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Twisted lattice gauge theory: Membrane operators, three-loop braiding, and topological charge
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(3 + 1)-dimensional topological phases can support loop-like excitations in addition to point-like ones,
allowing for nontrivial loop-loop and point-loop braiding statistics not permitted to point-like excitations alone.
Furthermore, these loop-like excitations can be linked together, changing their properties. In particular, this
can lead to distinct three-loop braiding, involving two loops undergoing an exchange process while linked
to a third loop. In this work, we investigate the loop-like excitations in a (3 + 1)-dimensional Hamiltonian
realization of Dijkgraaf-Witten theory through direct construction of their membrane operators, for a general
finite Abelian group and 4-cocycle twist. Using these membrane operators, we find the braiding relations and
fusion rules for the loop-like excitations, including those linked to another loop-like excitation. Furthermore, we
use these membrane operators to construct projection operators that measure the topological charge and show
that the number of distinct topological charges measured by the 2-torus matches the ground-state degeneracy
of the model on the 3-torus, explicitly confirming a general expectation for topological phases. This direct
construction of the membrane operators sheds significant light on the key properties of the loop-like excitations
in (3 + 1)-dimensional topological phases.
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I. INTRODUCTION

Among the rich tapestry of phases of matter that are
known to us, topological phases stand out due to their
ability to support quasiparticles with exchanges statistics
that generalize those of fermions and bosons [1–3]. This
property of topological phases is enabled by long-ranged
entanglement between the local degrees of freedom, which
cannot be disentangled by local unitary evolution over finite
time [4–6] and which allows the quasiparticles to transform
nontrivially under exchange, even when the particles remain
well separated. The form of these exchange statistics depends
on the dimensions of space and the topology of the excitations
themselves. In (2 + 1) dimensions [(2 + 1)d], the exchange
of point-like excitations is described by the (colored) braid
group. On the other hand, in (3 + 1) dimensions [(3 + 1)d],
the exchange of such particles is described only by the per-
mutation group, leading to the familiar bosonic and fermionic
statistics [7–10]. If this were the full picture, then topological
phases in (3 + 1)d would not be nearly so interesting as their
(2 + 1)d counterparts. However, (3 + 1)d phases can support
loop-like excitations in addition to point-like ones, allowing
for loop-loop and point-loop braiding that is described by the
(colored) loop braid group [11–16]. Furthermore, loop-like
excitations can be linked together, and it has become apparent
that the character of the loop-like excitations can be different
in such a case [17]. This can lead to distinct three-loop
braiding (also called necklace braiding [18]), involving two
loops undergoing an exchange process while linked to a
third loop, called the base loop [17,19–21]. Indeed, even
if the regular two-loop braiding is Abelian, this three-loop
braiding can be non-Abelian. The non-Abelian character
of this braiding can be characterized by a process called

four-loop braiding [22–26], involving multiple three-loop
braids. To study such phenomena, it is useful to have tractable
examples, even if they are only fixed points of a wider phase.

There have been several exactly solvable models that real-
ize (3 + 1)d topological phases, including the Walker-Wang
model [27–30] and the higher lattice gauge theory model
[31–35]. However, the model which perhaps best captures
the properties of such phases is the Dijkgraaf-Witten model
and its associated Hamiltonian constructions [20,21,36–39],
which are conjectured to include all (3 + 1)d bosonic topolog-
ical phases without emergent fermions [40]. Already, much is
known about this class of phases, both from field theory and
from a Hamiltonian realization. Indeed, the Dijjkgraaf-Witten
model and associated discrete gauge theory constructions
have been used to study exotic statistics from the early days of
the field [12,41–44]. Each Dijkgraaf-Witten model is labeled
by a group G and a 4-cocycle [for the (3 + 1)d case] in
H4(G,U (1)). When this cocycle is nontrivial, we say that
the model is “twisted” by the cocycle. The group determines
the point-like charges, which are labeled by representations
of the group, as well as the flux labels which are labeled
by conjugacy classes in G. The point-loop braiding is also
determined by the group and is given by a generalized version
of the usual Aharonov-Bohm formula for a charge moving
around a flux tube [19,45,46]. However, it is known that the
4-cocycle is important for the properties of linked excitations.
In particular, the three-loop braiding is captured by projective
representations of the group G, with the factor system for
these projective representations depending on the group co-
cycle [20,21]. In the Hamiltonian realization, the ground-state
degeneracy of the model on the 3-torus (which is equivalent to
the partition function of the topological quantum field theory
on the direct product of the 3-torus with a circle), is similarly
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described by such representations (along with two flux labels)
[37]. Despite this, there are some aspects of the model that
are not yet clear. Studies of this phase have so far focused
on indirect arguments such as dimensional reduction [19,21],
tube algebra [39], vacuum expectation values in field theory
[24,25,47] and study of the ground states [20]. On the other
hand, Ref. [17] uses membrane operators to directly study
the excitations in a model that appears to be equivalent to a
Dijkgraaf-Witten type model for the group Z2 × Z2. Refer-
ence [17] provides a clear exposition of some of the features
of the excitations, especially those built from linked loops,
but the specific group used restricts the type of excitations
that are supported by the model. In particular, Ref. [17] only
finds Abelian three-loop braiding, but we expect more general
(Abelian) groups to allow for non-Abelian braiding when
twisted by an appropriate cocycle. In this work, we consider
an explicit construction of the membrane operators that pro-
duce non-Abelian linked loop-like excitations. This allows us
to study the properties of these excitations in more detail,
including their conserved topological charge. It also allows
us to see how the non-Abelian braiding can emerge from an
Abelian group and how an internal space for the loop-like
excitations may arise when they are linked to another loop.

To examine these excitations, we consider a Hamilto-
nian model for Dijkgraaf-Witten, which was constructed in
Ref. [37]. We provide a brief review of this model in Sec. I A,
to familiarize readers with the key features which we make use
of throughout this work. In Sec. I B, we provide a summary
of our results, before giving a more detailed description in
the rest of the paper. The main focus of this work is on
constructing the membrane operators that produce the emer-
gent excitations in this model and using them to find various
properties of these excitations. As we describe in Sec. II,
these membrane operators differ from their counterparts in
untwisted lattice gauge theory by additional phase factors or
weights associated with the surface and the nearby tetrahedra.
Of particular interest are the cylindrical membrane operators,
which can be used to produce a pair of loop-like excitations
that can be linked to an existing flux tube (the base loop). In
Sec. II C, we discuss these operators and construct a useful
basis for these operators on a simple geometry. In Sec. III B,
we then use these operators to rederive the braiding relations
found in previous studies [19–21] and in Sec. IV we discuss
the fusion properties for these membranes to shed additional
light on the different properties of the linked loops. In Sec. V
we use these membrane operators to construct projection op-
erators that measure the topological charge enclosed by a
measurement surface and show that the number of distinct
topological charges measured by the 2-torus matches the
ground-state degeneracy of the model on the 3-torus, match-
ing a general expectation for topological phases.

In the Supplemental Material [48], we provide various
proofs that support the results in the main text. In Sec. S-I,
we prove that spherical magnetic membrane operators can
be expressed as a product of vertex transforms in the region
enclosed by the membrane. This guarantees that these
membrane operators can be deformed through an unexcited
region by applying additional vertex transforms, which act
trivially on the ground state and so do not affect the action of
the membrane operator on the state. We call such membrane

operators topological for this deformability property. In
Sec. S-II, we consider more membrane operators of a more
general topology and show that they are also topological.
Finally, in Sec. S-III, we prove that the purported topological
charge projectors described in Sec. V are indeed orthogonal
projectors and span the space of measurement operators.

A. Twisted lattice gauge theory model

The twisted lattice gauge theory model, introduced in
Ref. [37], provides a Hamiltonian model for the Dijkgraaf-
Witten topological quantum field theory [36]. Unlike Kitaev’s
quantum double model [or more properly, its (3 + 1)d coun-
terpart], the twisted lattice gauge theory allows for a “twist”
in the form of a 4-cocycle, which is crucial for the model to
support novel three-loop braiding statistics.

The input data for a particular twisted lattice gauge theory
model is a finite group G and a 4-cocycle ω ∈ H4(G,U (1)).
The model is defined on a triangulation of a three-dimensional
(3d) manifold, with each (directed) edge carrying a local
Hilbert space with basis states corresponding to elements of
the group G. This means that one simple basis for the entire
Hilbert space, which we call the configuration basis, has basis
states where each edge is labeled by an element of G. The
vertices of the lattice are indexed, with the edges pointing
from the lower-indexed vertex to the higher-indexed one. The
Hamiltonian is a sum of two types of terms, corresponding
to the plaquettes (triangles) and vertices of the lattice. The
Hamiltonian is given by [37]

H = −
∑

plaquettes, p

Bp −
∑

vertices, v

Av. (1)

The plaquette term enforces flatness, analogous to the cor-
responding term from Kitaev’s quantum double model [49]:

Bp = δ(g(boundary(p)), 1G),

where g(boundary(p)) is the path element for the boundary
of the plaquette, starting at any vertex on the plaquette and
respecting the orientation of the edges, and δ is the Kronecker
delta.

The vertex term is also similar to the quantum double
model equivalent. It can be written as a sum of gauge trans-
forms, one for each element of G:

Av = 1

|G|
∑
g∈G

Ag
v.

Each transform Ag
v has two components, a multiplicative ac-

tion on the surrounding edge elements and a phase factor
associated with the surrounding tetrahedra. That is, we can
write the transform as

Ag
v = Ag

v (0)
∏

tetrahedra t�v

θ
g
v,t , (2)

where Ag
v (0) is the vertex transform corresponding to a model

with trivial cocycle, while θ
g
v,t is the phase factor for the

tetrahedron t and depends on the 4-cocycle. The untwisted
transform affects the edges that are attached to that vertex,
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FIG. 1. The two possible orientations of the indexed tetrahedron
(up to rotation). Here v1 is the lowest indexed vertex on the tetrahe-
dron, v2 is the next and so on. Note that the subscript 1 is not itself
its index (because we have to index the whole lattice, not just the
tetrahedron).

according to

Ag
v (0) : gi =

{
ggi if i points away from v

gig−1 if i points towards v.

To define the phase θ
g
v,t , we must first discuss the orien-

tation of the tetrahedrons. Each tetrahedron has four vertices
indexed by different integers. If we orient the tetrahedron so
that the highest indexed vertex is uppermost, then we can de-
termine the orientation of the tetrahedron using the right-hand
rule. Pointing our thumb towards the highest indexed vertex,
the orientation of the tetrahedron is positive if the index of the
remaining vertices increases with the circulation of our hand
and is negative if they decrease. The two possibilities, up to
rotation, are illustrated in Fig. 1.

The θ
g
v,t phase associated with a tetrahedron depends both

on this orientation and on the index of the vertex in the tetrahe-
dron, and is described by the cocycle ω. Denoting the vertices
on the tetrahedron, in ascending index order, by v1, v2, v3, and
v4, the phase obtained from this tetrahedron by a transform on
vertex v1 is

θ
g
v1,t = ω(g, gv1v2 , gv2v3 , gv3v4 )ε(t ),

where ε(t ) is +1 if the tetrahedron has positive orientation and
−1 otherwise. For v2 it is

θ
g
v2,t = ω(gv1v2 g−1, g, gv2v3 , gv3v4 )−ε(t ).

For v3 it is

θ
g
v3,t = ω(gv1v2 , gv2v3 g−1, g, gv3v4 )ε(t ),

and for v4 it is

θ
g
v4,t = ω(gv1v2 , gv2v3 , gv3v4 g−1, g)−ε(t ).

One way of thinking about the phase is that the transform
at v introduces a new vertex v′, such that the index of v′ is
very slightly less than that of v, and gv′v = g. The evaluation
of the 4-cocycle is then associated with a 4-simplex incor-
porating that vertex into the tetrahedron. Because the choice
of 4-cocycle is fixed when the model is defined, we use the
notation

[g1, g2, g3, g4] := ω(g1, g2, g3, g4).

The 4-cocycle satisfies the cocycle condition:

[g1, g2, g3, g4][g0, g1g2, g3, g4][g0, g1, g2, g3g4]

[g0g1, g2, g3, g4][g0, g1, g2g3, g4][g0, g1, g2, g3]
= 1 (3)

for all { gi ∈ G } (i = 0, 1, 2, 3, 4). In addition, it satisfies a
normalization condition:

1 = [1G, g2, g3, g4] = [g1, 1G, g3, g4] = [g1, g2, 1G, g4]

= [g1, g2, g3, 1G], (4)

for all { gi ∈ G } (i = 1, 2, 3, 4).
With this definition, the vertex transforms satisfy the alge-

bra Ag
vAh

v = Agh
v , which leads to the vertex terms Av = 1

|G|A
g
v

being projectors [37]. The vertex terms commute with the
plaquette terms because the plaquette terms depend on the
label of a closed path, which is at most conjugated by the
vertex terms (just as for Kitaev’s quantum double model). The
vertex terms also commute with each other, but generally only
do so in the subspace where the plaquette terms are satisfied.
One solution to this problem is to define the vertex terms to be
zero (and therefore the vertex to be excited) when an adjacent
plaquette does not satisfy flatness, similar to how the plaquette
terms in a string-net model are treated when adjacent to a
vertex term that does not satisfy the fusion rules [50]. Because
we are usually only interested in which regions of the lattice
do not satisfy the energy terms for a given state, rather than the
actual energies of the states, and these additional vertex exci-
tations are always adjacent to plaquette excitations, it is not
particularly significant whether we take this approach or not.

In addition to introducing the twisted lattice gauge theory
models, Ref. [37] describes many of their properties, includ-
ing the ground-state degeneracy, the equivalence between
models defined with equivalent cocycles (up to a cobound-
ary) and the consistency of the model under mutations of the
lattice. However, Ref. [37] does not directly describe the ex-
citations or the membrane operators used to produce them. In
the rest of this work, we construct these membrane operators
for a general Abelian group and use them to derive or rederive
the properties of the excitations.

B. Summary of results

Before we discuss our results in great detail, we summa-
rize them here. We consider the twisted lattice gauge theory
model in (3 + 1)d [37] with an Abelian group G (although
many of our results can be extended to the non-Abelian case).
As we explain in Sec. II, we construct the general form of
the ribbon and membrane operators which produce the basic
excitations in the twisted lattice gauge theory model. While
the ribbon operators that produce the pure electric excita-
tions are unchanged from the untwisted gauge theory case,
the magnetic membrane operators are significantly different.
Compared with the untwisted membrane operators, which
simply multiply the edges cut by the membrane by an element
h±1, where h is the flux of the excitation produced by the
membrane operator, the membrane operators in the twisted
theory also must apply a weight depending on the labels of
the edges near the membrane. This weight can be split into
two parts: a dual phase, which depends on the edges of the
tetrahedra cut by the membrane, and a surface weight, which
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depends on the edge labels on a surface called the direct
membrane. This surface weight can be calculated from a set
of reference diagrams by using graphical rules, which de-
scribe how the surface weight changes under the application
of bistellar flips to the surface. The weights assigned to the
reference diagrams are free variables, giving a space of mem-
brane operators for a given flux. This is analogous to a charge
for the membrane operators, with this charge distributed along
the boundary of the membrane.

A particularly interesting class of membrane operators are
those applied on a cylindrical membrane, which we discuss in
detail in Sec. II C. These membrane operators produce a pair
of loop-like flux tubes at the two ends of the cylinder. These
two loops can be linked to an already existing third loop,
called a base loop, which is threaded through the cylindrical
membrane. For a particularly simple geometry, we find that
the membrane operators obey a simple composition rule under
concatenation of the cylinders, if the weights assigned to the
reference diagrams are given by (matrix elements of) irre-
ducible projective representations. This choice of the weights
describes a basis for the space of such membrane operators,
analogous to the use of linear irreps for electric ribbon oper-
ators. These projective representations obey the composition
rule

αk,h(x1)αk,h(x2)
!= [x1, x2]k,hα

k,h(x1x2). (5)

Here k is the flux label of the base loop and h is the flux label
of the membrane operator that produces the other two loops,
while [x1, x2]k,h is a 2-cocycle derived from the underlying
4-cocycle of the model by applying the slant product twice.
That is, to obtain the 2-cocycle we first construct a 3-cocycle
by [37]

[x1, x2, x3]k = [x1, k, x2, x3][x1, x2, x3, k]

[k, x1, x2, x3][x1, x2, k, x3]
. (6)

Then we construct a 2-cocycle from that 3-cocycle in a similar
way by

[x1, x2]k,h = [h, x1, x2]k[x1, x2, h]k

[x1, h, x2]k
. (7)

These 2-cocycles then form the factor system for the pro-
jective irreps, as indicated by Eq. (5). A 2-cocycle can be
nonsymmetric under exchange of x1 and x2, in which case
the projective representations associated with that 2-cocycle
are necessarily higher dimensional, despite the Abelian nature
of the group G. Note that the composition rule of the projec-
tive representations depends on the two flux labels k and h,
meaning that the allowed representations for the membrane
operators (and so the charge labels for the excitations) are
different depending on both the flux label of the membrane
operator and the flux of the linked base loop. That is, the
excitations linked to different loops are inherently different
in general (as discussed in Ref. [17]). In particular, in the
case where the base loop is trivial (k = 1G), the 2-cocycle
also becomes trivial and the projective representations become
linear representations, reproducing the ordinary charge that
we can attach to flux tubes.

Using this simple class of membrane operators, we can find
various properties of the flux excitations. In Sec. III B, we
demonstrate how the braiding relations for these excitations

can be calculated. Because the loop-like excitations may be
linked to a base loop, we can find the three-loop braiding rela-
tions which describe loop braiding of two excitations while
linked to a common base loop. We find that this braiding
relation is similar to that obtained by braiding charges through
each loop, except that instead of linear irreps, the charges are
described by the projective irreps labeling each membrane
operator. When the irreps are one dimensional, the braiding
of a loop excitation with label (a, αk,a

1 ), where a is the flux
label and αk,a

1 the projective irrep for base loop k, with a loop
excitation of label (c, αk,c

2 ) results in the accumulation of a
phase

θ3 = αk,a
1 (c)αk,c

2 (a). (8)

Note that when the base loop is trivial (k = 1G), α1 and α2

become linear irreps of G, indicating that two-loop braiding is
independent of the 4-cocycle. For higher-dimensional irreps,
which require a nontrivial base loop if G is Abelian, the
membrane operators carry additional labels corresponding to
the matrix indices for the projective representations. Then the
braiding relation results in a transformation described by the
action of the representative matrices αk,a

1 (c) and αk,c
2 (a). This

matrix action results in mixing membrane operators labeled
by different matrix indices. This reflects the fact that the in-
dices are not conserved quantities, although the irreps are. As
we describe in Sec. III B, this agrees with results previously
obtained from dimensional reduction and other arguments
[19–21].

In addition to the braiding, we demonstrate the fusion rules
satisfied by these simple membrane operators, which describe
what happens when we apply two membrane operators on the
same membrane. This corresponds to the fusion of the exci-
tations at the ends of the membrane operators. Under fusion
of membrane operators labeled by (a, αk,a

1 ) and (b, αk,b
2 ), the

result is a single membrane operator with label (ab, αk,ab
T ),

where

αk,ab
T (x) = [b, a]k,xα

k,a
1 (x) ⊗ αk,b

2 (x). (9)

For higher-dimensional irreps αk,a
1 and αk,b

2 , αk,ab
T is generally

a reducible projective representation, and its constituent irreps
are the different possible fusion products. Note that when the
base loop is trivial (k = 1G), the factor [b, a]k,x reduces to the
identity and the fusion becomes the normal composition of
irreps.

Finally, in Sec. V, we use the membrane operators to
construct projectors to definite topological charges. These
projection operators are applied on spherical or toroidal sur-
faces and measure the charge of excitations enclosed by the
surfaces. We find that the spherical measurement operators are
labeled by linear irreps of G, reflecting the nature of the point-
like excitations. On the other hand, the toroidal measurement
operators are labeled by the flux around the two handles
of the torus and a corresponding projective representation
(similar to the basis used for the cylindrical measurement
operators). These toroidal projectors are in one-to-one cor-
respondence with the ground states for the 3-torus found in
Ref. [37], demonstrating that the connection between ground
states on the 3-torus and charges measured by a 2-torus holds
for this model. This is analogous to the connection between
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topological charge and the ground-state degeneracy for a 2-
torus from (2 + 1)d topological phases. In the (3 + 1)d case,
because the topological charge depends on two flux labels,
the charges are not in one-to-one correspondence with the
simple loop-like excitations, but instead we must allow the
loop-like excitations to be linked to different base loops for
the correspondence to hold.

II. RIBBON AND MEMBRANE OPERATORS

A. Ribbon operators

We first consider the ribbon operators that produce the
point-like electric excitations. These take the same form
regardless of the cocycle twist and are equivalent to the op-
erators from Kitaev’s quantum double model [49], except that
they are in (3 + 1)d rather than (2 + 1)d. An electric ribbon
operator applied on a path t has the form

S �α (t ) =
∑
g∈G

αgδ(g, ĝ(t )), (10)

where ĝ(t ) is the path element operator for path t and αg

is a coefficient. To calculate the path element, we take the
product (from left to right) of the labels of the edges along
the path, with inverses for edges that are anti-aligned with the
path. A useful basis for this space of operators is described
by the irreps of G, with the trivial irrep labeling the identity
operator and the operators labeled by nontrivial irreps produc-
ing excitations at the two ends of t . Such basis operators are
given by

SR,a,b(t ) =
∑
g∈G

[DR(g)]abδ(g, ĝ(t )), (11)

where R is an irrep of G, and DR(g) is the matrix representa-
tion of g with matrix indices a and b. The irreps R describe a
conserved topological charge carried by the excitations. In the
case of non-Abelian groups, the irreps must be supplemented
by the matrix indices in order to give a full basis for the space
of operators. These indices are not conserved and instead
describe an internal space for the topological charge. We can
think of the two indices as corresponding to the internal space
for the excitations at the two ends of the ribbon. On the other
hand, for the Abelian groups that we consider here, the irreps
are all one dimensional and there is no internal space. The
form of the ribbon operators is the same regardless of the
4-cocycle ω, because the ribbon operators are diagonal in the
configuration basis (the basis where each edge is labeled by
an element of G) and so commute with the cocycle twist on
the vertex terms (because the twist factor is similarly diagonal
in the configuration basis). This means that the commutation
relation between the electric ribbon operators and the vertex
transforms is the same regardless of the cocycle twist.

B. Membrane operators

Unlike the electric ribbon operators, the magnetic mem-
brane operators strongly depend on the cocycle twist. To
define these membrane operators, we first split them into three
parts:

F h,�v (m) = Ch
0 (m)θh

D(m)θh,�v
S (m), (12)

FIG. 2. An example of a membrane operator acting across a
fragment of lattice. The direct membrane (lower, green membrane)
contains vertices, edges and plaquettes, while the dual mem-
brane (upper, red membrane) cuts through edges, plaquettes, and
tetrahedra.

where h is the flux label of the resulting magnetic exci-
tations and �v is a set of coefficients that determines the
electric charge and which we explain in more detail when
we describe θh,�v

S (m). The membrane m on which we define
the operator has two parts: a direct membrane made up of
plaquettes in the direct lattice and a dual membrane which
bisects the edges of the lattice, as shown in Fig. 2. These
two membranes together form a thickened membrane and
the support of the membrane operator lies in this region.
This is analogous to how ribbon operators in the (2 + 1)d
quantum double model generally have both a direct path and
dual path, with these paths together forming a ribbon of finite
width.

The first part of the membrane operator, Ch
0 (m), is the

same regardless of the cocycle twist. This operator affects
all edges cut by the dual membrane. When the group G is
Abelian, the membrane operator multiplies such an edge by
h if the edge points away from the direct membrane and
by h−1 if it points towards the direct membrane. This is the
only part of the membrane operator that changes the edge
labels, and so it is the only part that fails to commute with
the plaquette energy terms. For a plaquette cut by the bulk
of the dual membrane, two of the edges on the plaquette are
affected by the multiplication, which leaves the total boundary
label of the plaquette unaffected and so the plaquette term is
left unexcited. On the other hand, for plaquettes cut by the
boundary of the dual membrane, only one edge is affected and
so there is no cancellation. This leaves the plaquettes cut by
the boundary of the membrane excited by the action of the
membrane operator.

The second part of the membrane operator is θh
D(m),

which we refer to as the dual phase. This applies a phase
for each tetrahedron cut by the dual membrane, depending
on the cocycle twist. As we explain in Secs. S-I and S-II
in the Supplemental Material [48], the magnetic membrane
operators look locally like vertex transforms, and the phase
associated with a tetrahedron cut by the dual membrane is
equivalent to the phase obtained from that tetrahedron by
applying a vertex transform on every vertex on the direct
membrane. As an example, consider the tetrahedron shown
in Fig. 3, which is cut by the dual membrane and has a
face on the direct membrane. We consider a basis state
|g12, g13, g23, g14, g24, g34〉 for the degrees of freedom on the
tetrahedron, where gi j is the label of the edge from vertex
i to j. Applying the series of vertex transforms Ah

3Ah
2Ah

1,
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FIG. 3. We consider the example of a tetrahedron { 1, 2, 3, 4 }
that is cut by the dual membrane (the red upper surface) and that has
a face { 1, 2, 3 } on the direct membrane (the lower green surface).
The contribution to the dual phase from this tetrahedron can be
calculated by applying a vertex transform on each vertex on the direct
membrane.

we get

Ah
3Ah

2Ah
1|g12, g13, g23, g14, g24, g34〉

= Ah
3Ah

2[h, g12, g23, g34]|hg12, hg13, g23, hg14, g24, g34〉
= Ah

3[h, g12, g23, g34][(hg12)h−1, h, g23, g34]−1

× |hg12h−1, hg13, hg23, hg14, hg24, g34〉
= [h, g12, g23, g34][g12, h, g23, g34]−1[g12, hg23h−1, h, g34]

× |g12, hg13h−1, hg23h−1, hg14, hg24, hg34〉

= [h, g12, g23, g34][g12, h, g23, g34]−1[g12, g23, h, g34]

× |g12, g13, g23, hg14, hg24, hg34〉.

We see that this recreates the action of Ch
0 (m) on the

edges (multiplying the edges pointing away from the direct
membrane by h, while leaving the edges lying on the direct
membrane unaffected) and gives a phase factor of

θh
D(t ) = [h, g12, g23, g34][g12, h, g23, g34]−1[g12, g23, h, g34],

which is the contribution to the dual phase from that tetra-
hedron. More generally, each tetrahedron cut by the dual
membrane can be classified by which of its vertices v1(t ),
v2(t ), v3(t ), and v4(t ) are on the direct membrane. The dual
phases associated with the tetrahedron for each possible set of
vertices on the direct membrane are given in Table I.

While this describes the contribution to the dual phase
from tetrahedra cut by the bulk of the dual membrane, there
is some ambiguity for tetrahedra cut by the boundary of the
dual membrane in the case of open membranes. There are
two reasons for this. First, as we described in Sec. I A, the
vertex transforms themselves are not well defined in regions
that do not satisfy flatness, like the boundary of a magnetic
membrane operator. Second, not all edges on the tetrahedron
that would be affected by a vertex transform on the boundary
are affected by the membrane operator. Because of this, we
do not apply a dual phase for the tetrahedra on the boundary
of the membrane. Another way of thinking about this is that
we only define membrane operators up to operators on the

TABLE I. The dual phase associated with each configuration of vertices on the direct membrane. Here ε(t ) is the orientation of the
tetrahedron.

Vertices on
direct membrane Dual phase

{ v1(t ) } [h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )]ε(t )

{ v2(t ) } [ĝv1(t )v2 (t )h−1, h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−ε(t )

{ v3(t ) } [ĝv1(t )v2 (t ), ĝv2 (t )v3(t )h−1, h, ĝv3(t )v4(t )]ε(t )

{ v4(t ) } [ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )h−1, h]−ε(t )

{ v1(t ), v2(t ) } ([h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )][ĝv1(t )v2 (t ), h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−1)
ε(t )

{ v1(t ), v3(t ) } ([h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )][hĝv1(t )v2 (t ), ĝv2 (t )v3(t )h−1, h, ĝv3(t )v4(t )])
ε(t )

{ v1(t ), v4(t ) } ([h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )][hĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )h−1, h]−1)
ε(t )

{ v2(t ), v3(t ) } ([ĝv1(t )v2 (t )h−1, h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−1[ĝv1(t )v2 (t )h−1, ĝv2 (t )v3(t ), h, ĝv3(t )v4(t )])
ε(t )

{ v2(t ), v4(t ) } ([ĝv1(t )v2 (t )h−1, h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−1

×[ĝv1(t )v2 (t )h−1, hĝv2 (t )v3(t ), ĝv3(t )v4(t )h−1, h]−1)
ε(t )

{ v3(t ), v4(t ) } ([ĝv1(t )v2 (t ), ĝv2 (t )v3(t )h−1, h, ĝv3(t )v4(t )][ĝv1(t )v2 (t ), ĝv2 (t )v3(t )h−1, ĝv3(t )v4(t ), h]−1)
ε(t )

{ v1(t ), v2(t ), v3(t ) } ([h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )][ĝv1(t )v2 (t ), h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−1

×[ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), h, ĝv3(t )v4(t )])
ε(t )

{ v1(t ), v2(t ), v4(t ) } ([h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )][ĝv1(t )v2 (t ), h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−1

×[ĝv1(t )v2 (t ), hĝv2 (t )v3(t ), ĝv3(t )v4(t )h−1, h]−1)
ε(t )

{ v1(t ), v3(t ), v4(t ) } ([h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )][hĝv1(t )v2 (t ), ĝv2 (t )v3(t )h−1, h, ĝv3(t )v4(t )]

×[hĝv1(t )v2 (t ), ĝv2 (t )v3(t )h−1, ĝv3(t )v4(t ), h]−1)
ε(t )

{ v2(t ), v3(t ), v4(t ) } ([ĝv1(t )v2 (t )h−1, h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−1[ĝv1(t )v2 (t )h−1, ĝv2 (t )v3(t ), h, ĝv3(t )v4(t )]

×[ĝv1(t )v2 (t )h−1, ĝv2 (t )v3(t ), ĝv3(t )v4(t ), h]−1)
ε(t )

{ v1(t ), v2(t ), v3(t ), v4(t ) } ([h, ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t )][ĝv1(t )v2 (t ), h, ĝv2 (t )v3(t ), ĝv3(t )v4(t )]−1

×[ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), h, ĝv3(t )v4(t )][ĝv1(t )v2 (t ), ĝv2 (t )v3(t ), ĝv3(t )v4(t ), h]−1)
ε(t )
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boundary. Because these operators are local to the boundary
(where we already have excitations in the form of plaquette
excitations) they do not affect the topological properties of the
membrane operators, such as braiding relations or topological
charge, which can be measured far from the boundary for large
membrane operators.

The final part of the membrane operator is the surface
weight, θh,�v

S (m), which depends on the degrees of freedom
in the direct membrane. This quantity is analogous to the
function fb used to define the membrane operators for the
Z2 × Z2 model considered in Ref. [17] (although in that
model, one copy of Z2 lies on the direct lattice and one lies
on the dual lattice, so the presentation of the function is a
little different). Similar to the dual phase, the properties of the
surface weight are related to the connection between magnetic
membrane operators and vertex transforms, as well as the
topological property of the membrane operators. Deforming
the membrane operator through a region R is equivalent to
applying vertex transforms in the region R. We can then
break down the deformation through a region into a series
of deformations over individual tetrahedra. As we explain in
Sec. S-II of the Supplemental Material [48], when we deform
the membrane over a single tetrahedron, the surface weight
changes by a factor equal to the phase acquired by applying
vertex transforms on each vertex of that tetrahedron. This is
the phase given in the last line of Table I, which we denote
by θh

F (t ). We can recognize this phase as being related to the
slant product [37],

[g1, g2, g3]h := [h, g1, g2, g3]−1[g1, h, g2, g3]

× [g1, g2, h, g3]−1[g1, g2, g3, h], (13)

by

θh
F (t ) = [ĝv1(t )v2(t ), ĝv2(t )v3(t ), ĝv3(t )v4(t )]

−ε(t )
h . (14)

For an Abelian group, this slant product obeys a 3-cocycle
condition

[x, y, z]u[w, xy, z]u[w, x, y]u

[wx, y, z]u[w, x, yz]u
= 1, (15)

as well as a normalization condition

[1G, y, z]u = [x, 1G, z]u = [x, y, 1G]u = [x, y, z]1G
= 1, (16)

both of which can be derived from the 4-cocycle condition and
normalization condition of the 4-cocycle [37].

When we deform the membrane over a tetrahedron,
it induces a change to the 2d direct membrane, as
shown in Fig. 4. These mutations can be recognized as
2d bistellar flips (also called Pachner moves) [51–53].
Because the surface weight only depends on the de-
grees of freedom on the direct membrane, these bistel-
lar flips and the phase that accompanies them become
graphical rules that relate the surface weight that the
membrane operator would associate to different diagrams,
divorced from the physical lattice. These rules are shown in
Fig. 5. We can then use these bistellar flips to evaluate the
surface weight, by systematically simplifying the diagram,
similar to the process used in Ref. [17]. An example of this
reduction is shown in Fig. 6. While we can greatly simplify
the diagram this way, at some point, the diagram will become

FIG. 4. In the two boxes, we show the ways in which a membrane
can be deformed over a tetrahedron. In the top row of each box, we
show we show the move in 3d and in the lower row we show the
corresponding change to a 2d diagram representing the surface. In
the first case the membrane starts with three faces from the tetra-
hedron on the membrane and then ends with just the fourth face.
The corresponding bistellar flip shown in the lower row is the 3 ↔ 1
move. In the second case, the membrane starts with two faces from
the tetrahedron and ends with the other two faces. The corresponding
bistellar flip is therefore the 2 ↔ 2 move.

FIG. 5. The graphical rules describe the phase gained upon per-
forming 2d bistellar flips. Here the terms in squared brackets indicate
the phase gained during the move, where the phase should be evalu-
ated from the tetrahedron in the brackets according to Eq. (14).
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FIG. 6. Here, we give an example of how a surface can be re-
duced to a simpler reference diagram. The edges and vertices on the
boundary of the surface (shown in red online) cannot be removed by
the diagrammatic moves. At each step, we gain a phase given by the
slant product associated with a tetrahedron, as indicated in the lower
part of the figure.

irreducible (for example, for open membranes, we cannot
remove any vertices on the boundary of the membrane). This
leaves us with a set of independent diagrams, which we call
reference diagrams. The different values for these reference
diagrams then describe a space of membrane operators for a
given flux h, and a particular choice of these values defines
the vector �v which we used to label the membrane opera-
tor. That is, in order to calculate the surface weight of the
membrane operator for a general diagram, we first use the
diagrammatic rules to relate the weight to that of a reference
diagram, then substitute in the weight associated with the
reference diagram that is specified by the membrane operator.
The allowed reference diagrams depend on the topology and
boundary of the membrane, meaning that the surface weight
carries this information. Furthermore, the value assigned to
each reference diagram generally depends on the edge labels
in that diagram, which means that the weight acts like a series
of electric ribbon operators with endpoints on the boundary
of the membrane (as well as closed ribbon operators around
any noncontractible curves on the membrane). The membrane
operator should therefore be thought of as including both
electric and magnetic components.

FIG. 7. We can produce a pair of excitations linked with a given
base loop (the large green loop) by applying a membrane operator
that encloses that base loop.

As an example of a membrane operator, consider a
spherical membrane operator which does not enclose any
excitations. Using the topological property, this sphere can
be shrunk to nothing. Because deformation is equivalent to
applying vertex transforms, this means that the membrane
operator is equivalent to applying a series of vertex transforms
in the region enclosed by the spherical membrane. The mul-
tiplicative action of the vertex transforms on the edges will
cancel out in the interior of the region and will reproduce
the action of the untwisted membrane on the boundary edges.
We also obtain a phase for each tetrahedron attached to each
vertex. We can group the tetrahedra into two types, those for
which all vertices on that tetrahedron are in the region and
those for which only a subset are in the region. The latter
type are the boundary tetrahedra and their contribution to the
overall phase is the dual phase we discussed, which comes
from applying vertex transforms only on the vertices on the
membrane, because these are the only vertices from those
tetrahedra in the region enclosed by the sphere. For the former
type of tetrahedron, the phase comes from applying trans-
forms on each vertex of the tetrahedron. When we combine
the phase from each such tetrahedron, it can be expressed in
terms of variables on the surface by using the cocycle con-
ditions. This combined phase is the surface weight. Because
the membrane is spherical, it has no noncontractible loops and
no boundary, which means it has only one possible reference
diagram and the surface weight can be fully calculated in this
way, without needing to define additional quantities in the
membrane operator. We prove this relation between spherical
membrane operators and vertex transforms in Sec. S-I of the
Supplemental Material [48].

C. Cylindrical membranes

In the previous section, we considered membrane operators
of a general topology. Now, we wish to consider specifically
cylindrical (or annular) membrane operators, which produce
flux loops at the two ends of the cylinder. These are
of particular interest when considering linked loop-like
excitations, because the cylindrical membrane operators can
enclose an existing flux tube without crossing them, as shown
in Fig. 7. This means that cylindrical membrane operators can
produce excitations that are linked to that existing flux tube,
which we call the base loop. If we were to use a disk-shaped
membrane, which produces a single loop-like excitation, it
would have to intersect with the base loop in order to produce
a loop-like excitation linked with the base loop. This means
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FIG. 8. Here, we give an example of a simple reference diagram
for a cylinder. There are periodic boundary conditions in the k direc-
tion, so that the paths labeled by k, which form the boundaries of the
membrane, are closed and the paths labeled by x are identified.

that the membrane operator would have a flatness-violation
on its surface, which is incompatible with our approach for
defining the membrane operators. This means that cylindrical
membrane operators are the simplest way to obtain linked
excitations. The cylindrical membrane operators that must be
used depend explicitly on the base loop. This is because the
path label of a cycle wrapping around the cylinder must match
the flux of the base loop if no other excitations are present. As
argued in Ref. [17] for a Z2 × Z2 model, this means that the
loop-like excitations are fundamentally different depending
on the base loop.

To explore this further, we consider the reference diagrams
for the cylindrical membrane operators in more detail. While
a general reference diagram for the cylindrical membrane may
have any number of vertices on the loop-shaped boundaries,
it will be useful to consider the simplest possible situation,
where there is only one vertex on each loop. As shown in
Fig. 8, these diagrams can be represented by rectangles with
two of the edges identified. To specify a magnetic membrane
operator of flux h applied on this membrane, we must assign
a coefficient for each possible label of the horizontal edge x,
which we denote by ak,h(x). Here h is a fixed quantity (the
label of the operator we apply) while k is the label of the
closed path around the cylinder. While the label of this closed
path is not fixed in a general state, it is 1G in the ground state
due to flatness. If we first create a flux tube with flux k from
the ground state and then apply the cylindrical membrane
operator, then the cylindrical membrane operator will always
measure the closed loop value to be k, so we can treat it as
a fixed quantity. This means that ak,h(x) can be treated as
an operator that depends only on x and so is equivalent to
an electric ribbon operator applied along the length of the
cylinder.

While any set of coefficients ak,h(x) gives a valid mem-
brane operator, there is a useful basis that simplifies the
properties of the membrane operators. This is analogous to
the use of an irrep basis for the electric ribbon operators,
which simplifies fusion rules and the algebra for laying the
ribbon operators end-to-end. In the case of the electric ribbon
operators, if we put two such operators labeled by the same
irrep R of G end-to-end on paths t1 and t2, such that the paths
concatenate to a path t , we have∑

g∈G

R(g)δ(ĝ(t1), g)
∑
k∈G

R(k)δ(ĝ(t2), k)

= R(ĝ(t1))R(ĝ(t2))

FIG. 9. We look for a basis where the weights for two diagrams
multiply to give the label of the concatenation of the two diagrams.
In this case, that means αk,h(x1)αk,h(x2) = ck,h(x1, x2 ).

= R(ĝ(t1)ĝ(t2))

=
∑
g∈G

R(g)δ(ĝ(t ), g).

We see that the result is a single ribbon operator labeled by R
applied on the combined path t . Motivated by this, we wish to
find a similar basis for the membrane operators.

That is, we want to find a basis where the surface weight
given by the concatenation of two reference diagrams is equal
to the product of the phase given by the two diagrams, as
shown in Fig. 9. We can then reduce the concatenated dia-
gram to the same form as the reference diagram by using the
diagrammatic rules, as shown in Fig. 10. Denoting the basis
weight by αk,h and the weight of the concatenated diagram by
ck,h, this gives us

αk,h(x1)αk,h(x2)

!= ck,h(x1, x2)

= [x1, k, x2]h[k, x1, x2]−1
h [x1, x2, k]−1

h αk,h(x1x2).

Because G is Abelian, we can write
[x1, k, x2]h[k, x1, x2]−1

h [x1, x2, k]−1
h in terms of the slant

product of the 3-cocycle

[x1, x2]h,k = [k, x1, x2]h[x1, k, x2]−1
h [x1, x2, k]h (17)

to obtain

αk,h(x1)αk,h(x2)
!= [x1, x2]−1

h,kα
k,h(x1x2). (18)

For Abelian G, this slant product satisfies the 2-cocycle con-
ditions [37]

[y, z]w,u[x, yz]w,u

[xy, z]w,u[x, y]w,u
= 1 ∀ u,w, x, y, z ∈ G. (19)

In addition, the slant product obeys the normalization condi-
tion,

[1G, y]w,u = [x, 1G]w,u = [x, y]1G,u = [x, y]w,1G
, (20)

and the permutation condition,

[x, y]w,u = [x, y]−1
u,w, (21)

for all u,w, x, y ∈ G.
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FIG. 10. We can reduce the concatenated diagram to a single reference diagram by using the diagrammatic rules. This allows us to find the
surface weight of the concatenated diagram in terms of the label of a reference diagram.

Using the permutation property, we can write Eq. (18) as

αk,h(x1)αk,h(x2)
!= [x1, x2]k,hα

k,h(x1x2). (22)

This relation is similar to that satisfied by a representation
of G, apart from the phase [x1, x2]k,h. Indeed, if we take the
label k of the base loop to be trivial, this phase becomes
unity and so α is just a linear representation. In that case,
the membrane operators can be labeled by a flux in G and
an irrep of G, just as for the untwisted case. More gener-
ally, we can recognize Eq. (22) as the defining relation for
a projective representation of G, with factor system described
by the 2-cocycle βk,h(x1, x2) = [x1, x2]k,h [54]. To specify the
2-cocycle, such a projective representation is called a βk,h-
projective representation. Several properties familiar from
linear representations are also satisfied by the projective rep-
resentations. First, they can be chosen to be unitary [54] and
we only consider such unitary representations from here on.
Second, projective representations can be decomposed into
irreducible projective representations (which we call projec-
tive irreps). These projective irreps obey orthogonality and
completeness conditions, which enables us to use their matrix
elements as the basis for the space of weights for the reference
diagrams. Schur’s Lemma also applies to projective irreps,
meaning that a matrix that commutes with all matrices in a
projective irrep must be a scalar matrix.

On the other hand, projective representations do have
some significant differences from linear representations.
First, the projective irreps may be higher dimensional even
for an Abelian group. This can be seen directly from Eq. (22).

Swapping the order of multiplication, we obtain

αk,h(x2)αk,h(x1) = [x2, x1]k,hα
k,h(x2x1)

= [x2, x1]k,hα
k,h(x1x2),

where we used the fact that G is Abelian to obtain the latter
equality. We see that the two orders of multiplication give
results that differ by a factor of

ηk,h(x1, x2) = [x1, x2]k,h

[x2, x1]k,h
. (23)

If this factor is equal to unity [i.e., if the 2-cocycle defined
in Eq. (17) is symmetric], then the two matrices always com-
mute and by Schur’s Lemma the irreps must be 1d. In this
case, the (1d) irreps form a convenient basis for the membrane
operators (using the completeness conditions) and are the
phases assigned to the simple reference diagrams in that basis.
On the other hand, if there are some values of x1 and x2 for
which the factor is not equal to unity, then none of the irreps
can be 1d. In this case, the matrix elements [αk,h(x1)]i j of the
irreps form a complete basis and are the numbers assigned
to the reference diagrams. This results in the slightly more
complicated concatenation rule

|αk,h|∑
j=1

[αk,h(x1)]i j[α
k,h(x2)] jk = [x1, x2]k,h[αk,h(x1x2)]ik, (24)

where |αk,h| is the dimension of the irrep αk,h. This rule is
analogous to the concatenation of electric ribbon operators for
a non-Abelian group (although here the non-Abelian nature
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FIG. 11. An example of a more complicated reference diagram.
We can use a similar form for diagrams with any number of vertices
on the boundaries of the cylinder.

comes from using projective irreps of an Abelian group rather
than linear irreps of a non-Abelian group).

Another property that differs from linear representations is
that the representation of the inverse of a group element is
not equal to the inverse of the representation of that group
element. To see this, note that the projective representation
αk,h satisfies

αk,h(g)αk,h(g−1) = [g, g−1]k,hα
k,h(1G). (25)

Then αk,h(1G) is the identity matrix, because

αk,h(1G)αk,h(g) = [1G, g]k,hα
k,h(g) = αk,h(g) (26)

from the normalization condition [Eq. (20)]. This means that
Eq. (25) becomes

αk,h(g)αk,h(g−1) = [g, g−1]k,hI,

so that

αk,h(g−1) = [g, g−1]k,hα
k,h(g)−1. (27)

So far, we have only considered the simplest reference
diagrams, which we use throughout for explicit calculations.
However, we should briefly mention that more complicated
reference diagrams are needed for general cylindrical mem-
brane operators. This is because cylinders may have any
number of vertices on the two ends of the cylinder, which
cannot be removed by the graphical rules and so must be ac-
counted for in the reference diagrams. In the case where there
are multiple such vertices, it is convenient to choose reference
diagrams that only have the minimal number of edges that
cross the length of the cylinder, as shown in Fig. 11. Then, the
additional edges, when compared with the simple reference
diagram from Fig. 8, are local to the ends of the cylinder. The
weight for the cylinder can then be decomposed into a part
for the simple reference diagram, which is well labeled by
the projective irreps as before, and an additional part which
is equivalent to applying electric ribbon operators along parts
of the ends of the cylinder. To compose two diagrams, these
additional parts must be compatible, while the composition
itself is described by the projective irreps as before. An ex-
ample of this composition is shown in Fig. 12. In addition
to the reference diagrams potentially having multiple vertices
on each end of the cylinder, for a general reference diagram
the edges along the boundary may have different orientations,
which can change the composition rules (although they are
still related to the projective irreps).

We have shown that a convenient basis for the membrane
operators is described by projective irreps of the group G. As
we show in Sec. III B, this basis also gives well-defined three-
loop braiding statistics, suggesting that the basis operators
carry a definite topological charge. Note that the projective
irreps that label the membrane operators explicitly depend
on the flux of the base loop. This implies that the loop-like
excitations linked with different base loops are fundamentally
different and are also different from the loop-like excitations

FIG. 12. Using the form of the reference diagram from Fig. 11 allows two diagrams to be concatenated easily. We can remove the bubbles
formed by the additional edges in the middle using the graphical moves, which do not result in a phase gain because the moves involve
deformation over trivial tetrahedra, where or more of the faces is a bigon rather than a triangle. In the last step, we use the same reduction from
the simple reference diagrams (shown in Fig. 10), which results in the phase [x1, x2]k,h.
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FIG. 13. A time-lapse of an example braiding move, where the
smaller (blue) loop is pulled up through another (red) loop.

that are not linked to any base loop, as found for another
model in Ref. [17]. This helps to explain why the three-loop
braiding statistics are needed in addition to regular two-loop
braiding in order to characterize a phase: the characteristics of
unlinked loops alone are not sufficient to describe all of the
excitations.

III. BRAIDING RELATIONS

One of the key features of (long-range entangled) topolog-
ical phases is that their excitations support exotic exchange
statistics. However, in (3 + 1)d, point-like particles only have
fermionic or bosonic exchange statistics [7,8]. This is because
a process where one particle is moved around another can be
continuously deformed into one where no such exchange is
performed. On the other hand, (3 + 1)d topological phases
support loop-like excitations, some of which we have dis-
cussed in this work. Compared with the braiding that only
involves point-like excitations, there are multiple types of
braiding involving one or more loop-like excitations. The first
type is the process mentioned earlier, where two excitations
(either loop-like or point-like) are moved around each other.
This type of exchange, which we refer to as permutation, is
restricted to be bosonic or fermionic in (3 + 1)d, regardless
of whether it involves loops or points. On the other hand,
there is also an exchange process (shown in Fig. 13) where
one excitation (either point-like or loop-like) is pulled through
a loop-like excitation, which we refer to as loop-braiding or
simply as braiding [11–16]. If it is necessary to differentiate
between the cases where a point or a loop is pulled through the
other excitation, we use the terms point-loop and loop-loop
braiding. If both of the excitations are loop-like, there is a
generalization where a third loop, called the base loop, stays
linked with the braiding loops during the process. This is re-
ferred to as three-loop braiding [19] or necklace braiding [18].
Recently, it has become clear that this three-loop braiding is
important for classifying a topological phase and two phases
that have the same loop-loop and point-loop braiding may be
distinguished through their three-loop braiding [17,19–21].
Furthermore, even if the loop-loop braiding is Abelian, the
corresponding three-loop braiding may be non-Abelian. There
has already been significant study of the three-loop braiding
in lattice gauge theory [17,19–21]. However, most studies
use indirect methods to extract the braiding statistics of the
emergent quasiparticles and the few that explicitly construct
the creation operators examine relatively simple cases [17].

FIG. 14. Point-loop braiding can be implemented using a ribbon
operator applied on a path, t , which intersects with a membrane
operator applied on a membrane m. The loop-like excitation shown
could be linked to another loop (not shown), but this would not affect
the braiding relation unless the point-like particle also braids with
this second loop.

We aim to use the membrane operators constructed in the
previous sections to reproduce these braiding relations.

A. Point-loop braiding

The first type of braiding to discuss involves pulling a
point-like excitation through a loop-like one. We only dis-
cussed the point-like excitations in this model briefly, because
they have the same character as for untwisted gauge theory.
This result extends to their braiding relations, as we will now
see. To describe the braiding relations, we first relate the
braiding relation to a commutation relation between ribbon
and membrane operators. A ribbon operator can be interpreted
as creating a pair of point-like excitations and bringing them
to the ends of the ribbon. Similarly, a membrane operator
creates some number of loop-like excitations and brings them
to the boundary of the membrane. This means that the braiding
can be described by a ribbon operator applied on a path that
intersects with a membrane operator, as shown in Fig. 14. If
we first apply a membrane operator to produce some loop-
like excitation of interest, and then apply a ribbon operator
that passes through the loop, we are considering a situation
where we create the loop and then move a point-like excitation
through it. On the other hand, if we first apply the ribbon
operator and then the membrane operator, then we move the
point-like excitation through empty space before creating the
loop. Comparing these situations, by examining the commuta-
tion relation between the relevant operators, therefore gives us
the transformation undergone during braiding. Another way
of thinking about this is that we can deform the ribbon so that
it intersects its start point and then split it into a closed ribbon
and an open one, as shown in Fig. 15. Then the open part
does not intersect the membrane operator and so commutes
with the membrane operator. It describes the transport of the
particle excitations along the new open path, regardless of the
presence of the membrane operator. The closed part would be
trivial if it acted directly on the ground state, but is nontrivial
because it acts after the membrane operator. This closed part
then describes how the particle excitation transforms under
the braiding (as closed paths are usually required in order to
obtain topological invariants). Instead of putting the closed
part at the start of the combined ribbon operator, we could
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FIG. 15. One way of conceptualizing the relationship between
ribbon operators and the braiding relation is to deform the open
ribbon into a composition of a closed ribbon (orange online) and an
open part that does not intersect the membrane. The former encapsu-
lates the braiding relation, while the latter moves the particles to their
final positions. The closed ribbon operator can be placed at either end
of the ribbon (as shown in the top and bottom images), which leads
to different expressions for the closed ribbon part when the braiding
is non-Abelian.

put it at the end (or indeed at any part), which gives a different
expression when the braiding is non-Abelian.

In this model, the ribbon operators simply measure the
path element along the ribbon, as discussed in Sec. II A. This
means that they are not sensitive to the surface weight or
dual phase of the membrane operator: the ribbon operators
commute with these parts of the membrane operator. Instead,
the commutation relation is entirely controlled by the flux
of the membrane. This means that the braiding relation is
independent of the 4-cocycle, which only enters through the
dual phase and surface weight, and in particular is the same as
in the untwisted gauge theory. Indeed, this braiding relation is
just the same as the electric-magnetic braiding in the (2 + 1)d
quantum double model [49]. Consider an electric ribbon op-
erator applied on a path t that passes through a membrane
operator applied on membrane m, as shown in Fig. 14. In the
case of an Abelian group G, if the membrane operator has
flux h, then the membrane operator modifies the path label
for the ribbon operator by multiplication by the flux label, h.
Then, if the point-like excitation is labeled by an irrep R of G
(which is one dimensional), the commutation relation between
the ribbon and membrane operator is given by

SR(t )F h,�v (m) =
∑
g∈G

R(g)δ(g, ĝ(t ))F h,�v (m)

= R(ĝ(t ))F h,�v (m)

= F h,�v (m)R(hĝ(t ))

= F h,�v (m)R(h)R(ĝ(t )).

We see that the result of the braiding is simply to pick up
a phase R(h) (or the inverse, depending on the orientation of
the loop and direction of the braiding),

SR(t )F h,�v (m) = R(h)F h,�v (m)SR(t ). (28)

In the case where G is non-Abelian, the braiding depends
on certain details of the ribbon and membrane operator, which

FIG. 16. A possible geometry for the three-loop braiding rela-
tion, involving membrane operators on membranes m1 (red) and m2

(blue). The large (green) loop is the base loop to which the others are
linked.

control the total charge of the combined objects, but the
transformation similarly only involves the irrep R (and its
matrix indices) and the flux h. A similar result holds for any
more complicated process, where only exchange between a
point-like excitation and one or more loop-like excitations
(even if they are linked) is involved: the result only depends
on the fluxes of the loops directly involved in the braiding,
not the surface weight or dual phases of the membranes or
the base loops that they may be linked to. One such process
of significant interest is the so-called Borromean rings braid-
ing [26,55,56], which measures the non-Abelian character of
point-loop braiding and is therefore trivial in this model for
Abelian G.

B. Three-loop braiding

A more interesting process, which does depend on the
additional quantities of the membrane operators in this model,
is three-loop braiding. As discussed earlier, this is the process
where one loop is passed through another while both loops are
linked to a base loop. A special case of this process is ordinary
loop-loop braiding, where the base loop is taken to be trivial,
and we later discuss how the braiding relation simplifies in
this case.

The first step in an explicit calculation of the braiding rela-
tions is to determine the geometry of the relevant membrane
operators. For the three-loop braiding case there are three
membrane operators: the one that produces the base loop that
the others link to and then the two membrane operators that
produce the loops directly involved in the braiding. We do
not need to consider the former in detail, except to know its
flux label, because it is not directly involved in the braiding
process. For the other two membrane operators, we need to
be careful because the membrane operators produce pairs of
loops and we need the braiding process to only involve one
loop from each pair.

One possible geometry is shown in Fig. 16. In this case,
we are considering a braiding move where the (blue) loop
c is pulled through the loop at the left side of m1 and then
back over it. To complete this braiding move, we could then
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FIG. 17. The direct membranes for the two operators in the
intersection region are shown here, with the horizontal (red) one
representing m1 and the vertical (blue) one representing m2. The
gray lines indicate the rest of the intersection region, where both
dual membranes act. There is a periodic boundary condition in the
direction into the page, so that the edges labeled by k are closed
paths. This means that the vertices labeled 1 and 2 represent the same
vertex, for example. The edge labels given describe a basis state.

close the (blue) membrane m2, but the important part is the
intersection between the two membranes. However, note that
the loop-like excitations involved have an orientation, unlike
point-like particles. In particular, because the loop-like ex-
citation from m1 is on the left of the membrane while the
excitation from the m2 is on the right, the two loop-like exci-
tations have opposite orientations (reversing the orientation of
a flux tube is the same as inverting its label). We later consider
the case where the excitations have the same orientation, but
the calculation for this case is easier to follow and so we
present this case first and then use it to obtain the result for
the same-orientation case.

With this geometry in mind, we can calculate the three-
loop braiding relation using a commutation relation between
the two membrane operators. Note that we always consider
situations where some membrane operator produces the base
loop from the ground state before we apply any other opera-
tors. If we then apply the (red) cylindrical membrane operator
on m1 to produce a pair of (red) loops before applying the
curved (blue) membrane operator on m2, we consider a case
where one (blue) loop c is passed through the another (red)
one and back over it. On the other hand, if we apply the
membrane operator on m2 first and then apply the membrane
operator on m1, the (blue) loop c is passed through empty
space before the other (red) loops are produced. Comparing
these two orders of operations (i.e., calculating the commu-
tation relation) therefore isolates the transformation from the
loop c passing through the other one and then back over it.

For the intersection region, we consider the simple geom-
etry shown in Figs. 17–19. Figure 17 shows the two direct
membranes, while Figs. 18 and 19 show the region affected

FIG. 18. The cube-shaped intersection region can be split into
two parts, of which this is the upper wedge. To find the dual phase
associated with this region we split it into individual tetrahedra.

by both dual membranes. In each case, the diagram is periodic
in one direction, such that the path labeled by k is closed, but
not in the other directions. On the horizontal (red) membrane
we apply the magnetic membrane operator [see Eq. (12)]

F a,αk,a
1 ,i1, j1 (m1) = Ca

0 (m1)θa
D(m1)θ

a,α
k,a
1 ,i1, j1

S (m1), (29)

where a is the flux label, while αk,a
1 is a βk,a-projective irrep

and i1 and j1 are its matrix indices. The surface weight for
m1 is then [αk,a

1 (x)]i1 j1 , because the diagram corresponding
to the horizontal membrane shown in Fig. 17 is already a
reference diagram. On the vertical (blue) membrane we apply

FIG. 19. Here, we show the lower wedge of the intersection
region and its constituent tetrahedra.
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the operator

F c,αk,c
2 ,i2, j2 (m2) = Cc

0 (m2)θ c
D(m2)θ

c,αk,c
2 ,i2, j2

S (m2), (30)

for flux label c and βk,c-projective irrep αk,c
2 with matrix

indices i2, j2.
Then we consider the state

F c,αk,c
2 ,i2, j2 (m2)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

obtained by applying the membrane operator on m1 first, then
on m2, for a state |ψ〉 which has the base loop but no other
excitations present. Decomposing the membrane operators
into their constituent components (untwisted operator, dual
phase, and surface weight), we obtain

F c,αk,c
2 ,i2, j2 (m2)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

= Cc
0 (m2)θ c

D(m2)θ
c,αk,c

2 ,i2, j2
S (m2)Ca

0 (m1)

× θa
D(m1)θ

a,α
k,a
1 ,i1, j1

S (m1)|ψ〉.
Then we wish to commute the membrane operators past

each other, to see how they are affected by the braiding. The
surface and dual phases are diagonal in the configuration basis
(where each edge is labeled by a group element), so they
commute with each other. In addition, for an Abelian group
the untwisted membrane operators also commute. Therefore,

F c,αk,c
2 ,i2, j2 (m2)F a,αk,a

1 ,i1, j1 (m1)|ψ〉
= Cc

0 (m2)Ca
0 (m1)

[
Ca

0 (m1) : θ c
D(m2)

]
× [

Ca
0 (m1) : θ

c,αk,c
2 ,i2, j2

S (m2)
]
θa

D(m1)θ
a,α

k,a
1 ,i1, j1

S (m1)|ψ〉,
(31)

where Ca
0 (m1) : θ c

D(m2) = Ca
0 (m1)−1θ c

D(m2)Ca
0 (m1) is the

evaluation of θ c
D(m2) after the action of Ca

0 (m1) (and similar
for the surface weight). We now evaluate the dual phases and
surface weights for the basis state shown in Figs. 17–19. First,
from the upper wedge shown in Fig. 18, the contribution to
dual phase θa

D(m1) is (using Table I)

θU
D (m1) = [a, k, y′, x′][k, a, y′, x′]−1[a, y′, k, x′]−1[a, y′, x′, k]

= [a, y′, x′]k. (32)

On the other hand, the contribution to θ c
D(m2) is

θU
D (m2) = [k, y′, x′c−1, c]−1[y′, k, x′c−1, c][y′, x′c−1, c, k]

× [y′, x′c−1, k, c]−1 = [y′, x′c−1, c]k . (33)

If Ca(m1) acts first, it changes the labels of the vertical edges
such that Ca(m1) : y′ = ay′. Therefore,

Ca(m1) : θU
D (m2) = [ay′, x′c−1, c]k .

If instead we acted with Cc(m2) first, then it would change the
label of the horizontal edges such that Cc(m2) : x′ = x′c−1.
Therefore,

Cc(m2) : θU
D (m1) = [a, y′, x′c−1]k.

Denoting the total phase associated with the upper wedge
by

θU
D

(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
and

θU
D

(
F a,α

k,a
1 ,i1, j1 (m1)F c,αk,c

2 ,i2, j2 (m2)
)

for the two orders of membrane operators, the ratio of these
phases is given by

θU
D

(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
θU

D (F a,α
k,a
1 ,i1, j1 (m1)F c,αk,c

2 ,i2, j2 (m2))

= θU
D (m1)Ca(m1) : θU

D (m2)

θU
D (m2)Cc(m2) : θU

D (m1)

= [a, y′, x′]k[ay′, x′c−1, c]k

[a, y′, x′c−1]k[y′, x′c−1, c]k
.

Applying the 3-cocycle condition Eq. (15), this ratio becomes

θU
D

(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
θU

D (F a,α
k,a
1 ,i1, j1 (m1)F c,αk,c

2 ,i2, j2 (m2))
= [a, y′x′c−1, c],

and, noting that y′x′ = xy due to flatness, this can be written
as

θU
D

(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
θU

D (F a,α
k,a
1 ,i1, j1 (m1)F c,αk,c

2 ,i2, j2 (m2))
= [a, xyc−1, c].

Similarly, for the lower wedges, we have

θL
D(m1) = [a, k, x, y]−1[k, a, x, y][k, x, a, y]−1[a, x, k, y]

× [x, a, k, y]−1[x, k, a, y][a, x, y, k]−1[x, a, y, k]

= [a, x, y]−1
k [x, a, y]k (34)

and

θL
D(m2) = [k, xc−1, c, y]−1[k, xc−1, y, c][xc−1, c, k, y]−1

× [xc−1, k, c, y][xc−1, k, y, c]−1[xc−1, c, y, k]

× [xc−1, y, c, k]−1[xc−1, y, k, c]

= [xc−1, c, y]k[xc−1, y, c]−1
k . (35)

Noting that Ca(m1) : y = ay and Cc(m2) : x = xc−1, this
gives us the following ratio for the two orders:

θL
D(F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1))

θL
D(F a,α

k,a
1 ,i1, j1 (m1)F c,αk,c

2 ,i2, j2 (m2))

= [a, x, y]−1
k [x, a, y]k[xc−1, c, ay]k[xc−1, ay, c]−1

k

[a, xc−1, y]−1
k [xc−1, a, y]k[xc−1, c, y]k[xc−1, y, c]−1

k

,

(36)

so the total ratio for the dual phases (including both upper and lower wedges) is

θ ratio
D = [a, x, y]−1

k [x, a, y]k[xc−1, c, ay]k[xc−1, ay, c]−1
k [a, xyc−1, c]

[a, xc−1, y]−1
k [xc−1, a, y]k[xc−1, c, y]k[xc−1, y, c]−1

k

. (37)
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Making use of Eq. (17), we can simplify this by introducing 2-cocycles to obtain

θ ratio
D = [x, y, a]k[c, xc−1, ay]k[a, xyc−1]k

[xc−1, y, a]k[c, xc−1, y]k

[xc−1, y]k,a[xc−1, y]k,c

[x, y]k,a[xc−1, ay]k,c
= [c, xyc−1, a]k[a, xyc−1, c]k

[xc−1, y]k,a[xc−1, y]k,c

[x, y]k,a[xc−1, ay]k,c
,

where we used the 3-cocycle condition Eq. (15) to obtain the second equality.
We can then write the remaining 3-cocycles in terms of 2-cocycles as

[c, xyc−1, a]k[a, xyc−1, c]k = [xyc−1, a]k,c[xyc−1, c]k,a,

which can be verified by expanding out the 2-cocycles and observing the cancellation of terms. This means that

θ ratio
D = [xc−1, y]k,a[xyc−1, c]k,a

[x, y]k,a

[xc−1, y]k,c[xyc−1, a]k,c

[xc−1, ay]k,c
. (38)

Next, we consider the contribution from the surface weights. If we apply the membrane operator on m1 first, the surface
weight from the two membrane operators is

θS
(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

) = [
αk,a

1 (x)
]

i1 j1

[
αk,c

2 (ay)
]

i2 j2
.

Using Eq. (24), which defines the projective representations, we have

[
αk,c

2 (ay)
]

i2 j2
= [a, y]−1

k,c

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,c

2 (y)
]

m j2
,

so

θS
(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

) = [a, y]−1
k,c

[
αk,a

1 (x)
]

i1 j1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,c

2 (y)
]

m j2
.

We wish to compare this to the total surface weight from the opposite order, which is

θS
(
F a,α

k,a
1 ,i1, j1 (m1)F c,αk,c

2 ,i2, j2 (m2)
) = [

αk,a
1

(
xc−1

)]
i1 j1

[
αk,c

2 (y)
]

i2 j2
.

To do so, we write the surface weight from the original order as

θS
(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

) = [a, y]−1
k,c

[
αk,a

1 (xc−1c)
]

i1 j1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,c

2 (y)
]

m j2

= [a, y]−1
k,c[xc−1, c]−1

k,a

|αk,a
1 |∑

n=1

[
αk,a

1 (xc−1)
]

i1n

[
αk,a

1 (c)
]

n j1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,c

2 (y)
]

m j2

= [a, y]−1
k,c

[
xc−1, c

]−1

k,a

|αk,a
1 |∑

n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1
θS

(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)
.

Including both the dual phase and surface weight, and noting that the dual phase only depends on the flux label, not the irrep or
matrix indices, we see that

θD
(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
θS

(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)

=
|αk,a

1 |∑
n=1

|αk,c
2 |∑

m=1

θD
(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
θD

(
F a,αk,a

1 ,i1,n(m1)F c,αk,c
2 ,m, j2 (m2)

) θD
(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)
[a, y]−1

k,c[xc−1, c]−1
k,a

× [
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1
θS

(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)

= [xc−1, y]k,a[xyc−1, c]k,a

[x, y]k,a

[xc−1, y]k,c[xyc−1, a]k,c

[xc−1, ay]k,c
[a, y]−1

k,c[xc−1, c]−1
k,a

|αk,a
1 |∑

n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1

× θS
(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)
θD

(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)
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= [xc−1, y]k,a[xyc−1, c]k,a

[x, y]k,a[xc−1, c]k,a

[xc−1, y]k,c[xyc−1, a]k,c

[xc−1, ay]k,c[a, y]k,c

|αk,a
1 |∑

n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1

× θD
(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)
θS

(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)
. (39)

Applying the 2-cocycle condition Eq. (19), we have

[xc−1, y]k,c[xyc−1, a]k,c

[xc−1, ay]k,c[a, y]k,c
= [y, a]k,c

[a, y]k,c
.

Then we can expand the 2-cocycles into 3-cocycles [using
Eq. (17)] to obtain

[y, a]k,c

[a, y]k,c
= [c, y, a]k[y, a, c]k[a, c, y]k

[y, c, a]k[c, a, y]k[a, y, c]k

= [c, y]k,a

[y, c]k,a
. (40)

Then, applying the 2-cocycle condition to both the numerator
and denominator, we find

[c, y]k,a

[y, c]k,a
=

(
[c−1, c]k,a[c−1c, y]k,a

[c−1, cy]k,a

)(
[c−1, cy]k,a

[c−1, y]k,a[c−1y, c]k,a

)

= [c−1, c]k,a

[c−1, y]k,a[c−1y, c]k,a
= [c−1, c]k,a

[c−1, y]k,a[yc−1, c]k,a
.

Applying the 2-cocycle condition again, we obtain

[c, y]k,a

[y, c]k,a
= [y, c−1]k,a

[c−1, y]k,a
. (41)

Substituting this into Eq. (39), we find that

θD
(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
× θS

(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
= [xc−1, y]k,a[xyc−1, c]k,a

[x, y]k,a[xc−1, c]k,a

[y, c−1]k,a

[c−1, y]k,a

×
|αk,a

1 |∑
n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1

× θD
(
F a,αk,a

1 ,i1,n(m1)F c,αk,c
2 ,m, j2 (m2)

)
× θS

(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)
. (42)

Applying the 2-cocycle condition to the remaining 2-cocycles,
we have

[xc−1, y]k,a[xyc−1, c]k,a

[x, y]k,a[xc−1, c]k,a

[y, c−1]k,a

[c−1, y]k,a

= [xc−1, y]k,a[yc−1, c]k,a

[xc−1, c]k,a[x, yc−1]k,a

[y, c−1]k,a

[c−1, y]k,a

=
[
c−1, y

]
k,a[yc−1, c]k,a

[x, c−1]k,a[xc−1, c]k,a

[y, c−1]k,a

[c−1, y]k,a

=
[
c−1, y

]
k,a

[yc−1, c]k,a

[c−1, c]k,a[x, c−1c]k,a

[y, c−1]k,a

[c−1, y]k,a
.

Using the normalization condition [x, c−1c]k,a = [x, 1G]k,a =
1, these 2-cocycles become

[c−1, y]k,a[yc−1, c]k,a

[c−1, c]k,a[x, c−1c]k,a

[y, c−1]k,a

[c−1, y]k,a
= [y, c−1]k,a[yc−1, c]k,a

[c−1, c]k,a
.

Applying the 2-cocycle condition one last time, we find

[y, c−1]k,a[yc−1, c]k,a

[c−1, c]k,a
= [y, c−1c]k,a = 1.

That is, all of the cocycles in Eq. (42) cancel and the relation-
ship between the two orders is just

θD
(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)
× θS

(
F c,αk,c

2 ,i2, j2 (m2)F a,α
k,a
1 ,i1, j1 (m1)

)

=
|αk,a

1 |∑
n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1

× θD
(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)

× θS
(
F a,αk,a

1 ,i1,n(m1)F c,αk,c
2 ,m, j2 (m2)

)
. (43)

Note that this relation is independent of the basis state used
(i.e., it does not depend on x, y, x′, or y′) and so holds true
for the whole state |ψ〉 which is a linear combination of basis
states. Therefore the commutation relation Eq. (31) becomes

F c,αk,c
2 ,i2, j2 (m2)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

=
|αk,a

1 |∑
n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1
Ca

0 (m1)Cc
0 (m2)

× θD
(
F a,α

k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)
)

× θS
(
F a,αk,a

1 ,i1,n(m1)F c,αk,c
2 ,m, j2 (m2)

)|ψ〉

=
|αk,a

1 |∑
n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1
Ca

0 (m1)θa
D(m1)

× θ
a,α

k,a
1 ,i1,n

S (m1)Cc
0 (m2)θ c

D(m2)θ
c,αk,c

2 ,m, j2
S (m2)|ψ〉.

Recombining the components into the full membrane op-
erators, we see that the braiding relation is given by

F c,αk,c
2 ,i2, j2 (m2)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

=
|αk,a

1 |∑
n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

i2m

[
αk,a

1 (c)
]

n j1

× F a,α
k,a
1 ,i1,n(m1)F c,αk,c

2 ,m, j2 (m2)|ψ〉. (44)
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This is the same as we would expect for the braiding of two
dyonic excitations in the untwisted theory, except that we have
projective irreps rather than linear irreps. Notice that the irreps
αk,a

1 and αk,c
2 , as well as the fluxes a and c, are conserved under

this braiding relation. This suggests that these are conserved
quantities (i.e., label topological charges), as we discuss fur-
ther in Sec. V. If the irreps are one dimensional, we obtain the
simpler relation

F c,αk,c
2 (m2)F a,αk,a

1 (m1)|ψ〉
= αk,c

2 (a)αk,a
1 (c)F a,αk,a

1 (m1)F c,αk,c
2 (m2)|ψ〉, (45)

which is Abelian braiding with only a phase gain. More
generally, there is mixing within the spaces described by
the irreps αk,a

1 and αk,c
2 , indicating non-Abelian braiding. We

note that these expressions agree with the results found from
the modular S matrix in Refs. [20,21], up to conjugation
of the irreps (likely due to a difference in convention for
the braiding) and the fact that the expression in Ref. [21]
only involves the trace of the representation (due to being
calculated from a ground-state quantity). The braiding result
also agrees with Ref. [19], for groups which are a product
of multiple copies of the same cyclic group, as we show
in Sec. III B.

It is instructive to consider the case where the flux, k, of
the base loop is taken to be trivial, giving ordinary loop-loop
braiding. In this case, the projective irreps αk,a

1 and αk,c
2 are

in fact linear irreps, which must be one dimensional due to
the Abelian nature of the group G. In this case, Eq. (45)
becomes

F c,α2 (m2)F a,α1 (m1)|ψ〉
= α2(a)α1(c)F a,α1 (m1)F c,α2 (m2)|ψ〉, (46)

which is just the result of passing a charge α1 through a flux
c and charge α2 through a flux a. Notably, the 4-cocycle no
longer enters anywhere in this expression, because it only en-
ters the three-loop result through the projective irreps. We see
that the two-loop braiding is independent of the cocycle twist,
as documented in previous works [17,19,22], illustrating the
importance of three-loop braiding in distinguishing between
different phases.

While the transformation given in Eq. (44) is simple, there
is an additional subtlety when the irreps involved are not
one dimensional. Because the braiding is non-Abelian, we
only expect this type of simple relation when the excita-
tions involved have a definite fusion channel. For example,
in the non-Abelian quantum double model [49], the braiding
between fluxes is simple when the ribbon operators for the
two fluxes have the same start point. In non-Abelian gauge
theory, the flux measured by a charge traversing a closed
cycle around a flux depends on the start of that path, with
the measured flux changing by conjugation if the start of
the closed path is changed. Generally, when a flux excita-
tion is created, the flux is only well defined when measured
from a certain point. The ribbon operators that create the
fluxes in the non-Abelian Quantum Double model therefore
have special points, called the start point of the ribbon, from
which the flux is well defined. Then braiding is relatively
simple if fluxes share this start point, which gives them a

FIG. 20. We give an example of two membranes (red and blue)
which have the intersection region shown in Fig. 17.

well defined combined flux. Similarly, braiding between a
flux and a charge is simpler when the start point of the
magnetic ribbon operator matches the start of the electric
ribbon operator that produces the charge. To see that a similar
phenomenon occurs for Abelian twisted lattice gauge theory
in (3 + 1)d, note that we have so far only considered the
region in which the two membrane operators performing the
braiding intersect, because the other parts of the membrane
operators commute. However, when the irreps labeling the
membrane operators are higher dimensional, the matrix mul-
tiplication rule for composition of the parts of the surface
weight means that we cannot simply pull the factor gained
by the intersection region from the braiding to the front of the
membrane operator. Suppose that there are additional parts
to the membrane operators, such as the situation shown in
Fig. 20. Then the surface weight of F a,α

k,a
1 ,i1, j1 (m1) has the

form

|αk,a
1 |∑

p,q=1

M̂i1 p
[
αk,a

1 (x̂)
]

pqN̂q j1 ,

where M̂ and N̂ are the contributions from the parts of the
diagram before and after the intersection respectively and are
operators (they depend on the edge labels).

Under the braiding, we know from Eq. (44) that [αk,a
1 (x̂)]pq

becomes
∑|αk,a

1 |
n=1 [αk,a

1 (x̂)]pn[αk,a
1 (c)]nq and so the full surface

weight should be replaced with

|αk,a
1 |∑

p,q=1

M̂i1 p

|αk,a
1 |∑

n=1

[
αk,a

1 (x̂)
]

pn

[
αk,a

1 (c)
]

nqN̂q j1 ,
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FIG. 21. Instead of braiding the (blue) loop c around the loop on
the left-hand side of m1, which has the opposite orientation to c, we
can braid it around the loop at the right-hand side of m1. We can do
this by applying a membrane operator on membrane p.

which we can write more clearly in terms of matrices as[
M̂αk,a

1 (x̂)αk,a
1 (c)N̂

]
i1 j1

= [
M̂αk,a

1 (x̂)N̂
(
N̂−1αk,a

1 (c)N̂
)]

i1 j1
.

From this, we see that the braiding transformation is by
matrix multiplication by N̂−1αk,a

1 (c)N̂ rather than αk,a
1 (c).

This matrix is in the same equivalence class of irreps, be-
cause it is related to the original matrix representation by
conjugation, reflecting the fact that the class of irreps is a
conserved quantity. We can think of the conjugating matrices
as mixing different matrix indices, which are internal degrees
of freedom for the topological charge rather than conserved
quantities. A similar result will hold for the other membrane
operator. The conjugating matrices depend on the edge labels,
reflecting the noncoherence of the two excitations (again,
this is familiar from non-Abelian untwisted lattice gauge
theory). Note that when we take 1d irreps, the conjugation
becomes trivial and we just obtain the same phase we reported
before.

Another subtlety concerning Eq. (44) relates to the geom-
etry of the situation. As indicated in Fig. 16, we considered
the situation where we braided the loop from the right of the
membrane m2 with the loop from the left of the membrane m1.
These loops have opposite orientations, so it is more natural
to braid the loop from the right of membrane m2 with the one
from the right of m1 (although the geometry is slightly more
complicated). Such a process is shown in Fig. 21. As shown
in Fig. 22, if we apply both braiding moves sequentially it is
equivalent to braiding the loop labeled by c around both the
loop and antiloop labeled by a. Such a braiding move can be
done without any intersection of the membrane operators, so
the braiding move must be trivial. We can use this to deduce
the braiding relation with the right-hand loop. If we take mT

2
to be the total membrane on the right-hand side of Fig. 22,
then we have

F c,αk,c
2 ,i2,l2

(
mT

2

)
F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

= F a,α
k,a
1 ,i1, j1 (m1)F c,αk,c

2 ,i2,l2
(
mT

2

)|ψ〉, (47)

FIG. 22. If we perform both braiding moves sequentially (the
braiding around the loop at the right-hand of m1, using the mem-
brane p, followed by the braiding around the loop at the left-hand
of m1, using the membrane q), it is equivalent to braiding around
both loops simultaneously, using the membrane mT

2 . Because the
total flux of the combined loops is trivial, this combined braiding is
trivial.

because the total membrane mT
2 does not intersect with m1

and so the two operators commute. We can then split mT
2

into the two parts p and q, which are shown on the first line
of Fig. 22 (q is the one corresponding to the braiding move
we previously considered, while p corresponds to the new
braiding move):

F c,αk,c
2 ,i2,l2

(
mT

2

) =
|αk,c

2 |∑
j2=1

F c,αk,c
2 ,i2, j2 (p)F c,αk,c

2 , j2,l2 (q). (48)

Then we already calculated the commutation relation between
the membrane operators

F c,αk,c
2 , j2,l2 (q)

and

F a,α
k,a
1 ,i1, j1 (m1)

in Eq. (44), so we have

F c,αk,c
2 ,i2,l2

(
mT

2

)
F a,αk,a

1 ,i1, j1 (m1)|ψ〉

=
|αk,c

2 |∑
j2=1

F c,αk,c
2 ,i2, j2 (p)F c,αk,c

2 , j2,l2 (q)F a,αk,a
1 ,i1, j1 (m1)|ψ〉

=
|αk,c

2 |∑
j2=1

F c,αk,c
2 ,i2, j2 (p)

|αk,a
1 |∑

n=1

|αk,c
2 |∑

m=1

[
αk,c

2 (a)
]

j2m

[
αk,a

1 (c)
]

n j1

× F a,α
k,a
1 ,i1,n(m1)F c,αk,c

2 ,m,l2 (q)|ψ〉.
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Requiring this to agree with Eq. (47), we obtain

F c,αk,c
2 ,i2, j2 (p)F a,α

k,a
1 ,i1,n(m1)|ψ〉

=
|αk,c

2 |∑
m′=1

|αk,a
1 |∑

n′=1

[
αk,a

1 (c)
]−1

n′n

[
αk,c

2 (a)
]−1

m′ j2

× F a,α
k,a
1 ,i1,n′

(m1)F c,αk,c
2 ,i2,m′

(p)|ψ〉. (49)

Similar to the result for the other geometry, there may gener-
ally be matrices conjugating αk,a

1 (c) and αk,c
2 (a) to account

for the possibility that the membranes are extended before
the intersection. Note that this braiding transformation acts on
the opposite index of F c,αk,c

2 ,i2, j2 (p) (the j2 index) compared
with Eq. (44), corresponding to matrix postmultiplication by
[αk,c

2 (a)]−1, rather than premultiplication by [αk,c
2 (a)]. This

is not a fundamental property, as postmultiplication can be
converted to premultiplication by appropriate matrix conju-
gation. In addition, processes involving open membranes are
often sensitive to the details of the process. If we take p to
be a closed membrane, corresponding to the situation where
the loop-like excitations it produces are brought back to their
initial position and fused to the vacuum (for i2 = j2), the
membrane operator acts trivially on |ψ〉, even in the presence
of the base loop. Then the contribution from F c,αk,c

2 ,i2, j2 (p) to
the right-hand side of Eq. (49) is just the matrix [αk,c

2 (a)]−1

and postmultiplication or premultiplication becomes irrele-
vant. More generally, we can think of [αk,c

2 (a)]−1 as the
contribution from the closed braiding motion and the remain-
ing operator F c,αk,c

2 ,i2,m′
(p) on the right-hand side of Eq. (49)

as a process where no braiding occurs but the loop-like excita-
tions are moved into their final positions, as we discussed for
point-like braiding in Sec. III A (see Fig. 15). Then the order
of multiplication appears to correspond to the order in which
these operations are carried out.

Three-loop braiding example: The group ZW
N

To further explore the braiding relation described by
Eq. (45), we consider the example of a group ZW

N made of
W copies of a cyclic group ZN . In particular, we would like
to compare our result to the braiding found in Ref. [19] from
dimensional reduction. Ref. [19] considers 4-cocycles of the
form

[a, b, c, d]

= exp

⎛
⎝2π i

N2

W∑
i, j,k=1

Mi jkaib j (ck + dk − [ck + dk])

⎞
⎠.

(50)

Here Mi jk is a three-index tensor with integer entries and
the group elements a, b, c, d ∈ ZW

N are written in the form
of vectors as a = (a1, a2, . . . , aW ). The identity element for
the ith copy of the group is denoted by ai = 0 and group
multiplication on each copy is performed by addition modulo
N . [ck + dk] is the group multiplication of ck and dk (i.e.,
addition modulo N), while ck + dk is simple addition (without
the modular arithmetic, meaning it does not correspond to
group multiplication).

From this 4-cocycle is defined as a dimensionally reduced
cocycle, which is equivalent to the twisted 3-cocycle we have
discussed previously:

[h1, h2, h3]h = [h1, h2, h3, h][h1, h, h2, h3]

[h1, h2, h, h3][h, h1, h2, h3]
. (51)

With the form of the 4-cocycle from Eq. (50), this 3-cocycle
is given by

[a, b, c]h = exp

⎛
⎝2π i

N2

∑
i, j

Ph
i jai(b j + c j − [b j + c j])

⎞
⎠,

(52)

where

Ph
i j =

∑
k

(Mik j − Mki j )hk, (53)

as described in the Supplemental Material for Ref. [19]. The
doubly twisted 2-cocycle is therefore given by

[a, b]c,d = [d, a, b]c[a, b, d]c

[a, d, b]c

= exp

[
2π i

N2

∑
i, j

Pc
i j (di(a j + b j − [a j + b j])

+ ai(b j + d j − [b j + d j])

− ai(d j + b j − [d j + b j]))

]

= exp

⎛
⎝2π i

N2

∑
i, j

Pc
i jdi(a j + b j − [a j + b j])

⎞
⎠.

(54)

This is symmetric under the exchange of the two elements a
and b (indicating that the underlying 4-cocycle is Type III).

In terms of the data that define the cocycles, Ref. [19]
presents the 3-loop braiding statistics as

θαβ,c = 2π

N2

∑
i, j

(
Pc

i j + Pc
ji − P0

i j − P0
ji

)
aib j

+ 2π

N

∑
i

[(m′
i + m′′

i )bi + (n′
i + n′′

i )ai],

where α = (a, m) and β = (b, n) describe the two loop-like
excitations undergoing the braiding (the first label is the flux
and the second label is the charge), c is the flux label of the
base loop and m′, m′′ and n′, n′′ are additional flux labels re-
lated to the dimensional reduction procedure. We can remove
those additional labels by multiplying the 3-loop braiding
phase by N to obtain Nθαβ,c. This means that the second term
in the braiding phase vanishes (modulo 2π ) and we just have

Nθαβ,c = 2π

N

∑
i, j

(
Pc

i j + Pc
ji − P0

i j − P0
ji

)
aib j .
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In addition, P0
i j is just zero because 0k = 0 for all k, so we

find

Nθαβ,c = 2π

N

∑
i, j

(
Pc

i j + Pc
ji

)
aib j . (55)

Multiplying by N also removes the contribution from any reg-
ular (nonprojective) charge, because any linear representation
would give terms like R(a) for representation R, which satisfy
R(a)N = R(aN ) = R(1G) = 1. For the case where the three
flux tubes have unit flux in one of the copies of ZN (copy i
for α, j for β and k for c), Nθαβ,c takes the form

�i j,k = 2π i

N
(Mik j − Mki j + Mjki − Mk ji ), (56)

as described by Eq. (13) of Ref. [19].
Now we want to compare this to our expression for the

braiding, Eq. (45) in the case where the 2-cocycle is symmet-
ric (and so the projective irreps are 1d). We found the phase
eiθ = αk,c

2 (a)αk,a
1 (c), so we want to raise this to the power of

N and use the form of the cocycle given in Eq. (52). To do
so we use an iterative procedure. Using the composition rule
Eq. (22) for projective representations, we know that

αk,a
1 (cn+1) = [cn, c]−1

k,aα
k,a
1 (cn)αk,a

1 (c), (57)

where cn is c applied n times via the group multiplication.
Therefore,

αk,a
1 (cN ) =

(
N−1∏
n=1

[cn, c]−1
k,a

)
αk,a

1 (c)N . (58)

Then, because G = ZW
N , cN = 1G and so αk,a

1 (cN ) =
αk,a

1 (1G) = 1. This means that

αk,a
1 (c)N =

(
N−1∏
n=1

[cn, c]k,a

)
,

which does not depend on the choice of projective representa-
tion αk,a

1 at all. Similarly,

αk,c
2 (a)N =

(
N−1∏
n=1

[an, a]k,c

)
.

Now, using the form of the 4-cocycle from Eq. (50) and the
corresponding 2-cocycle described in Eq. (54), we have

[cn, c]k,a = exp

⎧⎨
⎩2π i

N2

∑
i, j

Pk
i jai((c

n) j + c j − [(cn) j + c j])

⎫⎬
⎭.

(59)

Now, note that (cn) j + c j − [(cn) j + c j] is the difference be-
tween regular addition and addition modulo N . Because both
(cn) j and c j are in the range [0, N − 1], this difference is
either zero or N . Specifically, it is N whenever (cn) j + c j

“overflows” N . With that in mind,(
N−1∏
n=1

[cn, c]k,a

)

=
N−1∏
n=1

exp

⎧⎨
⎩2π i

N2

∑
i, j

Pk
i jai((c

n) j + c j − [(cn) j + c j])

⎫⎬
⎭

= exp

⎧⎨
⎩

N−1∑
n=1

2π i

N2

∑
i, j

Pk
i jai((c

n) j + c j − [(cn) j + c j])

⎫⎬
⎭

= exp

⎧⎨
⎩2π i

N2

∑
i, j

Pk
i jai

N−1∑
n=1

((cn) j + c j − [(cn) j + c j])

⎫⎬
⎭.

Then
∑N−1

n=1 {(cn) j + c j − [(cn) j + c j]} contains a contribu-
tion of N for each time (cn) j + c j exceeds N . This happens
c j times. For example, if c j = 1 then we get one factor of N
from the N − 1st term:

(cN−1) j + c j − [(cN−1) j + c j] = N − 1 + 1 − [N − 1 + 1]

= N − 0 = N.

As another example, if c j = 2 then we get two contribu-
tions of N , one from the (N − 1)/2 (if N is odd) or N/2 − 1
(if N is even) term and one from the N − 1 term. For the latter,
note that (cn) j refers to group multiplication, so (cN−1) j =
N − 2 in that case, not 2N − 2. This means that we generally
obtain (

N−1∏
n=1

[cn, c]k,a

)
= exp

⎛
⎝2π i

N2

∑
i, j

Pk
i jaiNc j

⎞
⎠

= exp

⎛
⎝2π i

N

∑
i, j

Pk
i jaic j

⎞
⎠.

A similar expression holds for the other term:(
N−1∏
n=1

[an, a]k,c

)
= exp

⎛
⎝2π i

N2

∑
i, j

Pk
i jciNa j

⎞
⎠

= exp

⎛
⎝2π i

N

∑
i, j

Pk
i jcia j

⎞
⎠

= exp

⎛
⎝2π i

N

∑
i, j

Pk
jiaic j

⎞
⎠,

where in the last term we use the fact that i and j are dummy
indices in the same set to swap them. This means that the
braiding phase is

eiNθ = exp

⎛
⎝2π i

N

∑
i, j

(
Pk

i j + Pk
ji

)
aic j

⎞
⎠. (60)

This agrees with the result from Ref. [19], Eq. S25 in the
Supplemental Material of that paper, once we multiply that
result by N and drop the term that is a multiple of 2π [see
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Eq. (55)]. When we take the special case where the three loops
each carry unit flux in one of the copies of ZN and trivial flux
in the other copies, so that ai = δi,ia , c j = δ j, jc , and kl = δl,lk
for some indices ia, jc, lk , this becomes

eiNθ = exp

(
2π i

N

(
Pk

ia jc + Pk
jcia

))
.

Substituting the expression given in Eq. (53) for Pk
i j , with kl =

δl,lk , we see that

eiNθ = exp

(
2π i

N

(
Mialk jc − Mlkia jc + Mjclk ia − Mlk jcia

))
,

from which we see that Nθ matches the tensor �ia jc,lk given
in Eq. (13) of Ref. [19].

C. Four-loop braiding and the non-Abelian
nature of three-loop braiding

One interesting aspect of this model is that the three-loop
braiding is non-Abelian, even though the underlying group G
is Abelian. One way of examining this further is through a
more complicated braiding process, called four-loop braiding,
which is analogous to a commutator of three-loop braiding
processes [22–26]. In this process, there are three participating
loops A, B, and C, all of which are linked to the same base loop
Z . We first braid A through B, then braid A through C. Next,
we braid A through B in reverse, then through C in reverse.
This is illustrated in Fig. 23. From the perspective of A, we
can write this process schematically as BCB−1C−1, where
each letter indicates A braiding with the corresponding loop
and an inverse indicates the reverse process. If the braiding
were Abelian, the resulting transformation would be trivial
because each individual braid is performed and then reversed.
However, because the forwards and reverse processes are in-
terrupted by braiding with another loop, the transformation
can be nontrivial if the three-loop braiding is non-Abelian.

We can calculate the transformation under this process by
applying the transformations under the individual three-loop
braiding moves simultaneously. Given that the flux of the
base loop Z is z, we can denote the initial state of the loop
A by (a, αz,a

A , iA), where a and αz,a are the flux and charge,
respectively, which will remain unchanged by the braiding
process. On the other hand, iA is an internal label, correspond-
ing to one of the matrix indices of the membrane operator
[one, because only one is affected by the braiding relation, as
described by Eq. (44)]. Similarly, we denote the initial states
of B and C by (b, αz,b

B , jB) and (c, αz,c
C , jC ), respectively. For B

and C we use the symbol j rather than i to reflect the fact that
Eq. (44) describes braiding between a loop A at one end of a
membrane operator and another loop (B or C) at the other end
of another membrane operator. Then applying the braiding
relation between A and B we would obtain(

a, αz,a
A , iA

) →
∑

nA

[
αz,a

A (b)
]

iAnA

(
a, αz,a

A , nA
)
,

(
b, αz,b

B , jB
) →

∑
nB

(
b, αz,b

B , nB
)[

αz,b
B (a)

]
nB jB

.

FIG. 23. Four-loop braiding can be expressed as a series of three-
loop braids, shown in each picture. Here the membranes represent the
motion of the lower (blue) loop A in each step, with the black arrows
representing the paths traced by two points on opposite ends of the
loop to highlight the direction of the motion. The third motion is the
first in reverse (and similar for second and fourth), so this motion
measures the non-Abelian nature of three-loop braiding. We may
worry that in the second and fourth step the loop is pulled over the
middle (red) loop B, but this does not apply a transformation in this
case (as long as we do not braid through the loop at the other end of
the membrane operator that produces the B).

Then applying the relation between A (in its new state) and C
we find that

(
a, αz,a

A , nA
) →

∑
pA

[
αz,a

A (c)
]

nA pA

(
a, αz,a

A , pA
)
,

(
c, αz,c

C , jC
) →

∑
pC

(
c, αz,c

C , pC
)[

αz,c
C (a)

]
pC jC

.

This means that under these two transformations, the state of
A has become∑

pA

∑
nA

[
αz,a

A (b)
]

iAnA

[
αz,a

A (c)
]

nA pA

(
a, αz,a

A , pA
)

=
∑

pA

[
αz,a

A (b)αz,a
A (c)

]
iA pA

(
a, αz,a

A , pA
)
.

Next we apply the reverse braiding relation between A and
B, obtaining the following result:

(
a, αz,a

A , pA
) →

∑
qA

[
αz,a

A (b)−1
]

pAqA

(
a, αz,a

A , qA
)
,

(
b, αz,b

B , nB
) →

∑
qB

(
b, αz,b

B , qB
)[

αz,b
B (a)−1

]
qBnB

.
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In total, the new state of B is∑
qB

∑
nB

(
b, αz,b

B , qB
)[

αz,b
B (a)−1

]
qBnB

[
αz,b

B (a)
]

nB jB

=
∑

qB

(
b, αz,b

B , qB
)[

αz,b
B (a)−1αz,b

B (a)
]

qB jB

=
∑

qB

(
b, αz,b

B , qB
)
δqB jB

= (
b, αz,b

B , jB
)
,

from which we see that B is left unaffected.
Finally, we apply the reverse braiding relation between A

and C to obtain(
a, αz,a

A , qA
) →

∑
rA

[
αz,a

A (c)−1
]

qArA

(
a, αz,a

A , rA
)
,

(
c, αz,c

C , pC
) →

∑
rC

(
c, αz,c

C , rC
)[

αz,c
C (a)−1

]
rC pC

.

Similar to B, C is left invariant by the total motion:(
c, αz,c

C , jC
) →

∑
pC

∑
rC

(
c, αz,c

C , rC
)[

αz,c
C (a)−1

]
rC pC

× [
αz,c

C (a)
]

pC jC
= (

c, αz,c
C , jC

)
.

On the other hand, A can undergo a nontrivial transforma-
tion:(

a, αz,a
A , iA

)
→

∑
nA,pa,qA,rA

[
αz,a

A (b)
]

iAnA

[
αz,a

A (c)
]

nA pA

× [
αz,a

A (b)−1
]

pAqA

[
αz,a

A (c)−1
]

qArA

(
a, αz,a

A , rA
)

=
∑

rA

[
αz,a

A (b)αz,a
A (c)αz,a

A (b)−1αz,a
A (c)−1

]
iArA

(
a, αz,a

A , rA
)
.

We can simplify the product of matrices by using the prop-
erties of projective representations and the fact that the group
G is Abelian. We have

αz,a
A (b)αz,a

A (c) = [b, c]z,aα
z,a
A (bc)

from the composition rule for projective representations.
Then, because G is Abelian, we can reverse the order of
multiplication of the group elements:

[b, c]z,aα
z,a
A (bc) = [b, c]z,aα

z,a
A (cb),

and separate the contributions from b and c again to obtain

αz,a
A (b)αz,a

A (c) = [b, c]z,a

[c, b]z,a
αz,a

A (c)αz,a
A (b)

= ηz,a(b, c)αz,a
A (c)αz,a

A (b).

Inserting this into the matrix product from the four-loop
braiding relation, we obtain

αz,a
A (b)αz,a

A (c)αz,a
A (b)−1αz,a

A (c)−1

= ηz,a(b, c)αz,a
A (c)αz,a

A (b)αz,a
A (b)−1αz,a

A (c)−1

= ηz,a(b, c)I.

From this, we see that the transformation of A under the four-
loop braiding process is just a phase:(

a, αz,a
A , iA

) →
∑

rA

ηz,a(b, c)δiA,rA

(
a, αz,a

A , rA
)

= ηz,a(b, c)
(
a, αz,a

A , iA
)
.

Because the other loops transform trivially, the total effect of
the four-loop braiding relation is just this phase:

θ4(a, b, c, z) = ηz,a(b, c), (61)

which only depends on the fluxes of the four loops (and the
4-cocycle), not on their charges. Notably, this relation has a
high degree of symmetry between its indices a, b, c, and z:
η is the 1-cocycle obtained from the underlying 4-cocycle by
applying the slant product three times, and swapping any two
of its indices results in inverting the phase.

IV. FUSION RULES FOR CYLINDRICAL MEMBRANES

Having considered the braiding relations of the loop-like
excitations, we now consider the fusion rules. These describe
how two excitations can be combined into a single one. One
way to demonstrate the fusion rules is to apply two mem-
brane operators on the same membrane and show how these
can be expressed as a single membrane operator (or sum of
membrane operators in the non-Abelian case). Ideally, we
would use an open membrane operator, so that the excitations
themselves fuse together. However, in this model, the mem-
brane operators are not well defined near their boundaries
or other plaquette excitations, as we discussed in Sec. II B,
which means that bringing excitations close together could
result in additional boundary operators. Instead, we use closed
membrane operators, which do not produce plaquette excita-
tions but still carry the fusion information. We are particularly
interested in the fusion rules of the loop-like excitations with a
given base loop (we cannot fuse excitations that have different
base loops). To examine the fusion rule of such excitations,
we use the same geometry shown in Figs. 17–19, except that
we also apply periodic boundary conditions in the x direction
and we only apply membrane operators on the horizontal
(red) membrane m1. If we apply two membrane operators
F a,αk,a

1 ,i1, j1 (m1) and F b,αk,b
2 ,i2, j2 (m1), we have

F b,αk,b
2 ,i2, j2 (m1)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

= Cb
0 (m1)θb

D(m1)θ
b,αk,b

2 ,i2, j2
S (m1)Ca

0 (m1)θa
D(m1)

× θ
a,α

k,a
1 ,i1, j1

S (m1)|ψ〉
= Cb

0 (m1)Ca
0 (m1)

(
Ca

0 (m1) : θb
D(m1)

)
θa

D(m1)

× (
Ca

0 (m1) : θ
b,αk,b

2 ,i2, j2
S (m1)

)
θ

a,αk,a
1 ,i1, j1

S (m1)|ψ〉. (62)

Using Eqs. (32) and (34), which describe the dual phase
for the upper and lower wedges of the affected region respec-
tively, we have

θa
D(m1) = [a, y′, x′]k[a, x, y]−1

k [x, a, y]k.

In this case, we take m1 to be a closed membrane, which we
achieve by applying additional periodic boundary conditions
in the x direction. This results in y = y′ directly from the
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boundary condition and x = x′ from flatness in the region.
Therefore,

θa
D(m1) = [a, y, x]k[a, x, y]−1

k [x, a, y]k = [a, y]k,x. (63)

Because the other membrane operator is applied on the same
membrane m1, its dual phase has the same form (but with
a replaced by b). However, because Ca

0 (m1) acts before the
phase θb

D(m1), we should also replace y with ay to obtain(
Ca

0 (m1) : θb
D(m1)

) = [b, ay]k,x. (64)

Putting these two phases together, we have

θa
D(m1)

(
Ca

0 (m1) : θb
D(m1)

) = [a, y]k,x[b, ay]k,x

= [b, a]k,x[ba, y]k,x,

where we used the 2-cocycle condition, Eq. (19), for the latter
equality. For the surface weights, we have

θ
a,α

k,a
1 ,i1, j1

S (m1) = [
αk,a

1 (x)
]

i1 j1
,

and

Ca
0 (m1) : θ

b,αk,b
2 ,i2, j2

S (m1) = [
αk,b

2 (x)
]

i2 j2
.

Inserting these results into Eq. (62), we see that

F b,αk,b
2 ,i2, j2 (m1)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

= Cb
0 (m1)Ca

0 (m1)[b, a]k,x[ba, y]k,x

× [
αk,a

1 (x)
]

i1 j1

[
αk,b

2 (x)
]

i2 j2
|ψ〉.

We note that the fusion rule for the untwisted membrane
operators Cb

0 (m1) and Ca
0 (m1) is just

Cb
0 (m1)Ca

0 (m1) = Cba
0 (m1),

because each untwisted membrane operator just multiplies the
edges cut by its dual membrane by a±1 or b±1. Similarly, we
note that the 2-cocycle [ba, y]k,x is just the dual phase we
would get for the membrane operator with label ba. Therefore,

F b,αk,b
2 ,i2, j2 (m1)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉

= Cba
0 (m1)θba

D (m1)[b, a]k,x

[
αk,a

1 (x)
]

i1 j1

[
αk,b

2 (x)
]

i2 j2
|ψ〉.

(65)

Now we claim that [b, a]k,xα
k,a
1 (x) ⊗ αk,b

2 (x) defines a
(generally reducible) βk,ba-projective representation of G,
which we call αk,ba

T :

αk,ba
T (x) = [b, a]k,xα

k,a
1 (x) ⊗ αk,b

2 (x). (66)

To see this, note that

αk,ba
T (x)αk,ba

T (y)

= [b, a]k,x[b, a]k,y

(
αk,a

1 (x)αk,a
1 (y)

) ⊗ (
αk,b

2 (x)αk,b
2 (y)

)
= [b, a]k,x[b, a]k,y

(
[x, y]k,aα

k,a
1 (xy)

) ⊗ (
[x, y]k,bα

k,b
2 (y)

)
,

where we used the defining relations for the two projective
irreps αk,a

1 and αk,b
2 . Then we can insert the identity in the

form
[x, y]k,ba

[x, y]k,ba

[b, a]k,xy

[b, a]k,xy
,

to obtain

αk,ba
T (x)αk,ba

T (y)

= [b, a]k,x[b, a]k,y[x, y]k,a[x, y]k,b

[x, y]k,ba

[x, y]k,ba

[b, a]k,xy

[b, a]k,xy

× (
αk,a

1 (xy)
) ⊗ (

αk,b
2 (y)

)
= [b, a]k,x[b, a]k,y[x, y]k,a[x, y]k,b

[x, y]k,ba

[x, y]k,ba

× 1

[b, a]k,xy
αk,ba

T (xy),

where we used the definition of αk,ba
T for the last equality.

Then we note that [x, y]k,ba is the phase that we expect if αk,ba
T

is indeed a βk,ba-projective representation. We can therefore
write the above relation as

αk,ba
T (x)αk,ba

T (y) = θR[x, y]k,baα
k,ba
T (xy),

where

θR = [b, a]k,x[b, a]k,y[x, y]k,a[x, y]k,b

[x, y]k,ba[b, a]k,xy
(67)

is the additional phase compared with the required phase for
the projective representation relation. However, by writing
these 2-cocycles in terms of the underlying 3-cocycles (using
Eq. (17), we can show that this additional phase is just equal
to one. We have

θR = [b, a]k,x[b, a]k,y[x, y]k,a[x, y]k,b

[x, y]k,ba[b, a]k,xy

= [x, b, a]k[b, a, x]k[y, b, a]k[b, a, y]k[a, x, y]k[x, y, a]k

[b, x, a]k[b, y, a]k[x, a, y]k

× [b, x, y]k[x, y, b]k[b, xy, a]k[x, ba, y]k

[x, b, y]k[xy, b, a]k[b, a, xy]k[ba, x, y]k[x, y, ba]k
.

Applying the 3-cocycle condition (15), we have

[x, y, b]k[y, b, a]k

[xy, b, a]k[x, y, ba]k
= [x, by, a]−1

k

and

[b, a, x]k[a, x, y]k

[ba, x, y]k[b, a, xy]k
= [b, ax, y]−1

k ,

so

θR = [x, b, a]k[b, a, y]k[b, x, y]k[x, y, a]k[b, xy, a]k[x, ba, y]k

[b, x, a]k[b, y, a]k[x, b, y]k[x, a, y]k[x, by, a]k[b, ax, y]k
.

Then applying the 3-cocycle condition [x, b, a]k[b, a, y]k

[x, ba, y]k = [xb, a, y]k[x, b, ay]k and [b, x, y]k[x, y, a]k

[b, xy, a]k = [bx, y, a]k[b, x, ya]k , so we obtain

θR = [xb, a, y]k[x, b, ay]k[bx, y, a]k[b, x, ya]k

[b, x, a]k[b, y, a]k[x, b, y]k[x, a, y]k[x, by, a]k[b, ax, y]k
.

Finally, using the 3-cocycle condition we find

[x, b, ya]k[xb, y, a]k

[b, y, a]k[x, b, y]k[x, by, a]k
= 1
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and

[xb, a, y]k[b, x, ay]k

[b, x, a]k[x, a, y]k[b, xa, y]k
= 1,

allowing us to remove the last remaining cocycles. That is,

θR = [b, a]k,x[b, a]k,y[x, y]k,a[x, y]k,b

[x, y]k,ba[b, a]k,xy
= 1.

Therefore, we have

αk,ba
T (x)αk,ba

T (y) = [x, y]k,baα
k,ba
T (xy),

and αk,ba
T is indeed a projective representation. The fusion

relation Eq. (65) therefore becomes

F b,αk,b
2 ,i2, j2 (m1)F a,αk,a

1 ,i1, j1 (m1)|ψ〉
= Cba

0 (m1)θba
D (m1)

[
αk,ba

T (x)
]

i1 j1i2 j2
|ψ〉. (68)

The expression on the right-hand side of Eq. (68) has
the same form as the membrane operators, consisting of an
untwisted part (with flux label ba), a dual phase θba

D (m1) and
a surface weight. However, this surface weight is given by a
matrix element [αk,ba

T (x)]i1 j1i2 j2 of the projective representa-
tion αk,ba

T , where[
αk,ba

T (x)
]

i1 j1i2 j2
= [b, a]k,x

[
αk,a

1 (x)
]

i1 j1

[
αk,b

2 (x)
]

i2 j2
. (69)

This matrix element is determined by four indices, but this is
simply because it is constructed from a tensor product of the
two projective irreps αk,a

1 and αk,b
2 . A two-index object can

be obtained by grouping the indices i1 and i2 as well as j1
and j2 if desired. Regardless, we can define the membrane
operator with this weight as F ba,αk,ba

T ,i1,i2, j1, j2 (m1), so that the
fusion relation becomes

F b,αk,b
2 ,i2, j2 (m1)F a,α

k,a
1 ,i1, j1 (m1)|ψ〉 = F ba,α

k,ba
T ,i1,i2, j1, j2 (m1)|ψ〉.

(70)

We see that the flux labels b and a fuse to a total flux of ba,
while the total charge label is αk,ba

T . If αk,a
1 and αk,b

2 are one
dimensional, the matrix indices drop out and αk,ba

T (xy) is a
one-dimensional projective irrep, meaning that it is the final
fusion product. Otherwise, αk,ba

T (xy) is generally reducible,
with the constituent irreps being the possible fusion products.
This result has the same structure found in Ref. [39], where
the tube algebra was used to determine the fusion rules for the
excitations.

It is instructive to consider how this result simplifies if we
take the base loop to be trivial (by taking k = 1G), thereby
considering the fusion of two unlinked loops. In this case, α1

and α2 are linear irreps. Then

αk,ba
T (x) = [b, a]k,xα

k,a
1 (x) ⊗ αk,b

2 (x)

becomes

αT (x) = [b, a]1G,xα1(x) ⊗ α2(x) = α1(x) ⊗ α2(x),

which is the usual fusion of irreps. Indeed, for Abelian G these
irreps are 1d, so this fusion is simple multiplication.

V. TOPOLOGICAL CHARGE

Topological charge is a quantity that is conserved, without
the need for a symmetry, on the level of the Hilbert space
(although the Hamiltonian picks out a set of charges that are
relevant for the model and in particular picks the vacuum
charge as the ground state). The charge within a region can
only be changed by moving charge out of that region, which
can be detected by an operator on the surface of that region.
The topological charge measurement operator is therefore a
surface operator, which should also satisfy some additional
properties. In particular, it should be topological, as deforming
the measurement operator without crossing any excitations
should leave the enclosed charge unaffected. The measure-
ment operator should also not produce any excitations. The
operators that satisfy these conditions are closed ribbon and
membrane operators [35,57]. To construct a general charge
measurement operator, we first choose a measurement surface
and then apply all the independent closed ribbon and mem-
brane operators on that surface, following the method used in
(2 + 1)d in Ref. [57] and (3 + 1)d in Ref. [35] for different
models. For example, for a torus surface, we would apply a
closed magnetic membrane operator over the surface itself and
closed electric ribbon operators on the two cycles of that torus
(as any other closed ribbon operator can be deformed and split
into closed ribbon operators around those two cycles, or else
deformed to nothing). On the other hand, a spherical surface
has no noncontractible loops, so any closed ribbon operator
applied on that surface is trivial. From this, we see that the
charges that can be measured by a sphere and by a torus are
different (corresponding to point-like charge and loop-like or
link-like charge, respectively).

We are mostly interested in the charge measured by a
toroidal measurement surface (corresponding to link-like or
loop-like charge), although we also briefly discuss the charge
measured by a sphere (corresponding to point-like charge).
More complicated measurement surfaces, with more handles,
are also possible, although we will not consider them here.
First, we examine a spherical measurement surface S. The
only operator we can apply on the surface which does not
leave excitations is a magnetic membrane operator, so the
general measurement operator has the form∑

h∈G

ahC
h(S),

where ah are coefficients. Here Ch(S) is the magnetic mem-
brane operator, including the untwisted membrane operator,
the dual phase and the surface weight. Unlike for a torus,
where there are multiple reference diagrams that can be
assigned different values, the surface weight is entirely de-
termined by the graphical rules, meaning that the membrane
operator is specified solely by its flux. The individual op-
erators Ch(S) form a basis for the space of measurement
operators, but we want to construct basis operators that are or-
thogonal projectors (because a measurement of charge should
correspond to a projection operator). To do so, we need to
know the algebra satisfied by the spherical membrane opera-
tors. Because the spherical membrane operators are equivalent
to a product of vertex transforms (as we show in Sec. S-I of the
Supplemental Material [48]), they obey the same algebra as
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the vertex transforms: Ch(S)Ck (S) = Chk (S). This means that
we can easily construct projectors using the ordinary linear
irreps of G:

PR(S) = 1

|G|
∑
g∈G

R(g)Cg(S). (71)

This indicates that the charge measured by a spherical mem-
brane, which corresponds to point-like charge, is labeled by
regular irreps of G. This agrees with our intuition that the
point-like charges are the same as in the untwisted case
because the electric ribbon operators are the same (as we
discussed in Sec. II A).

Notably, the number of these projectors (and so the number
of point-like particle types) matches the ground-state degen-
eracy of the model on the manifold S2 × S1. This ground-state
degeneracy can be calculated from Eq. (42) in Ref. [37],
which describes the ground-state degeneracy on the 3-torus
by taking two of the cycles of the 3-torus to have the trivial
label 1G. To see this, note that the 3-torus can be written as
T 2 × S1, where T 2 is the 2-torus and can be represented by a
square with opposite sides identified. Taking the sides of that
square (the cycles of the 2-torus) to have trivial label allows us
to collapse these edges to points without altering the allowed
states, giving us a 2-sphere. Then the total manifold is S2 × S1

and its degeneracy is equal to that of the 3-torus with two of
the cycle labels to be taken to be trivial algebraically. For the
3-torus, Wan et al. [37] find the following basis for the ground
states:{

1

|G|
∑
x∈G

ηk,g(h, x)|xkx−1, xgx−1, xhx−1〉| k, g, h commute

}
,

where k, g, and h ∈ G are the labels for the three independent
cycles of the 3-torus. Taking two of these, say k and g, to be
trivial, we obtain{

1

|G|
∑
x∈G

η1G,1G (h, x)|1G, 1G, xhx−1〉 | h ∈ G

}
,

where h of course commutes with the identity element. Sig-
nificantly, η1G,1G (h, x) is equal to unity, which is important
because a nontrivial η could lead to some terms vanishing
when we sum over x [37]. Then we see that the basis for
S2 × S1 is just given by{

1

|G|
∑
x∈G

|xhx−1〉|h ∈ G

}
,

meaning that there is one basis state per conjugacy class of
G (or just the elements, when G is Abelian). This can also be
verified by a direct calculation. These conjugacy classes are
in one-to-one correspondence with the irreps of G, which are
the labels for the projectors in Eq. (71). This equivalence be-
tween the ground-state degeneracy and the number of charges
measured by a sphere (i.e., point-like charges) is analogous to
how the number of types of topological charge measured by a
circular surface in (2 + 1)d (i.e., the number of particle types)
matches the ground-state degeneracy for a 2-torus for (mod-
ular) (2 + 1)d topological theories. This equality matches a
general rule for topological phases [21,38], which we expect

FIG. 24. This is an example of a rectangle representing a torus
surface (opposite edges are identified). However, the same torus can
be represented in multiple ways by choosing different positions for
the edges of the square. Here, we show one example of how shifting
the “view” of the torus appears to change the diagram (we shaded the
region that is shifted from one diagram to the other).

from the relationship between the Hamiltonian models and
topological quantum field theories. We note that the number
of point-like charges is also equal to the number of types of
pure unlinked loops, which are the unlinked loops that carry
no point-like charge (these are the pure fluxes, of which there
are |G| for Abelian G).

Next, we consider the toroidal measurement surface, which
carries additional complexity. In this case, we can apply rib-
bon operators around the two cycles c1 and c2 of the torus in
addition to the membrane operator over the torus surface. This
suggests that the general measurement operator has the form∑

h,g1,g2∈G

ag1,g2,hCh(m)δ(ĝ(c1), g1)δ(ĝ(c2), g2),

but this is not quite right. To understand this, recall that
the magnetic membrane operator includes a surface weight
which must transform appropriately under various diagram-
matic moves in order for the overall membrane operator to
commute with the vertex transforms (and in order to be topo-
logical). These diagrammatic moves allow us to calculate the
surface weight in terms of certain reference diagrams, which
we must assign a value manually. However, we now show that
not all combinations of h, g1, and g2 are consistent with these
diagrammatic moves. We can think of this as an obstruction
to closing a cylindrical membrane into a torus: when we try
there may be some unavoidable vertex excitations where we
join the two ends (or equivalently, the place where we join
them is not topological, because we cannot ordinarily move
the boundary of a membrane operator without affecting its
action, so additional conditions may be necessary to ensure
that the join between the ends becomes “seamless”).

To see the additional conditions, note that we can repre-
sent a torus by a square with opposite ends identified, such
as shown in Fig. 24. However, the torus is the fundamental
object and the square is just a representation of it, so we
can always shift perspective, which appears to change the
square (such as the shift shown in Fig. 24). By applying the
diagrammatic rules given in Sec. II B, we can simplify this
surface diagram. In particular, we can remove vertices, with
the ability to remove vertices from the 2d diagram correspond-
ing to the commutation of the overall membrane operator with
vertex transforms at that vertex. Note that, in the case of open
membrane operators, the vertices on the boundary cannot
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FIG. 25. The extent to which we can reduce a diagram using the
bistellar flips depends on the topology of the underlying surface. We
can represent a disk by a rectangle with no edges identified (top
line), an open cylinder by a rectangle with the top and bottom edges
identified (middle line) and a torus by a rectangle with both sets
of opposite edges identified (bottom line). We can remove internal
vertices and vertices on the identified edges (the blue vertices) but
not vertices on the boundary (the red vertices). In addition, even for
the torus we cannot remove the last vertex (although any vertex can
be the last one remaining).

be removed by diagrammatic moves and so the membrane
operator does not commute with vertex transforms on the
boundary. When we close an open membrane (e.g., closing the
square into a torus) requiring the surface weight to satisfy the
diagrammatic moves at the boundary (where the membrane
closes up) allows us to remove the vertices at the boundary
and ensures that the membrane commutes with transforms at
the boundary. This also reduces the number of independent
reference diagrams. For example, the reference diagrams for
the cylinder can have any number of vertices on the two ends,
whereas for the torus, we can simplify these diagrams further
so that there is only one vertex (see Fig. 25 for examples).

This suggests that, for the torus, there is only one type
of reference diagram to consider and so precisely one flux
membrane operator Ch(m) for each flux label h and cycle
labels g1 and g2. However, there is still one vertex in the
diagram which we cannot remove. How do we know that
the membrane operator commutes with the vertex transform
at that vertex? We can demonstrate this by showing that the
surface weight does not depend on which vertex is left over.
Consider two vertices A and B. By reducing the surface dia-
gram to a reference diagram only including A we show that the
membrane operator commutes with all other vertex transforms
including the one at B. By reducing the surface diagram to
one only including B we show that it commutes with all other

FIG. 26. We can reduce a general diagram representing the torus,
such as the one at the top of the image, to a diagram only involving
two vertices A and B. Because the diagram represents a torus, we
can look at the torus from a different angle without affecting the
label assigned to it assuming that there are no privileged vertices.
This corresponds to shifting the diagram with periodic boundary
conditions, so the two diagrams at the bottom of the figure represent
the same torus. These diagrams should therefore be assigned the
same value by the membrane operator, assuming that there are no
privileged vertices on the torus (which correspond to vertices whose
energy terms do not commute with the membrane operator).

vertex transforms including the one at A. If the phase is the
same in both cases, this means that the membrane transforms
commute with all vertex transforms (including those at both
A and B), or equivalently that we can move the location of
the left-over vertex freely without changing the action of the
membrane operator. To this end, we first consider reducing the
diagram to one only including A and B, as shown in Fig. 26.
This reduction will accumulate some phase, but we want to
compare the relative phase from reducing to only A or only B,
so the phase accumulated up to this point does not matter.

From the diagram with only A and B, if we reduce to only
A we accumulate the phase and reference diagram as shown in
Fig. 27. If we reduce to only B we accumulate the phase shown
in Fig. 28 (and obtain the same final reference diagram). The
phase from the reduction to A can be written as[

xyg2, y−1g−1
2 , g2

]
h[g2, xy, y−1]h

[
xy, g2, y−1g−1

2

]−1

h

= [xy, y−1, g2]h
[
g2, y−1g−1

2 , g2
]

h

× [xy, g2, y−1]−1
h [g2, xy, y−1]h

= [xy, y−1]h,g2

[
g2, y−1g−1

2 , g2
]

h,

where the first equality comes from an application of the 3-
cocycle condition Eq. (15) and the second comes from the
definition of the 2-cocycle given in Eq. (17). Similarly, the
phase from the reduction to B can be written as[

g2, y−1g−1
2 , g2yx

]
h

[
y−1g−1

2 , g2, yx
]−1

h
[y−1, yx, g2]h

= [g2, y−1, yx]h
[
g2, y−1g−1

2 , g2
]

h
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FIG. 27. We can reduce the diagram involving only A and B from Fig. 26 to one involving only A through the steps shown here. The
cocycles next to each arrow represent the phase gained during each step.

× [y−1, g2, yx]−1
h [y−1, yx, g2]h

= [y−1, yx]h,g2

[
g2, y−1g−1

2 , g2
]

h.

The ratio of these phases is then

θAB = [xy, y−1]h,g2

[y−1, xy]h,g2

.

Using the fact that the total group element for the horizontal
cycle is given by xy = g1, this becomes

θAB = [g1, y−1]h,g2

[y−1, g1]h,g2

.

which is not generally unity. Requiring it to be unity for
all y gives us an additional condition on the labels g1, g2,
and h:

[g1, y−1]h,g2 = [y−1, g1]h,g2 ∀ y ∈ G. (72)

This same condition appears in the ground-state degener-
acy calculation in Ref. [37], where an element h ∈ G is said
to be βg1,g2 regular if [h, x]g1,g2 = [x, h]g1,g2 for all x ∈ G (for
Abelian G). This seems like an asymmetric condition on the
three elements, but we can show that if h is βg1,g2 regular then

FIG. 28. We can also reduce the diagram involving only A and B from Fig. 26 to one involving only B. The resulting reference diagram
looks the same as the one from Fig. 27, so the phase gained during the reduction should be the same if the final vertex does not matter.
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g2 is βg1,h regular. This is because

[h, x]g1,g2

[x, h]g1,g2

= [g2, h, x]g1
[h, x, g2]g1

[x, g2, h]g1

[h, g2, x]g1
[g2, x, h]g1

[x, h, g2]g1

= [x, g2]g1,h

[g2, x]g1,h
,

so

[h, x]g1,g2
= [x, h]g1,g2

∀ x ∈ G

⇐⇒ [x, g2]g1,h = [g2, x]g1,h ∀ x ∈ G.

That is, h is βg1,g2 regular if and only if g2 is βg1,h regular.
Additionally, the twisted 2-cocycle satisfies the permutation
condition [h, x]g1,g2 = [h, x]−1

g2,g1
[37]. Using this, if an ele-

ment is βg1,g2 regular it is also βg2,g1 regular. Following the
same reasoning as before, we can then show that h is βg1,g2

regular if and only if g1 is βg2,h regular.
In our case, it is convenient to put the condition on h and

restrict h to be βg1,g2 regular while allowing g1 and g2 to be
general elements of G (although we could restrict g1 or g2

instead and obtain the same triples (g1, g2, h) when we take
all possible combinations). With this in mind, the resulting
measurement operators take the form∑

g1,g2∈G

∑
h∈Gg1 ,g2

ag1,g2,hCh(m)δ(ĝ(c1), g1)δ(ĝ(c2), g2).

The surface weight for Ch(m) can be calculated from the
relevant reference diagram, which is defined by the labels g1

and g2, using the diagrammatic rules. This means that we
could have a different surface weight for each g1 and g2 (and
each h). However, the coefficients ag1,g2,h already allow us to
have a different weight for each value of these labels. There-
fore, we can define the phase associated with the reference
diagram in the bottom-left of Fig. 27 to be one for any value
of g1, g2, and h, without missing any allowed operators. A
simple basis for this space of measurement operators is given
by the operators

T g1,g2,h(m) = Ch(m)δ(ĝ(c1), g1)δ(ĝ(c2), g2), (73)

where there is one such operator for each g1, g2 ∈ G and h ∈
Gg1,g2 .

Now, just as we did for the spherical measurement op-
erators, we want to take a basis that consists of orthogonal
projection operators. Each projector is labeled by group ele-
ments g1 and g2 of G as well as a βg1,g2 -projective irrep αg1,g2

of G. These irreps satisfy

αg1,g2 (x)αg1,g2 (y) = [x, y]g1,g2
αg1,g2 (xy).

The projectors are given by

Pg1,g2,α
g1 ,g2 (m) = 1√|G||Gg1,g2 |

∑
h∈Gg1 ,g2

χαg1 ,g2 (h)T g1,g2,h(m)

= 1√|G||Gg1,g2 |
∑

h∈Gg1 ,g2

χαg1 ,g2 (h)Ch(m)

× δ(ĝ(c1), g1)δ(ĝ(c2), g2), (74)

where χαg1 ,g2 is the character for irrep αg1,g2 (i.e., the trace of
the representative matrices). We prove that these are indeed

orthogonal projectors and can be obtained from the previous
basis of operators by an invertible transformation, in the Sup-
plemental Material [48] in Sec. S-III.

We see that the projector, and therefore the associated
topological charge, is labeled by the fluxes g1 and g2 around
the two handles of the torus in addition to a projective rep-
resentation that depends on these two fluxes. The simplest
type of excitation that would have both fluxes nontrivial would
be a link of two magnetic flux tubes. Note that when one of
these fluxes is trivial, corresponding to unlinked excitations,
the projective irrep αg1,g2 becomes a linear irrep (because
[x, y]g1,1G = [x, y]1G,g2 = 1). In that case, we find that the
topological charge is labeled by the flux and a linear irrep
charge, which matches our expectation for the untwisted case.
We therefore see that the cocycle only becomes relevant when
considering the charge of linked objects, so studying unlinked
objects is insufficient to determine the topological order of a
system.

We also note that the labels for the projectors in Eq. (74),
namely, two group elements g1 and g2 and a βg1,g2 -projective
irrep αg1,g2 , match the labels of the ground state basis for the
3-torus given in Ref. [37] in the case of Abelian groups. This
indicates that the number of topological charges measured
by a 2-torus surface matches the ground-state degeneracy on
the 3-torus, similar to how the number of charges measured
by a sphere (corresponding to point-like charge) matches the
ground-state degeneracy on S2 × S1, as we discussed earlier.
It is notable that the toroidal charge measurement operators
in this case measure the flux of both handles of the torus,
indicating that the correspondence between particle types and
the ground-state degeneracy of the 3-torus requires counting
linked excitations in addition to unlinked loops.

VI. CONCLUSION

We have constructed the ribbon and membrane operators
which produce the topological excitations in the twisted lat-
tice gauge theory model in (3 + 1)d for Abelian groups. In
particular we examined the membrane operators which pro-
duce flux tubes linked to an existing base loop, finding that
these are well described by projective irreps in addition to the
flux labels. We used these operators to study the three-loop
braiding relations previously studied using indirect methods
and found that the same projective irreps which label the
membrane operators also describe these braiding relations,
matching previous results. In addition, we found the fusion
rules which describe how two excitations combine into a
third, in terms of the projective irreps. Finally, we constructed
the projectors to definite topological charges for toroidal and
spherical surfaces, finding that the number of charges mea-
sured by a torus match the ground-state degeneracy of the
model on a 3-torus. Because the torus measures the flux about
two handles, this implies that the ground-state degeneracy
does not match the number of simple loop-like excitations,
but instead the number of loop-like excitations that may be
linked to different kinds of existing base loops. The allowed
loop-like excitations are different depending on the base loop,
so this enhances the number of types of excitation compared
with what we may naively expect.
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There are several interesting directions along which to
expand this work. The most obvious avenue is to consider
non-Abelian groups. While we can construct the membrane
operators for the flux tubes in such cases, it is more difficult to
find a good basis for these membrane operators that respects
their topological charge. In addition, when calculating the
braiding relations of two flux tubes while linked to a third
loop, we must account for both the conjugation of the flux
labels of the two loops as well as the transformation of the
charges attached to them. For non-Abelian groups, we know
from the untwisted case that the membranes will be different
before and after the two membranes intersect. This means that
we need to be able to define the membrane operators near their
boundaries, which we were able to avoid in the Abelian case.

Another possibility would be to consider models with
emergent fermions. While Dijkgraaf-Witten is conjectured to
include all topological phases in (3 + 1)d without emergent
fermions, the model must be generalized somewhat to allow
for such fermions [58]. There has already been significant
study of such models via field theory [59,60], by adding terms
that transmute the self-statistics of the emergent excitations. It
is not immediately clear how such excitations could be con-
structed using ribbon and membrane operators in a (3 + 1)d
lattice model.

Another feature realized in some field theory models
[26,55,56,58,60], but not the Abelian twisted lattice gauge
theory model, is nontrivial Borromean rings braiding. This
braiding motion describes a point-like particle braiding with
two loop-like excitations, such that the path of motion of the
point-like particle (with this path being a closed loop) and the
two loops together form Borromean rings. In this formation,
the linking number between any two of the three rings is
zero and yet the rings cannot be disentangled. This motion
measures the non-Abelian nature of point-loop braiding and
is trivial in the twisted lattice gauge theory model when the
group G ia Abelian. However, it can be realized for the field
theory models mentioned previously, even with Abelian G.

In this case nontrivial Borromean rings braiding has limited
compatibility with three-loop and four-loop braiding [26]. It
would be interesting to construct a lattice model which has
this feature, to see how the excitations differ in such a case. In
a lattice realization with nontrivial Borromean ring braiding, it
seems likely that linking two loop-like excitations may cause
them to be connected by a linking string, restricting their
motion and causing the limited compatibility with three-loop
and four-loop braiding.

Finally, it would be interesting to further study topological
charge and the topological charge projectors in this setting or
more generally. The toroidal charge measurement operators
depend on the sets of doubly twisted 2-cocycles derived from
the underlying 4-cocycle of the model. However, these sets
of 2-cocycles seem to be unique for each equivalence class
of 4-cocycles [22]. Therefore, the twisted lattice gauge the-
ory models are in one-to-one correspondence with the torus
charges. It is not known to the authors whether there is a
reason that this should be the case and that no more general
charges (for example, from higher genus surfaces) are needed
to distinguish the models, although it makes intuitive sense
that more general objects can be built from the simpler links
and point-like excitations.

ACKNOWLEDGMENTS

We thank S. Pace for helpful discussions about gauge the-
ory. This work was supported by the Natural Science and
Engineering Council of Canada (NSERC) Discovery Grant
No. RGPIN-2023-03296 and the Center for Quantum Ma-
terials at the University of Toronto (J.H. and Y.B.K.). Our
collaboration is a part of the effort in the Advanced Study
Group on “Entanglement and Dynamics in Quantum Matter”
in the Center for Theoretical Physics of Complex Systems at
the Institute for Basic Science (D.X.N. and Y.B.K.). D.X.N. is
supported by Grant No. IBS-R024-D1.

[1] J. M. Leinaas and J. Myrheim, On the theory of identical parti-
cles, Nuovo Cimento B 37, 1 (1977).

[2] F. Wilczek, Magnetic flux, angular momentum, and statistics,
Phys. Rev. Lett. 48, 1144 (1982).

[3] D. Arovas, J. R. Schrieffer, and F. Wilczek, Fractional statistics
and the quantum Hall effect, Phys. Rev. Lett. 53, 722 (1984).

[4] X. Chen, Z.-C. Gu, and X.-G. Wen, Local unitary trans-
formation, long-range quantum entanglement, wave function
renormalization, and topological order, Phys. Rev. B 82, 155138
(2010).

[5] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry pro-
tected topological orders and the group cohomology of their
symmetry group, Phys. Rev. B 87, 155114 (2013).

[6] X.-G. Wen, Topological order: From long-range entangled
quantum matter to a unified origin of light and electrons, ISRN
Condens. Matter Phys. 2013, 1 (2013).

[7] S. Doplicher, R. Haag, and J. E. Roberts, Local observables and
particle statistics I, Commun. Math. Phys. 23, 199 (1971).

[8] S. Doplicher, R. Haag, and J. E. Roberts, Local observables and
particle statistics II, Commun. Math. Phys. 35, 49 (1974).

[9] S. Rao, An anyon primer, arXiv:hep-th/9209066v3.
[10] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[11] C. Aneziris, A. Balachandran, L. Kauffman, and A. Srivastava,
Novel statistics for strings and string “Chern-Simon” terms, Int.
J. Mod. Phys. A 06, 2519 (1991).

[12] M. G. Alford, K.-M. Lee, J. March-Russell, and J. Preskill,
Quantum field theory of non-Abelian strings and vortices, Nucl.
Phys. B 384, 251 (1992).

[13] J. C. Baez, D. K. Wise, and A. S. Crans, Exotic statistics for
strings in 4d BF theory, Adv. Theor. Math. Phys. 11, 707 (2007).

[14] J. McCool, On basis-conjugating automorphisms of free
groups, Can. J. Math. 38, 1525 (1986).

[15] A. G. Savushkina, On the group of conjugating automorphisms
of a free group, Math Notes 60, 68 (1996).

035117-30

https://doi.org/10.1007/BF02727953
https://doi.org/10.1103/PhysRevLett.48.1144
https://doi.org/10.1103/PhysRevLett.53.722
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1155/2013/198710
https://doi.org/10.1007/BF01877742
https://doi.org/10.1007/BF01646454
https://arxiv.org/abs/hep-th/9209066v3
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1142/S0217751X91001210
https://doi.org/10.1016/0550-3213(92)90468-Q
https://doi.org/10.4310/atmp.2007.v11.n5.a1
https://doi.org/10.4153/cjm-1986-073-3
https://doi.org/10.1007/bf02308881


TWISTED LATTICE GAUGE THEORY: MEMBRANE … PHYSICAL REVIEW B 110, 035117 (2024)

[16] C. Damiani, A journey through loop braid groups, Expo. Math.
35, 252 (2017).

[17] C.-H. Lin and M. Levin, Loop braiding statistics in exactly sol-
uble three-dimensional lattice models, Phys. Rev. B 92, 035115
(2015).

[18] P. Bellingeri and A. Bodin, The braid group of a necklace, Math.
Z. 283, 995 (2016).

[19] C. Wang and M. Levin, Braiding statistics of loop excitations in
three dimensions, Phys. Rev. Lett. 113, 080403 (2014).

[20] S. Jiang, A. Mesaros, and Y. Ran, Generalized modular trans-
formations in (3 + 1)D topologically ordered phases and triple
linking invariant of loop braiding, Phys. Rev. X 4, 031048
(2014).

[21] J. C. Wang and X.-G. Wen, Non-Abelian string and particle
braiding in topological order: Modular SL(3,Z) representation
and (3 + 1)-dimensional twisted gauge theory, Phys. Rev. B 91,
035134 (2015).

[22] C. Wang and M. Levin, Topological invariants for gauge theo-
ries and symmetry-protected topological phases, Phys. Rev. B
91, 165119 (2015).

[23] J. Wang, X.-G. Wen, and S.-T. Yau, Quantum statistics and
spacetime surgery, Phys. Lett. B 807, 135516 (2020).

[24] A. Tiwari, X. Chen, and S. Ryu, Wilson operator algebras and
ground states of coupled BF theories, Phys. Rev. B 95, 245124
(2017).

[25] P. Putrov, J. Wang, and S.-T. Yau, Braiding statistics and link
invariants of bosonic/fermionic topological quantum matter
in 2 + 1 and 3 + 1 dimensions, Ann. Phys. (NY) 384, 254
(2017).

[26] Z.-F. Zhang and P. Ye, Compatible braidings with Hopf links,
multiloop, and Borromean rings in (3 + 1)-dimensional space-
time, Phys. Rev. Res. 3, 023132 (2021).

[27] K. Walker and Z. Wang, (3 + 1)-TQFTs and topological insula-
tors, Front. Phys. 7, 150 (2012).

[28] C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon, Three-
dimensional topological lattice models with surface anyons,
Phys. Rev. B 87, 045107 (2013).

[29] X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski,
Anomalous symmetry fractionalization and surface topological
order, Phys. Rev. X 5, 041013 (2015).

[30] Z. Wang and X. Chen, Twisted gauge theories in three-
dimensional Walker-Wang models, Phys. Rev. B 95, 115142
(2017).

[31] A. Bullivant, M. Calcada, Z. Kadar, P. Martin, and J. F. Martins,
Topological phases from higher gauge symmetry in 3 + 1 di-
mensions, Phys. Rev. B 95, 155118 (2017).

[32] C. Delcamp and A. Tiwari, From gauge to higher gauge models
of topological phases, J. High Energy Phys. 10 (2018) 049.

[33] A. Bullivant and C. Delcamp, Excitations in strict 2-group
higher gauge models of topological phases, J. High Energy
Phys. (online) 01 (2020) 107.

[34] A. Bullivant, M. Calcada, Z. Kadar, P. Martin, and J. Faria
Martins, Higher lattices, discrete two-dimensional holonomy
and topological phases in (3 + 1)D with higher gauge symme-
try, Rev. Math. Phys. 32, 2050011 (2020).

[35] J. Huxford and S. H. Simon, Excitations in the higher-lattice
gauge theory model for topological phases. I. Overview, Phys.
Rev. B 108, 245132 (2023).

[36] R. Dijkgraaf and E. Witten, Topological gauge theories and
group cohomology, Commun. Math. Phys. 129, 393 (1990).

[37] Y. Wan, J. C. Wang, and H. He, Twisted gauge theory model
of topological phases in three dimensions, Phys. Rev. B 92,
045101 (2015).

[38] X.-G. Wen, Exactly soluble local bosonic cocycle mod-
els, statistical transmutation, and simplest time-reversal
symmetric topological orders in 3 + 1 dimensions, Phys. Rev.
B 95, 205142 (2017).

[39] A. Bullivant and C. Delcamp, Tube algebras, excitations statis-
tics and compactification in gauge models of topological
phases, J. High Energy Phys. (online) 10 (2019) 216.

[40] T. Lan, L. Kong, and X.-G. Wen, Classification of (3 + 1)D
bosonic topological orders: The case when pointlike excitations
are all bosons, Phys. Rev. X 8, 021074 (2018).

[41] F. Bais, Flux metamorphosis, Nucl. Phys. B 170, 32 (1980).
[42] L. M. Krauss and F. Wilczek, Discrete gauge symmetry in

continuum theories, Phys. Rev. Lett. 62, 1221 (1989).
[43] F. A. Bais, P. van Driel, and M. de Wild Propitius, Quantum

symmetries in discrete gauge theories, Phys. Lett. B 280, 63
(1992).

[44] M. W. de Propitius and F. A. Bais, Discrete gauge theories,
in Particles and Fields, edited by G. Semenoff and L. Vinet
(Springer, New York, 1999), pp. 353–439.

[45] W. Ehrenberg and R. E. Siday, The refractive index in electron
optics and the principles of dynamics, Proc. Phys. Soc., London,
Sect. B 62, 8 (1949).

[46] Y. Aharonov and D. Bohm, Significance of electromag-
netic potentials in the quantum theory, Phys. Rev. 115, 485
(1959).

[47] B. Yoshida, Gapped boundaries, group cohomology and fault-
tolerant logical gates, Ann. Phys. (NY) 377, 387 (2017).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.035117 for algebraic proofs that sup-
port the results in the main text. This includes a reference to
J. Huxford and S. H. Simon, Excitations in the higher-lattice
gauge theory model for topological phases. III. The (3 + 1)-
dimensional case, Phys. Rev. B 109, 035152 (2024).

[49] A. Y. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[50] M. A. Levin and X.-G. Wen, String-net condensation: A physi-
cal mechanism for topological phases, Phys. Rev. B 71, 045110
(2005).

[51] U. Pachner, Shellings of simplicial balls and P.L. manifolds
with boundary, Discrete Math. 81, 37 (1990).

[52] U. Pachner, P.L. homeomorphic manifolds are equivalent by
elementary shellings, Eur. J. Comb. 12, 129 (1991).

[53] M. R. Casali, A note about bistellar operations on PL-manifolds
with boundary, Geometriae Dedicata 56, 257 (1995).

[54] N. B. Melnikov and B. I. Reser, Projective representations,
in Space Group Representations: Theory, Tables and Ap-
plications (Springer International Publishing, Cham, 2022),
pp. 41–53.

[55] AtMa P. O. Chan, P. Ye, and S. Ryu, Braiding with Borromean
rings in (3 + 1)-dimensional spacetime, Phys. Rev. Lett. 121,
061601 (2018).

[56] Z.-F. Zhang, Q.-R. Wang, and P. Ye, Non-Abelian fusion,
shrinking, and quantum dimensions of Abelian gauge fluxes,
Phys. Rev. B 107, 165117 (2023).

[57] H. Bombin and M. A. Martin-Delgado, A family of non-
Abelian Kitaev models on a lattice: Topological condensation
and confinement, Phys. Rev. B 78, 115421 (2008).

035117-31

https://doi.org/10.1016/j.exmath.2016.12.003
https://doi.org/10.1103/PhysRevB.92.035115
https://doi.org/10.1007/s00209-016-1630-0
https://doi.org/10.1103/PhysRevLett.113.080403
https://doi.org/10.1103/PhysRevX.4.031048
https://doi.org/10.1103/PhysRevB.91.035134
https://doi.org/10.1103/PhysRevB.91.165119
https://doi.org/10.1016/j.physletb.2020.135516
https://doi.org/10.1103/PhysRevB.95.245124
https://doi.org/10.1016/j.aop.2017.06.019
https://doi.org/10.1103/PhysRevResearch.3.023132
https://doi.org/10.1007/s11467-011-0194-z
https://doi.org/10.1103/PhysRevB.87.045107
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1103/PhysRevB.95.115142
https://doi.org/10.1103/PhysRevB.95.155118
https://doi.org/10.1007/jhep10(2018)049
https://doi.org/10.1007/JHEP01(2020)107
https://doi.org/10.1142/S0129055X20500117
https://doi.org/10.1103/PhysRevB.108.245132
https://doi.org/10.1007/BF02096988
https://doi.org/10.1103/PhysRevB.92.045101
https://doi.org/10.1103/PhysRevB.95.205142
https://doi.org/10.1007/JHEP10(2019)216
https://doi.org/10.1103/PhysRevX.8.021074
https://doi.org/10.1016/0550-3213(80)90474-5
https://doi.org/10.1103/PhysRevLett.62.1221
https://doi.org/10.1016/0370-2693(92)90773-W
https://doi.org/10.1088/0370-1301/62/1/303
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1016/j.aop.2016.12.014
http://link.aps.org/supplemental/10.1103/PhysRevB.110.035117
https://doi.org/10.1103/PhysRevB.109.035152
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1016/0012-365X(90)90178-K
https://doi.org/10.1016/S0195-6698(13)80080-7
https://doi.org/10.1007/BF01263566
https://doi.org/10.1103/PhysRevLett.121.061601
https://doi.org/10.1103/PhysRevB.107.165117
https://doi.org/10.1103/PhysRevB.78.115421


HUXFORD, NGUYEN, AND KIM PHYSICAL REVIEW B 110, 035117 (2024)

[58] T. Lan and X.-G. Wen, Classification of 3 + 1D bosonic topo-
logical orders (II): The case when some pointlike excitations are
fermions, Phys. Rev. X 9, 021005 (2019).

[59] Q.-R. Wang, M. Cheng, C. Wang, and Z.-C. Gu, Topologi-
cal quantum field theory for Abelian topological phases and

loop braiding statistics in (3 + 1)-dimensions, Phys. Rev. B 99,
235137 (2019).

[60] Z.-F. Zhang, Q.-R. Wang, and P. Ye, Continuum field theory
of three-dimensional topological orders with emergent fermions
and braiding statistics, Phys. Rev. Res. 5, 043111 (2023).

035117-32

https://doi.org/10.1103/PhysRevX.9.021005
https://doi.org/10.1103/PhysRevB.99.235137
https://doi.org/10.1103/PhysRevResearch.5.043111

