlights the spike that develops for � → �1 ≡ 0.0625 (vertical
brown dashed line). Also note that, for � → 0, curves approach the
expected equilibrium scaling behavior in Eq. (27). Bottom-left panel:
the location of the peak with L; analogously as for the subtracted
particle density, finite-size deviations from the asymptotic value 1/16
scale as L−2/3 (dashed line), see also Ref. [73], where analogous
revival phenomena are reported. Bottom-right panel: the behavior
of GC with L, evaluated at �1; the straight line is a logarithmic fit
LGC = a + b log L of the numerical data for L > 103, with a and b
fitting parameters.

scaling distance X . Actually it corresponds to the rescaled
time to run across half rescaled distance X , and the com-
plementary value 1 − X , at the maximum speed of the
quasiparticle modes, i.e., the first logarithmic spikes are
(asymptotically) located at

�1 = γ X

2vm
, �2 = γ (1 − X )

2vm
, (38)

respectively; see Fig. 2. This may be interpreted as an emerg-
ing singularity analogous to the particle density when the
quasiparticle modes starting at relative distance X meet. Anal-
ogously as before, at finite size, the position of the peaks
approaches the asymptotic value as a power-law with L (bot-
tom right panel of Fig. 6).

The above results fully confirm the out-of-equilibrium FSS
behavior after a soft quench, put forward in Sec. IV B, and in
particular that of the particle density given in Eq. (36). Since
the particle density should be quite accessible experimentally
and numerically, its out-of-equilibrium behavior under quan-
tum quenches may provide a further effective probe of the
universal features at quantum transitions, unlike its equilib-
rium behavior that is essentially dominated by nonuniversal
short-range fluctuations.

D. Out-of-equilibrium scaling in the thermodynamic limit

The previous results show that the subtracted particle den-
sity develops a peculiar out-of-equilibrium FSS, according
to Eq. (36), characterized by various singularities of the

corresponding scaling function, in particular in the � → 0
limit keeping � fixed. We now focus on the out-of-
equilibrium scaling behavior of the subtracted particle density
in the thermodynamic limit.

To derive a scaling Ansatz from the FSS behavior (36), we
note that the thermodynamic limit corresponds to the limit
L/ξ → ∞, where ξ ∼ w−ν is the correlation length of the
system. This is achieved by taking the � → ∞ limit keeping
the product �zν� = �� = γ uw t fixed. Actually, for sim-
plicity, we consider the scaling variable

θ = w t, (39)

so that θ ≈ �� apart from irrelevant subleading terms in the
scaling limit [taking into account that uw = w/γ + O(w2)].
Then, the thermodynamic limit of the out-equilibrium FSS
Eq. (36) can be straightforwardly obtained by taking the limit
� → ∞ keeping θ fixed, so that

D∞(t,w, γ ) = D(t,w, γ , L → ∞) ≈ w

γ
D∞(θ ). (40)

Note that we keep the γ dependence in the prefactor of the
right-hand side of Eq. (40), which turns out to be useful to
check the universality of the scaling behavior with respect to
the Hamiltonian parameter γ .

The above out-of-equilibrium scaling behavior can be
checked using the known analytical results for the postquench
time dependence of the transverse magnetization of the quan-
tum XY chain in the thermodynamic limit, already reported in
Refs. [54,55], where the postquench time dependence of the
transverse magnetization is expressed in terms of an integral
over the momenta (as a function of the coupling gi > gc of
the initial ground state before the quench, the postquench
coupling g, and the parameter γ ). In the thermodynamic limit,
the boundary conditions become irrelevant, therefore these
computations apply also to the particle density of the Kitaev
wire in the corresponding infinite-size limit.

Applying the analytical expressions of Refs. [54,55] to
the soft quench protocol outlined in Sec. IV A, and taking
the out-of-equilibrium scaling limit w = gi − gc → 0 and
t → ∞ keeping θ fixed, we obtain the curves shown in Fig. 7.
They clearly show the scaling behavior (40) (upper panel)
and universality with respect to variations of γ (lower panel).
Moreover, the scaling curve displays again a logarithmic di-
vergence for θ → 0, analogously to what has been observed
in Fig. 4, in the FSS framework.

V. QUASIADIABATIC KIBBLE-ZUREK PROTOCOL

We now discuss the out-of-equilibrium behavior of the
particle density arising from slow changes of the chemical
potential approaching the quantum transition, such as the dy-
namic protocols related to the so-called KZ problem, related
to the defect production when crossing continuous transitions
from disordered to ordered phases (see, e.g., Refs. [2,18–
20,24,63–65]).

Quasiadiabatic evolutions at quantum transitions can be
obtained by slowly varying the Hamiltonian parameter μ,
according to the linear time dependence

μ(t ) = μc − 2w(t ), w(t ) = −t/ts, (41)
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FIG. 7. Scaling of the subtracted particle density D∞ with time,
in the thermodynamic limit [cf. Eq. (40)]. Upper panel: curves are
for different values of w, keeping γ = 1 fixed. Lower panel: curves
are for different values of γ , keeping w = 10−3 fixed.

with a large timescale ts. More precisely, we consider the
following quasiadiabatic protocol: (i) The quantum evolution
of finite fermionic wires of size L starts at a time ti < 0
from the ground state |�GS(wi )〉 associated with the initial
value wi = −ti/ts > 0. (ii) Then the system evolves unitarily
according to the Schrödinger equation

i
d

dt
|�(t )〉 = Ĥ [w(t ), γ ] |�(t )〉, |�(0)〉 = |�GS(wi )〉,

(42)
where w varies linearly as in Eq. (41) up to the final value
w f = 0, corresponding to t f = 0, thus w(t ) � 0 along the
whole protocol. If we assume wi fixed with increasing ts, then
ti → −∞ in the large-ts limit.

At a quantum transition, the development of an out-of-
equilibrium dynamics is inevitable (in the thermodynamic
limit L → ∞, before taking the critical limit) even for very
slow changes of the parameter w, because large-scale modes
are unable to equilibrate the long-distance critical correlations
emerging at the transition point. As a consequence, when
starting from equilibrium states at the initial value wi, the
system cannot pass through equilibrium states associated with
the values of w(t ) at the transition point, thus departing from
an adiabatic dynamics before arriving at w = 0. Such a depar-
ture develops peculiar out-of-equilibrium scaling phenomena
in the limit of large timescale ts of the time variation of w(t ).
In particular, during the quantum evolution of finite systems
under KZ protocols, an out-of-equilibrium FSS emerges in
the large-L and large-ts limits, keeping the appropriate scaling
variables fixed (see, e.g., Refs. [2,32,34,35]).

The results of this kind of dynamics can be monitored
by looking at some observables and correlations at fixed
time, such as the fermionic correlations GP and GC [cf.

Eqs. (26)], replacing ρG with ρ(t ) = |�(t )〉〈�(t )|. Their out-
of-equilibrium FSS along the KZ protocol can be written in
terms the scaling variables [2]

S1 ∝ w(t )Lyw , S2 ∝ t �c(L) ∼ t/Lz, (43)

where �c is the critical gap, or more convenient combinations
such as

ϒ ∝ −S2

S1
∝ ts

Lζ
, � ∝ S2

ϒκ
∝ t

tκ
s

, (44)

where

ζ = yw + z = 2, κ = z

yw + z
= 1

2
. (45)

Actually, analogously to the definitions of the scaling vari-
ables � and � associated with the quench protocol [cf.
Eqs. (22) and (33), respectively], we may allow for a γ -
dependent normalization of the scaling variables to simplify
the universality checks with respect to variations of γ , without
including further factors in the dependence of the scaling
variables. Taking into account the fact that uw ∼ w/γ [cf.
Eq. (12)] and that the critical gap is asymptotically propor-
tional to γ [cf. Eq. (32)], we may refine the definitions of S1

and S2, so that S1 = w(t )L/γ and S2 = γ t/L, obtaining

ϒ = γ 2ts
L2

, � = t√
ts

. (46)

Assuming that the initial value wi remains fixed in the
large-L and large-ts limit, keeping ϒ and � fixed, the out-
of-equilibrium KZ FSS of the fermionic correlations is given
by [2]

G#(t, x, ts,wi, γ , L) ≈ L−2yc Ĝ#(X, ϒ,�), (47)

where yc = 1/2 and X = x/L. Thus, the scaling behavior
turns out to be independent of the initial value wi. The scaling
functions Ĝ# are expected to be universal and, in particular,
independent of γ , apart from a possible multiplicative factor.

The out-of-equilibrium FSS of particle density following
a KZ protocol requires a more careful analysis, although its
equilibrium behavior at the transition is understood. We may
again consider the working hypothesis that short-range fluc-
tuations, responsible for the leading equilibrium contributions
to the particle density, get equilibrated faster than the critical
modes, so that the slow dynamics at the KZ protocol, in the
large ts limit keeping ϒ and � fixed, can be considered as
effectively adiabatic for them. Therefore, the emerging out-
of-equilibrium behavior in the KZ FSS limit should only be
related to the critical modes. We again focus on the deviation
of the particle density from its equilibrium value [cf. Eq. (35)],

D̂(t, ts,wi, γ , L) = 1

L
Tr [ρ� (t ) N̂] − �e[w(t ), γ , L], (48)

where �e = 〈�GS[w(t )]|n̂x|�GS[w(t )]〉 is the ground-state
particle density at the instantaneous value w(t ) and size L
of the system, whose size dependence at the transition was
reported in Eq. (23). Then, analogously to Eq. (47), the above
scenario naturally leads to the conjecture

D̂(t, ts,wi, γ , L) ≈ L−ynD̂(ϒ,�). (49)
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FIG. 8. Deviation of the particle density from its equilibrium
value D̂, along a KZ protocol from wi = 0.5 to w f = wc = 0. Data
are shown against the rescaled time �, in a window close to the
ending point � = 0. We fix ϒ = 0.1 (analogous results are obtained
for other values of ϒ). Upper panel: curves are for different values of
L, while γ = 1 is kept fixed. They appear to approach an asymptotic
curve, supporting Eq. (49). Lower panel: curves are for different
values of γ while L = 400 is kept fixed, which are hardly distin-
guishable. Their agreement provides strong evidence of universality
of the scaling function D̂(ϒ, �).

As shown in Fig. 8, this conjecture is fully supported by our
numerical results for different sizes L (upper panel). Besides
that, they also show that the asymptotic out-of-equilibrium
scaling behavior is universal, i.e., independent of the value of
γ (bottom panel). In this respect we do not even apparently
need a multiplicative factor, while the γ dependence in the
definitions of the scaling variables ϒ and � [cf. Eq. (46)]
already takes correctly into account their nonuniversal
normalizations.

VI. CONCLUSIONS

We have addressed the equilibrium (ground-state) and out-
of-equilibrium behaviors of the particle density in many-body
systems undergoing quantum transitions driven by the chemi-
cal potential, which arise from a nontrivial interplay between
noncritical short-range and critical long-range quantum fluc-
tuations. To study this issue, we consider the fermionic Kitaev
chain [36] as a paradigmatic model for quantum transitions
driven by the chemical potential, for which very accurate
numerical calculations, and thus checks of the scaling Ansatz,
can be performed up to O(104) sites.

The equilibrium behavior of the particle density (or equiv-
alently the transverse magnetization in the quantum XY
chain) is related to the derivative of the free-energy den-
sity with respect to the chemical-potential parameter μ. Its
behavior at continuous quantum transitions driven by μ is
generally dominated by contributions arising from short-range

fluctuations, which may be interpreted as mixings with the
identity operators within CFT frameworks [37]. In particular,
within the paradigmatic fermionic Kitaev wires, they appear
as a regular background term in the free-energy density (ac-
tually this generally occurs at continuous quantum transitions
[2,3]), and also logarithmic terms arising from peculiar reso-
nances [6] between operators of the energy and identity CFT
families [3,37]. These contributions hide the genuine scaling
behavior arising from the long-range critical modes, making
the particle density nonoptimal to study the universal critical
properties at continuous quantum transitions. The absence
of an asymptotic universal equilibrium scaling makes the
out-of-equilibrium behavior unclear. To study this issue, we
focus on two simple dynamic protocols: (i) instantaneous soft
quenches, where the chemical-potential is instantaneously
changed from μ �= μc within the critical regime to its criti-
cal value μc, and (ii) quasiadiabatic protocols, where μ gets
slowly and linearly changed from μ to μc.

After subtracting its infinite-volume value at the criti-
cal point, the subtracted particle density D [cf. Eq. (35)]
shows an out-of-equilibrium FSS along the quantum evolution
after a soft quench of μ. The resulting asymptotic out-of-
equilibrium FSS, D(t,w, γ , L) ≈ L−ynD(�,�), is controlled
by the RG dimension yn of the particle-density operator n̂x and
is defined in the large-L limit keeping the scaling variables
� ∼ (μ − μc)L1/ν (associated with the chemical-potential
parameter) and � ∼ t/Lz (associated with the time interval
from the quench) fixed. This dynamic FSS appears analogous
to that of other observables possessing an asymptotic equi-
librium FSS [2,26], such as that of the fermionic correlations
[cf. Eq. (34)]. However, unlike them, the scaling functions are
now characterized by a logarithmic divergence in the � → 0
limit, which is somehow related to the logarithmic singularity
at equilibrium [cf. Eq. (25)], which must be somehow recon-
structed in the � → 0 limit. Analogous results are obtained
in the thermodynamic limit, in terms of the time scaling
variable θ ∼ �� ∼ (μ − μc)t remaining after the thermody-
namic infinite-size limit.

Within the out-of-equilibrium FSS framework, we also
spotlight logarithmic divergences at finite values of � (both
for the subtracted particle density and for the fermionic cor-
relations), which can be related to revival phenomena in
finite-size systems, already observed in various contexts (see,
e.g., Refs. [62,66–73]).

Then we consider quasiadiabatic KZ-like protocols, where
the chemical potential is slowly changed at the quantum
transition, with a large timescale (see Sec. V). Along these
protocols, the critical large-scale modes are generally un-
able to equilibrate the long-distance critical correlations
emerging at the transition point, giving rise to peculiar out-
of-equilibrium KZ FSS behaviors [2]. However, the case of
the particle density is again particular, because its equilib-
rium behavior is dominated by the short-range contributions.
Under the assumption that the timescale of the changes of
the short-range modes, and therefore of the changes of their
contributions, is much smaller than that driving the critical
modes, the slow dynamics is expected to disentangle the
effects of the out-of-equilibrium critical modes from those
associated with the short-range modes. This scenario leads
us to conjecture that the quasiadiabatic KZ dynamics in the
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out-of-equilibrium FSS limit is effectively adiabatic with
respect to the short-range modes, and thus the out-of-
equilibrium behavior is only associated with the critical
modes that give rise to a well-defined out-of-equilibrium
FSS. This is indeed observed when looking at the differ-
ence between the out-of-equilibrium particle density and
its equilibrium value at the instantaneous value of the
chemical-potential parameter [cf. Eq. (48)], which shows an
out-of-equilibrium KZ FSS analogous to the observables de-
fined from the fermionic correlations, whose equilibrium FSS
is not affected by short-range contributions.

We remark that analogous out-of-equilibrium scaling
behaviors, at both instantaneous quenches and quasiadia-
batic protocols, are expected at any quantum transition,
when considering the behavior of observables related to the
derivative of the free-energy density with respect to the
Hamiltonian parameter that drives the quantum transition
preserving the symmetry (such as the transverse magnetiza-
tion at the quantum transitions of d-dimensional quantum
Ising systems, or the square angular momentum at the
quantum transitions of d-dimensional quantum rotor models
[1,2]).

We finally mention that recent theoretical proposals
[76,77], as well as experimental attempts to realize fermionic
Kitaev wires, by means of quantum dots [78], integrated cir-
cuits [79], or even quantum computers [80–83], have been
put forward with the purpose of manipulating Majorana zero
modes. Since, in this context, particle density measurements
should be quite accessible, we believe there could be the
possibility to study its out-of-equilibrium behavior, thus pro-
viding a further effective probe of the universal features at
quantum transitions (unlike its equilibrium behavior, which
is essentially dominated by the nonuniversal short-range fluc-
tuations). More generally, the main features of the dynamic
scaling behaviors of the particle density for the fermionic
Kitaev wire are expected to extend to generic quantum
transitions driven by the chemical potential when the particle-
number operator is not conserved. Further theoretical as well
as experimental studies could help in validating this scenario.
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