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Solitons formed through the one-dimensional mass-kink mechanism on the edges of two-dimensional systems
with nontrivial topology play an important role in the emergence of higher-order (HO) topological phases. In this
connection, the existing work in time-reversal symmetric systems has focused on gapping the edge Dirac cones
in the presence of particle-hole symmetry, which is not suited to the common spin Chern insulators. Here, we
address the emergence of edge solitons in spin Chern number of two insulators, in which the edge Dirac cones
are gapped by perturbations preserving time-reversal symmetry but breaking spin-U (1) symmetry. Through the
mass-kink mechanism, we thus explain the appearance of pairwise corner modes and predict the emergence of
extra charges around the corners. By tracing the evolution of the mass term along the edge, we demonstrate that
the in-gap corner modes and the associated extra charges can be generated through the anisotropic Sz-mixing
spin-orbit coupling via the mass-kink mechanism. We thus provide strong evidence that an anisotropic even spin
Chern number insulator is an HO topological insulator with protected corner charges.
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I. INTRODUCTION

Analysis of topological properties of the ground-state elec-
tronic structures has yielded many new insights into the nature
of quantum matter. The bulk-boundary correspondence not
only manifests itself through the appearance of gapless edge
states, but it can also lead to topological solitons and the as-
sociated topologically protected charges [1–6]. Distinct from
the topological charges produced by the filling anomalies
that can be predicted by bulk invariants based on symmetries
[7–10], these solitons are typically generated at the inter-
faces that separate two regions characterized by (complex)
mass terms with different phases, which we will refer to as
the mass-kink mechanism in one-dimensional (1D) systems.
In the low-energy states on the edges of a two-dimensional
(2D) topological insulator, different phases of the massive
edge Dirac cones can also induce corner solitons, indicating
the presence of higher-order (HO) topological phases with
protected extra corner charges [4,11–15]. In this connection,
the existing literature on solitons in time-reversal-symmetric
systems has focused on gapping the Dirac cones with particle-
hole symmetry [16–22]. However, the role of the mass-kink
mechanism in gapping Dirac cones in particle-hole symmetry-
breaking systems is not well understood. Here, we examine
how, in even spin Chern number insulators, the edge states
can be gapped through spin-U (1)-symmetry-breaking terms
in the Hamiltonian.

Even spin Chern number insulators have been demon-
strated in several recent tight-binding models [23–25]. In the
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absence of Sz-mixing spin-orbit coupling (SOC), these models
support insulators with a spin Chern number (Cs) of 2, which
implies the presence of two spin-polarized gapless edge states
protected by Sz conservation (Fig. 1). When the Sz-mixing
SOC is turned on, the edge states are gapped (Fig. 2) without
changing the spin Chern number [26,27]. The corner modes
appear pairwise within the edge band gap in a finite-sized thin
film due to time-reversal symmetry. However, the origin of
these corner modes is not well understood.

Since the edge states are gapped, the nonvanishing mass
terms are driven by the Sz-mixing SOC. The mass kink could
thus be anticipated to account for the corner modes. Through
bosonization, we will show how the corner modes and the
associated corner charges can be attributed to the two time-
reversal-related edge solitons via the mass-kink mechanism.
These solitons form a time-reversal-related soliton pair [28]
and provide an explanation of the existence of pairwise in-gap
corner modes with extra charges in a finite-sized thin film.
We illustrate our new approach by considering the model of
Ref. [24] as a concrete example with Cs = 2 and Sz-mixing
SOC-induced mass terms. By tracking the phase evolution
of the corner modes along the edge of a thin film, we show
that the corner modes and the associated extra charge arise
from a time-reversal soliton pair created by the Sz-mixing
SOC-induced mass-kink mechanism. These results indicate
that even in the absence of gapless edge Dirac cones derived
from crystalline symmetries, an HO topological insulator with
protected corner charges can emerge from a Cs = 2 spin Chern
insulator.

This paper is organized as follows. In Sec. II, we con-
struct an effective model for the edge-hosting two Dirac
cones, along with a general mass term. We show how a
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FIG. 1. A schematic diagram of our picture of the edge modes
before adding the gap-opening perturbation, where the index 1(2)
indicates the first(second) time-reversal sector. R(L) refers to the
right (left) moving mode and v is the Fermi velocity. ±k0 values of
the edge Dirac cones in the edge Brillouin zone are labeled.

time-reversal-related soliton pair arises in the system, leading
to an HO topological phase with corner modes. Through a
renormalization group (RG) analysis, we show that our results
are robust against the presence of electron-electron inter-
action. In Sec. III, we numerically confirm our results by

FIG. 2. A schematic diagram of our picture of the edge modes
after adding the gap-opening perturbation. With the presence of time-
reversal symmetry, the mass terms of different Dirac cones have a
π -phase difference in their phase θ . In our case, the perturbation is
the Sz-mixing SOC.

considering a concrete example of a time-reversal-symmetric
generalization of the Haldane model in which the mass term
is induced via a Sz-mixing SOC. We summarize our results in
Sec. IV. Details of the formalism in the main text are given in
the Appendixes. Bosonization conventions, some basic prop-
erties, the general mass term, and the influence of intersector
forward scattering are presented in Appendix A, Appendix B,
Appendix C, and Appendix D, respectively.

II. EDGE THEORY OF A Cs = 2 SPIN CHERN INSULATOR

We start by considering an edge theory of a spin Chern
insulator with Cs = 2. Before introducing perturbations, we
have two edge Dirac cones located at the momenta ±k0 with
k0 > 0 at the Fermi level due to the nonvanishing spin Chern
number, see Fig. 1. Due to the helical nature of the edge
states, the right-moving modes are locked with spin up while
the left-moving modes lock with spin down (Fig. 1). Unlike
systems with a single Dirac cone at a time-reversal invariant
momentum, here the Dirac cones do not involve time-reversal
partners. Rather, they emerge from the right-moving or the
left-moving modes derived from distinct time-reversal sectors.
Therefore, there is no Kramers’ degeneracy in our low-energy
theory. Since different time-reversal sectors can have different
Fermi velocities, the Dirac cones are slightly tilted (Fig. 1).

Following the strategy used in the literature [11,29,30], we
map our edges around a corner into a 1D system in which the
corner is at x = 0 connecting two edges represented by x > 0
and x < 0 regions. We write the edge-theory model shown in
Fig. 1 in real space as:

H0(x) = −iv1(R†
1∂xR1 − L†

1∂xL1)

− iv2(R†
2∂xR2 − L†

2∂xL2), (1)

where v1(2) is the Fermi velocity for the first (second) time-
reversal sector. We then define the average Fermi velocity v =
v1+v2

2 and its deviation between the two time-reversal sectors
δv = v2−v1

2 . Eq. (1) then becomes:

H0(x) = −iv
2∑

μ=1

(R†
μ∂xRμ − L†

μ∂xLμ)

− iδv
2∑

μ=1

εμν (R†
ν∂xRν − L†

ν∂xLν ), (2)

which can be further bosonized, with the convention in
Appendix A, into [29]:

H (B)
0 (x) = 1

2

2∑
μ=1

v[(∂xϕμ)2 + (∂xϑμ)2]

+ 1

2

2∑
μ=1

δvεμν[(∂xϕν )2 + (∂xϑν )2], (3)

which can be further written as:

H (B)
0 (x) = v

2
{[(∂xϕc)2 + (∂xϑc)2 + (∂xϕd )2 + (∂xϑd )2]

− 2
δv

v
[∂xϕc∂xϕd + ∂xϑc∂xϑd ]}. (4)

Upon adding perturbations that break the spin rotational sym-
metry but preserve the time-reversal symmetry, the Dirac
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points can be gapped, and the low-energy theory acquires a
mass term, which we introduce next.

A. Mass term

We consider time-reversal-symmetric perturbations that
can open band gaps at the Dirac cones of Eq. (1). While the
Sz-mixing SOC, which is naturally present in real materials,
offers an illustrative example of such perturbations, here we
introduce a general mass term. Consider the operation of
time-reversal symmetry first:




(
R1

L2

)

−1 =

(
L1

−R2

)
and 


(
R†

1

L†
2

)

−1 =

(
L†

1

−R†
2

)
(5)

with the time-reversal symmetry operator 
. This allows us
to regard the Hamiltonian in Eq.(1) as a sum of two time-
reversal related sub-Hamiltonians H (+)

0 (x) and H (−)
0 (x) =


H (+)
0 (x)
−1:

H0(x) = H (+)
0 (x) + H (−)

0 (x),

H (+)
0 (x) = −iv1R†

1∂xR1 + iv2L†
2∂xL2

H (−)
0 (x) = iv1L†

1∂xL1 − iv2R†
2∂xR2. (6)

The H (±)
0 (x) here can be understood as describing the Dirac

fermion around ±k0.
Hence, if the mass term in one of the sub-Hamiltonians,

say, H (+)
M (x), is given by

me−iθ R†
1L2 + meiθ L†

2R1, (7)

with m > 0, then the mass term in the full Hamiltonian can be
obtained through:

HM =H (+)
M (x) + H (−)

M (x)

=H (+)
M (x) + 
H (+)

M (x)
−1

=(me−iθ R†
1L2 + H.c.) + (

me−i(θ+π )R†
2L1 + H.c.

)
. (8)

There will thus be a π phase difference between the mass
terms of the two sub-Hamiltonians H (+)

M (x) and H (−)
M (x), as

indicated in Fig. 2.
Using Eq. (A1)–(A5), Eq. (8) can be rewritten as:

H (B)
M = 2m

πa
cos(

√
2πϑd ) sin(θ +

√
2πϕc), (9)

which has minima at

ϑd =
(

n + 1

2
± 1

2

)√
π

2
, ϕc = − θ√

2π
+
(

n′ ± 1

2

)√
π

2
,

(10)

with n, n′ ∈ 2Z.
Notably, the mass terms here are generated by perturba-

tions that do not close and reopen the bulk band gap and only
influence the low-energy theory and hardly change the Fermi
velocities determined by the overall band structure. Thus, the
matrix elements of the HM can be calculated by expanding the
perturbation term �H in the Hamiltonian on the eigenstates
of H0, which we demonstrate in Sec. III through a concrete
example.

B. Bulk-boundary correspondence

To derive the conserved current and hence the conserved
charge in the system shown in Fig. 2, we use the following
notation:

γ 0 =
(

0 1
1 0

)
, γ 1 =

(
0 1

−1 0

)
, γ 5 =

(−1 0
0 1

)
,

ψμ =
(

Lμ

Rμ

)
, ψ̄μ = ψ†

μγ 0, μ = 1, 2.

(11)

This allows us to rewrite the Hamiltonian with gap-opening
perturbation H = H0 + HM as:

H = −i
∑

μ

vψ̄μγ 1∂xψμ + δvεμνψ̄νγ
1∂xψν

+
∑
μ �=ν

ψ̄μ(−m · cos θγ 5 + (−1)μi · m · sin θI)ψν,

(12)

with the corresponding Lagrangian:

L = i
∑

μ

[vψ̄μ /∂ψμ − δvεμνψ̄ν /∂ψν]

−
∑
μ �=ν

ψ̄μ[−m · cos θγ 5 + (−1)μi · m · sin θI]ψν. (13)

Thus, the conserved currents are

jσ ∝
∑

μ

ψ̄μγ σψμ − δv

v
εμνψ̄νγ

σψν

=
√

2

π

(
εση∂ηϕc + δv

v
εσξ ∂ξϕd

)
. (14)

and the total charge carried by the solitons is

Q0
s ∝ e

∫
j0dx = e

√
2

π

∫ (
∂xϕc − δv

v
∂xϕd

)
dx, (15)

where e is the electron charge. Through Eq. (10), we approx-
imate ∂μϕc

∼= −1√
2π

∂μθ near the minimum of H (B)
M and apply

Eqs. (A4)–(A5) to Eq. (15):

Q0
s

∼= − e

π

∫ [
∂xθ + π

δv

v
(n1 − n2)

]
dx

= − e

2π
2[θ (x → ∞) − θ (x → −∞)] − e

δv

v
(N1 − N2),

(16)

where ni and Ni are the particle-number density and the
particle number of the ith time-reversal sector, respectively.
Since we are considering edge states of a 2D system, it is
reasonable to assume identical chemical potentials for the two
time-reversal sectors, given that these sectors are located at the
system edges and analyzed in the absence of external fields
that might tilt the Fermi level. Notably, this scenario only
covers gap-opening perturbations that do not significantly
alter the chemical potential, leaving the particle numbers unaf-
fected. As a result, we have the same particle number N1 = N2

and therefore,

Q0
s = − e

2π
2[θ (x → ∞) − θ (x → −∞)]. (17)

035125-3



HUNG, WANG, HSU, BANSIL, AND LIN PHYSICAL REVIEW B 110, 035125 (2024)

Note that, since e is negative, the soliton charge Q0
s is positive,

and the soliton particle number Ns = Q0
s

e is negative. While we
focus on time-reversal-invariant systems here, Eq. (17) can
apply to systems without time-reversal symmetry, indicating
that the soliton pairs can be created by applying time-reversal-
symmetry-breaking perturbations that gap the edge states
protected by some symmetries [23,24], see Appendix C).

Since the charge density j0 is proportional to ∂xθ according
to the above approximations, a soliton appears around a spatial
point where θ develops a kink. For smooth and clean edges
where local perturbations due to spatial inhomogeneity are ab-
sent, we expect such a kink in θ only around a corner at which
the adjacent edges are characterized by different values of θ .
Therefore, the bulk-boundary correspondence implies that the
total soliton charge Q0

s around a corner (i.e., the boundary
of a 1D system) can be obtained from the phase difference
between the mass terms θ (x → ±∞) on the adjacent edges
(i.e., the bulk of a 1D system). From the perspective of the
two time-reversal sectors described by Eq. (6), the total soliton
charge can be considered as the contribution of two identical
soliton charges. Each sub-Hamiltonian features exponentially
localized domain-wall states at the edge intersections (i.e.,
the corner). Hence, we can expect pairs of identical soliton
excitations localized around the corner and generate in-gap
corner modes with extra charges. This intuitive view can be
readily understood by changing the basis:⎛

⎜⎜⎝
ϕ−
ϕ+
ϑ−
ϑ+

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ϕ1

ϕ2

ϑ1

ϑ2

⎞
⎟⎟⎠. (18)

In the new basis (ϕ+ ϕ− ϑ+ ϑ−)T , the bosonized
Hamiltonian becomes:

H (B) = H (B)
+ + H (B)

− ,

where H (B)
± are

H (B)
± = v

2

[
(∂xϕ±)2 + (∂xϑ±)2 ∓ 2δv

v
∂xϕ±∂xϑ±

]

+ m

πa
cos

(√
4πϕ± + θ − π

2

)
. (19)

According to Eqs. (A3) and (A5), H (B)
± can be regarded as

the bosonized sub-Hamiltonian describing the massive Dirac
fermions at the momenta ±k0 in Fig. 2. For a typical case, we
have δv

v
� 1 such that terms with δv

v
can be neglected, and

H± can be regarded as Gaussian models with the sine-Gordon
terms [31–33]. The coupling constants in Eq. (19) correspond
to the kink solution instead of the breather solution in a sine-
Gordon problem, indicating each of H (B)

± produces the same
amount of topological charge [32,33].

As further discussed below, instead of having topological
in-gap corner zero modes, we will have topologically pro-
tected extra charge around the corner. Note that this charge
is calculated with respect to the ground state [2–4], which
can be obtained through computing the charge fluctuation in
a finite-sized thin film and summing the value around the

corner:

�ρ(x, y) = e
Nocc.∑
i=1

〈ψi(x, y)|ψi(x, y)〉 − eN (site)
occ. , (20)

where Nocc. is the number of occupied bands and N (site)
occ. is

the number of occupied bands per site. For convenience, we
will employ particle number fluctuation �N (x, y) = �ρ(x,y)

e in
subsequent calculations.

C. Symmetry properties

Our focus in this paper is on time-reversal invariant sys-
tems, but the particle-hole and chiral symmetries can be
broken by either the nonzero velocity difference δv �= 0 or the
coexistence of the two mass terms. In either case, the energy
of the corner modes is not fixed at zero since the system is in
class AII in one dimension, characterized by trivial topology
[34]. We can, however, have topologically protected corner
zero modes when the particle-hole and chiral symmetries are
restored if we have δv = 0 with at most a single mass term,
i.e., θ = nπ

2 , n ∈ Z on all edges. In the latter case, the topo-
logical invariant will be characterized by Z2 of class DIII in
one dimension [20,35]. For general cases with both broken
time-reversal and particle-hole symmetries, the systems fall
into class AIII characterized by Z in the presence of the chiral
symmetry or class A without topological modes. Based on the
these consideration, our system contains only topologically
protected charges instead of states with fixed energies.

D. Fractionalization properties

Our theory implies an unusual relation between the charge
and spin degree of freedom originating from the helical nature
of the edge states of a spin Chern insulator. This is distinct
from the related features discussed in the existing literature
where the Fermi velocities of different energy bands lead to
charge-spin mixing [36–40]. The charge degree of freedom is
intertwined with the spin degree of freedom, see Appendix A,
due to the helical edge states, so that they do not form in-
dependent sectors. Instead, it is the charge-difference sector
that remains independent from the charge sector [18], and
the two sectors together describe the low-energy edge theory.
Furthermore, the charge-difference sector denotes the devi-
ation between the time-reversal subsystems; this is evident
from Eq. (4), where it interacts with the charge sector due
to a nonzero difference in Fermi velocity. Still, solitons, in
our case, demonstrate an unusual spin-charge relationship.
They feature spin-charge separated excitations, meaning that
they carry fractional charges without spin [6], as depicted in
Fig. 3(a). Due to time-reversal symmetry, there are no pure
spinon excitations upon introducing many-body interactions.
Instead, the many-body system hosts soliton and antisoliton
excitations, carrying a fractional charge of e ± Q0

s . The two
are related to each other by the time-reversal operator for
half-integer spins [2,5,6,41], as indicated in Fig. 3(b).

E. Effect of interactions

Since the interaction between electrons is expected to play
a role in the 1D edges [33], here we discuss its influence on
the mass term through an RG analysis. To incorporate the
interaction in Eq. (1), we include the forward scattering in
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FIG. 3. (a) Due to time-reversal symmetry, a filled (anti)soliton
excitation carries a net charge of 2e ± Q0

s without an associated spin
while an empty (anti)soliton excitation carries a net charge of ±Q0

s

without an associated spin. The blue line indicates the energy level
of the excitations while the orange line indicates the Fermi level.
(b) In a time-reversal symmetric many-body system composed of
soliton and antisoliton excitations, it is possible to have excitations
with a half-integer spin and nonvanishing fractional charges e ± Q0

s

for (anti)solitons. The colors of the arrows indicate different time-
reversal pairs.

each time-reversal sector after bosonization [19] and obtain
two copies of a helical Luttinger liquid with the corresponding
interaction parameters K1, K2 characterizing the interaction
strength in each sector:

H (B)
0 = 1

2

2∑
μ=1

vμ

[
K−1

μ (∂xϕμ)2 + Kμ(∂xϑμ)2]. (21)

In the basis (ϕ1 ϕ2 ϑ1 ϑ2)T , Eq. (9) can be rewritten as:

H (B)
M = 2m

πa
cos[

√
π (ϑ1 − ϑ2)] sin[θ + √

π (ϕ1 + ϕ2)]. (22)

If we define m̃ ≡ m√
v1v2

a, the RG flow equations can be
obtained from the standard procedure [19,33,42]:

dKμ

dl
= −m̃2

K2
μ − 1

2
, (23)

dm̃

dl
=
⎡
⎣2 − 1

4

∑
μ

(
Kμ + K−1

μ

)⎤⎦m̃, (24)

FIG. 4. Solution of the RG flows in Eqs. (26) and (27) described
by Eqs. (28) and (29). The blue trajectory indicates the critical points
where rK (l = 0) = 4m̂(l = 0).

where we have set a = a0el with the short-distance cutoff a0.
Note that Eq. (24) can be written as:

dm

dl
=
⎡
⎣1 − 1

4

∑
μ

(
Kμ + K−1

μ

)⎤⎦m. (25)

Since Kμ + K−1
μ � 2, the corresponding operator in

Eq. (22) is at most marginally relevant in the RG sense. It
can be seen from Eqs. (23) and (24) that Kμ and m tend to
flow toward the fixed points (Kμ, m) → (1, m∗) or (K∗

μ, 0),
with some renormalized values m∗ and K∗

μ. Intuitively, when
Kμ(l = 0) deviates from unity, m decreases to zero faster
than the evolution of Kμ to unity. Otherwise, the sine-Gordon
term is marginal, and the system scales as its noninteracting
version. To demonstrate this behavior, we analyze the RG flow
around the fixed point Kμ = 1 by setting Kμ = 1 + δKμ with
δKμ � 1 and expanding Eqs. (23) and (24) to the third-order
of perturbations p, where p ∈ {δKμ, m}. This procedure gives:

d (δKμ)2

dl
= −2m̃2(δKμ)2, (26)

dm̃2

dl
=
⎡
⎣2 − 1

4

∑
μ

(δKμ)2

⎤
⎦m̃2. (27)

By setting x± = m̃2 ± 1
8

∑
μ(δKμ)2, we can solve Eqs. (26)

and (27) exactly. The solutions after transforming x± back into

m̂ ≡ m̃
a = m√

v1v2
, rK =

√∑
μ(δKμ)2 are

rK (l ) = rK (l = 0)e−l , (28)

m̂2(l ) = m̂2(l = 0) + e−4l − 1

16
r2

K (l = 0). (29)

The trajectories of Eqs. (28) and (29) with several sets of
initial values {rK (l = 0)} and {m̂(l = 0)} are plotted in Fig. 4.
According to Eqs. (28) and (29), m becomes irrelevant when
rK (l = 0) � 4m̂(l = 0). On the other hand, the sine-Gordon
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term characterized by m is marginal at large l when rK (l =
0) < 4m̂(l = 0), which can be better captured if we expand
Eqs. (23) and (25) only to the first order of δKμ:

dδKμ

dl
= −m̃2δKμ, (30)

dm

dl
= 0. (31)

Equations (30) and (31) indicate that |δKμ| decreases due to
finite m while m remains unchanged during the RG flow.

We make two remarks regarding the RG analysis: (i)
Eq. (1) does not contain intersector forward scattering terms.
Incorporating these terms would result in additional terms,
such as ∂xϕ1∂xϕ2, entering Eq. (21) in the bosonized form.
While symmetry considerations generally allow these terms,
they do not lead to gap opening, i.e., they do not contribute di-
rectly to the emergence of new mass terms. Moreover, similar
analysis on two-sub-band quantum wires showed that systems
with finite inter-sub-band forward scattering would evolve
towards a fixed point characterized by two independent chan-
nels [43]. In the RG framework, these marginal terms could,
in principle, modify the renormalized values of the mass, as
demonstrated in Appendix D. (ii) While Fig. 4 describes the
RG flow in an infinite system, the RG flow in realistic systems
can be stopped earlier due to finite size or finite temperature,
thus preventing it from reaching the gapless fixed point with
m = 0 [19,44]. For instance, in a finite edge, the RG flow only
evolves up to the scale l ∼ ln(L/a0) with the edge length L,
where the system has finite mass terms characterized by the
renormalized m∗ value. As a result, time-reversal soliton pairs
can still exist in a finite-sized thin film, even in an interacting
system where Kμ deviates from unity.

III. APPLICATION TO AN EXTENDED HALDANE MODEL

We turn now to illustrate the previous results with
the example of a time-reversal-symmetric extension of the
Haldane model [24]. Before adding the Sz-mixing SOC, gap-
less edge states emerge due to its spin Chern number Cs = 2.
The presence of Sz-mixing SOC opens small gaps in the edge
band structure. The Hamiltonian of this model is

H =
∑

σ

[d1(�k)a†
σ bσ − id2(�k)a†

σ bσ + H.c.

+ (d3(�k)sign(σ ) + m)(a†
σ aσ − b†

σ bσ )]

+ iλR

3∑
j=1

(�c j × �S)σσ ′
z ei�k·�c j a†

σ bσ ′ + H.c., (32)

where σ is the spin index where a†
σ , b†

σ is the creation
operator for spin σ electron on a different sublattice. The
d1(�k), d2(�k), d3(�k) are defined as: d1 = ∑3

j=1[t1 cos(�k · �a j ) +
t3 cos(�k · �c j )], d2 = ∑3

j=1[−t1 sin(�k · �a j ) − t3 sin(�k · �c j )], and

d3 = ∑6
j=1 t2(−1) j sin(�k · �b j ), where �a j, �b j, �c j are the vec-

tors connecting a site to its first-, second-, and third-nearest
neighbors on a honeycomb lattice, respectively. Notably, both
the second-nearest-neighbor hopping t2 and the third-nearest-
neighbor hopping t3 are crucial for having a high spin Chern
number, although their strength should be sufficiently large

FIG. 5. (a) Bulk band structure of the Hamiltonian in Eq. (32).
(b) Spin-resolved spectrum of the gapless edge states. (c) Spin-
resolved spectrum of the edge states that are gapped by the Rashba
SOC. The Dirac cones shift toward the Brillouin zone boundary in k
space and to lower energy due to the Rashba SOC.

(t2 > 0.3t1 and t3 > 0.4t1) for the model to have a spin Chern
number greater than unity [24].

In the following calculations, we set t1 = 1, m = 0.1, λR =
0.3, and t2 = t3 = 0.6. With these parameters, the model has
spin Chern number Cs = 2 and Sz-mixing SOC gaps of edge
states on its armchair edges (Fig. 5). In both cases, the centers
of the gapped Dirac cones are shifted in both k-space and
energy, indicating the presence of a k-dependent mass term
in the low-energy theory. As a zeroth-order approximation in
k for the mass term, our theory still properly captures features
of low-energy theories.

After the Rashba SOC gaps the edge states, the in-gap
corner modes emerge in a finite-sized armchair-edged thin
film [Fig. 6(a)], and the extra charges accumulate around the
corner of the thin film [Fig. 6(b)].

Edge Hamiltonian for an arbitrary edge

Here, we derive the effective edge Hamiltonian for an
arbitrary edge to demonstrate how Rashba SOC induces the
edge mass kink in the model described by Eq. (32). The Bloch

FIG. 6. (a) Spectrum of a 60a×60a thin film, in which the in-gap
corner modes are marked in green. (b) Particle-number fluctuation
�N with respect to the ground state in a 60a×60a thin film. Here, a
is the lattice constant.
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Hamiltonian of Eq. (32) is

H =
{
t1

[
1+cos

(
kx + √

3ky

2

)
+cos

(
−kx + √

3ky

2

)]}
σ0τ1

+
{
t1

[
1+sin

(
kx + √

3ky

2

)
+sin

(
−kx + √

3ky

2

)]}
σ0τ2

+ {t3[2 cos(kx ) + cos(
√

3ky)]}σ0τ1 + [t3 sin(
√

3ky)]σ0τ2

+ 2t2

[
sin

(
kx + √

3ky

2

)
− sin

(
−kx + √

3ky

2

)]
σ3τ3

+ mσ0τ3 − 2t2 sin(kx )σ3τ3

+ 2λR sin(
√

3ky)σ1τ1 − 2
√

3λR sin(kx )σ2τ1

+ 4λR sin

(
kx + √

3ky

2

)
sin

(
−kx + √

3ky

2

)
σ1τ2,

(33)

where σ (τ ) are the Pauli matrices in the spin (sublattice)
degree of freedom. According to its band structure (Fig. 5),
the low-energy Hamiltonian is obtained by expanding (kx, ky)
around the point M in the Brillouin zone:

H = (3t3 − t1)σ0τ1 + [t1 +
√

3(t3 − t1)ky]σ0τ2 + mσ0τ3

+ 2
√

3λR(kyσ1τ1 − kxσ2τ1).
(34)

To understand the low-energy Hamiltonian on arbi-
trary edges, we describe the coordinates in the low-energy
Hamiltonian with a new basis set [11,13]:(

kx

ky

)
=
(

sin(ξ ) cos(ξ )
− cos(ξ ) sin(ξ )

)(
k1

k2

)
, (35)

and obtain the edge Hamiltonian by replacing k1 with −i∂x

and k2 with ±k0, where k0 is the k point of the Dirac cones in
the edge Brillouin zone:

H = (3t3 − t1)σ0τ1 + mσ0τ3

+ [t1 +
√

3(t3 − t1)(i cos(ξ )∂x ± k0 sin(ξ )]σ0τ2

+ 2
√

3λR[i cos(ξ )∂x ± k0 sin(ξ )]σ1τ1

− 2
√

3λR[−i sin(ξ )∂x ± k0 cos(ξ )]σ2τ1. (36)

By using the ansatz eηxφ, we can obtain the chiral edge states
before adding the Rashba term:

|R±〉 = N±
(

A±(ξ )eiφ± (ξ )

m −1 0 0
)T

,

|L±〉 = N±
(
0 0 A±(ξ )eiφ± (ξ )

m −1
)T

, (37)

and the Rashba term:

i2
√

3λR{[η cos(ξ ) ∓ ik0 sin(ξ )]σ1

+ [η sin(ξ ) + ik0 cos(ξ )]σ2}τ1, (38)

where:

A±(ξ ) = ‖(3t3 − t1) − i[t1 +
√

3(t3 − t1)k±]‖,
φ±(ξ ) = Arg[(3t3 − t1) − i(t1 +

√
3(t3 − t1)k±)]

k± = iη cos(ξ ) ± k0 sin(ξ ),

and N± is the normalization factor. Since the edge states are
very localized, we assume η � 1 such that Eq. (38) can be
approximated by:

i2
√

3λRη[cos(ξ )σ1 + sin(ξ )σ2]τ1, (39)

with φ±(ξ ) ∼= 0. The matrix elements m± of the mass
term, for example, are 〈R±| �H |L∓〉, where �H is the
Hamiltonian in Eq. (38). Therefore, the element m± is pro-
portional to e−i(ξ+ π

2 ), which has different values on different
edges, indicating that the Rashba SOC induces mass kinks
on the edges. More specifically, the phase θ of the mass in
Eq. (7) is given by θ = ξ + π

2 . Given that different edges cor-
respond to distinct angles of edge orientation ξ , finite charges
emerge at the corner located between any two adjacent edges.
Denoting two such edges as edge 1 and edge 2, with their
corresponding orientations ξ1 and ξ2, the value of the corner
charge can be computed using Eq. (17) with θ (x → ∞) = ξ1

and θ (x → −∞) = ξ2. This results in a nonzero value for
the corner charge being proportional to (ξ1 − ξ2) between
any pair of adjacent edges, given that the different edges are
characterized by ξ1 �= ξ2. Note that such a charge, typically
nonintegral, arises with any infinitesimal change in the angle
between the edges, indicating that there is no critical angle
required for the charge to appear.

Before concluding this section, we note that, while we
have considered the extended Haldane model [Eq. (33)] as an
example, the analysis outlined from Eq. (34) to Eq. (39) can
be applied to material-specific tight-binding models with and
without the spin-U (1)-symmetry-breaking SOC by expanding
to linear order in k around the valley of the Dirac cones. With
the coordinate transformation and substitution of momentum
in Eq. (35), one can then obtain the effective edge Hamiltonian
and the wave function of the corresponding helical edge states
along the lines of Eqs. (36)–(38). The phase of the mass
term can be determined by calculating the matrix element of
the spin-U (1)-symmetry-breaking SOC as in Eq. (39) for the
extended Haldane model.

IV. SUMMARY AND CONCLUSIONS

We derive the mass-kink mechanism in a 1D system with
two bulk Dirac cones related by time-reversal symmetry us-
ing bosonization techniques. Bulk Dirac cones are shown to
generate two solitons on the domain wall by imposing gap-
opening time-reversal-symmetric perturbations. The value of
the extra charge on the domain wall is thus twice the value of
the phase difference in the mass term on the Dirac cones. The
formalism is applied to the edge of a spin Chern insulator with
Cs = 2, in which the corner modes in a finite-sized thin film
result from solitons generated through the mass-kink mech-
anism induced by Sz-mixing SOC. We consider the model
proposed in Ref. [24] as an example. By investigating the
phase evolution of the corner modes along the edge of a finite-
sized thin film, we show that Sz-mixing SOC opens gapless
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edge states and, as expected, induces solitons through the
mass-kink mechanism. The phase evolutions also support the
viewpoint that the pairwise in-gap corner modes are generated
by distinct edge Dirac cones.

We also consider an HO topological phase with protected
corner charges from a spin Chern insulator with Cs = 2.
Since the complex mass term with the edge-dependent phase
is generically present here (induced, for example, by the
anisotropic Sz-mixing SOC), our analysis provides strong
evidence that the results hold for general anisotropic sys-
tems with spin Chern number Cs = 2. Our formalism can
be extended straightforwardly to treat systems with a larger
number of time-reversal-related Dirac cones, indicating that
time-reversal soliton pairs with protected corner charges can
appear on the edges of spin Chern insulators with even spin
Chern numbers Cs = 2n(n > 1) more generally. Similar argu-
ments would also apply to ŵ-Chern insulators with a nonzero
even ŵ-Chern number and anisotropic ŵ-symmetry break-
ing perturbations [26,27,45]. For example, in a mirror-Chern
insulator with an even mirror-Chern number [46], there are
two gapless helical states protected by the out-of-plane mirror
symmetry. When the mirror symmetry is broken by, for exam-
ple, an in-plane Zeeman field, soliton pairs can arise with the
same mechanism as the one mentioned in Ref. [47].
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APPENDIX A: BOSONIZATION CONVENTIONS

In this Appendix we present our bosonization conven-
tions. By using the notation in Appendix A of Ref. [29],
the Bosonic representations of the right- and left-moving
modes are

Rσ (x) = κ↑√
2πa

ei
√

4πφR
σ (x),

Lσ (x) = κ↓√
2πa

e−i
√

4πφL
σ (x), (A1)

where a → 0 is the bosonic UV cutoff, σ = 1, 2 denotes
the time-reversal sector and κσ is the Klein factors satisfy-
ing {κσ , κσ ′ } = 2δσσ ′ and κ2

σ = 1, κ↑κ↓ = −κ↓κ↑ = i. Since
all right moving modes carry spin ↑ while all left mov-
ing modes carry spin ↓, we suppress the index for spin
in Eq. (A1).

To have correct anticommutation relation {Rσ , Lσ } = 0
and {Rσ (x), Rσ (y)} = 0, the Boson field should follow the

commutation relation:[
φR

σ (x), φL
σ ′ (x)

] = i

4
δσσ ′ ,

[
φη

σ (x), φη′
σ ′ (y)

] = i

4
ηδηη′δσσ ′sign(x − y). (A2)

The conjugated variables are defined as:

ϕσ ≡ φR
σ + φL

σ ,

ϑσ ≡ φL
σ − φR

σ . (A3)

Then, we have:

R†
σ Rσ + L†

σ Lσ = 1√
π

∂xϕσ . (A4)

Further, we can define the charge degree of freedom and
the charge-difference degree of freedom:

ϕc ≡ 1√
2

(ϕ1 + ϕ2),

ϑc ≡ 1√
2

(ϑ1 + ϑ2),

ϕd ≡ 1√
2

(ϕ1 − ϕ2),

ϑd ≡ 1√
2

(ϑ1 − ϑ2). (A5)

Note that, by using Eqs. (A3) and (A4), we can get ∂xϑc ∝ ρs,
where ρs is the spin density. The spin and charge degrees
of freedom are related through these conjugated variables.
Similarly, the spin and charge density differences are also
related in the same way.

APPENDIX B: BASIC PROPERTIES OF BOSONIC FIELDS

Theorem 1. [ϕσ (x), ∂yϑσ (y)] = iπδ(x − y), σ = 1, 2
Proof. In our model, the fermionic annihilation operator ψ

can be written as:

ψ =
∑

σ

(∑
k>0

eikx

√
L

ck,σ +
∑
k<0

eikx

√
L

ck,σ

)

=
∑

σ

( ∞∑
k=−k0

ei(k+k0 )x

√
L

Ck+k0,σ

+
k0∑

k=−∞

ei(k−k0 )x

√
L

ck−k0,σ

)

≡eik0x(R1 + L2) + e−ik0x(R2 + L1), (B1)

where L → ∞ is the size of the system and ψ (x + L) = ψ (x)
is satisfied. The right- (left)-moving modes are defined as:

R1 =
∑

k

eikx

√
L

CR1
k ,CR1

k ≡ Ck+k0,↑

L1 =
∑

k

e−ikx

√
L

CL1
k ,CL1

k ≡ C−(k+k0 ),↓
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R2 =
∑

k

eikx

√
L

CR2
k ,CR2

k ≡ Ck−k0,↑

L2 =
∑

k

e−ikx

√
L

CL2
k ,CL2

k ≡ C−k+k0,↓ (B2)

In this definition, the right- (left)-moving modes are filled
when k < 0 in each summation.

Then, following [48], each right- (left)-moving mode is the
coherent state of the corresponding Boson field:

[
bRμ

q , Rμ

] =
√

2π

L2|q|

[∑
k

c(Rμ )†
k−q cRμ

k ,
∑

k′
eik′xcRμ

k′

]

= −
√

2π

|q|
1

L

∑
k,k′

δk−q,k′eik′xcRμ

k

= −
√

2π

|q|L e−iqxRμ, (B3)

[
bLμ

q , Lμ

] =
√

2π

L2|q|

[∑
k

c(Lμ )†
k−q cLμ

k ,
∑

k′
e−ik′xcLμ

k′

]

= −
√

2π

|q|
1

L

∑
k,k′

δk−q,k′e−ik′xcLμ

k

= −
√

2π

|q|L eiqxLμ, (B4)

where bRμ(Lμ )
q is the Bosonic annihilation operator for the

density fluctuation of each right- (left)-moving mode. Since
Rμ, Lμ satisfy the commutation relation for the right- (left)-
moving modes defined in Ref. [48] for each μ. Therefore,
as derived for the right- (left)-moving modes in Ref. [48],
[ϕμ(x), ∂yϑμ(y)] = iπδ(x − y) for μ = 1, 2 denoting the
time-reversal sector.

Theorem 1 shows that ϕμ and ϑμ are indeed canonical
conjugate variables. By using Theorem 1, the commuta-
tion relation [ϕc(d )(x), ∂yϑc(d )(y)] = iπδ(x − y) can also be
proven, which means that the boson field and its dual field in
the charge sector and charge-difference sector are canonical
conjugate variables, too. Besides, this also provides a foun-
dation for Eq. (A4) by using the corresponding derivation in
Ref. [48].

APPENDIX C: GENERAL MASS TERM

In general, the gap-opening perturbation need not be time-
reversal symmetric. Therefore, the phases of the mass term of
different Dirac cones can differ by an arbitrary phase α. Then,
Eq. (8) becomes:

HM = me−iθ R†
1L2 + me−i(θ+α)R†

2L1 + H.c., (C1)

which can be further bosonized into:

H (B)
M = m

πa
( sin(

√
2π (ϕc − ϑd ) + θ )

+ sin[
√

2π (ϕc + ϑd ) + θ + α + π )]. (C2)

It has minima at,

ϑd = −α + π

2
√

2π
+ (n′ − n)

√
π

2
, (C3)

ϕc = − θ√
2π

− α + π

2
√

2π
+ (n′ + n − 1)

√
π

2
, (C4)

for some n′, n ∈ Z. Therefore, the approximation made in
Eq. (16) remains valid. That is, there are always extra charges
around the corner as long as a k-independent perturbation
opens the gapless surface Dirac cones that generate different
phases of the mass term on adjacent edges. The amount of the
extra charge can then be calculated through Eq. (17).

APPENDIX D: INFLUENCE OF INTERSECTOR
FORWARD SCATTERING

In this Appendix, we discuss the effect of intersector for-
ward scatterings on the RG flow. In the main text, we included
the following intrasector forward scatterings in our bosonized
model H0 described by Eq. (21),

Hintra =
∑

μ=1,2

g(intra)
4,μ

2
(R†

μRμR†
μRμ + L†

μLμL†
μLμ)

+ g(intra)
2,μ

2
(R†

μRμL†
μLμ + H.c.). (D1)

While intersector forward scattering terms are typically omit-
ted, as is the case in bosonized models for multichannel
systems [49,50], in general, the intersector forward scatterings
can be considered,

Hinter =g(inter)
4

2
(R†

1R1R†
2R2 + L†

1L1L†
2L2 + H.c.)

+ g(inter)
2

2
(R†

1R1L†
2L2 + R†

2R2L†
1L1 + H.c.). (D2)

Since H0 + Hinter is still quadratic in terms of the bosonic
fields, it can be diagonalized. For simplicity, in the following
we approximate v1

∼= v2 ≡ v, applicable for most materials,
as well as g(intra)

4,μ=1 = g(intra)
4,μ=2 ≡ g(intra)

4 and g(intra)
2,μ=1 = g(intra)

2,μ=2 ≡
g(intra)

2 .
With the inclusion of intersector forward scatterings

in Eq. (D2) and the above assumptions, the bosonized
Hamiltonian can be diagonalized into:

H0 + Hinter = 1

2

∑
μ=c,d

uμK−1
μ (∂xϕμ)2 + uμKμ(∂xϑμ)2, (D3)

with the modified interaction parameters,

Kc =
√√√√v + g̃(intra)

4 − g̃(intra)
2 + g̃(inter)

4 − g̃(inter)
2

v + g̃(intra)
4 + g̃(intra)

2 + g̃(inter)
4 + g̃(inter)

2

Kd =
√√√√v + g̃(intra)

4 − g̃(intra)
2 − g̃(inter)

4 + g̃(inter)
2

v + g̃(intra)
4 + g̃(intra)

2 − g̃(inter)
4 − g̃(inter)

2

, (D4)
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and renormalized velocities:

uc =(v + g̃(intra)
4 − g̃(intra)

2 + g̃(inter)
4 − g̃(inter)

2 )/Kc

ud =(v + g̃(intra)
4 − g̃(intra)

2 − g̃(inter)
4 + g̃(inter)

2 )/Kd , (D5)

where g̃(intra)
4 = 1

4π
g(intra)

4 , g̃(intra)
2 = 1

4π
g(intra)

2 , g̃(inter)
4 =

1
4π

g(inter)
4 , g̃(inter)

2 = 1
4π

g(inter)
2 . On this basis, the mass term

in Eq. (9) is used to proceed with the RG analysis.
The RG flow equations can be derived as:

dm̃

dl
=
[

2 − 1

2

(
Kc + K−1

d

)]
m̃ (D6)

dKc

dl
= − K2

c m̃2 (D7)

dKd

dl
=m̃2, (D8)

with m̃ ≡ m sin(θ )√
ucud π

a. The above equations demonstrate that the
mass term is RG relevant for repulsive interactions, thereby
stabilizing the predicted corner modes.

To obtain further insight into the effect of intersector for-
ward scatterings, we consider a weak intersector forward
scattering such that g̃(inter)

2(4) � g̃(intra)
2(4) . We can then approximate

the Luttinger liquid parameters to the first order of g(inter)
2(4) :

Kc
∼=K + δK

Kd
∼=K − δK, (D9)

where δK � K . Here:

K ≡
√√√√v + g̃(intra)

4 − g̃(intra)
2

v + g̃(intra)
4 + g̃(intra)

2

δK ≡ −g(inter)
2√(

v + g̃(intra)
4

)2 − (
g̃(intra)

2

)2
. (D10)

Then, the dominant contributions in the RG flow equations
become:

dK

dl
= − m̃2

2
(K2 − 1) (D11)

dm̃

dl
=
[

2 − 1

2

(
K + 1

K

)]
m̃. (D12)

dδK

dl
= − m̃2

2
(K2 + 1). (D13)

Note that the interaction parameter K in Eq. (D10) is the
Luttinger liquid parameter in the absence of the intersec-
tor forward scatterings. Hence, Eqs. (D11)–(D12) recover
Eqs. (23)–(24) by identifying K1 = K2 = K in Eqs. (23) and
(24). On the other hand, the change in the interaction strength
arising from the intersector forward scattering is represented
by δK . While |δK| exhibits a monotonic increase along the
RG process according to Eqs. (D10) and (D13), leading to
contributions to the renormalized Kc and Kd values, we note
that the RG flow will eventually stop due to the finite system
size or temperature, as discussed in the main text. Moreover,
according to Eq. (D12), the flow of m̃ is not affected by δK
as long as δK � K . As a result, the system has finite mass
terms characterized by the renormalized m∗ value, and the
HOTI phase can survive in the presence of weak intersector
forward scatterings.
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