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Signatures of electronic ordering in transport in graphene flat bands
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Recently, a wide family of electronic orders was unveiled in graphene flat bands, such as spin- and valley-
polarized phases as well as nematic momentum-polarized phases, stabilized by exchange interactions via a
generalized Stoner mechanism. Momentum polarization involves orbital degrees of freedom and is therefore
expected to impact resistivity in a way that is uniquely sensitive to the ordering type. Under pocket polarization,
carrier distribution shifts in k space and samples the band mass in regions defined by the displaced momentum
distribution. This makes transport coefficients sensitive to pocket polarization, resulting in the Ohmic resistivity
decreasing with temperature. In addition, it leads to current switching and hysteresis under strong E field.
Being robust in the presence of electron-phonon scattering, this behavior can serve as a telltale sign of pocket
polarization order. The fast timescale and low dissipation of the switching cycle may be advantageous for highly
applicable memory-dependent resistors, i.e., memristors.
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I. INTRODUCTION

Recent experiments reported on a cascade of strongly cor-
related phases in moiré graphene multilayers [1–16] as well
as their non-moiré counterparts [17–24], where the electronic
properties can be tuned by altering the external displacement
field (D) and the electron density (n). Moiré graphene hosts
flat minibands with high density of states, where the effects of
electronic interactions become significant [25–47]. Likewise,
in non-moiré stacked graphene the displacement field opens
up a gap and the resulting bands become remarkably flat
near their extrema, giving rise to similar interaction-driven
ordered phases [48–64]. To minimize the exchange energy,
the electrons spontaneously break the combined SU(4) sym-
metries in the spin-valley degrees of freedom, giving rise
to valley-polarized and spin-polarized ferromagnetic orders
[3–5,7–11,36–41,50–52,55]. Electronic ordering of a different
kind can arise in non-moiré graphene multilayers when elec-
trons partially fill the pockets induced by trigonal warping of
carrier bands near the K and K ′ points. Such carrier flocking
in momentum space, driven by electron exchange interaction
and described by Stoner-type instability, produces nematic
momentum-polarized orders where only some of the pockets
remain populated [22,23,61]. Upon temperature increasing,
the ordering disappears through what is currently believed to
be a continuous phase transition.

Several different techniques have been employed to probe
electronic orders at low temperatures. Phase boundaries be-
tween different ordered phases can be probed by electronic
compressibility measurements, which capture the change in
density of states at the Fermi surface, across the phase tran-
sition [18,20,22]. The low-temperature momentum-polarized,
spin-polarized, and valley-polarized orders can be iden-
tified by quantum oscillations measurements [19], which
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reveal the spin/valley degeneracy and the Fermi surface
geometry.

In comparison, the signatures of ordering in the temper-
ature dependence of transport coefficients have received rel-
atively little attention. The only transport signature explored
so far, which distinguishes symmetry-broken phases, was the
anomalous Hall effect observed in the valley-polarized phase
at low temperature, which disappear at elevated temperatures
[4,21,42]. In that, the K and K ′ valleys, which have opposite
signs of Berry curvature, give rise to an anomalous Hall re-
sponse resulting from broken time-reversal symmetry.

Motivated by recent findings [65], in this work we consider
the momentum-polarized order perturbed by a DC electric
current, both in the Ohmic regime (linear field-current re-
sponse) and in the non-Ohmic (nonlinear response) regime.
Instead of the Berry curvature, we focus on the band disper-
sion and its dependence on the pocket-polarization ordering.
As we will see, under such ordering, carrier distribution shifts
in k space and samples the band curvature in regions defined
by the displaced Fermi sea. This behavior makes transport co-
efficients sensitive to pocket polarization and leads to a unique
signature of ordering—the negative temperature dependence
of resistivity below the order-disorder transition. Namely, ris-
ing temperatures, despite increasing electronic disorder, drive
the system into a more conducting state. This behavior orig-
inates from an interplay between exchange interactions that
make carriers aggregate in Fermi pockets and thermal activa-
tion that excites carriers out of the Fermi pockets.

Furthermore, under the application of a strong electric
field, the momentum-polarized phase can exhibit history de-
pendence and switching of pocket polarization. This behavior
is illustrated in Fig. 2, which displays the results of a micro-
scopic analysis developed in Sec. VI. The resulting current
switching may serve as an experimental test for discerning
the proposed mechanism of negative temperature dependence
of resistivity from alternative mechanisms. Similar switching
behavior has been observed in recent experiments [4,15,66]
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in twisted bilayer graphene, transition metal dichalcogenides,
and twisted trilayer graphene. It has been studied theoretically
for magic-angle twisted bilayer graphene [67].

The switching mechanism in these systems does not in-
volve any movement of impurities, nor does it involve any
movement of electrons in the real space. Instead, it is driven
by carrier distribution switching between different pockets in
momentum space. Consequently, the switching timescale will
be very fast, which opens up the possibility of using these
systems as memory-dependent resistors, i.e., memristors [68].
Moreover, since the switching is observed at relatively small
currents (nano-Ampéres) [15], the dissipation per switching
cycle is expected to be small, potentially leading to highly
efficient memristors.

II. TRANSPORT ANOMALIES DUE TO POCKET
POLARIZATION ORDERING

The system in question, where a phase transition alters
the geometry and symmetry of the Fermi sea, features band
dispersion which is uniquely sensitive to carrier momentum
distribution. Namely, the phase transition changes the band
curvature m−1

kik j
= ∂2εk/∂ki∂k j defined by the part of the band

occupied by carriers,

C(T ) =
〈
∂2εk

∂k2
x

〉
T

= 1

n

∑
k,σ

∂2εk,σ

∂k2
x

fk,σ , (1)

where fk,σ is momentum distribution and εk is band disper-
sion, which in itself depends, via exchange interaction, on
fk,σ . (Here n = ∑

k,σ fk,σ is carrier density.) As illustrated
in Fig. 1(a) and 1(b), different parts of a two-pocket carrier
band have curvature of opposite signs and, therefore, give
opposite-sign contributions to C(T ).

As we will see, the changes in C(T ) driven by ordering
translate into a characteristic T dependence of the resistivity.
We will outline a mechanism through which the resistivity
in the ordered phase at low temperature can be higher than
that of the disordered phase at a higher temperature. In other
words, we argue that the resistivity can decrease with rising
temperature, as the ordered phase melts. Negative temperature
dependence, dρ/dT < 0, stands in contrast with the sign of
temperature dependence typically seen in metals due to carrier
scattering by lattice vibrations. The low characteristic temper-
ature at which it is expected to occur as well as the sign make
the negative dρ/dT a telltale sign of pocket-polarization or-
dering.

The mechanism leading to negative dρ/dT is illustrated
in Fig. 1. In Boltzmann transport theory [69] the dc Ohmic
conductivity is given by the expression,

σxx(T ) =
∑
k,σ

e2τ (T )

h̄2

∂2εk,σ

∂k2
x

fk,σ = ne2τ (T )

h̄2 C(T ), (2)

where fk,σ is the momentum distribution,
∑

k is a shorthand
for

∫
d2k

(2π )2 , and, for simplicity, the relaxation timescale τ

is assumed to be momentum independent. Clearly, Eq. (2)
implies that between two phases with comparable τ values,
the one with greater average band curvature C(T ) will have a
smaller resistivity.

(a) (b)

(c) (d)

FIG. 1. (a), (b) Pocket-polarized and unpolarized states for a
double-well one-dimensional (1D) model, Eq. (11). Marked are
regions in which the band curvature m−1

k = ∂2εk/∂k2 is positive,
negative, and close to zero. The pocket-polarized carrier distribu-
tion shifts in k space and samples the band curvature, Eq. (1), in
regions within the displaced momentum distribution. This makes
transport coefficients sensitive to pocket polarization, resulting in
ohmic resistance decreasing with temperature (see text). (c) Temper-
ature dependence of the occupancy-weighted band curvature C(T ),
Eq. (1), for the ordered states (blue) and the metastable disordered
states (orange). (d) The resulting resistivity temperature dependence
is nonmonotonic. Initially, resistivity drops due to the increase in
the band curvature of the ordered phase. At higher temperature
the phonon scattering grows, and the resistivity increases linearly.
Parameter values used are given in Sec. V.

The quantity εk,σ in Eq. (2) denotes the band disper-
sion modified by interactions, and fk,σ is the Fermi function
for this band dispersion. Under mean-field theory developed
below, the pocket-asymmetric part of the momentum distri-
bution fk,σ plays the role of the order parameter describing
pocket polarization. The energy εk,σ depends on fk,σ and the
noninteracting band dispersion ε0

k as

εk,σ = ε0
k −

∑
k′ �=k

V (k − k′) fk′,σ , (3)

where fk,σ is given by a Fermi distribution for the band dis-
persion modified by interactions,

fk,σ = 1

eβ(εk,σ −μ) + 1
, (4)

and V (k − k′) represents the electronic interactions (see
Sec. IV). Equations (3) and (4), solved self-consistently, de-
scribe carrier momentum distribution in the ground state in
the presence of exchange interactions. When interactions are
strong enough, the momentum distribution becomes pocket
asymmetric at low temperature, as illustrated in Figs. 1 and 2.
The occurrence of multiple fixed points for the self-consistent
solution of these equations is a signature of a pocket symmetry
breaking instability towards pocket polarization order. Upon
temperature increasing, the solution undergoes a transition to
a disordered pocket-symmetric state.

We now discuss reasons for which the average occupancy-
weighted band curvature, Eq. (1), can be lower in the
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FIG. 2. Pocket-polarization switching and history dependence of
the dynamics under the action of an electric field for the model
illustrated in Fig. 1. As discussed in Sec. VI, the initial state is
the equilibrium state polarized in the right (left) pocket for the red
(blue) curve. For each value of electric field E , we self-consistently
determine the steady state, and plot the pocket polarization φ1D =
(nR − nL )/(nR + nL ) against the (dimensionless) electric field. The
right and left pocket-polarized steady states are pictured inside
the hysteresis loop. For the right pocket-polarized initial state (red
curve), for positive electric fields, the Fermi sea shifts to the −k̂x

direction, and the distribution switches to the left pocket at a finite
electric field. No such switching occurs when the electric field is
swept in the other direction. The opposite effect occurs for the left-
pocket-polarized initial state (blue curve). The black arrows show
the direction of switching of the steady state when the electric field
is swept.

low-temperature phase than that in the corresponding high-
temperature disordered phase, thus leading to resistivity
decreasing with temperature. As an illustration, consider the
momentum-polarized to momentum-unpolarized transition,
focusing, for simplicity, on the pocket-polarized order in a
single valley with a single spin species. Bilayer graphene
hosts three pockets (or four pockets, at small enough dis-
placement field) induced by trigonal warping near its K/K ′

points [70]. The regions in k space where these pockets merge
have a negative band curvature (holelike), whereas the min-
ima of the pockets have a positive band curvature. At low
temperature, the ordered phase with a high enough electron
density will feature a band filled up to the neck of a single
pocket [Fig. 1(a)]. The band curvature of this pocket near
the chemical potential will be much smaller than that near
the pocket bottom. As temperature is increased, the electrons
will be thermally excited to (i) high-energy states within the
same pocket, which either have a positive band curvature with
smaller magnitude, or a curvature with negative sign, and,
(ii) the low-energy states of the previously empty pocket,
where the band curvature is positive and has relatively large
magnitude. Clearly, there will be a competition between the
two effects. When the electron density is high enough such
that the chemical potential at low temperature is close to the
bottom of the empty pocket, the second effect wins due to
the high density of states, and the occupancy-averaged band
curvature increases with temperature.

Experimentally, such an effect may occur on the high-
density side of the momentum-polarized phase in the n-D

phase diagram, D being the displacement field. The density
needs to be such that the Fermi energy of the filled pocket
is close to the bottom of the empty pocket, so that due to
thermal excitations, electrons will be excited to the bottom of
the empty pocket, decreasing the average curvature (of course,
there will be a competition between the higher energy states
of the partially filled pocket and the bottom states of the empty
pocket). To the contrary, when the density is low, the distance
between the Fermi energy at the filled pocket and the bottom
of the empty pocket may be too large for thermal excitations
to excite the electrons to the bottom of the empty pocket.

At temperatures below the Bloch-Grüneisen temperature
[69,71,72], phonons are not yet thermally activated, so the
carrier momentum relaxation timescale τ (T ) remains almost
temperature independent. At such temperatures, the resistivity
will primarily depend on the band curvature. As temperature
varies, the resistivity initially decreases with rising tempera-
ture as the average band curvature increases due to gradual
melting of the ordered phase. Eventually, the resistance will
begin to grow with temperature as the phonons become ther-
mally activated. In Sec. V we establish this effect with two
microscopic models that resemble the pockets in the bilayer
graphene band structure [see Figs. 1(d) and 4(c)].

It is instructive to compare the resulting temperature
dependence, which is fairly strong, to various scenarios dis-
cussed in the literature. Phase transitions in metals of first
order usually result in resistance discontinuity at the phase
transition but little T dependence away from it. Phase transi-
tions of second order in general lead to strong order parameter
fluctuations at T above and below the transition, and a singu-
larity at the transition. These fluctuations, however, are of a
long-wavelength character, and, as a result, do not produce a
strong T dependence of transport cross-section and resistivity
[73]. In contrast, electronic ordering in graphene flat bands
discussed here impacts carrier scattering at large angles, i.e.,
in a wide range of transferred momenta k. This makes re-
sistivity sensitive to the ordering type, giving rise to the T
dependence discussed below.

We also comment on several effects due to electron inter-
actions that can potentially result in a negative temperature
dependence of resistivity, dρ/dT < 0. Some years ago, ultr-
aclean silicon MOSFETs were found to exhibit negative T
dependence of resistivity. A number of mechanisms to ex-
plain this behavior have been proposed. Those included the
Coulomb scattering cross-section weakening at a higher tem-
perature [74], an effect that leads to a decrease in the disorder
scattering rate. Other explanations focused on the effects due
to the presence of charge traps and the Altshuler-Aronov-type
interaction effects [75–77].

Furthermore, a very different physics resulting in a nega-
tive T dependent resistivity was proposed for clean metals,
where carrier collisions can result in hydrodynamic transport,
wherein electrons undergoing two-body collisions behave as a
viscous fluid [78]. Electron hydrodynamics can naturally lead
to resistivity that decreases with temperature. Later, however,
it has been argued that the actual behavior is more nuanced
[79]. Namely, correlated electron systems in a slowly varying
disorder potential were predicted to show resistivity with a
growing T dependence, an effect arising due to the interplay
of heat conduction and thermoelectric effects. More recently,
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however, hydrodynamic transport in clean electron systems
with sharp boundaries was confirmed to result in a negative
temperature dependence of resistivity [80,81]. The prediction
of hydrodynamic resistivity decreasing with temperature is
supported by recent measurements [82,83].

This behavior must therefore be accounted for in delin-
eating mechanisms leading to a negative T dependence in
realistic systems. We note in that regard that there are several
qualitative aspects of the pocket-polarization mechanism for
negative temperature dependence of resistivity, dρ/dT < 0,
which make it distinct from other known mechanisms. One
is its lack of sensitivity to the cleanness of the system. This
stands in contrast to electron hydrodynamics, which requires
the electron system to be ultraclean. Another is that it is tied
to temperature at which the pocket-polarization phase tran-
sition occurs. Lastly, as discussed below, pocket polarization
order gives rise to a switching behavior of the nonlinear I-V
dependence, which coexists with the negative temperature
dependence of resistivity. These properties occurring together
will provide clear signatures of transport anomalies due to
pocket-polarization instability.

III. PHENOMENOLOGICAL PICTURE

Temperature dependence of transport coefficients near
pocket-polarization ordering is governed by competition of
two distinct effects. First, pocket polarization results in car-
rier redistribution in k space. As temperature varies, carriers
sample different parts of the band, producing temperature-
dependent resistivity. Furthermore, because of exchange
interactions, the band dispersion and band curvature be-
come sensitive to pocket polarization, providing an additional
source of temperature dependence. As our numerical results
indicate, the combination of these effects can lead to a neg-
ative dρ/dT . Second, electron-phonon interaction results in
carrier scattering growing at temperatures above the Bloch-
Grüneisen temperature, which leads to positive dρ/dT at high
enough temperatures.

This behavior of the resistivity can be described phe-
nomenologically as follows. At low temperature, the system
is in the momentum-polarized ordered phase, which smoothly
turns into a disordered phase through a continuous phase tran-
sition at temperature Tc. The conductivity of the system, given
by Eq. (2), depends on the pocket polarization through the
quantity C(T ), which is the band curvature weighted with the
carrier momentum distribution. At very low temperature, the
resistance is primarily affected by the band curvature, as the
phonons are not yet thermally activated, and the scattering rate
is almost a constant. Above Tc, the resistance will primarily
increase due to phonon scattering, and the curvature will play
a minor role. Here, we use a phenomenological temperature
dependence of band curvature and scattering rate to demon-
strate that at low temperature, the resistance can decrease
with rising temperature. Later, in Sec. V, this behavior will
be justified microscopically.

As we will see, the quantity C(T ) increases monotonically
from T = 0 to T = Tc, where the ordered phase continuously
turns into the disordered phase. This behavior can be modeled
by a phenomenological dependence C(T ), which increases

between T = 0 and T = Tc:

C(T )

C(Tc)
=

{
1 − (1 − α)

(
1 − T

Tc

)2
, T < Tc

1, T � Tc,
(5)

with a suitable value α < 1 defined as α = C(T = 0)/C(Tc).
The specific form of Eq. (5) does not matter so long as C(T )
grows monotonically. The form of Eq. (5) is chosen so that
it mimics the simulation results in the microscopic models.
For simplicity, we have set C(T )/C(Tc) = 1 above Tc, because
there the temperature dependence of resistance is primarily
determined by the phonon scattering. The exact temperature
dependence of C(T ) obtained microscopically will be estab-
lished below.

In addition to the band curvature, we must account for
the temperature dependence of scattering by phonons and by
disorder (defects or impurities),

τ−1(T ) = γph(T ) + γdis(T ). (6)

At leading order, the disorder scattering rate γdis is a
temperature-independent constant, γ0. The phonon scattering
rate γph is given by the Bloch-Grüneisen formula [69,71,72],
which smoothly interpolates between a power law (quartic
in two dimensions) below the Bloch-Grüneisen temperature
TBG = 2vs h̄kF

kB
, and a linear dependence above this tempera-

ture (here vs is the speed of sound and h̄kF is the Fermi
momentum). In this work, we approximate it with a simple
phenomenological formula that interpolates between the two
regimes, γph(T ) = γ1[(1 + (T/TBG)4]1/4, giving

γph(T ) ≈
⎧⎨
⎩

γ1

4

(
T

TBG

)4
, T � TBG

γ1
T

TBG
, T � TBG.

(7)

Below we set γ1 = 0.1γ0, so that the phonon scattering is
relatively weak in the region of phase transition.

In bilayer graphene, the typical value of the Stoner-
transition temperature Tc, and the Bloch-Grüneisen temper-
ature TBG are of the order a few kelvin. So, provided that TBG

is not very small compared to Tc, the momentum relaxation
timescale τ (T ) will not significantly change across the phase
transition, and the resistivity will decrease with increasing
temperature. The variation of resistivity with temperature is
plotted in Fig. 3(b) for several values of α (we have chosen
TBG = 0.8Tc throughout the paper). When TBG > Tc, we find
that the resistance continuously decreases with temperature
until Tc, and increases at higher T . When TBG � Tc, the re-
sistance decreases with temperature at T � TBG. Afterwards,
between TBG and Tc, there will be a competition between the
increasing curvature (which suppresses resistance), and the
increasing phononic scattering (which enhances resistance).
After reaching Tc, the resistance will increase with tempera-
ture. It is to be noted that this behavior occurs in the metallic
regime and at low temperature. The decrease in resistance
occurs due to the decreased (average) curvature of the con-
duction band, which is very different from the phenomena
observed in semiconductors, where an initial rise in resistance
due to phonon scattering is followed by resistance dropping
because the conduction band becomes thermally accessible at
higher temperatures.
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FIG. 3. (a) Band curvature of the ordered state C(T ) scaled by
C(Tc ) in the phenomenological model, Eq. (5), for α = 0.8 (orange
curve), 0.9 (blue curve), and 0.95 (green curve), respectively. Here
α denotes the ratio C(T = 0)/C(T = Tc ) [see Eq. (5)]. (b) Plots for
resistivity [scaled by the minimum resistivity, which is of the order
∼h̄2γ0/ne2C(Tc )] of the phenomenological model for the values of α

as in part (a). Parameter values used are given in Sec. III. The resis-
tance initially decreases due to increase in average band curvature,
and subsequently increases linearly due to phonon scattering.

IV. MICROSCOPIC FORMALISM

Here we introduce a microscopic approach that de-
scribes pocket-polarized order arising due to carrier flocking
in momentum space governed by electron exchange inter-
action [61]. Under a generalized Stoner mean field, the
instability that leads to pocket asymmetry and pocket po-
larization is analogous to spin polarization instability in
the Stoner magnetism. We will consider Hamiltonians of
the form

H =
∑
k,σ

ε0
kc†

k,σ
ck,σ + 1

2

∑
k,k′,q
σ,σ ′

V (q)c†
k−q,σ

c†
k′+q,σ ′ck′,σ ′ck,σ . (8)

Under mean-field theory, we can write the interaction term as
a combination of the so-called direct (Hartree) and exchange
(Fock) terms. As long as the average electron density is uni-
form (e.g., for Bloch waves), the Hartree term is just a constant
which would not affect the electronic configurations. To the
contrary, the exchange term favors carriers populating orbitals
with equal spin and nearly equal momenta and can drive the
instability towards carrier aggregation in momentum space.
After dropping the (constant) Hartree term, we can write the
mean-field free energy functional F = E − T S as,

F [ fk,σ ] =
∑
k,σ

ε0
k fk,σ − 1

2

∑
k �=k′

σ

V (k − k′) fk,σ fk′,σ

+ kBT
∑
k,σ

[ fk,σ ln fk,σ + (1 − fk,σ ) ln(1 − fk,σ )],

(9)

where fk,σ = 〈c†
k,σ

ck,σ 〉 and the last term is the entropy con-
tribution written in terms of the occupancy fk,σ .

The functional F [ fk,σ ] defines a variational problem in
the functional space { fk,σ } in which fk,σ are the variational
parameters. To tackle this problem, it is convenient to work in
the grand-canonical ensemble by employing the functional

F̃ [ fk,σ ] = F [ fk,σ ] − μN, (10)

where N = ∑
k,σ fk,σ and μ is a Lagrange multiplier that

fixes the density N . To minimize the free energy, we con-
sider the saddle-point conditions δF̃/δ fk,σ = 0, treating fk,σ

as independent variables in the functional space. After some
algebra the saddle point conditions yield coupled mean-field
equations (3) and (4), which describe the critical points of the
functional F̃ . We use iterations [84] to self-consistently solve
these equations (for a single spin species) to determine the
system ground state.

The unique aspect of the pocket-polarized states is
spontaneous symmetry breaking. Normally, in the Landau
Fermi-liquid framework, the problem of interacting fermions
features a single ground state, representing a Fermi sea
defined by the band dispersion εk,σ renormalized by Fermi-
liquid interactions but retaining the symmetry of the free-
particle band. The self-consistent equations describing such
ground states, derived from the Fermi-liquid theory, are es-
sentially the same as our mean-field equations (3) and (4).
At not-too-strong interactions V (k − k′) or at elevated tem-
peratures, these equations have a self-consistent solution
representing a Fermi sea that has the point symmetry group
identical to that of the free-particle band dispersion. For a
single valley of graphene bilayer, K or K ′, perturbed by a
trigonal warping interaction, it is the discrete symmetry group
isomorphic to the C3v group, comprising threefold rotations as
well as three valley-preserving operations representing mirror
symmetries σv followed by time reversal.

At a larger interaction strength or at a lower tempera-
ture, the self-consistent equations acquire multiple solutions,
including three solutions describing broken-symmetry pocket-
polarized states forming an orbit of the generalized C3v group
and one solution describing a symmetry-unbroken unpolar-
ized state. Conceivably, there are two scenarios for these states
to emerge from a symmetry-unbroken state upon changing
the interaction strength or varying temperature. One scenario
is when the broken-symmetry solutions, when they first ap-
pear, have energies higher than the symmetry-unbroken state.
Another scenario is when the broken-symmetry states, when
they first appear, are the ground states, whereas the symmetry-
unbroken state is a metastable state. In the first case, as the
interaction strength increases or temperature decreases, the
broken symmetry state emerges abruptly through a type-I
transition, whereas in the second case it emerges continuously
through a type-II transition. In our simulations, described
below, the type-II transition scenario is observed upon varying
temperature, whereas a type-I transition is seen upon varying
carrier density or the interaction strength.

Determining fixed points of Eqs. (3) and (4) corresponding
to symmetry-unbroken and symmetry-broken states was done
by the method of repeated iterations described below, which
was found to converge reliably and rapidly enough. In our
numerical analysis, we found it more convenient to use the
canonical ensemble picture with a fixed particle density rather
than the grand-canonical ensemble framework. To numeri-
cally obtain a pocket-unpolarized (symmetry-unbroken) state
(metastable below Tc) we initiate the iterations with identical
carrier distributions in all the pockets. This is done by filling
up energy states from the bottom of each pocket, until the
total number of electrons reaches the desired value. To obtain
the pocket-polarized ground state with a fixed number of
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FIG. 4. (a) A triangular lattice in a hexagonal domain in momentum space, with six sites per side of hexagon, illustrating the configuration
space used in the 2D model. The pockets are centered around the red points, with distance k0 = 3 from the center (the K point, shown in
green) of the hexagon. In the actual simulation, we have used 24 sites per side of the hexagon, with k0 = 12. (b) Variation of band curvature
obtained numerically for the one-pocket (blue), two-pocket (green), and three-pocket/unpolarized (orange) states of the 2D model. They
become identical near Tc, until which the curvature of the one-pocket state (ground state) increases as the temperature increases. Parameter
values used are given in Sec. V. (c) Temperature dependence of resistivity for the one-pocket state. In this model, the resistivity increases
very quickly after reaching Tc, because of the sharp change in the slope of the band curvature [blue curve in part (c)]. It is really a very quick
increase in slope rather than a nonanalytic cusp.

electrons, we initiate the iterations with an out-of-equilibrium
state with a particular pocket or two pockets being populated.
Afterwards, we perform iterations by calculating the renor-
malized band structure with Eq. (3) and using it to find the
new chemical potential, such that the sum of all the occupan-
cies fk,σ [calculated using Eq. (4) with a given temperature]
equals the desired number of electrons. Plugging these new
fk,σ in Eq. (3), we keep repeating this procedure until a fixed
point (symmetry-broken or symmetry-unbroken) is reached.
Above Tc, the equilibrium distribution becomes pocket un-
polarized (symmetry unbroken), irrespective of whether the
initial distribution of the iteration was pocket polarized or
pocket unpolarized.

V. MODELING POCKET POLARIZATION
IN 1D AND 2D SYSTEMS

Here we show how the behavior outlined in Sec. IV
emerges in simple models, which resemble realistic band
structures. We will start with a one-dimensional double-well
band dispersion. This simple model captures the pocket-
polarized order at low temperature, featuring an ordered phase
that continuously turns into a disordered phase at some crit-
ical temperature Tc. At T < Tc, as temperature grows, the
degree of pocket polarization diminishes. Simultaneously the
occupancy-averaged band curvature C(T ) grows and Ohmic
resistivity exhibits the negative dρ/dT behavior pictured in
Figs. 1(d) and 4(c).

In this model, the two pockets of the noninteracting dis-
persion ε0

k are situated at some ±k0, in the region where the
band is relatively flat. The form of the interaction V (k − k′) is
chosen to favor pocket polarization. For that, the interpocket
interaction must be weaker than the intrapocket interaction.
These requirements are met by using the following band struc-
ture and interaction,

ε0
k |1D = E0

(
k2

k2
0

− 1

)2

, V (k − k′) = V0e
− (k−k′ )2

2q2
0 , (11)

where the range of the Gaussian interaction q0 is chosen such
that the interaction is negligibly small between different pock-

ets, q0 � k0. For this model, by minimizing the free energy
in Eq. (9), we verify that the system possesses an ordered
pocket-polarized state which is thermodynamically stable be-
low Tc. As T increases, a pocket-unpolarized state emerges at
T = Tc by a type-II transition, whereupon the order parameter
vanishes. The order parameter describing pocket polarization
can be chosen analogously to magnetization, but in terms of
pocket populations rather than spins,

φ1D = nR − nL

nR + nL
, (12)

where nL and nR are the total electron numbers in the left and
right pockets, respectively.

The numerical procedure through which an ordered state
is obtained follows the description given in previous section.
We initialize the system with a state which has a single
pocket populated by all the electrons, and obtain the self-
consistent solutions of Eq. (3) and Eq. (4) using iterations.
This self-consistent solution is polarized at low temperature,
and becomes unpolarized (disordered) at temperatures above
some Tc. We have set q0 = 0.2k0 and used a mesh of 1001
equidistant points between k = −1.5k0 to k = 1.5k0, populat-
ing the system with N = 190 electrons so that the low-energy
excitations fill up states at the bottom of an empty pocket.
Since the states far away from the bottom of the pocket remain
unpopulated and thermally inaccessible at the temperatures
we are working with, the boundary conditions on the domain
in momentum space do not affect our results, and we use open
boundary conditions for convenience. For the simulation, we
used dimensionless units E0 = 1 and the value V0 = 0.004 for
the interaction strength.

For the values given above, the ordering temperature value
was found to be Tc = 0.08. This energy scale roughly cor-
responds to the distance between the Fermi level in a filled
pocket and the bottom of the empty pocket. As discussed in
Sec. II, there is a competition between thermal excitation to
the high-energy states of the filled pocket and the states at the
bottom of the empty pocket in determining the temperature
dependence of band curvature. To thermally excite majority of
charge carriers to the bottom of the otherwise empty pocket,

035122-6



SIGNATURES OF ELECTRONIC ORDERING IN … PHYSICAL REVIEW B 110, 035122 (2024)

we set the density such that the equilibrium distribution at
T ≈ 0 resembles Fig. 1(a), where the chemical potential is
sufficiently close to the minima of the empty pocket. Then,
as the temperature is increased, the empty pocket will be
accessible to thermal excitation at low temperatures (with-
out exciting very-high-energy states in the populated pocket),
and the system will gradually go to the unpolarized phase.
Throughout the process, the average curvature increases as the
bottom of the initially unpopulated pocket becomes increas-
ingly populated, and the resistance of the system decreases.

Now we describe how the band curvature was obtained
numerically on a grid. This was done by utilizing a finite-
difference method to estimate the second derivative of εk ,

2
kεk|1D = εk+δk + εk−δk − 2εk

(δk)2
. (13)

The average curvature of the ordered and the (metastable) dis-
ordered phases are plotted in Fig. 1(c). Unlike the simplistic
phenomenological model, where the curvature of the disor-
dered phase was assumed to be a constant, here the curvature
of the disordered phase decreases as temperature increases.

We use this microscopic model with Eqs. (2) and (6) to
determine the resistivity vs. temperature dependence shown
in Fig. 1(d). Initially, the resistivity decreases because the
average curvature of the ordered state increases as the system
smoothly evolves to a disordered state. Near Tc, the average
curvature does not increase much, rather it begins to decrease
because the system is almost disordered and the high-
energy states begin to be thermally populated, see Fig. 1(c).
Eventually, the phonon contribution becomes appreciable at
T > TBG, which causes an almost linear increase in resistivity
for T > Tc.

In the second model, we consider a two-dimensional band
structure with three pockets resembling the pockets induced
by trigonal warping [64] near K/K ′ points in bilayer graphene.
This model hosts one-pocket and two-pocket polarized phases
at low temperature, which continuously turn into a disordered
(unpolarized) phase at some Tc.

Here, the relevant order parameter Dk is the (dimension-
less) dipole moment of electrons in the momentum space,
measured from the K point,

Dk =
∑

k(k − K ) fk∑
k k0 fk

, (14)

where k0 is the distance of the center of the pockets from the
K point. The direction and magnitude of this order parameter
vector indicates the pockets which have been polarized as
well as the nature of the polarization (i.e., one-pocket or two-
pocket state). By construction, the fully polarized one-pocket
state has |Dk| = 1, the two-pocket polarized state has |Dk| =
0.5, and the order parameter is 0 for the unpolarized state.
As we obtain the equilibrium state at a particular temperature
(iterating from a one-pocket or two-pocket polarized initial
state), its dipole moment smoothly goes to zero, and that is
how the critical temperature was estimated.

We use the following band structure and interaction:

ε0
k|2D = −E0

3∑
i=1

e−(k−ki )2/2q2
1 ,

V (k − k′) = V0e−(k−k′ )2/2q2
0 , (15)

where k1 = k0(−1, 0) and k2,3 = k0( 1
2 ,±

√
3

2 ) are the centers
of the three pockets of radius q1, symmetrically placed on the
vertices of an equilateral triangle.

This Hamiltonian was implemented on a triangular lattice
in the momentum space [see Fig. 4(a)], centered around the
K point [which is also the center of the (k1, k2, k3) trian-
gle]. We use a triangular lattice so that all three pockets are
equivalent and the discretized problem respects the trigonal
symmetry. Similar to the previous model, we use open bound-
ary conditions, because the states at the boundary remained
unpopulated in the range of electron densities and tempera-
tures we considered. Parameter values used in our simulation
were E0 = 1, V0 = 0.01, k0 = 12, q1 = 4, q0 = 6, and we set
kB = 1.

The results discussed below were obtained for a hexagonal
domain with trigonal symmetry, with the total of 24 sites
per side of the hexagon [see Fig. 4(a)]. The electron density
was such that in the one-pocket polarized phase at T ≈ 0,
the chemical potential would be very close to the minima of
the unoccupied pockets. The array within the hexagon was
populated with N = 82 electrons so that this condition is
satisfied. We find that as the temperature is increased while
keeping the electron number fixed, the pocket-polarized
phase gradually melts into the disordered phase, and the
resistivity decreases. In addition to the one-pocket polarized
and pocket-unpolarized states, a two-pocket polarized
state can also be considered. For this particular model,
the ground state remains one-pocket polarized at low
temperature, and the two-pocket polarized state (as well
as the pocket-unpolarized state) is metastable. As temperature
is increased, the one-pocket and two-pocket states gradually
transform into the unpolarized state, with pocket polarization
disappearing at a temperature Tc.

In these simulations, the band curvature was evaluated us-
ing a discrete lattice-Laplacian implemented on the triangular
lattice,

2
kεk|2D = 2

3

∑
〈k′〉 εk′ − 6εk

(δk)2
, (16)

where
∑

〈k′〉 denotes the sum over the six nearest neighbors of
k, with δk the distance between nearest neighbors.

The resulting resistivity vs. temperature dependence is dis-
played in Fig. 4(c). The resistivity steadily decreases until
it reaches TBG because the momentum-averaged curvature
decreases in this regime, and the phonon scattering remains
negligible. Afterwards, between TBG and Tc, there is a com-
petition between the increasing curvature and the phonon
scattering, and after reaching Tc, the resistance increases lin-
early.

VI. SWITCHING INDUCED BY ELECTRIC FIELD

Here we consider pocket polarization switching occurring
in the nonlinear current-field response regime. Upon the ap-
plication of a spatially uniform and time-independent electric
field, the whole Fermi sea begins to drift in the direction
opposite to the electric field and the relaxation mechanism
tries to restore the equilibrium distribution. The net result
of this competition is that the Fermi sea is displaced from
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its equilibrium position in the steady state [69]. This can be
modeled with the Boltzmann transport equation,

∂ f

∂t
+ dr

dt
· ∂ f

∂r
+ dk

dt
· ∂ f

∂k
= − f − f 0

τ
, (17)

where f is the actual nonequilibrium distribution, whereas
f0 is the equilibrium distribution defined as a Fermi func-
tion of the self-consistent energy εk , a quantity that accounts
for the Fermi-liquid interactions with the carrier distribution
perturbed by electric field. In the absence of electric field,
the self-consistent energy and the equilibrium distribution are
given by Eqs. (3) and (4). Here, these expressions will be
modified as discussed below [Eqs. (22a) and (22b)].

This approach represents a generalization of the self-
consistent relations introduced in the Fermi-liquid theory to
an out-of-equilibrium regime. Accordingly, the quasiparticle
velocity in the streaming term should be taken as momentum
gradient of the self-consistent energy, dr

dt = 1
h̄∇kεk . How-

ever, for the spatially uniform solutions considered below the
streaming term vanishes. We note that our collision term,
which describes relaxation to the self-consistent equilibrium
distribution, agrees with the requirements of the Fermi-liquid
theory [85,86]. Here, for simplicity, we employ the relaxation
time approximation, and assume that the relaxation timescale
is momentum independent.

In the steady state, ∂ f
∂t = 0, and ∂ f

∂r = 0 due to spatial
homogeneity. Also, dk

dt = − eE
h̄ from the semiclassical equa-

tions of motion, where the charge of an electron is −e. Then,
the equation reduces to

f (k) − eτ

h̄
E · ∂ f (k)

∂k
= f 0(k). (18)

This equation has a formal solution,

f (k) = 1

1 − eτ
h̄ E · ∂

∂k

· f 0(k). (19)

To evaluate it, either the operator 1
1− eτ

h̄ E· ∂
∂k

can be written as a

Taylor series in E · ∂
∂k , or more formally, it can be evaluated

using Fourier transforms, giving

f (k) =
∫ ∞

0
dse−s f 0(k + seEτ/h̄), (20)

where s is an auxiliary integration variable.
At linear order in the electric field, the solution takes the

form

f (k) ≈ f 0(k) + eτ

h̄
E · ∂ f 0(k)

∂k
≈ f 0(k + eEτ/h̄), (21)

that is, the steady-state Fermi distribution f will be a displaced
version of the equilibrium Fermi distribution f 0, as described
above. If we take a pocket-polarized state, apply an electric
field in the appropriate direction, and keep increasing its mag-
nitude, at some point the displaced Fermi sea may abruptly
switch, resulting in all the electrons shifting to another pocket.
Since a finite electric field is required for the switching, the
initial state cannot be restored by decreasing the magnitude
of the electric field, or by the application of a small electric
field in the opposite direction. Experimentally, such memory

effects and history-dependent behavior in the transport prop-
erties may be observed by turning on a strong in-plane electric
field, or by running high currents. These results, obtained here
for a simple model, are expected to describe transport in a
bilayer (or multilayer) graphene or transition-metal dichalco-
genides (TMD) sample that hosts multiple Fermi pockets
induced by trigonal warping [22,23,61]. The switching behav-
ior, which is a consequence of pocket polarization assisted by
an applied E field, may be used as an experimental probe for
delineating pocket polarization from alternative mechanisms
of negative dρ/dT .

To model the switching effect, we modify the self-
consistent equations (3) and (4) as follows. The exchange
energy will depend on the field-induced steady-state dis-
tribution, modeled as the shifted equilibrium distribution.
as discussed above. Namely, the coupled mean-field equa-
tions (3) and (4) must be replaced with the three equations

εk,σ = ε0
k −

∑
k′ �=k

V (k − k′) fk′,σ , (22a)

fk,σ = f 0
k+eEτ/h̄,σ , f 0

k,σ = 1

eβ(εk,σ −μ) + 1
. (22b)

To numerically solve these equations, we use the 1D
model [Eq. (11)] with E0 = 1, k0 = 1, V0 = 0.01, q0 = 0.2,
kBT/E0 = 0.2. We use the mesh of 2001 equidistant points
between k = −3k0 to k = 3k0, and populating it with N =
200 electrons. We initiate the iterations with an equilibrium
distribution polarized in the right (red curve in Fig. 2) as well
as the left pocket (blue curve in Fig. 2), and in each case obtain
a field-induced steady-state distribution.

To clarify the underlying physics, consider the evolu-
tion of the right pocket-polarized initial state. Under the
application of a small positive electric field, the steady-
state distribution remains polarized at the same pocket, but
as the electric field is increased, the distribution immedi-
ately switches to the left pocket, and the pocket polarization
φ1D = (nR − nL )/(nR + nL ) discontinuously jumps from +1
to −1. The effect has been illustrated in Fig. 2, where the
switching occurs at E ≈ 0.32h̄k0/eτ for the parameters men-
tioned in the previous paragraph. If we had swept the electric
field in the opposite direction from the beginning (for the
same right pocket-polarized initial state), then the steady-state
distribution would shift to the direction opposite to the left
pocket. In this case, the system will not exhibit any switching
behavior, but the pocket polarization φ1D will gradually de-
crease in magnitude. Due to the displacement of the Fermi sea,
the exchange energy at the minima of the filled pocket would
be smaller compared to the initial state. Consequently, energy
difference between the minima of the filled and the empty
pockets would be smaller, and the initially empty pocket will
gain some electrons due to thermal excitations. Therefore, the
sign of φ1D would remain the same, but it would decrease in
magnitude, as observed in Fig. 2. The analogous and opposite
effect happens with the left pocket-polarized initial state.

VII. DISCUSSION

The transport anomalies considered here, originating
from pocket polarization, involve a negative temperature
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dependence of resistivity predicted in the ohmic regime and
polarization switching in a non-ohmic regime. We first restate
the reasons for negative dρ/dT being a robust and generic
property of the momentum-polarized order. At low tempera-
tures, the electrons are predominantly scattered by disorder as
the phonons are not yet thermally activated. Consequently, the
resistivity of a metallic system is primarily determined by the
average band curvature. Using microscopic models that mimic
the pockets induced by trigonal warping in bilayer graphene
and TMD, we demonstrated that the momentum-polarized
ordered phase samples a greater number of states with rel-
atively less curvature compared to its disordered counterpart,
implying that the resistivity of the ordered phase will decrease
with rising temperature, until the order undergoes melting.
Subsequently, phonon scattering will reinstate the linear de-
pendence of resistivity on temperature, just like conventional
metals at room temperature.

Simultaneously, transport in the momentum-polarized
phase features a dependence on history that leads to polar-
ization switching. Namely, a particular momentum-polarized
state can switch to a different momentum-polarized state
when subjected to a strong electric field that reverses direc-
tion. This behavior is expected to give rise to hysteretic I-V
characteristics that may be utilized to experimentally distin-
guish the mechanism of negative dρ/dT described above
from other mechanisms.

A similar behavior in resistivity may be considered for the
valley-polarized, and spin-polarized ordered phases at very
low carrier densities. To understand the microscopic picture,
consider the valley-polarized phase and, for the time being,
ignore pocket polarization. At low temperature, while only
one valley is polarized, the resistance will gradually increase
with rising temperature, just like the behavior observed in
ordinary metals. As T increases, at some point the bottom of
the unpopulated valley will begin to be populated by thermally
excited carriers. These carriers will sample the bottom part
of the band where the curvature is high. The higher aver-
age curvature of the populated part of the band will bring

the resistance down. Eventually, the thermal excitations will
suppress valley-polarized order, and the resistance will begin
to increase again. Therefore, as T grows, resistance will rise,
then drop and then rise again.

A similar T dependence is expected to occur in the spin-
polarized phase. Pocket polarization, if present, will make
the behavior more complicated. However, it is unlikely to
eliminate the nonmonotonic T dependence. However, for the
scenario discussed above to be applicable at much higher
density (where spin or valley-polarized phases are usually not
observed), the band structure must be very different from stan-
dard bilayer graphene band structure near charge neutrality.
Experimentally, the phases polarized in spin or valley have
only been stabilized at low electronic density (close to charge
neutrality). Negative dρ/dT may be observed if the ordered
state can be stabilized at a high enough electronic density so
that it will sample an appreciable number of states with neg-
ative band curvature from the high-energy necks linking the
K or K ′ valleys, whereas the corresponding high-temperature
state will sample a relatively greater number of states from
the valley bottom, which has a positive band curvature. A
band structure of this type is featured by biased antimonene,
whose conduction band has several almost degenerate pockets
[87,88] which at a low temperature may host pocket-polarized
phases. Further research is required to explore the resis-
tive behavior of these systems. The longitudinal resistivity
decreasing with temperature, combined with the switching
behavior can serve as a transport signature to experimentally
identify momentum-polarized ordered phases.
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