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Quantum oscillation signatures of interface Fermi arcs
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Fermi-arc surface states of Weyl semimetals exhibit a unique combination of localization to a surface and the
connection to the bulk Weyl fermions. We predict characteristic quantum-oscillation signatures of Fermi arcs
in the tunnel mangetoconductance across an interface between two Weyl semimetals. These oscillations stem
from a momentum-space analog of Aharonov-Bohm interference of electrons moving along the interface Fermi
arcs, driven by an external magnetic field normal to the interface. The Fermi arcs’ connection to the bulk enables
their characterization via transport normal to the interface, while their localization along the transport direction
manifests in a strong field-angle anisotropy of the oscillations. This combination distinguishes these oscillations
from conventional Shubnikov-de Haas oscillations and makes them identifiable even in the complex oscillation
spectra of real materials.
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I. INTRODUCTION

Weyl semimetals (WSMs) are a class of three-dimensional
topological semimetals that host pairs of topologically pro-
tected gapless points that can be described as Weyl fermions
at low energies [1–11]. A remarkable feature of Weyl fermions
is the chiral anomaly [12,13], which can be understood as
a spectral flow along the chiral zeroth Landau level dispers-
ing parallel to an applied magnetic field [14]. The boundary
manifestation of the bulk topology of WSMs are Fermi arcs—
lines of zero-energy surface states that connect projections
of opposite-chirality Weyl nodes within the surface Brillouin
zone [1,15].

An interface between two WSMs also features Fermi arcs
unless Weyl nodes of the same chirality from different WSMs
project on top of each other [16–22]. Interface Fermi arcs
either connect nodes of opposite chirality from the same
WSM (as in the case of surface Fermi arcs), which are
termed heterochiral connectivity, or nodes of identical chi-
rality from different WSMs, termed homochiral connectivity.
In the presence of a magnetic field normal to the interface
(the “longitudinal” direction), charge current carried by the
anomalous chiral Landau levels in longitudinal direction is
redirected along the Fermi arcs by the Lorentz force. For ho-
mochiral Fermi arcs, this leads to perfect transmission of the
anomalous charge current [22], while for heterochiral Fermi
arcs, it leads to perfect reflection and hence the vanishing of
the tunnel conductance. In both cases, the Fermi arcs bear a
unique combination of local and nonlocal qualities in that they
are localized to the interface but mediate transport normal to
it, i.e., along their localization direction [22–24].

Quantum oscillations, such as the Shubnikov-de Haas
(SdH) or de Haas-van Alphen effects, constitute standard ex-
perimental tools for mapping Fermi surfaces of metals [25].
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Identification of Fermi arcs using these well-established tech-
niques has, however, been challenging [26–30]. In principle,
Fermi arcs are detectable via quantum oscillations stemming
from the so-called Weyl orbit [26,31]—the cyclotron orbit
of a thin WSM slab that involves the coherent motion along
Fermi arcs on both surfaces of the slab, connected by chiral
Landau levels across the slab width. However, in this case
the characteristic nonlocality manifests itself only in the slab-
width dependence of the oscillation shift, which, alongside
the requirement of a small slab width to ensure phase coher-
ence, makes the experimental identification of Fermi arcs very
difficult [27,28]. Furthermore, typical WSM materials exhibit
additional Fermi pockets, whose trivial orbits also contribute
to the full quantum oscillation spectrum.

In this article, we predict a characteristic quantum-
oscillation signature of Fermi arcs in the tunnel magneto-
conductance. We consider interfaces between two WSMs
where Fermi arcs exhibit two or more close encounters, as
exemplified in Fig. 1. Such a Fermi-arc configuration can
be experimentally realized, e.g., at an interface between two
weakly coupled WSMs with curved Fermi arcs. These can
be two different WSM materials or two slabs of the same
material rotated with respect to each other, such as rotated
TaAs (001) surfaces [32,33] shown in Fig. 1(c). We predict
oscillations in the magnetoconductance as a function of the
inverse longitudinal magnetic-field component, with the os-
cillation frequency proportional to the momentum-space area
enclosed by the Fermi arcs. These originate from the magnetic
breakdown at close encounters [34–36] resulting in multi-
ple effective paths [37–39] connecting interface projections
of the Weyl nodes, leading to Aharonov-Bohm-like interfer-
ence in momentum space. The resulting quantum oscillations
of the tunnel magnetoconductance are fundamentally dif-
ferent from the possibly coexisting SdH oscillations that
stem from Landau-quantized levels passing the Fermi energy.
These are experimentally identifiable by a strong field-angle
anisotropy—owing to a dependence only on the longitudinal
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FIG. 1. Fermi-arc configurations (black lines) with (a) homochi-
ral and (b) heterochiral connectivity, exhibiting two close encounters
at a weakly coupled interface between two WSMs. The projections
of Weyl nodes from the two WSMs are depicted as yellow/blue
circles (chirality indicated as +/−), the arrows indicate the direction
of motion in a magnetic field out of the plane, and the (green) shaded
region between the two close encounters determines the frequency
of quantum oscillations. The inset shows a single close encounter
with the minimum separation � and the opening angle 2θ . (c) Long
crescent Fermi arcs of two TaAs (001) surfaces from ab initio calcu-
lations [33] rotated by 20◦ with respect to each other.

component of the magnetic field and thus a direct consequence
of the aforementioned local/nonlocal character of the Fermi
arcs—and the characteristic damping of higher harmonics. In
the following, we describe the proposed setup, compute the
tunnel magnetoconductance semiclassically, and compare the
predictions to exact numerical simulations on a lattice model.

II. FERMI-ARC MEDIATED TUNNEL
MAGNETOCONDUCTANCE

We consider the tunnel magnetoconductance across an in-
terface between two WSMs, for which at least some of the
projections of Weyl nodes onto the interface Brillouin zone
do not overlap, such that the interface features Fermi arcs
connecting well-separated Weyl-node projections. More pre-
cisely, we require this separation to be larger than the inverse
magnetic length �−1

B ≡ √
eB/h̄ (∼ 0.02 Å−1 for the maximum

realistic magnetic field of B = 30 T). The interface Fermi arcs
result from the hybridization of the surface Fermi arcs of the
two WSMs, so that their exact form depends on the specific
Fermi-arc arrangements of the two coupled surfaces and the
coupling strength. If the surface Fermi arcs from the two sides
intersect, then a weak coupling generally leads to an avoided
crossing in momentum space [see Figs. 1(a) and 1(b)], which
we term a “close encounter.”

A pair of interface Fermi arcs contributes the tunnel con-
ductance [22]

G = e2

h
NBT, (1)

where e2/h is the quantum of conductance, NB ∝ B is the
Landau level degeneracy (number of flux quanta through the
interface), and 0 < T < 1 is the total transmission probability
along the Fermi arcs. For a pair of homochiral (heterochi-
ral) Fermi arcs that are well separated everywhere (i.e., for
separations � �−1

B ), the transmission probability is T = 1
(T = 0). In the former case, this implies a universal conduc-
tance independent of band details such as Fermi-arc shape,
Fermi velocity, and Fermi energy. However, if two Fermi arcs
approach within ∼�−1

B , then magnetic breakdown leads to sup-
pression (enhancement) of the transmission probability for the
homochiral (heterochiral) Fermi arcs. In particular, for large
fields, this results in T ∝ 1/B, leading to the saturation of
the conductance [22]. Unlike the contributions of trivial states
to the magnetoconductance, the Fermi-arc contribution does
not show SdH quantum oscillations because the Fermi-arc
mediated current is carried exclusively by the lowest Landau
levels of Weyl Fermions at all field strengths [40].

We now show that anomalous, non-SdH quantum oscilla-
tions occur for Fermi-arc arrangements with more than one
close encounter. In case of two encounters, the two possible
interface Fermi arc configurations are depicted in Figs. 1(a)
and 1(b), which exhibt homochiral and heterochiral connectiv-
ity, respectively. In the absence of magnetic breakdown, these
two configurations would yield G = (e2/h)NB and G = 0,
respectively (in analogy with the single-encounter case [22]).
We next compute the transmission probability in the presence
of magnetic breakdown. For simplicity, we focus on the two
scenarios depicted in Figs. 1(a) and 1(b) but our analysis can
be straightforwardly extended to more nodes and/or more
encounters.

III. SEMICLASSICAL ANALYSIS

To compute the transmission amplitudes, we employ
a semiclassical approach away from the close encounters
coupled with the full quantum problem near them. Semi-
classically, the electron wavepackets incident on the interface
at a Weyl-node projection are driven along the Fermi
arc by the Lorentz force until they are absorbed by an-
other Weyl node of identical/opposite chirality, leading to
transmission/reflection across the interface. The quantum ef-
fects are encoded in the path-dependent Aharonov-Bohm, de
Broglie, and Maslov phases picked up by them [41]. Near a
close encounter, the description of magnetic breakdown maps
onto the Landau-Zener problem [36,42]. Thus, the splitting of
electron trajectories is described by the S-matrix [36]

S(B) =
(√

1 − e−γ eiα −i
√

e−γ

−i
√

e−γ
√

1 − e−γ e−iα

)
, (2)

where γ = B0/B, e−γ is the tunneling probability, and

α = π

4
+ γ

2π

[
1 − ln

( γ

2π

)]
+ arg �

(
iγ

2π

)
(3)

is the additional phase acquired by a state when it does not
tunnel. The scattering process is governed by a single free
parameter, the breakdown field B0, which is determined by
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the geometry of the close encounter as

B0 = π

4
�2 tan θ, (4)

where θ is the angle of intersection between the two Fermi
arcs in the decoupled limit and � is the minimum separation
[see inset of Fig. 1(a)]. The total transmission amplitude is the
sum over all paths weighted with the scattering amplitudes of
the encounters given in (2) and phase factors stemming from
motion along the connecting Fermi-arc segments.

For the heterochiral Fermi-arc configuration with two iden-
tical encounters depicted in Fig. 1(b) (see the Supplemental
Material (SM) [43] for a detailed derivation), the sum over
two possible paths leads to the transmission probability

Thet = 2e−γ (1 − e−γ )[1 + cos(β − 2α)], (5)

where

β = A
B

+ π. (6)

Here, β is the difference between the de Broglie and
Aharonov-Bohm phases acquired along the two paths between
the close encounters, given by the momentum space area A
enclosed by the Fermi arcs between the two points of min-
imum separation at the Fermi level. The additional π in β

is a Maslov phase [41] corresponding to the two classical
turning points encountered in going around the loop. The
magnetoconductance oscillates as a function of B−1, with
a slowly varying envelope given by T max

het = 4e−γ (1 − e−γ ).
For B → 0, we get an exponentially suppressed Thet 	 4e−γ ,
vanishing as expected for interface Fermi arcs connecting the
nodes from the same WSM. For B → ∞, T max

het ≈ 4B0/B, so
that the conductance saturates at a value proportional to B0.

For the homochiral configuration [Fig. 1(a)], there are in-
finitely many paths leading to transmission, corresponding to
tunneling into the loop of zero modes, traversing it arbitrarily
many times, and finally tunneling out of it on the same side
of the loop. Summing over these possibilities, we obtain the
transmission probability as

Thom = 1 − e−2γ

e−2γ + 2(1 − e−γ )[1 − cos(β + 2α)]
, (7)

where β is again given by Eq. (6). The difference in the
sign of α originates from the opposite signs of the Landau-
Zener phases acquired by the two Fermi arcs involved in a
close encounter. The magnetoconductance also oscillates as
a function of B−1, with the envelope given by T max

hom = 4(1 −
e−γ )/(2 − e−γ )2. For B → 0, we get Thom = 1 as expected for
homochiral Fermi arcs, leading to a linear-in-B magnetocon-
dutance. The limit B → ∞ again leads to saturation of the
magnetoconductance T max

hom ≈ 4B0/B.
In Fig. 2, we plot the conductance [given by Eq. (1)]

as well as the tunnel probability and its Fourier transform
for a specific value of parameters and compare them with
numerical simulations on a lattice model (detailed below).
While the conductance shows qualitatively similar features
for both homochiral and heterochiral connectivities [44], they
can be easily distinguished by the Fourier transform. For
the heterochiral connectivity, as the oscillations result from
the interference of only two paths, the Fourier transform
exhibits a single peak, with the frequency corresponding to

FIG. 2. Left column: Conductance as a function of magnetic field
for heterochiral (top row) and homochiral (bottom row) connectivity
obtained from analytics (solid orange lines) and numerics (dashed
blue lines). Right: Fourier transform of tunnel probability T̃ (
)
normalized to T̃ (A) = 1 [inset shows T (1/B)]. The dashed black
line shows the analytically obtained damping of higher harmonics.
Model parameters are κ = 0.07 and εF = 0.1 (others in text).

the area A enclosed between the two Fermi arcs. On the
other hand, for homochiral connectivities, the trivial loop con-
necting the homochiral Fermi arcs can be traversed multiple
times (similar to SdH oscillations), leading to harmonics at
frequencies nA. In contrast to SdH oscillations, however, for
each traversal of the loop, there is a nonzero probability of
tunneling out of the loop to the opposite Fermi arc, leading
to reflection from the interface. Thus, the higher harmonics
are damped, with the height of the nth peak proportional to
[(n/2 + 1) − (n/2 + 1/2)], where (z) = �′(z)/�(z) is
the digamma function (see the SM [43] for the derivation).
This damping profile exhibits a long tail and should be visible
even for small A.

In our analysis, we assumed that the two encounters are
identical; the qualitative behavior of the quantum oscillations
is unchanged for the case of two different encounters, as we
show in the SM [43]. The lower envelope of oscillations will
deviate from zero in this case, as the destructive interference
of the now differently weighted paths will no longer lead to
perfect cancellation.

IV. LATTICE MODEL AND NUMERICAL RESULTS

We compare our analytical predictions with a numeri-
cal simulation on an explicit lattice model, for which we
compute the model-specific parameters �, θ , and A that enter
the analytical formula, so that analytics and numerics can be
compared without any fitting parameters. We consider a Bloch
Hamiltonian of the form [45]

H(k) = Hx(kx ) + ηy(k⊥)τ y + ηz(k⊥)τ z, (8)

where the Pauli matrices τ a represent a pseudospin degree of
freedom and

Hx(kx ) = sin kxτ
x + (1 − cos kx )τ z. (9)

The lattice constant and the hopping strength along x are set to
unity. This lattice model has Weyl nodes in the kx = 0 plane
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at transverse momenta k⊥ that satisfy ηy(k⊥) = ηz(k⊥) = 0.
For a surface normal to x, the Fermi arcs are given by [45]
ηy(k⊥) = 0, which exist only for lattice momenta satisfying
ηz(k⊥) < 0.

We consider an interface between two WSMs that are de-
scribed by the lattice model above with

ηA
y (k⊥) = ξA(cos ky − cos by + ζA sin kz − sin bz ),

ηA
z (k⊥) = cos bz − cos kz, (10)

where A ∈ {L, R}, by, bz ∈ (0, π ), and ξA, ζA ∈ {±1}. The
two WSMs have Weyl nodes at kA = (0,±by, ζAbz ) with
chiralities χ = ±ξAζA. We model the tunnel junction by mod-
ulating the hopping along x at the interface by a factor
0 � κ � 1. To ensure that in the decoupled limit (κ = 0),
the Fermi arcs of the two sides intersect at two points, we
set ζL = −ζR = −1. The intersection point is then given by
k⊥ = (±b0, 0) with b0 ≡ cos−1(cos by + sin bz ). For κ > 0,
the Fermi arc connectivity is homochiral if ξL = −ξR = 1 and
heterochiral if ξL = ξR = 1. We hereafter set by = 3π/4 and
bz = π/2 so that b0 = cos−1(1 − 2−1/2) ≈ 0.4π .

We obtain θ by linearizing the Fermi arc contours
ηL/R

y (k⊥) = 0 about the intersection points (±b0, 0). This
yields qz ≈ −ζL/R sin b0qy, so that θ is given by tan θ =
|qz/qy| = | sin b0| (tan θ = |qy/qz| = | csc b0|) for homochiral
(heterochiral) connectivity. To compute � and A, we em-
ploy generalized transfer matrices [45,46] as detailed in the
SM [43]. This yields an implicit expression for the interface
Fermi arcs in terms of ε, k⊥, and κ . Using the fact that the
minimum separation �(κ ) occurs along the lines kz = 0 and
ky = ±b0 for the homochiral and heterochiral cases, respec-
tively, we obtain

�hom(κ ) = cos−1(cos b0 − κ ) − cos−1(cos b0 + κ )

≈ 2κ csc b0 + O(κ3), (11)

and

�het(κ ) = 2

[
cos−1

(
κ

1 + κ2

)
− tan−1

(
1 − κ2

2κ

)]
≈ 2κ + O(κ3). (12)

The computation of A is analytically intractable, so that
we obtain it by numerically integrating the implicit condi-
tion for the Fermi arcs at ε = εF . Inserting the expressions
for � and tan θ into Eq. (4), we obtain the breakdown
field which, together with A, determines the analytic mag-
netoconducatance via Eqs. (5) and (7) inserted into (1).
The exact numerical computation of the magnetoconduc-
tance is performed using the Kwant package [47]. We find
perfect agreement between the analytics and numerics with-
out any fitting parameter, as exemplified in Fig. 2, for the
relevant range of parameters κ , εF , and B, set by the require-
ment A � l−2

B ∼ l−2
B0

to ensure observable oscillations (not

too small oscillation frequencies) and uncoupled Weyl-node
projections.

V. DISCUSSION AND CONCLUSIONS

We have demonstrated anomalous quantum oscillations
in the tunnel magnetoconductance across a Weyl semimetal
interface, arising from a momentum-space Aharonov-Bohm
interference, enabled by magnetic breakdown in Fermi-arc
networks. As the oscillations appear in the electron transport
normal to the interface, and thus along the Fermi-arc localiza-
tion direction, they exemplify the unique combination of local
and nonlocal qualities of Fermi arcs.

An experimental fingerprint of the anomalous oscillations
is a field-angle anisotropy: since the Fermi-arc contributions
only depend on the longitudinal field component, the oscilla-
tion frequency is proportional to 1/ cos θ , with θ being the
angle between the the magnetic field and the current. This
distinguishes them from other quantum oscillations that may
arise from various two- or three-dimensional trivial Fermi
pockets. The former do not contribute to transport along
their localization direction, while the latter do not have a
frequency proportional to 1/ cos θ , which is characteristic
for two-dimensional Fermi surfaces. This Fermi-arc signature
should thus be better accessible than the width dependence of
SdH oscillation shifts of Weyl orbits.

Further peculiarities lie in the behavior of higher harmonics
of the anomalous oscillations, which, moreover, allow to dis-
tinguish different Fermi-arc connectivities. For heterochiral
connectivity, the spectrum does not feature higher harmonics
(unlike the SdH oscillations), while for homochiral connectiv-
ity, the higher harmonics feature unusual damping stemming
from magnetic breakdown.

As the Fermi arc contribution to quantum oscillations
requires coherent transport along the full loop of interface
states, we expect them to be sensitive to temperature and
disorder-induced decoherence, similar to conventional SdH
oscillations [25]. The real-space distance traversed by the
electron while completing n loops of length K is nl2

BK . For
K ∼ 1 nm−1 [the order of the loop for the TaAs twisted
surfaces in Fig. 1(c)] this gives a coherence length of
∼n × 700 nm/B[T] for the observation of the nth harmonic,
which makes an observation of the first few harmonics real-
istic for available sample qualities and field strengths [48].
These constraints on coherence are less stringent than those
required for the observation of Weyl orbits, making the
anomalous quantum oscillations a more suitable probe for
investigating Fermi arc connectivities.
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