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Dual-band topological large-area waveguide transport in photonic heterostructures
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Recent advances in all-dielectric topological photonics offer unprecedented opportunities for achieving robust
waveguides. However, most topological waveguides are localized at small areas around the interfaces and
usually operate in a single frequency window, leading to the low-throughput energy transmission over a
narrow bandwidth. Here we report on the implementation of a dual-band topological large-area waveguide in
heterostructures based on valley photonic crystals, in which the bandwidths are effectively widen by exploiting
the dual-band topology. Inherited from the valley topology, the topological large-area waveguides exhibit the
valley-locking effect at two separate frequency windows and are robust against sharp corners and defects. We
also observe intriguing topological refractions of the topological large-area waveguides into the ambient space
at zigzag and armchair terminations. Our work highlights both the tunable width and the large bandwidth of
topological waveguides, paving the way for topological photonic integrated circuits with high performance and
multifunctionality.
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I. INTRODUCTION

Since Haldane and Raghu transferred the quantum Hall
effect to the photonic systems [1,2], the topology study in
photonics has attracted much attention and given birth to
an emerging interdisciplinary study of topological photonics
[3–7]. Different from frequency and polarization, topology
provides an alternative degree of freedom to manipulate
electromagnetic waves. A representative example is the topo-
logically protected edge states featured with unidirectionality
and backscattering immunity in photonic quantum Hall sys-
tems [8,9], which are highly desirable in guiding waves.
Nevertheless, the realization of photonic quantum Hall sys-
tems usually relies on specific materials and requires the
breaking of time-reversal symmetry. Hence, all-dielectric
photonic topological crystalline insulators with time-reversal
symmetry, which take full advantage of crystalline sym-
metry and get rid of material limitation, have attracted
much attention [10–19]. To date, various photonic topologi-
cal crystalline insulators with the different topological edge
states, including photonic valley Hall insulators with topo-
logical kink states [14–16], photonic Z2 topological insulators
with pseudospin-dependent edge states [10–13], and photonic
Floquet topological insulators with anomalous edge states
[17–19], have been extensively studied.

Although all these topological edge states are beneficial
for guiding waves, a common shortage is that only a small
area around the strip boundary is utilized to collect and
transfer energy and hence this limits the high-throughput
robust energy transmission to a relatively low level. Very
recently, a sandwichlike structure composed of valley sonic
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crystals was proposed to support large-area waveguide modes
[20], providing a solution for achieving high-capacity en-
ergy transmission. Following this pioneering work, photonic
unidirectional large-area waveguide modes [21–23] and
valley-locked waveguide modes [24–26] were subsequently
realized in heterostructures of topological photonic crystals
(PhCs), largely advancing the manipulation of electromag-
netic waves. Nevertheless, the operating bandwidth of these
topological waveguides depends on the size of the band gap
and the width of the waveguide. In particular, the operating
bandwidth decreases rapidly as the waveguide’s width in-
creases [20–26]. It seems that large-width waveguide modes
cannot have large operating bandwidths when using photonic
topological heterostructures, which hinders their application
in broadband photonic devices. On the other hand, owing to
the bosonic nature of photons, photonic topological phenom-
ena can involve multiple band gaps, leading to multiple-band
topology [27–34]. For example, photonic topological edge
states can exist at two separate frequency windows, which
may enable multiplexing of topological edge states [27,30–
34] and edge-enhanced resonant nonlinear photonic effects
[28,29]. In fact, topological photonics with multiple topo-
logical band gaps provide an effective way to enlarge the
working frequency window of topological edge states and are
beneficial for the design of multifunctional photonic devices.

Inspired by multiple band topology, here we propose a
dual-band topological waveguide in the heterostructure of
valley PhCs, in which both the tunable mode width and the
extended working bandwidth of the topological waveguide
are addressed. The heterostructures consisting of three do-
mains of PhCs, namely, a PhC with Dirac points sandwiched
by two PhCs with different valley topologies, supporting a
topological large-area waveguide with a tunable mode width
at two separated band gaps. Inherited from the topological
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FIG. 1. (a) Schematic of two-dimensional hexagonal PhCs con-
sisting of triangular dielectric rods. �a1 and �a2 refer to the lattice
translation vectors. Inset: Zoom-in of the unit cell. L1 and L2 are
the side lengths of two triangular rods. (b) Photonic band structures
of PhC-B (solid lines) with L1 = L2 = 0.5a and PhC-A (dashed
lines) with L1 = 0.4a and L2 = 0.6a. Inset: The first Brillouin zone.
(c) Evolution of gaps I and II (shaded areas) as well as the fre-
quencies of the first, second, fourth, and fifth bands at the K point
(colored by solid lines) versus L1 and L2. (d) Phase distributions of
the electric field Ez at points K1–K4 for gap I (lower panel) and
points K5–K8 for gap II (upper panel). The anticlockwise (clock-
wise) phase-winding directions indicated by red (blue) arrows give
rise to the C3 symmetry eigenvalue of ei 2π

3 (ei 4π
3 ).

kink states in the valley PhCs, both large-area waveguide
modes at two separated band gaps exhibit the valley-locking
effect and are robust against the sharp corners and defects. We
further explore the refraction behaviors when the topological
large-area waveguide enters into the ambient space at the
zigzag/armchair termination at different working frequencies.

II. RESULTS AND DISCUSSION

A. Dual-band valley photonic crystals

To start, we first consider a two-dimensional hexagonal
PhC consisting of equilateral triangle dielectric rods. As
shown in Fig. 1(a), each unit cell is composed of six triangular
dielectric rods with relative permittivity ε = 13, of which the
centers coincide with the corners of the unit cell. Specifically,
these dielectric rods are divided into two groups according to
the maximal Wyckoff positions of C3 symmetry. As indicated
by the red and blue dots, the side length of the dielectric rods
located at c and b are denoted as L1 and L2, respectively, and
the summation of L1 and L2 is equal to the lattice constant a.
It is obvious that the crystalline symmetry is closely related
to the geometric ratio L1/L2. For concreteness, we consider
three typical PhCs with L1 = 0.4a, 0.5a, and 0.6a, denoted
as PhC-A, PhC-B, and PhC-C, respectively. Throughout this
work, we only consider the transverse-magnetic modes, and

all simulations are carried out with the radio-frequency mod-
ule of the commercial software COMSOL MULTIPHYSICS.

In Fig. 1(b), we present the photonic band structures of
PhC-B and PhC-A, which are plotted with solid and dashed
lines, respectively. It is seen that two Dirac points protected by
C3v symmetry emerge at the K point at different frequencies
for PhC-B, while for PhC-A, the C3v symmetry breaking leads
to the degeneracy lift of Dirac points and the formation of
two band gaps, i.e., gaps I and II [see the light blue and
red areas of Fig. 1(b)]. On the other hand, it is evident that
PhC-A has the same band structure as PhC-C since they are
mirror symmetric with respect to the x axis. Nevertheless,
they have different band topologies, as we elaborately discuss
later.

To show the topological phase transition, we plot the fre-
quency range of gaps I and II (see the shaded areas) as well as
the frequencies of the first, second, fourth, and fifth bands at
the K point the (see the colored solid lines) versus L1 and L2

in Fig. 1(c). It is obvious that both gaps I and II experience a
process of closing and reopening accompanying the increas-
ing (decreasing) of L1 (L2). In general, the topological phase
transition in an all-dielectric photonic crystalline insulator can
be captured by the symmetry reduction and restoration. Here
we utilize the topological index, which can be read from
the eigenvalue of the crystalline symmetry and serves as a
well-defined topological invariant [35], to characterize the gap
topology. According to Ref. [35], the topological index for
a crystalline insulator with C3 symmetry is given by χ =
([K1], [K2]), where [K1] ([K2]) refers to the number of band
differences between the K and � points with C3 eigenvalues
of 1 (ei 2π

3 ) below a specific band gap. As an illustration, we
present the phase distributions of eigenstates K1 to K8 in
Fig. 1(d), in which the phase-winding directions are indicated
by the arrows. Note that the anticlockwise and clockwise
phase-winding directions indicate the band at the K point
has C3 symmetry eigenvalues of ei 2π

3 and ei 4π
3 , respectively.

Hence, for gap I, the eigenstates K1 and K4 (K2 and K3)
feature anticlockwise (clockwise) phase-winding directions,
giving rise to [−1, 1] for PhC-A and [−1, 0] for PhC-C. In
contrast, for gap II, the eigenstates K5 and K8 (K6 and K7)
feature clockwise (anticlockwise) phase-winding directions,
and hence the topological indexes for PhC-A and PhC-C are
[−1, 0] and [−1, 1], respectively. Note that the topological
phases and the phase transition process in Fig. 1(c) can also be
captured by the effective Hamiltonian with massive/massless
Dirac terms (see Appendix A).

B. Design of topological large-area waveguide

We then construct a heterostructure by placing the three
domains A, B, and C together, which consists of PhC-A,
PhC-B and PhC-C, respectively [see Fig. 2(a)]. To simplify,
such heterostructures are denoted as A|Bx|C and x refers to
the layer number of domain B. Note that the previous studies
have focused on the domain wall formed by A|C, which sup-
ports the topological kink states around K and K ′ [14–16,27].
In Figs. 2(b) and 2(c), we display the eigenspectra of the
heterostructures A|B10|C at different frequency ranges by im-
plementing the eigencalculation. It is seen that, for both gaps
I and II, a gapless band indicated by the red line, transverses
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FIG. 2. (a) Schematic of heterostructure A|Bx|C formed by PhC-A, PhC-B, and PhC-C. (b), (c) Projected band structure of heterostructure
A|B10|C, in which the large-area waveguide and other guiding modes are clearly seen in (b) gap I and (c) gap II. Right panel: Two typical eigen
electric field patterns Ez of the topological large-area waveguide with high frequency and lower frequency at the K point. (d) Evolution of the
bandwidth of the large-area waveguide versus the layer of domain B. (e)–(g) Electric field pattern of heterostructure A|Bx|C with (e) x = 2,
(f) x = 6, and (g) x = 10, respectively, where the upper (lower) panel refers to the topological large-area waveguide at a frequency of 0.276 c

a
(0.576 c

a ).

at the K and K ′ points the entire bulk gap of domains A and C,
serving as a robust waveguide mode at two distinct frequency
ranges. Moreover, for gap I (II), the gapless waveguide modes
host a positive (negative) group velocity at the K point and
a negative (positive) group velocity at the K ′ point. These
bands are very similar to the topological kink states in the
domain wall structure A|C. In fact, it is demonstrated that
the large-area waveguide mode could be regarded as a com-
bination of the valley kink states in the domain wall A|C and
the bulk states in domain B (see Appendix B). Hence, it is
predicted that the topological large-area waveguides inherit all
the topological features of valley kink states like the valley-
momentum locking effect [24].

To visualize the topological large-area waveguide modes,
we further display two typical electric field patterns (indicated
by red and blue triangles) of gapless bands in the right panel
of Fig. 2(b). In contrast to the topological kink states between
A|C, the waveguide modes within both gaps I and II extended
into the entire domain B, verifying that gapless bands within
the gaps I and II are indeed the large-area waveguide modes
featured with valley-momentum locking. In addition to these
gapless bands, we also notice there exist other guiding wave
bands, denoted by 0+th, 0−th, 1+st, and 1−st, within gaps I
and II. However, all these bands are gapped and, therefore, do
not have the topological origin.

Moreover, since the width is another degree of freedom to
design the high-performance waveguide, we further study the
width of domain B on the bandwidth of large-area waveguide
modes. As shown in Fig. 2(d), the topological large-
area waveguide modes within higher- and lower-frequency

windows decrease accompanied by the increase of the layer
number of domain B, as demonstrated in Ref. [20]. Neverthe-
less, we remark that the reduction in a single bandwidth due to
the increase in the layer number of PhC-B can be compensated
by introducing the dual-band and even multiband topological
PhCs configurations. On the other hand, the increasing of the
layer number of PhC-B does not affect on the transmission
property of the large-area waveguide. To prove it, we present
the normalized electric field patterns of the topological large-
area waveguide modes at frequencies of 0.276 c

a and 0.576 c
a ,

with the layer number of domain B being equal to 2, 6,
and 10, respectively, in Figs. 2(e)–2(g). It is observed that
all these large-area waveguide modes exhibit nearly perfect
transmission.

C. Robustness of topological large-area waveguides

Inspired by the robustness of valley kink states in the A|C
domain wall systems, it is expected that the topological large-
area waveguide inherits the same features from the valley kink
states. To this end, we design a �-shaped large-area waveg-
uide of heterostructure A|B10|C to simulate the waveguide
bend. In addition, we also study the transmission performance
of the straight large-area waveguide with and without random
disorders. In simulations, we utilize the point sources (see
green dots) to excite large-area waveguide modes. Owing to
the impedance mismatch between the excitation wave and
the large-area waveguide mode, the transmissions are lower
than unity. Nevertheless, the nontrivial topological physics
of the large-area waveguide can be verified by comparing its
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(a) (d)

(b) (e)

(c) (f)

FIG. 3. (a), (d) Transmission of straight large-area waveguide
(black line) transmission of large-area waveguide with � configu-
ration (blue line) and with defects (red line), of which the frequency
is within (a) gap I and (d) gap II, respectively. (b), (e) Simulated
electric field pattern of large-area waveguide with � configuration
at a frequency of (b) 0.276 c

a and (e) 0.576 c
a under point excitation.

(c), (f) Simulated electric field pattern of large-area waveguide with
defects at a frequency of (c) 0.276 c

a and (f) 0.576 c
a under point

excitation.

transmission behavior in different situations. For the topolog-
ical large-area waveguide modes within the lower-frequency
window, it is seen that transmission of the straight waveguide
is nearly the same as that in the presence of sharp corners and
defects in Fig. 3(a). Furthermore, the nice uniform distribution
of the normalized electric field patterns at a frequency of
0.276 c

a , in Figs. 3(b) and 3(c), also demonstrates the robust-
ness aspect of the large-area waveguide modes. Similarly, for
the topological large-area waveguide modes within higher-
frequency windows, we get similar conclusions by checking
both transmission spectra [see Fig. 3(d)] and simulated elec-
tric field patterns of the �-shaped large-area waveguide [see
Fig. 3(e)] and the straight large-area waveguide with defects
[see Fig. 3(f)] at a frequency of 0.576 c

a . Moreover, we also
demonstrate the large-area waveguides have good fabrication
tolerance by implementing the disorder-robust testament in
Appendix C.

By utilizing the topological large-area waveguide, we fur-
ther construct two types of channel intersections to explore
intriguing wave routing effects. As schematically marked by
the dashed lines in Figs. 4(a) and 4(b), both the left and right
heterostructures are in the order of A|B|C (denoted as type-I),
while that in Figs. 4(d) and 4(e), the left (right) heterostruc-
tures are in the order of A|B|C (C|B|A) (denoted as type-II).
Note that four ports labeled as 1 to 4 are used for wave routing
and the transmissions from port j to port i are labeled as Si j .
To illustrate the performance of type-I channel intersection,
we placed the point sources at port 1 and excited topological

(a)

(c)

(d)

(f)

(e)

(b)

FIG. 4. (a), (b) Simulated electric field of type-I topological
channel intersections at a frequency of (a) 0.276 c

a , and (b) 0.576 c
a .

(c) Transmission spectra of type-I topological channel intersec-
tions. (d), (e) Simulated electric field of type-II topological channel
intersections at a frequency of (a) 0.276 c

a , and (b) 0.576 c
a . (f) Trans-

mission spectra of type-II topological channel intersections.

large-area waveguide modes at frequencies of 0.276 c
a (within

the gap I) and 0.576 c
a (within the gap II), respectively. The

excitation settings are the same as those in Fig. 3. It is seen
from the simulated electric fields in Figs. 4(a) and 4(b) that
the topological large-area waveguide modes excited at port 1
propagate to port 2 directly, which can be further verified by
the transmission in Fig. 4(c). Moreover, it is also seen that S31

and S41 experience a sudden increase at a higher-frequency
range of both gaps I and II. Note that the topological large-area
waveguide modes featuring the valley-momentum locking ef-
fect originated from the valley kink states formed by two
valley PCs, which are described by the effective Hamiltonian
with massive Dirac terms around the K (K ′) point. Hence, a
large deviation from the K (K ′) point, or the frequency of the
Dirac point, results in the approximation of the theoretical
model no longer being valid, which in turn invalidates the
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FIG. 5. (a), (b) Schematic of the outcoupling of the large-area
waveguide mode projected from the K valley through the zigzag
terminations at a frequency of (a) 0.276 c

a and (b) 0.586 c
a based on

the phase-matching condition. Bottom insets are the corresponding
simulated normalized electric field. (c), (d) Same as panels (a) and
(b) except that the termination is the armchair type.

valley-momentum locking effect in the topological large-area
waveguide.

In addition, for the type-II channel intersection, the
launched topological waveguide modes are suppressed in port
2 and output from ports 3 and 4 [see Figs. 4(d) and 4(e)]. This
is because the transport route from port 1 to port 2 has the
same valley, while the transport routes from port 1 to ports
3 and 4 have the opposite valley. The transmission spectra in
Fig. 4(f) show that S31 and S41 are nearly equivalent to each
other (approximately 0.5) owing to the symmetric structure,
namely, the energy from the input is equally separated into
two routes, and are larger than S21 within the lower- and
higher-frequency windows, which are in a good agreement
with the normalized electric field in Figs. 4(d) and 4(e). It is
also noteworthy that S31 and S41 are lower than S21 in lower-
and higher-frequency ranges of both gaps I and II, indicating
the breakdown of the valley-momentum locking effect. This
is because the frequencies of those states deviate significantly
from that of the Dirac point, making the approximation of the
effective Hamiltonian no longer satisfied, which in turn breaks
down the valley-momentum locking effect in the topological
large-area waveguide.

D. Topological refraction of the large-area waveguide mode

To further exploit the potential application, we study the
refraction behavior of the large-area waveguides in the free
space. Here we first consider the refraction behavior of the
large-area waveguide modes in the ambient space at the zigzag
termination [see Figs. 5(a) and 5(b)]. It is expected that the
direction of the outgoing beam into air depends on the type

of valley from which the large-area waveguide modes are pro-
jected. According to the projected band structures in Figs. 2(b)
and 2(c), the large-area waveguide modes that propagate from
left to right (the group velocity is positive) within lower
(higher) frequency are projected from the K (K ′) valley, in
which the value of wave vector is |K| = 4π

3a . Besides, the wave
vector in free space can be read from the equifrequency curve
in the air, namely, |k| = 2π f

c .
To illustrate the refraction behavior with zigzag termina-

tion, we draw the equifrequency curves in free space and
the first Brillouin zone on a scale that represents the relative
magnitudes of the wave vectors of the incident and refrac-
tion waves. By applying the phase-matching condition, i.e.,
k · ezig = K · ezig, to the termination interface parallel to ezig,
it is possible to quantitatively obtain the refraction angle of
the output beams. It is noteworthy that the above equation has
no solution when |k| < |K| cos 60◦. In other words, the large-
area waveguide mode at a frequency of 0.276 c

a , of which
the frequency f is smaller than the cutoff frequency fc = c

3a ,
cannot refract into the free space. As expected, the simulated
normalized electric field in Fig. 5(a) indicates that the large-
area waveguide mode cannot output into the free space and
has to be localized at the zigzag termination, which may find
potential application in the photonic cavity [36]. In contrast,
the large-area mode emerges and will be refracted into the
free space when the frequency of the incident wave f > fc.
As an example, the refraction angle θ1 in Fig. 5(b) can be
calculated by |k| cos(120◦ − θ1) = |K| cos 60◦, which gives
rise to a refraction angle of 64.7◦ at a frequency of 0.586 c

a .
The simulated result in Fig. 5(b) is in good agreement with
the theoretical analysis.

Following the above analysis, we then consider the large-
area waveguide modes in the ambient space at the armchair
termination [see Figs. 5(c) and 5(d)]. By applying the phase-
matching condition, the large-area waveguide mode excited
at the K valley at a frequency of 0.276 c

a will be refracted
vertically into free space [see Fig. 5(c)]. On the other hand,
for the excited large-area waveguide at a frequency of 0.586 c

a ,
the applying of the phase-matching condition shall result
in two refracted waves into the free space, of which both
refraction angles θ2 are 80.3◦. Nevertheless, the simulated
result shows another refracted wave vertically output into the
free space. This is because that armchair-type termination
introduces strong intervalley scattering and produces signif-
icant unwanted diffraction [14]. Hence, we demonstrate that
the large-area waveguide modes within lower- and higher-
frequency windows host different refraction behaviors.

III. CONCLUSION

To conclude, we propose a heterostructure made up of
dual-band valley PhCs to realize dual-band photonic topo-
logical waveguides. Inherited from the valley topology, the
waveguides featuring valley-momentum locking are robust
against sharp corners and defects. Owing to the bosonic nature
of photons, the topological waveguide can survive in two
separate band gaps and hence effectively extend the operating
bandwidth. Based on the double valley-locking phenomena,
we point out that topological waveguides within lower- and
higher-frequency ranges host different refraction behaviors.
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Gap II

Gap I
K1 K2 K4K3

K5 K6 K8K7

E
z

-Max

Max

(a)

(b)

FIG. 6. The corresponding electric field pattern and energy flow
distributions of (a) K5 to K8 and (b) K1 to K4.

Last but not least, it is also interesting to explore dual-band
or even multiband topological large-area waveguide modes
based on other topological photonics, e.g., photonic quantum
Hall or spin Hall insulators.

ACKNOWLEDGMENTS

The authors are thankful for support from the Natu-
ral Science Foundation of Guangxi Province (Grant No.
2023GXNSFAA026048), the faculty startup funding of
Ningbo University, and the National Natural Science Foun-
dation of China (Grant No. 11904060).

APPENDIX A: EFFECTIVE HAMILTONIAN
WITH MASSIVE/MASSLESS DIRAC TERM

AROUND THE K VALLEY

We first present the field patterns of K1 to K8 with energy
flow distributions in Fig. 6. It is seen that these energy flow
distributions display typical vortex profiles centered at the
two inequivalent Wyckoff positions b and c, which further
can be viewed as pseudospins analogous to A-B sublattice
in a graphene system. For example, eigenstates K1 and K4
(K2 and K3) exhibit anticlockwise (clockwise) energy flow
centered at Wyckoff position c(b) [see Fig. 6(b)]. We then la-
bel eigenstates that exhibit anticlockwise energy flow centered
at Wyckoff position c and clockwise energy flow centered at
Wyckoff position b at the ith gap as φi

c+ and φi
b− , respectively.

Hence, the topological phase transition in Fig. 1(c) can be
also captured by the effective Hamiltonian around the K valley
[15],

δHi
K = vDi(δkxσx + δkyσy) + miv

2
Diσz, (A1)

in the Hilbert space spanned by the vortex pseudospin (φi
c+ ,

φi
b− ). Note that the effective Dirac Hamiltonian around the K ′

valley can be obtained by applying the time-reversal opera-
tion. Here δk = k − kK refers to the displacement of the wave
vector k away from the K valley in the momentum space, vDi

is the group velocity of the ith gap, σ j ( j = x, y, and z) are
the Pauli matrices, and mi is the effective mass term of the
ith gap (which is dependent on the ratio L1/L2). Specifically,
the effective mass is proportional to the frequency difference

between φi
c+ and φi

b− , namely,

mi = ωi
c+ − ωi

b−

2v2
Di

, (A2)

where ωi
c+ and ωi

b− refer to the eigenfrequencies of eigenstates
φi

c+ and φi
b− , respectively. Hence, we have mI < 0 and mII > 0

for PhC-A, mI = mII = 0 for PhC-B, and mI > 0 and mII < 0
for PhC-C. For convenience, we introduce two positive pa-
rameters, MI > 0 and MII > 0, and let mC,I = MI and mA,II =
MII . Then, according the phase transition diagram, we have
mA,I = −mC,I = −MI < 0 and mA,II = −mC,II = MII > 0.

APPENDIX B: EXPLANATION OF THE LARGE-AREA
WAVEGUIDE MODE IN PHOTONIC

HETEROSTRUCTURES

Here we prove that the topological large area in our work
could be regarded as a combination of the valley kink states in
the domain wall A|C and the bulk states in domain B. We take
the large-area waveguide modes in gap I as an illustration. By
solving the eigenvalue equation δHI

Kψ = δω, the dispersion
relation can be derived as

δ2ω = v2
DI (δ2kx + δ2ky) + M2

I v2
DI . (B1)

Suppose that the thickness of domain B is L, the A|B interface
is located at y = L/2 and the B|C interface is located at y =
−L/2. According to the field pattern of the large-area mode,
it is seen that the exponential attenuates along the +y (−y)
direction in domain A(C), which requires

ky =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i
√

v2
DIδ

2kx + M2
I v4

DI − δ2ω

vDI
, y >

L

2
,

−
i
√

v2
DIδ

2kx + M2
I v4

DI − δ2ω

vDI
, y < −L

2
.

(B2)

It is evident that a specific solution with δω = vDδkx and
ψABC = (1, 1)T , or in coordination with representation

ψABC ∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eiδkxxe−MI vDI (y− L
2 ), y >

L

2
,

eiδkxx,
L

2
� y � −L

2
,

eiδkxxeMI vDI (y+ L
2 ), y < −L

2
,

(B3)

can easily be identified, which satifies δHKψ = δωψ in all
domains and is continuous at their boundaries. The calculated
velocity of the topological large-area waveguide mode is the
same as that of the bulk waves in domain B, indicating that the
large-area waveguide mode can only propagate along +x due
to the positive slope.

APPENDIX C: DISORDER-ROBUSTNESS TESTAMENT

According to the symmetry requirement and Fig. 1, the
Dirac point in domain B forms only at L1 = L2. Nevertheless,
the small fluctuations between L1 and L2 in domain B do
not disrupt the nice uniform distribution of the electric field.
To prove it, we implement a transmission testament of the
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FIG. 7. (a), (e) The transmission of straight topological large-
area modes in the presence (β �= 0)/absence (β = 0) of disorders
for (a) gap I and (e) gap II, respectively. Typical normalized elec-
tric field patterns of topological large-area modes at frequencies of
(b)–(d) 0.276 c

a and (f)–(h) 0.576 c
a with (b), (f) β = 0.01, (c), (e)

β = 0.02, (d), (h) β = 0.05.

topological large-area waveguide in the presence/absence of
small fluctuations of PhC-B, in which the small fluctuations
are created by introducing the side length of PhC-B randomly.

We define the side length disorder as δi = βξia, where β

refers to the side length disorder factor determining the over-
all degree of disorder, ξi ∈ [−1, 1] is a random number that
follows a standard normal distribution, namely, ξi ∼ N (0, 1),
and the subscript i is the order of the triangular dielectric rod
in domain B. We then calculate the transmission of topological
large-area waveguide modes in the presence of small fluctua-
tions of the side length in PhC-B. We consider three situations,
i.e., β = 0.01, 0.02, and 0.05 to simulate different side length
fluctuations. The results are presented in Fig. 7. Compared
with the transmission of straight topological large-area waveg-
uide modes, it is seen that the transmission of topological
large-area waveguide modes in the presence of small fluc-
tuations, e.g., β = 0.01, indicated by red lines in Figs. 7(a)
and 7(e), nearly remains unchanged for both gaps I and II.
Moreover, the typical normalized electric field patterns [see
Figs. 7(b) and 7(f)] also indicate that the small fluctuations
of side length in domain B do not disrupt the uniform field
distribution. Interestingly, increasing the side length disorder
factor β to 0.02 and eventually to 0.05 makes a difference
in the large-area waveguide in lower- and higher-frequency
windows. For large-area waveguide modes working in gap
I, it is seen that large disorder fluctuations do not affect the
spectra too much [see blue and green lines in Fig. 7(a)] and the
electric field pattern nearly remains unchanged [see Figs. 7(c)
and 7(d)]. However, for large-area waveguide modes working
in gap II, the added large disorder fluctuations result in signifi-
cant decrease of the transmission [see the blue and green lines
in Fig. 7(e)] at the edges of frequency windows and destroy
the uniform electric fields [see Figs. 7(g) and 7(h)].

Overall, these results suggest that our large-area waveg-
uides have good fabrication tolerance in the case of small
fluctuations. Hence, we claim that domain B provides a
width degree of freedom that supports high-throughout robust
energy transmissions that are superior to the conventional
interface formed by PhC-A and PhC-C.
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