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A one-parameter family of invertible states gives a topological transport phenomenon, similar to the Thouless
pumping. As a natural generalization of this, we can consider a family of invertible states parametrized by
some topological space X . This is called a higher pump. It is conjectured that a (1 + 1)-dimensional bosonic
invertible state parametrized by X is classified by H3(X ;Z). In this paper, we construct two higher pumping
models parametrized by X = RP2 × S1 and X = L(3, 1) × S1 that corresponds to the torsion part of H3(X ;Z).
As a consequence of the nontriviality as a family, we find that a quantum mechanical system with a nontrivial
discrete Berry phase is pumped to the boundary of the (1 + 1)-dimensional system. We also study higher pump
phenomena by using matrix product states, and construct a higher pump invariant which takes value in a torsion
part of H3(X ;Z). This is a higher analog of the ordinary discrete Berry phase that takes value in the torsion part
of H2(X ;Z). In order to define the higher pump invariant, we utilize the smooth Deligne cohomology and its
integration theory. We confirm that the higher pump invariant of the model has a nontrivial value.
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I. INTRODUCTION

A. Invertible states and higher pump phenomena

An invertible state is a state which is realized as a ground
state of a unique gapped Hamiltonian. It is known that a
one-parameter family of (1 + 1)-dimensional G-symmetric
invertible states gives a Thouless-type charge pumping
phenomena [1], and classified by the group cohomology
H1(G; U(1)) [2–4]. This can be understood as a nontriviality
of a family of invertible states with symmetry G parametrized
by one-dimensional circle S1. Similarly, it is believed that a
family of (1 + 1)-dimensional bosonic invertible states with-
out any symmetry parametrized by some topological space
X is classified by H3(X ;Z) [5]. When X = S1, this group
is trivial, so no nontrivial classification arises. This means
that if there is no symmetry, there are no nontrivial pump
phenomena. On the other hand, when the dimension of X
is higher than 3, this group can be nontrivial. This implies
that, even if there is no symmetry, there is some kind of
pumping phenomena [5–7] (we called this the higher pump
phenomenon), but its physical interpretation is still unclear.

B. Summary of this paper

In this paper, we construct two models with nontrivial
higher pump parametrized by RP2 × S1 and L(3, 1) × S1. We
make a physical interpretation of higher pump phenomena:
a pump of the ordinary discrete Berry phase and a boundary
condition obstacle. In addition, we define a topological invari-
ant of a higher pump by using an injective matrix product
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state (MPS) bundle which takes value in the torsion part of
H3(X ;Z). This invariant can be viewed as a higher analog
of the discrete Berry phase, and this is the kind of nontriv-
iality that cannot be detected by the higher Berry curvature
proposed in [5]. In the formulation of this invariant, the
smooth Deligne cohomology and its integration theory are
useful [8–12].

C. Outlook of this paper

The rest of this paper is organized as follows: In Sec. II,
we introduce models parametrized by X = RP2 × S1 and
L(3, 1) × S1, and discuss the nontriviality of this model from
the boundary perspective: we reveal that the ordinary discrete
Berry phase is pumped to the boundary, and makes an ef-
fective (0 + 1)-dimensional model which is pumped to the
boundary. We also show that there are no boundary terms that
are parametrized by X and open the gap over the whole X .
In Sec. III, we give a quick review of the smooth Deligne
cohomology. This is a useful tool for describing generaliza-
tions of the Berry connection and the Berry curvature to higher
dimensions. As an application example of the smooth Deligne
cohomology, we write the ordinary pump invariant of fermion
parity [4] as an integration of the smooth Deligne cohomology
class. In Sec. IV, we define a higher pump invariant. To this
end, we extract the Dixmier-Douady class [13] of an injective
MPS bundle, and construct a cocycle of the smooth Deligne
cohomology. Then, we define the higher pump invariant as
an integration of the smooth Deligne cocycle. This can be
regarded as a higher analog of the discrete Berry phase.1 As

1This is not a common terminology, This is not a common term, but
to avoid confusion with the holonomy we will refer to this quantity as
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an example, we compute injective MPS bundles of the models
introduced in Sec. II, and perform an integration of the smooth
Deligne cohomology. As a result, we confirm that the higher
pump invariants of these models are nontrivial.

II. A MODEL OF A HIGHER PUMP

In this section, we introduce a (1 + 1)-dimensional spin
model with parameter X = RP2 × S1 and X = L(3, 1) × S1.
In Secs. II A 1 and II B 1, we define models parametrized by
X = RP2 × S1 and X = L(3, 1) × S1 respectively, and con-
struct their ground states. In Secs. II A 2 and II B 2, we argue
the flow of the discrete Berry phase. Although the Berry con-
nection in (1 + 1)-dimensional systems is known to diverge,
parameter space allows us to define an effective Berry con-
nection as the difference between divergent quantities, which
is regarded as the ordinary discrete Berry phase of a quantum
mechanical system pumped to the boundary. In Secs. II A 3
and II B 3, as another perspective, we examine the absence of
a boundary condition that is parametrized by X and that opens
the gap of the system at all x ∈ X . This can be regarded as an
obstacle to the boundary theory.

A. RP2 × S1 model (or Z/2Z charge pump model)

1. Definition of the model

Let us consider a model on a one-dimensional lattice. We
put labels on the lattice as . . . ,− 3

2 ,−1,− 1
2 , 0, 1

2 , 1, 3
2 , . . .

and so on. We will refer to integer sites as σ sites and the
others as τ sites. At τ site there is three-dimensional Hilbert
space, and at σ site there is two-dimensional Hilbert space.
Let {�z = (z1, z2)||z1|2 + |z2|2 = 1} be a coordinate of three-
dimensional sphere S3 and let t ∈ [0, 2π ] be a coordinate of
interval I = [0, 2π ]. At τ site, we take the following orthonor-
mal basis depending on �z:

|u+(�z)〉τ :=
⎛
⎝1

0
0

⎞
⎠, |u−(�z)〉τ :=

⎛
⎝0

z1

z2

⎞
⎠,

|u⊥
−(�z)〉

τ
:=

⎛
⎝ 0

−z∗
2

z∗
1

⎞
⎠. (1)

At σ site, we take the following orthonormal basis depending
on t :

|σ↑(t )〉
σ

:=
(

cos
(

t
4

)
−i sin

(
t
4

)
)

, |σ↓(t )〉
σ

:=
(

−i sin
(

t
4

)
cos

(
t
4

)
)

. (2)

Note that |σ↑(t )〉
σ

and |σ↓(t )〉
σ

are not periodic but satisfy
|σ↑(t + 2π )〉

σ
= i |σ↓(t )〉

σ
and |σ↓(t + 2π )〉

σ
= −i |σ↑(t )〉

σ
.

In the following, we omit the subscript σ and τ of the basis.
Consider the operators on these Hilbert spaces:

τ x(�z) := 13 − 2 |u−(�z)〉 〈u−(�z)| − |u⊥
−(�z)〉 〈u⊥

−(�z)| (3)

= |u+(�z)〉 〈u+(�z)| − |u−(�z)〉 〈u−(�z)| , (4)

the discrete Berry phase in this paper. See Appendix C for definitions
of terms.

τ z(�z) := |u+(�z)〉 〈u−(�z)| + |u−(�z)〉 〈u+(�z)| , (5)

σ x(t ) := |σ↑(t )〉 〈σ↓(t )| + |σ↓(t )〉 〈σ↑(t )| , (6)

σ z(t ) := |σ↑(t )〉 〈σ↑(t )| − |σ↓(t )〉 〈σ↓(t )| . (7)

Together with σ y(t ) := −iσ z(t )σ x(t ), σμ(t ) with μ = x, y, z
are the usual Pauli matrices for site σ . On the one hand,
τ x(�z) and τ z(�z) satisfy only the anticommutation relation
{τ z(�z), τ x(�z)} = 0 for �z ∈ S3. On the subspace spanned by
|u+(�z)〉 and |u−(�z)〉, the operators τ x(�z), τ z(�z) and τ y(�z) :=
−iτ z(�z)τ x(�z) behave as the usual Pauli matrices.

By using the above operators, we consider the following
model:

H (�z, t ) = −
∑
j∈Z

τ z
j− 1

2
(�z)σ x

j (t )τ z
j+ 1

2
(�z)

−
∑
j∈Z

σ z
j (t )τ x

j+ 1
2
(�z)σ z

j+1(t ). (8)

At (�z = (1, 0), t = 0), this model resembles the cluster
model [14]. Since τ z(�z) and τ x(�z) satisfy

τ z(−�z) = −τ z(�z), τ x(−�z) = τ x(�z), (9)

the Hamiltonian (8) coincides at �z and −�z:

H (−�z, t ) = H (�z, t ). (10)

Also, since σ z(t ) and σ x(t ) satisfy

σ z(t + 2π ) = −σ z(t ), σ x(t + 2π ) = σ x(t ), (11)

the Hamiltonian (8) coincides at t and t + 2π :

H (�z, t + 2π ) = H (�z, t ). (12)

Therefore, the operators are parametrized by S3 × I , but the
Hamiltonian is parametrized by RP3 × S1.

In order to write the ground state of H (�z, t ), we introduce
the decorated domain wall state [15] with respect to |u±(�z)〉
and |σ↑/↓(t )〉. A typical decorated domain wall state is

|. . . u+(�z)σ↑(t )u−(�z)σ↓(t )u+(�z)σ↓(t )u−(�z)σ↑(t ) . . .〉 , (13)

i.e., put u−(�z) where the σ arrow reverses and u+(�z) oth-
erwise. The place where the σ arrow reverses is called the
domain wall of σ arrows. Since we “decorate” u−(�z) on the
domain wall, the state in Eq. (13) is called a decorated domain
wall state. We will denote the set of decorated domain wall
states as DDW2. Here, the subscript 2 means that it is a
domain wall for Z/2Z with up and down arrows, and the
purpose is to distinguish it from the domain wall for Z/3Z
in Sec. II B 1. The ground state of H (�z, t ) is found to be the
equal weight superposition of decorated domain wall states:∑

{ik , jl }∈DDW2

∣∣. . . ui1 (�n)σ j1 (t ) . . . uiL (�n)σ jL (t ) . . .
〉
. (14)

Another useful representation of the ground state is the way
to use the fluctuation term, which is defined by

f j (�z, t ) := 1 + τ z
j− 1

2
(�z)σ x

j (t )τ z
j+ 1

2
(�z), (15)
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for all j ∈ Z. By using this term, the normalized ground state
is given by

|G.S.(�z, t )〉 :=
∏
j∈Z

f j (�z, t )√
2

|Ref(�z, t )〉 , (16)

where |Ref(�z, t )〉 is a decorated domain wall state.2 We call
|Ref(�z, t )〉 a reference state of this representation. Note that
|Ref(�z, t )〉 is not unique but the ground state (16) is indepen-
dent of this choice.

In particular, by taking z1 ∈ R, the parameter space be-
comes RP2 × S1. We define n3 := z1, n1 := Re(z2), and n2 :=
Im(z2), and use �n = (n1, n2, n3)T as a coordinate of RP2. In
the following, we consider a model

H (�n, t ) := H (�z, t ) |z1∈R, (17)

and verify the nontriviality of this model3 as a family of
invertible states over RP2 × S1.

2. Physical interpretation I: Discrete Berry phase pumping

In the ordinary pump phenomenon of (1 + 1)-dimensional
systems, a (0 + 1)-dimensional invertible state is pumped
from one edge of the system to the other [16]. As a gen-
eralization of this, in higher pump phenomenon of (1 +
1)-dimensional systems, families of (0 + 1)-dimensional in-
vertible states are pumped from one edge to the other. In
particular, it is believed that when the parameter space X
is S1 × Mn for some n-dimensional topological space Mn, a
(0 + 1)-dimensional system with parameter Mn is pumped
to the edge [7].4 Let us check that this picture holds for the
model (8).

In order to show a physical interpretation of the higher
pump, we cut the system between sites 0 and 1

2 , and create
a boundary such that τ appears at the left edge:

H (�n, t ) = −
∑
j∈N

τ z
j− 1

2
(�n)σ x

j (t )τ z
j+ 1

2
(�n)

−
∑
j∈N

σ z
j (t )τ x

j+ 1
2
(�n)σ z

j+1(t ). (18)

The Hamiltonian (18) has doubly degenerated ground states∑
{ik , jl }∈DDW2

∣∣ui1 (�n)σ j1 (t ) . . . uiL (�n)σ jL (t )
〉

(19)

and ∑
{ik , jl }∈DDW2

τ z
1
2
(�n)

∣∣ui1 (�n)σ j1 (t ) . . . uiL (�n)σ jL (t )
〉
. (20)

2Remark that f j/2 is not a projection on the whole Hilbert space as
( f j/2)2 �= f j/2, but is a projection on decorated domain wall states.
Thus, replacing f j by p(�z) − τ z

j− 1
2
(�z)σ x

j (t )τ z
j+ 1

2
(�z) in Eq. (15) gives

the same state, where p(�z) is a projection onto the space orthogonal
to all |u−(�z)〉. In this way, in considering the decorated domain wall
states, we can handle f j/2 as a projection.

3Since H3(RP2 × S1;Z) � Z/2Z, it can be nontrivial as a family
of invertible states.

4In [7], they argue that the flow of the ordinary Berry curvature in
the case of X = S3 for (1 + 1)-dimensional systems, based on the
Kapustin-Spodyneiko invariant [5].

This can be seen from the fact that these states are eigenstates
of all terms of the Hamiltonian (18), and the Hamiltonian (18)
commutes with τ z

1
2

(�n). For simplicity, we fix the parameters as

(�n = (0, 0, 1)T, t = 0), and represent this state as follows:

|± ↑ + ↑ + ↑ + ↑ · · ·〉 + |∓ ↓ + ↓ + ↓ + ↓ · · ·〉
+ |∓ ↓ − ↑ − ↓ − ↑ · · ·〉 + |± ↑ − ↓ − ↑ − ↓ · · ·〉
+ · · · . (21)

Here, we denote |u±(�n = (0, 0, 1)T)〉 as |±〉 and |σ↑/↓(t = 0)〉
as |↑ / ↓〉. In this case, there is a degeneracy for the sign of
the edge. By imposing appropriate boundary conditions, we
choose the upper sign of ± for the initial state:

|+ ↑ + ↑ + ↑ + ↑ · · ·〉 + |− ↓ + ↓ + ↓ + ↓ · · ·〉
+ |− ↓ − ↑ − ↓ − ↑ · · ·〉 + |+ ↑ − ↓ − ↑ − ↓ · · ·〉
+ · · · . (22)

Now we rotate all σ spin by π ; this is accomplished by varying
t from 0 to 2π :

|+ ↓ + ↓ + ↓ + ↓ · · ·〉 + |− ↑ + ↑ + ↑ + ↑ · · ·〉
+ |− ↑ − ↓ − ↑ − ↓ · · ·〉 + |+ ↓ − ↑ − ↓ − ↑ · · ·〉
+ · · · . (23)

By comparing the initial state (22) and the final state (23),
we can see that only the sign of the edge is flipped. Intu-
itively, this sign flipping indicates that the ground state of the
quantum mechanical system at the boundary changes between
the initial state and the final state. In the above process, we
considered a fixed parameter of RP2, but by running it, we
can see that the quantum mechanical system parametrized by
RP2 is pumped to the edge, as seen below.

Let us implement this process using the Hamiltonian. We
need to add a boundary term to remove the degeneracy. To
realize state (22), simply add −τ x

1
2
(�n)σ z

1 (t ) to the boundary5

of the Hamiltonian H (�n, t ).6 Set �z0 = (0, 0, 1)T. In the fol-
lowing, we use the notations τ

μ

j− 1
2

:= τ
μ

j− 1
2

(�z = �z0) and σ
μ
j :=

σ
μ
j (t = 0) for μ = x, z. First, consider the initial Hamiltonian,

i.e., t = 0:

Hin.(�n) := −τ x
1
2
(�n)σ z

1 −
∑

j=1,2,...

τ z
j− 1

2
(�n)σ x

j τ
z
j+ 1

2
(�n)

−
∑

j=1,2,...

σ z
j τ

x
j+ 1

2
(�n)σ z

j+1. (24)

This is a unique gapped Hamiltonian for all �n ∈ RP2. The
normalized ground state when �n = �z0 is given by

|G.S.in.(�n = �z0)〉 :=
∏

j=1,2,...

f j√
2

|Refin.〉 , (25)

5Remark that this term breaks the 2π periodicity of the Hamilto-
nian. We will discuss this point in Sec. II A 3.

6Of course, there are other choices as boundary terms. We discuss
this point in Appendix A
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where f j is a fluctuation term defined by

f j := 1 + τ z
j− 1

2
σ x

j τ
z
j+ 1

2
, (26)

and |Refin.〉 is a decorated domain wall state whose eigenvalue
of τ x

1
2
σ z

1 is 1, for example, |Refin.〉 = |+ ↑ + ↑ + · · ·〉. Let

(θ, φ) be the spherical coordinate of �n:

n1 = sin(θ ) cos(φ), (27)

n2 = sin(θ ) sin(φ), (28)

n3 = cos(θ ). (29)

For generic �n, noticing Hin.(�n) is given by the unitary transfor-
mation

Hin.(�n) =
⎡
⎣ ∞∏

j=1

Vτ (�n) j− 1
2

⎤
⎦Hin.(�n = �z0)

⎡
⎣ ∞∏

j=1

Vτ (�n) j− 1
2

⎤
⎦

†

(30)

with unitary matrices

Vτ (�n) j :=
⎛
⎝1

cos(θ ) −e−iφ sin(θ )
eiφ sin(θ ) cos(θ )

⎞
⎠ (31)

acting on the site j, and the ground state is given by

|G.S.in.(�n)〉 =
∞∏
j=1

Vτ (�n) j− 1
2
|G.S.in.(�n = �z0)〉 . (32)

Then the Berry connection Ain.(�n) is formally given by

Ain.(�n) := 〈G.S.in.(�n)| d |G.S.in.(�n)〉
=

∑
j=1,2,...

〈G.S.in.(�n = �z0)|Vτ (�n)†
j− 1

2

dVτ (�n) j− 1
2

× |G.S.in.(�n = �z0)〉 . (33)

Remark that the Berry connection Ain.(�n) is ill defined as a
convergent quantity as it is an infinite sum. We will carefully
extract only the contribution from the left boundary. We define

h j− 1
2
(�n) := Vτ (�n)†

j− 1
2

dVτ (�n) j− 1
2
. (34)

Since the support of h j− 1
2
(�n) is { j − 1

2 } and the support of f j is

{ j ± 1
2 , j}, f j commute with hk (�n) when j �= k, k − 1. Thus,

each term of Eq. (33) is recast into

〈G.S.in.(�n = �z0)| h j− 1
2
(�n) |G.S.in.(�n = �z0)〉

= 1

4
〈Refin.| f j f j−1h j− 1

2
(�n) f j−1 f j

∏
k=1,2,...
k �= j−1, j

fk |Refin.〉 ,

(35)

where f0 := √
2. Moreover, fluctuation terms in the product

can be replaced by 1. This is because fk is the only operator
which acts on the site k among the operators sandwiched
between states |Refin.〉, so the fluctuated part is projected out

by 〈Refin.|.7 Therefore,

Ain.(�n) =
∑

j=1,2,...

1

4
〈Refin.| f j f j−1h j− 1

2
(�n) f j−1 f j |Refin.〉 .

(36)

Let γ : [0, 2π ] → RP2 be a loop whose homotopy class is
nontrivial. The discrete Berry phase8 nin.(γ ) along a path γ is

nin.(γ ) := exp

(∫
γ

Ain. − 1

2

∫
�

dAin.

)
× 〈G.S.in.[γ (2π )]|G.S.in.[γ (0)]〉 , (37)

where � is a bounding surface of 2γ , i.e., ∂� = 2γ .
Similarly, the final Hamiltonian, i.e., t = 2π , is given by

Hfin.(�n) := τ x
1
2
(�n)σ z

1 −
∑

j=1,2,...

τ z
j− 1

2
(�n)σ x

j τ
z
j+ 1

2
(�n)

−
∑

j=1,2,...

σ z
j τ

x
j+ 1

2
(�n)σ z

j+1, (38)

and the ground state is

|G.S.fin.(�n = �z0)〉 :=
∏

j=1,2,...

f j√
2

|Reffin.〉 , (39)

where |Reffin.〉 is a decorated domain wall state whose eigen-
value of −τ x

1
2
σ z

1 is 1, for example, |Refin.〉 = |− ↑ + ↑ + · · ·〉.
By a similar calculation to that of Ain.(�n), the Berry connection
of the final Hamiltonian is

Afin.(�n) := 〈G.S.fin.(�n)| d |G.S.fin.(�n)〉 (40)

=
∑

j=1,2,...

1

4
〈Reffin.| f j f j−1h j− 1

2
(�n) f j−1 f j |Reffin.〉 ,

(41)

and the discrete Berry phase nfin.(γ ) along a path γ is

nfin.(γ ) := exp

(∫
γ

Afin. − 1

2

∫
�

dAfin.

)
× 〈G.S.fin.[γ (2π )]|G.S.fin.[γ (0)]〉 . (42)

Being a semi-infinite system, the values of each discrete
Berry phase (37) and (42) do not necessarily converge. How-
ever, in the pump model, the bulk states coincide at t = 0 and
2π , so we can choose reference states at t = 0 and 2π with
the same bulk configuration. Then, only the edge contribution
remains in the ratio of the discrete Berry phases. We choose
|Refin.〉 and |Reffin.〉 as

|Refin.〉 = |+ ↑ + ↑ + · · ·〉 , (43)

|Reffin.〉 = |− ↑ + ↑ + · · ·〉 , (44)

7Note that this argument is incorrect if the reference state is defined
as a superposition of DDW states.

8This is not a common terminology, This is not a common term, but
to avoid confusion with the holonomy we will refer to this quantity as
the discrete Berry phase in this paper. See Appendix C for definitions
of terms.
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FIG. 1. γ is a path defined by θ = π

2 . This is a nontrivial path in
RP2.

and let us compute the ratio r of the discrete Berry phases for
a nontrivial path γ in RP2:

r := nin.(γ )

nfin.(γ )
= exp

(∫
γ

(Ain.− Afin.)− 1

2

∫
�

(dAin.− dAfin.)

)

× 〈G.S.in.(γ0)|G.S.in.(γ1)〉
〈G.S.fin.(γ0)|G.S.fin.(γ1)〉 . (45)

We illustrate the path γ in Fig. 1. Since the only difference
between |Refin.〉 and |Reffin.〉 is the site 1

2 , the expectation
value of an operator not acting on site 1

2 is the same. Thus,
we obtain

Ain.(�n) − Afin.(�n) = 1
4 [2 〈Refin.| f1h 1

2
(�n) f1 |Refin.〉

+ 〈Refin.| f2 f1h 3
2

(�n) f1 f2 |Refin.〉]

− 1
4 [2 〈Reffin.| f1h 1

2
(�n) f1 |Reffin.〉

+ 〈Reffin.| f2 f1h 3
2

(�n) f1 f2 |Reffin.〉]. (46)

The second term can be nonzero only if one chooses 1 twice
or τ z

1
2

σ z
1τ z

3
2

twice from the two f1 = 1 + τ z
1
2

σ z
1τ z

3
2

. By using

this observation, the second term and the forth term cancel.
Therefore,

Ain.(�n) − Afin.(�n) = 1
2 [〈Refin.| f1h 1

2
(�n) f1 |Refin.〉

− 〈Reffin.| f1h 1
2
(�n) f1 |Reffin.〉]. (47)

After a simple calculation, we obtain

Ain.(�n) − Afin.(�n) = 1
4 〈+| (1 + τ z

1
2

)
h 1

2
(�n)

(
1 + τ z

1
2

) |+〉
− 1

4 〈−| (1 + τ z
1
2

)
h 1

2
(�n)

(
1 + τ z

1
2

) |−〉 = 0.

(48)

Since |G.S.fin.(�n)〉 ∝ τ z
1
2

(�n) |G.S.in.(�n)〉,
〈G.S.fin.(�n)|G.S.fin.(−�n)〉

= 〈G.S.in.(�n)| τ z
1
2
(�n)τ z

1
2
(−�n) |G.S.in.(−�n)〉 (49)

= −〈G.S.in.(�n)|G.S.in.(−�n)〉 . (50)

Thus, the ratio r is −1:

r = nin.(γ )

nfin.(γ )
= −1. (51)

It is worth mentioning that for each t , the discrete Berry
phase is ill defined because it is a semi-infinite system, but
the ratio of it at t = 0 and 2π is well defined because the bulk
state returns to itself when the system goes around in the S1

direction. In this sense, this quantity r essentially measures
the nontriviality as a three-parameter family of unique gapped
systems.

In this process, what is the two-parameter family of
(0+1)-dimensional invertible states that are pumped into the
boundary? To clarify this, consider an effective model of
the boundary. For the initial Hamiltonian (24), the boundary
model is given by

Hbdy.

in. (�n) := −τ x
1
2
(�n)σ z

1 − τ z
1
2
(�n)σ x

1 τ z
3
2
(�n) − σ z

1τ x
3
2
(�n), (52)

and for the final Hamiltonian (38), the boundary model is
given by

Hbdy.

fin. (�n) = τ x
1
2
(�n)σ z

1 − τ z
1
2
(�n)σ x

1 τ z
3
2
(�n) − σ z

1τ x
3
2
(�n). (53)

Then, it can be seen that the ratio of the discrete Berry phases
we calculated above is the same as that of these quantum
mechanical systems over RP2. Let us compute the discrete
Berry phase of Hamiltonians (52) and (53), and confirm this
point.

The ground state |G.S.
bdy.

in. (�n)〉 of Hbdy.

in. (�n) is given by

|G.S.
bdy.

in. (�n)〉 := 1

2
[|↑ (�n)+ ↑ (�n)〉 + |↑ (�n)− ↓ (�n)〉

+ |↓ (�n)− ↑ (�n)〉 + |↓ (�n)+ ↓ (�n)〉] (54)

= Vτ (�n) 1
2
Vτ (�n) 3

2

1 + τ x
1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2
|↑ + ↑〉 .

(55)

Here, |↑〉 = 1√
2
(1, 1, 0)T and |+〉 = 1√

2
(1, 1)T. The Berry

connection is given by

Abdy.

in. (�n) := 〈
GS.

bdy.

in. (�n)
∣∣ d

∣∣GS.
bdy.

in. (�n)
〉

(56)

= 〈↑ + ↑|
1 + τ x

1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2
[h 1

2
(�n) + h 3

2
(�n)]

×
1 + τ x

1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2
|↑ + ↑〉 . (57)

Here, recall that h j (�n) = Vτ (�n)†
jdVτ (�n) j . We can check that

Vτ (�n)†
jdVτ (�n) j =

⎛
⎝0

−eiφ

eiφ

⎞
⎠dθ +

⎛
⎝0

i sin2(θ ) ie−iφ sin(θ ) cos(θ )
ieiφ sin(θ ) cos(θ ) −i sin2(θ )

⎞
⎠dφ, (58)
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and the Berry connection is

Abdy.

in. (�n) = 〈↑ + ↑|
1 + τ x

1
2
σ z

1√
2

h 1
2
(�n)

1 + τ x
1
2
σ z

1√
2

|↑ + ↑〉

+ 〈↑ + ↑|
1 + σ z

1τ x
3
2√

2
h 3

2
(�n)

1 + σ z
1τ x

1
2√

2
|↑ + ↑〉

(59)

=
〈↑| h 1

2
(�n) |↑〉
2

+
〈↓| h 1

2
(�n) |↓〉
2

+
〈↑| h 3

2
(�n) |↑〉
2

+
〈↓| h 3

2
(�n) |↓〉
2

(60)

= i

2
sin2(θ )dφ. (61)

Thus, the Berry curvature is

F bdy.

in. (�n) := dAbdy.

in. (�n) = i

2
sin(2θ )dθ dφ. (62)

Finally, let us compute the overlap 〈GSbdy.

in. (�n)|GSbdy.

in. (−�n)〉.
Since Vτ (�n)†

jVτ (−�n) j = τ x
j − |u⊥

−(�z0)〉 j 〈u⊥
−(�z0)| j ,〈

GSbdy.

in. (�n)
∣∣GSbdy.

in. (−�n)
〉

= 〈↑ + ↑|
1 + τ x

1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2
τ x

1
2
τ x

3
2

1 + τ x
1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2

× |↑ + ↑〉 (63)

= 〈↑ + ↑| (1 + τ x
1
2
σ z

1

)(
1 + σ z

1τ x
3
2

) |↓ + ↓〉 (64)

= 〈↑ + ↑| τ x
1
2

(
σ z

1

)2
τ x

3
2
|↓ + ↓〉 (65)

= 1. (66)

Therefore, the discrete Berry phase along a nontrivial path γ

is

nbdy.

in. (γ ) := exp

(∫
γ

Abdy.

in. − 1

2

∫
�

dAbdy.

in.

)

× 〈
G.S.

bdy.

in. [γ (2π )]
∣∣G.S.

bdy.

in. [γ (0)]
〉 = 1. (67)

Similarly, the ground state |GS.
bdy.

fin. (�n)〉 of Hbdy.

fin. (�n) is given
by

∣∣G.S.
bdy.

in. (�n)
〉

:= Vτ (�n) 1
2
Vτ (�n) 3

2

1 − τ x
1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2
|↑ + ↑〉 .

(68)

By the similar calculation, we can easily check that the Berry
connection and curvature of Hbdy.

fin. (�n) is the same as that of
Hbdy.

in. (�n):

Abdy.

fin. (�n) := 〈
GS.

bdy.

fin. (�n)
∣∣ d |GS.

bdy.

fin. (�n)
〉 = i

2
sin2(θ )dφ (69)

and

F bdy.

fin. (�n) := dAbdy.

fin. (�n) = i

2
sin(2θ )dθ dφ. (70)

On the other hand, the overlap 〈GSbdy.

fin. (−�n)|GSbdy.

fin. (�n)〉 is
given by〈

GSbdy.

fin. (−�n)
∣∣GSbdy.

fin. (�n)
〉

= 〈↑ + ↑|
1 − τ x

1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2
τ x

1
2
τ x

3
2

1 − τ x
1
2
σ z

1√
2

1 + σ z
1τ x

3
2√

2

× |↑ + ↑〉 (71)

= 〈↑ + ↑| (1 − τ x
1
2
σ z

1

)(
1 + σ z

1τ x
3
2

) |↓ + ↓〉 (72)

= −〈↑ + ↑| τ x
1
2

(
σ z

1

)2
τ x

3
2
|↓ + ↓〉 (73)

= −1. (74)

Therefore, the discrete Berry phase is

nbdy.

fin. (γ ) := exp

(∫
γ

Abdy.

fin. − 1

2

∫
�

dAbdy.

fin.

)

× 〈
G.S.

bdy.

fin. [γ (2π )]
∣∣G.S.

bdy.

fin. [γ (0)]
〉 = −1. (75)

Thus, the ratio of the discrete Berry phase is

nbdy.

in. (γ )

nbdy.

fin. (γ )
= −1. (76)

3. Physical interpretation II : Boundary condition obstacle

In Sec. II A 2, we considered the system with boundary and
discussed the flow of the discrete Berry phase, when compar-
ing t = 0 and 2π . This breaking of the 2π periodicity is due
to the fact that the boundary terms were not 2π periodic. In
fact, the boundary term −τ x

1
2
(�n)σ z

1 (t ) which was added to the

Hamiltonian is not 2π periodic. We can consider a boundary
term like τ z

1
2

(�n) that preserves 2π periodicity, but this time the

boundary term is not global on RP2.
It is a natural question to ask whether there exists a term

that is parametrized by RP2 × S1 globally and makes the sys-
tem a unique gapped at all points in RP2 × S1. Let us suppose
that there exists such a term, which we denote by x(�n, t ).
Then, the flow of the discrete Berry phase is trivial under this
boundary condition. This implies that by stacking two semi-
infinite chains with boundary condition −τ x

1/2(�n)σ z
1 (t ) and

x(�n, t ), we obtain a nontrivial family of (0 + 1)-dimensional
systems parametrized by RP2 × [0, 2π ] whose ratio of the
discrete Berry phase at t = 0 and 2π is −1 (Fig. 2). If there
existed such a family, it would be inconsistent with the quan-
tization of the discrete Berry phase. Therefore, there are no
such boundary terms.

In general, when the higher pump is nontrivial, it is ex-
pected to give rise to a nontrivial flow of the discrete Berry
phase or Berry curvature. Accepting this conjecture, it follows
that there is no boundary term that is parametrized over the
whole of X and makes the system unique gap at all points
x ∈ X , if its higher pump is nontrivial.

B. L(3, 1) × S1 model (or Z/3Z charge pump model)

1. Definition of a model

Let us consider another model with nontrivial higher pump.
As with the model in Sec. II A 1, we will refer to integer sites
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FIG. 2. By stacking two semi-infinite systems with different
boundary conditions, we can trivialize the bulk of the system as a
family. This results in the system having no more than a finite number
of degrees of freedom. In particular, the discrete Berry phase is well
defined for any t . From its construction, the ratio of the discrete Berry
phase at t = 0 and 2π is −1. Therefore, there exists a singular point
where the gap is closed.

as σ sites and the others as τ sites. At each site, there is a three-
dimensional Hilbert space. At τ site, we take the following
orthonormal basis:

|u0〉 = 1√
3

⎛
⎝ 1

ω

ω2

⎞
⎠, |u1〉 = 1√

3

⎛
⎝1

1
1

⎞
⎠, |u2〉 = 1√

3

⎛
⎝ 1

ω2

ω

⎞
⎠.

(77)

Here, ω = e
2π i

3 . At σ site, we take the following orthonormal
basis:

|σ̃0〉 =
⎛
⎝1

0
0

⎞
⎠, |σ̃1〉 =

⎛
⎝0

1
0

⎞
⎠, |σ̃2〉 =

⎛
⎝0

0
1

⎞
⎠. (78)

We call bases (77) and (78) the decorated domain wall basis.
On the other hand, we define

|τ̃0〉 =
⎛
⎝1

0
0

⎞
⎠, |τ̃1〉 =

⎛
⎝0

1
0

⎞
⎠, |τ̃2〉 =

⎛
⎝0

0
1

⎞
⎠, (79)

and call Eqs. (78) and (79) z basis. The tilde on τ and σ

is a symbol to distinguish it from the Z/2Z model. In the
following sections, the same calculations as for the Z/2Z
model will be performed in parallel for the Z/3Z model. In
that case, we always attach tildes to quantities related to the
Z/3Z model.

We define the Z/3Z spin operator acting on the local
Hilbert space on τ sites by

τ̃ x :=
⎛
⎝ ω

ω

ω

⎞
⎠, ˜τ z :=

⎛
⎝1

ω

ω2

⎞
⎠, (80)

and the Z/3Z spin operator acting on the local Hilbert space
on σ sites by

σ̃ x :=
⎛
⎝ 1

1
1

⎞
⎠, σ̃ z :=

⎛
⎝1

ω

ω2

⎞
⎠. (81)

Remark that these matrices are not self-adjoint, and satisfy the
following commutation relation:

τ̃ zτ̃ x = ωτ̃ x τ̃ z, σ̃ zσ̃ x = ωσ̃ xσ̃ z. (82)

FIG. 3. An example of the decorated domain wall configuration.

We note that |ui〉 is the basis for diagonalizing τ̃ x, and it is
cyclically shifted by τ̃ z, and |σ̃i〉 is the basis for diagonalizing
σ̃ z, and it is cyclically shifted by σ̃ x:

τ̃ z |ui〉 = |ui−1〉 , τ̃ x |ui〉 = ωi |ui〉 , (83)

σ̃ z |σ̃i〉 = ωi |σ̃i〉 , σ̃ x |σ̃i〉 = |σ̃i+1〉 . (84)

Here, the subscript of u and σ̃ is defined modulo 3.
Now, we define the following Hamiltonian [17]:

H =
∑

j

−τ̃
z†
j− 1

2

σ̃ x
j τ̃

z
j+ 1

2
− σ̃ z

j τ̃
x
j+ 1

2
σ̃

z†
j+1 − τ̃ z

j− 1
2
σ̃

x†
j τ̃

z†
j+ 1

2

− σ̃
z†
j τ̃

x†
j+ 1

2

σ̃ z
j+1. (85)

Remark that each term is commuted with the other, and the
cube of each term is equal to 1. We regard the second and
fourth terms as the configuration terms and the first and third
terms as fluctuation terms.

In order to write the ground state of H , we introduce
decorated domain wall state with respect to |ui〉 and |σ̃i〉. A
typical decorated domain wall state is

|. . . u0σ̃0u1σ̃1u2σ̃0u2σ̃2u2σ̃1u2σ̃0 . . .〉 , (86)

i.e., put uik where the difference between jk − jk−1 ≡ ik mod-
ulo 3 (see Fig. 3). The place where jk − jk−1 �= 0 is called
the domain wall of σ̃ spin. Since we “decorate” ui on the
domain wall, the state in Eq. (86) is called a decorated domain
wall state. This is a natural generalization of the decorated
domain wall introduced in Sec. II A 1. We will denote the set
of decorated domain wall states as DDW3. The ground state
of the Hamiltonian (85) is given by

|G.S.〉 :=
∏
j∈Z

f̃ j√
3

|Ref〉 , (87)

where

f̃ j := 1 + τ̃
z†
j− 1

2

σ̃ x
j τ̃

z
j+ 1

2
+ τ̃ z

j− 1
2
σ̃

x†
j τ̃

z†
j+ 1

2

(88)

and |Ref〉 is a decorated domain wall state. Note that f̃ j/3s are
orthogonal projections satisfying ( f̃ j/3)† = f̃ j, ( f̃ j/3)2 = f̃ j ,
and f̃i f̃ j = f̃ j f̃i. Note that |Ref〉 is not unique but the ground
state (87) is independent of this choice. In other words, the
ground state is a superposition of all decorated domain wall
configurations with the same weights:

|G.S.〉 ∝
∑

{ik , jl }∈DDW3

∣∣ui1 σ̃ j1 . . . uiL σ̃ jL

〉
. (89)

035114-7



OHYAMA, TERASHIMA, AND SHIOZAKI PHYSICAL REVIEW B 110, 035114 (2024)

Based on this model, let us construct a model parametrized by L(3, 1) × S1. First, we give L(3, 1) dependence to τ sites. To
this end, we define a unitary matrix

Ṽτ (�z) := 1

3

⎛
⎜⎝

1 + z1 + z∗
1 + z2 − z∗

2 ω2 + z1 + ωz∗
1 + z2 − ωz∗

2 ω + z1 + ω2z∗
1 + z2 − ω2z∗

2

ω + z1 + ω2z∗
1 + ω2z2 − z∗

2 1 + z1 + z∗
1 + ω2z2 − ωz∗

2 ω2 + z1 + ωz∗
1 + ω2z2 − ω2z∗

2

ω2 + z1 + ωz∗
1 + ωz2 − z∗

2 ω + z1 + ω2z∗
1 + ωz2 − ωz∗

2 1 + z1 + z∗
1 + ωz2 − ω2z∗

2

⎞
⎟⎠, (90)

and by using this unitary matrix,9 we define

τ̃ z(�z) := Ṽτ (�z)τ̃ zṼτ (�z)†, (91)

τ̃ x(�z) := Ṽτ (�z)τ̃ xṼτ (�z)†, (92)

and

|τ̃i(�z)〉 := Ṽτ (�z) |τ̃i〉 . (93)

Note that they meet the following relations:

Ṽτ (ω�z)i, j = ωṼτ (�z)i, j+1 = (Ṽτ (�z)τ̃ x )i, j, (94)

|τ̃i(ω�z)〉 = τ̃ x
i (�z) |τ̃i(�z)〉 , (95)

τ̃ x(ω�z) = τ̃ x(�z), τ̃ z(ω�z) = ω2τ̃ z(�z). (96)

Next, we give S1 dependence to σ sites. We define a unitary
matrix

Ṽσ (t ) := 1

3

⎛
⎜⎝

1 + exp
(
i t

3

) + exp
(
i 2t

3

)
1 + ω exp

(
i t

3

) + ω2 exp
(
i 2t

3

)
1 + ω2 exp

(
i t

3

) + ω exp
(
i 2t

3

)
1 + ω2 exp

(
i t

3

) + ω exp
(
i 2t

3

)
1 + exp

(
i t

3

) + exp
(
i 2t

3

)
1 + ω exp

(
i t

3

) + ω2 exp
(
i 2t

3

)
1 + ω exp

(
i t

3

) + ω2 exp
(
i 2t

3

)
1 + ω2 exp

(
i t

3

) + ω exp
(
i 2t

3

)
1 + exp

(
i t

3

) + exp
(
i 2t

3

)
⎞
⎟⎠, (97)

and by using this matrix,10 we define

σ̃ z(t ) := Ṽσ (t )σ̃ zṼσ (t )†, (98)

σ̃ x(t ) := Ṽσ (t )σ̃ xṼσ (t )†(= σ̃ x ), (99)

and

|σ̃i(t )〉 = Ṽσ (t ) |σ̃i〉 . (100)

Note that they meet the following relations:

Ṽσ (t + 2π )i, j = Ṽσ (t )i, j+1, (101)

|σ̃i(t + 2π )〉 = σ̃ x
i (t ) |σ̃i(t )〉 , (102)

σ̃ z(t + 2π ) = ω2σ̃ z(t ). (103)

We define a model for �z ∈ S3 and t ∈ [0, 2π ] as

H (�z, t ) = −
∑
j∈Z

τ̃
z†
j− 1

2

(�z)σ̃ x
j (t )τ̃ z

j+ 1
2
(�z)

−
∑
j∈Z

σ̃ z
j (t )τ̃ x

j+ 1
2
(�z)σ̃ z†

j+1(t )

−
∑
j∈Z

τ̃ z
j− 1

2
(�z)σ̃ x†

j (t )τ̃ z†
j+ 1

2

(�z)

−
∑
j∈Z

σ̃
z†
j (t )τ̃ x†

j+ 1
2

(�z)σ̃ z
j+1(t ). (104)

Equations (96) and (103) guarantee that the Hamiltonian (104)
is a model over L(3, 1) × S1. The ground state of this model

9We make a comment on the origin of this matrix in Appendix B.
10We make a comment on the origin of this matrix in Appendix B.

is the superposition of decorated domain wall configuration
with the |u(�z)〉 and |σ̃ (�z)〉 basis:

|G.S.(�z, t )〉 ∝
∑

{ik , jl }∈DDW3

∣∣ui1 (�z), σ̃ j1 (t ), . . . , uiL (�z), σ̃ jL (t )
〉

(105)

or, explicitly,

|G.S.(�z, t )〉 :=
∏
j∈Z

f̃ j (�z, t )√
3

|Ref(�z, t )〉 . (106)

Here

f̃ j (�z, t ) := 1+ τ̃
z†
j− 1

2

(�z)σ̃ x
j (t )τ̃ z

j+ 1
2
(�z) + τ̃ z

j− 1
2
(�z)σ̃ x†

j (t )τ̃ z†
j+ 1

2

(�z),

(107)

and |Ref(�z, t )〉 is a simultaneous eigenstate of σ̃ z
j (t )

τ̃ x
j+ 1

2
(�z)σ̃ z†

j+1(t ) and σ̃
z†
j (t )τ̃ x†

j+ 1
2

(�z)σ̃ z
j+1(t ) with eigenvalue 1.

Let us check explicitly that the ground state (105) is
parametrized by L(3, 1) × S1. Let �σ̃i(t ) = σ̃ j+1(t ) − σ̃ j (t ).
At ω�z = (ωz1, ωz2),

|G.S.(ω�z, t )〉 =
∑

{ik , jl }∈DDW3

∏
j

ei π
3 �σ̃ j

× ∣∣ui1 (�z), σ̃ j1 (t ), . . . , uiL (�z), σ̃ jL (t )
〉

(108)

=
∑

{ik , jl }∈DDW3

ei π
3

∑
j �σ̃ j (t )

× ∣∣ui1 (�z), σ̃ j1 (t ), . . . , uiL (�z), σ̃ jL (t )
〉

(109)

= |G.S.(�z, t )〉 . (110)
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Here, we used ∑
j

�σ̃ j (t ) = 0 (111)

under the periodic boundary condition. Also, at t + 2π ,

|G.S.(�z, t + 2π )〉
=

∑
{ik , jl }∈DDW3

∏
j

σ̃ j (t )
∣∣ui1 (�z), σ̃ j1 (t ), . . . , uiL (�z), σ̃ jL (t )

〉
(112)

=
∑

{ik , jl }∈DDW3

∣∣ui1 (�z), σ̃ j1 (t ), . . . , uiL (�z), σ̃ jL (t )
〉

(113)

= |G.S.(�z, t )〉 . (114)

Therefore, |G.S.(�z, t )〉 is a state over L(3, 1) × S1. In the fol-
lowing, we verify the nontriviality of this model11 as a family
of invertible states over L(3, 1) × S1.

2. Physical interpretation I: Discrete Berry phase pumping

As in the case of RP2 × S1 model, we can see that
the quantum mechanical system parametrized by L(3, 1) is
pumped to the edge. In fact, by deforming the system along
the S1 direction, we can see the flow of the effective discrete
Berry phase, as we will see below.

Let us cut the system between sites 0 and 1
2 , and create a

boundary such that τ site appears at the edge:

H (�z, t ) =
∞∑
j=1

−τ̃
z†
j− 1

2

(�z)σ̃ x
j (t )τ̃ z

j+ 1
2
(�z) − σ̃ z

j (t )τ̃ x
j+ 1

2
(�z)σ̃ z†

j+1(t )

− τ̃ z
j− 1

2
(�z)σ̃ x†

j (t )τ̃ z†
j+ 1

2

(�z) − σ̃
z†
j (t )τ̃ x†

j+ 1
2

(�z)σ̃ z
j+1(t ).

(115)

To remove the ground-state degeneracy, we need to add a
boundary term. We choose −τ̃ x

1
2
(�z)σ̃ z

1 (t ) as a boundary term,

and consider the following initial (t = 0) and final (t = 2π )
Hamiltonians:12

Hin.(�z) := −τ̃ x
1
2
(�z)σ̃ z

1 −
∞∑
j=1

τ̃
z†
j− 1

2

(�z)σ̃ x
j τ̃

z
j+ 1

2
(�z)

−
∞∑
j=1

σ̃ z
j τ̃

x
j+ 1

2
(�z)σ̃ z†

j+1 + H.c., (116)

Hfin.(�z) := −ω2τ̃ x
1
2
(�z)σ̃ z

1 −
∞∑
j=1

τ̃
z†
j− 1

2

(�z)σ̃ x
j τ̃

z
j+ 1

2
(�z)

−
∞∑
j=1

σ̃ z
j τ̃

x
j+ 1

2
(�z)σ̃ z†

j+1 + H.c. (117)

Here, we used σ̃ z
j (2π ) = ω2σ̃ z

j . Let us compute the discrete
Berry phase of these Hamiltonians.

11Since H3(L(3, 1) × S1;Z) � Z/3Z, it can be nontrivial as a fam-
ily of invertible states.

12Remark that this term is not 2π periodic.

First, the ground states of Hin.(�z) and Hfin.(�z) are

|G.S.in.(�z)〉 :=
∞∏
j=1

Ṽτ (�z) j− 1
2

∞∏
j=1

f̃ j√
3

|Refin.〉 (118)

=
∞∏
j=1

Ṽτ (�z) j− 1
2
|G.S.in.[�z = (1, 0)]〉 , (119)

|G.S.fin.(�z)〉 :=
∞∏
j=1

Ṽτ (�z) j− 1
2

∞∏
j=1

f̃ j√
3

|Reffin.〉 (120)

=
∞∏
j=1

Ṽτ (�z) j− 1
2
|G.S.fin.[�z = (1, 0)]〉 , (121)

where Ṽτ (�z) j− 1
2

is a unitary operator Ṽτ (�z) acting on a τ site

j − 1
2 , and |Refin.(�z)〉 is a simultaneous eigenstate of the first

and third terms of Hin.(�z = (1, 0), t = 0) with eigenvalue 1,
i.e.,

τ̃ x
1
2
σ̃ z

1 |Refin.〉 = |Refin.〉 , (122)

σ̃ z
j τ̃

x
j+ 1

2
σ̃

z†
j+1 |Refin.〉 = |Refin.〉 , (123)

for all j ∈ N. Note that the eigenspace with eigenvalue 1 is
the same for both τ̃ x

1
2
σ̃ z

1 and its real part (τ̃ x
1
2
σ̃ z

1 + H.c.)/2. The

same is true for (123). Similarly, |Reffin.(�z)〉 is a simultaneous
eigenstate of the first and third terms of Hfin.(�z = (1, 0), t =
0) with eigenvalue 1, i.e.,

τ̃ x
1
2
σ̃ z

1 |Reffin.〉 = |Reffin.〉 , (124)

ω2σ̃ z
j τ̃

x
j+ 1

2
σ̃

z†
j+1 |Reffin.〉 = |Reffin.〉 , (125)

for all j ∈ N. We define

h̃ j− 1
2
(�z) := Ṽτ (�z)†

j− 1
2

dṼτ (�z) j− 1
2
. (126)

Then the Berry connections of Hin.(�z) and Hfin.(�z) are given
by

Ãin.(�z) := 〈G.S.in.(�z)| d |G.S.in.(�z)〉 (127)

=
∞∑
j=1

〈G.S.in.(�z)| h̃ j− 1
2
(�z) |G.S.in.(�z)〉 (128)

= 1

9

∞∑
j=1

〈Refin.| f̃ j f̃ j−1h̃ j− 1
2
(�z) f̃ j−1 f̃ j |Refin.〉 ,

(129)

Ãfin.(�z) := 〈G.S.fin.(�z)| d |G.S.fin.(�z)〉 (130)

=
∞∑
j=1

〈G.S.fin.(�z)| h̃ j− 1
2
(�z) |G.S.fin.(�z)〉 (131)

= 1

9

∞∑
j=1

〈Reffin.| f̃ j f̃ j−1h̃ j− 1
2
(�z) f̃ j−1 f̃ j |Reffin.〉 ,

(132)
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FIG. 4. A nontrivial path in L(3, 1). As is well known, the lens
space can be constructed from a three-dimensional ball. The surface
of a three-dimensional ball is a two-dimensional sphere, and divide
this sphere into the northern and southern hemispheres. Then, the
southern hemisphere is rotated by 2π/3 with respect to the northern
hemisphere and glued together. Consider a path γ starting from
a point on the equator and arriving at a point rotated along the
equator by 2π/3. The fundamental group of L(3, 1) is Z/3Z and
a representative path of the generator of Z/3Z is γ .

where f̃0 := √
3. By using these quantities, the discrete Berry

phases are given by

ñin.(γ̃ ) := exp

(∫
γ̃

Ãin. − 1

3

∫
�̃

dÃin.

)

× 〈G.S.in.(�z = γ̃0)|G.S.in.(�z = γ̃1)〉 , (133)

ñfin.(γ̃ ) := exp

(∫
γ̃

Ãfin. − 1

3

∫
�̃

dÃfin.

)

× 〈G.S.fin.(�z = γ̃0)|G.S.fin.(�z = γ̃1)〉 . (134)

Here γ̃ is a nontrivial path in L(3, 1) as in Fig. 4, and γ̃0 =
γ̃ (0), γ̃1 = γ̃ (2π ), and ∂�̃ = 3γ̃ . As in the case of Sec. II A 2,
being a semi-infinite system, the values of each discrete Berry
phase (133) and (134) do not converge in general. However, in
the pump model, the bulk states coincide at t = 0 and 2π , so
we can choose reference states at t = 0 and 2π with the same
bulk configuration. Then, only the edge contribution remains
in the ratio of the holonomy

r̃ := ñin.(γ̃ )

ñfin.(γ̃ )
= exp

(∫
γ̃

(Ãin.− Ãfin.)− 1

3

∫
�̃

(dÃin.− dÃfin.)

)

× 〈G.S.in.(�z = γ̃1)|G.S.in.(�z = γ̃0)〉
〈G.S.fin.(�z = γ̃1)|G.S.fin.(�z = γ̃0)〉 . (135)

We choose |Refin.〉 and |Reffin.〉 as

|Refin.〉 = |u0σ̃0u0σ̃0 . . .〉 , (136)

|Reffin.〉 = |u1σ̃0u0σ̃0 . . .〉 . (137)

Then, by using Eqs. (129) and (132),

Ãin.(�z) − Ãfin.(�z)

= 1
3 〈u0|

(
1 + τ̃ z

1
2
+ τ̃

z†
1
2

)
h̃ 1

2
(�z)

(
1 + τ̃ z

1
2
+ τ̃

z†
1
2

) |u0〉 (138)

− 1
3 〈u1|

(
1 + τ̃ z

1
2
+ τ̃

z†
1
2

)
h̃ 1

2
(�z)

(
1 + τ̃ z

1
2
+ τ̃

z†
1
2

) |u1〉
(139)

= 0. (140)

Here, the first term is a contribution from Ãin.(�z) and the
second term is a contribution from Ãfin.(�z). On the other hand,

〈G.S.in.(�z = γ̃1)|G.S.in.(�z = γ̃0)〉
〈G.S.fin.(�z = γ̃1)|G.S.fin.(�z = γ̃0)〉

= 〈G.S.in.(�z = ωγ̃0)|G.S.in.(�z = γ̃0)〉
〈G.S.fin.(�z = ωγ̃0)|G.S.fin.(�z = γ̃0)〉 (141)

=
〈G.S.in.(�z = γ̃0)| τ̃ x†

1
2

(�z = γ0) |G.S.in.(�z = γ̃0)〉
〈G.S.fin.(�z = γ̃0)| τ̃ x†

1
2

(�z = γ0) |G.S.fin.(�z = γ̃0)〉
(142)

= ω. (143)

Therefore, the ratio (135) is

r̃ = ω. (144)

In this process, what is the three-parameter family of
(0+1)-dimensional invertible states that are pumped into the
boundary? To clarify this, consider an effective model of
the boundary. For the initial Hamiltonian (24), the boundary
model is given by

Hbdy.

in. (�z) := −τ̃ x
1
2
(�z)σ̃ z†

1 − τ̃
z†
1
2

(�z)σ̃ x
1 τ̃ z

3
2
(�z) − σ̃ z

1 τ̃ x
3
2
(�z) + H.c.,

(145)

and for the final Hamiltonian (38), the boundary model is
given by

Hbdy.

fin. (�z) := −ω2τ̃ x
1
2
(�z)σ̃ z†

1 − τ̃
z†
1
2

(�z)σ̃ x
1 τ̃ z

3
2
(�z) − σ̃ z

1 τ̃ x
3
2
(�z) + H.c.

(146)

Then, it can be seen that the ratio of the discrete Berry phases
we calculated above is the same as that of these quantum
mechanical systems. Let us check this point. The ground state
of the initial Hamiltonian Hbdy.

in. (�z) is given by

∣∣G.S.
bdy.

in. (�z)
〉

=
1 + τ̃ x

1
2
(�z)σ̃ z†

1 + τ̃
x†
1
2

(�z)σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
(�z) + σ̃

z†
1 τ̃

x†
3
2

(�z)
√

3

× |τ̃0(�z)v0τ̃0(�z)〉 (147)

= Ṽτ (�z) 1
2
Ṽτ (�z) 3

2

1 + τ̃ x
1
2
σ̃

z†
1 + τ̃

x†
1
2

σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
+ σ̃

z†
1 τ̃

x†
3
2√

3

× |τ̃0v0τ̃0〉 , (148)
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where |v0〉 = (1, 1, 1)T/
√

3 is a eigenstate of σ̃ x with eigen-
value 1. Introducing the spherical coordinates13

z1 = sin(χ ) sin(θ )eiφ, (149)

z2 = cos(χ ) + i sin(χ ) cos(θ ), (150)

a loop γ generating the first homotopy group π1(L(3, 1)) is
given by

γ =
{(

χ = π

2
, θ = π

2
, φ

)
|φ ∈

[
0,

2π

3

]}
. (151)

With the gauge (148), it is straightforward to show that the
Berry connection is trivial:

Abdy.

in. (�z) = 0. (152)

In addition, since Ṽτ (ω�z)†Ṽτ (�z) = τ̃ x†,

〈
G.S.

bdy.

in. (ω�z)
∣∣G.S.

bdy.

in. (�z)
〉

= 〈τ̃0v0τ̃0|
1 + τ̃ x

1
2
σ̃

z†
1 + τ̃

x†
1
2

σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
+ σ̃

z†
1 τ̃

x†
3
2√

3
τ̃

x†
1
2

τ̃
x†
3
2

×
1 + τ̃ x

1
2
σ̃

z†
1 + τ̃

x†
1
2

σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
+ σ̃

z†
1 τ̃

x†
3
2√

3
|τ̃0v0τ̃0〉

= 1. (153)

Thus, the discrete Berry phase of the initial Hamiltonian
Hbdy.

in. (�z) is 1:

ñbdy.

in. (γ̃ ) := exp

(∫
γ̃

Ãbdy.

in. − 1

3

∫
�̃

dÃbdy.

in.

) 〈
G.S.

bdy.

in. (�z = γ̃0)
∣∣G.S.

bdy.

in. (�z = γ̃1)
〉 = 1. (154)

Similarly, the ground state of the final Hamiltonian Hbdy.

fin. (�z) is given by

∣∣G.S.
bdy.

in. (�z)
〉 =

1 + ω2τ̃ x
1
2
(�z)σ̃ z†

1 + ωτ̃
x†
1
2

(�z)σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
(�z) + σ̃

z†
1 τ̃

x†
3
2

(�z)
√

3
|τ̃0(�z)v0τ̃0(�z)〉 (155)

= Ṽτ (�z) 1
2
Ṽτ (�z) 3

2

1 + ω2τ̃ x
1
2
σ̃

z†
1 + ωτ̃

x†
1
2

σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
+ σ̃

z†
1 τ̃

x†
3
2√

3
|τ̃0v0τ̃0〉 , (156)

and we can easily check that the Berry connection of Abdy.

fin. (�z) is also trivial:

Abdy.

fin. (�z) = 0. (157)

On the other hand,

〈
G.S.

bdy.

fin. (ω�z)
∣∣G.S.

bdy.

fin. (�z)
〉 = 〈τ̃0v0τ̃0|

1 + ω2τ̃ x
1
2
σ̃

z†
1 + ωτ̃

x†
1
2

σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
+ σ̃

z†
1 τ̃

x†
3
2√

3

× τ̃
x†
1
2

τ̃
x†
3
2

1 + ω2τ̃ x
1
2
σ̃

z†
1 + ωτ̃

x†
1
2

σ̃ z
1√

3

1 + σ̃ z
1 τ̃ x

3
2
+ σ̃

z†
1 τ̃

x†
3
2√

3
|τ̃0v0τ̃0〉 = ω2. (158)

Thus, the discrete Berry phase of the initial Hamiltonian
Hbdy.

in. (�z) is ω2:

ñbdy.

fin. (γ̃ ) := exp

(∫
γ̃

Ãbdy.

fin. − 1

3

∫
�̃

dÃbdy.

fin.

)

× 〈
G.S.

bdy.

fin. (�z = γ̃0)
∣∣G.S.

bdy.

fin. (�z = γ̃1)
〉 = ω2.

(159)

Therefore, the ratio of the discrete Berry phases of these
quantum mechanical systems is

ñbdy.

in. (γ̃ )

ñbdy.

fin. (γ̃ )
= ω. (160)

13Although the Hopf coordinates z1 = eiα cos(β ), z2 =
eiα′

sin(β ), α, α′ ∈ [0, 2π ), β ∈ [0, π/2) are useful to see for
the Z/3Z action in lens space L(3, 1), we use spherical coordinates
since only a path on the equator is used here.

3. Physical interpretation II: Boundary condition obstacle

In Sec. II B 2, we considered the system with boundary and
discussed the flow of the discrete Berry phase, when compar-
ing t = 0 and 2π . This breaking of the 2π periodicity is due
to the fact that the boundary terms were not 2π periodic. In
fact, the boundary term −τ̃ x

1/2(�n)σ̃ z
1 (t ) which was added to the

Hamiltonian is not 2π periodic. We can consider a boundary
term like τ̃ z(�n) that preserves 2π periodicity, but this time the
boundary term is not global on L(3, 1). Similarly to the dis-
cussion in Sec. II A 3, we can show that there is no boundary
term that is parametrized over the whole of L(3, 1) × S1 and
makes the system unique gap at all points L(3, 1) × S1.

Let us suppose that there exists such a term, which we
denote by x̃(�n, t ). Then, the flow of the discrete Berry phase
is trivial under this boundary condition. This implies that
by stacking two semi-infinite chains with boundary condi-
tion −τ̃ x

1/2(�n)σ̃ z
1 (t ) and x̃(�n, t ), we obtain a nontrivial family

of (0 + 1)-dimensional systems parametrized by L(3, 1) ×
[0, 2π ] whose ratio of the discrete Berry phase at t = 0 and
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2π is ω. If there existed such a family, it would be inconsistent
with the quantization of the discrete Berry phase. Therefore,
there are no such boundary terms.

III. QUICK REVIEW OF THE SMOOTH DELIGNE
COHOMOLOGY

In this section, first, we review the smooth Deligne co-
homology [18] and its integration theory. In Sec. III A, we
introduce the higher analog of the discrete Berry phase based
on the integration theory. The smooth Deligne cohomology is
isomorphic to the differential cohomology group [18,19]. In
fact, the integration map for the smooth Deligne cohomology
gives such explicit isomorphism [11,20]. This isomorphism is
an analogy of the de Rham isomorphism. In Sec. III B, as an
application example, we reformulate the invariant of a fermion
parity pump proposed in [4] as an integration of a smooth
Deligne cohomology class.

A. Definition and integration

We introduce the smooth Deligne cohomology. The
ordinary cohomology theory captures only topological in-
formation, and does not include nontopological information,
such as the Berry connection itself or holonomy. On the other
hand, the smooth Deligne cohomology has all such infor-
mation. This enables us to systematically extract topological
information through integration theory for any dimensional
system.14

Let X be a smooth manifold. The smooth Deligne complex
of X is the complex of sheaves

D(p) : C∗ d log→ A1 d→ · · · d→ Ap−1,

where C∗ is the sheaf of C∗-valued smooth functions
on X and Ak is the sheaf of smooth k-forms on X 15.
The smooth Deligne cohomology is the hypercohomology
Hn(X ;D(p)) of the smooth Deligne complex D(p). Fixing
a good open covering U = {Uα}α∈I of X , a smooth Deligne
cohomology class in H p(X ;D(p)) is represented by a co-
cycle c = (wα0...αp−1 , θ

1
α0...αp−2

, . . . , θ
p−1
α0 ) where wα0...αp−1 is

a smooth function on the intersection Uα0 ∩ · · · ∩ Uαp−1 of
open sets in values with nonzero complex numbers, and
θ k
α0...αp−k−1

is a smooth k-form on the intersection Uα0 ∩
· · · ∩ Uαp−k−1 . The cocycle condition on c is equivalent
to the condition δ(θ k )α0,...,αp−k = (−1)p−kdθ k−1

α0,...,αp−k
for k =

2, . . . , p − 1, δ(θ1)α0,...,αp−1 = (−1)p−1d log(wα0,...,αp−1 ) and
δ(w)α0,...,αp = 1. Here δ is the Čeck derivative. This condition

on c shows that the differential forms dθ
p−1
α and dθ

p−1
α′ are

equal on the intersection Uα ∩ Uα′ . So, we have a global closed

14In this paper, however, we only consider (1 + 1)-dimensional
systems and encounter cases where the higher connections and the
higher curvature are trivial. See [21,22] for examples where the
higher Berry connections and higher Berry curvature are nontrivial.
See also [23] for examples of the higher Berry phase in (2 + 1)-
dimensional systems.

15C∗ := C\{0}.

p-form η given by η|Uα
= dθ

p−1
α which is called higher curva-

ture form of c. A smooth Deligne cocycle c is flat if the higher
curvature form of c is zero. An important example of a flat
cocycle which is used in this paper is c = (wα0...αp−1 , 0, . . . , 0)
such that wα0...αp−1 is a constant function on connected compo-
nents of Uα0...αp−1 with (δw)α0...αp = 1.

A main tool in this paper is an integration theory for
the smooth Deligne cohomology developed in [8–12]. See
also related papers [24–31] and books [18,19]. For a smooth
Deligne cohomology class c in H p(X ;D(p)) and a (p − 1)-
dimensional closed oriented submanifold Y in X , we construct
a paring HolY (c) with values in C∗, called higher holonomy
of c along Y , as follows: First, fixing a good open covering
U = {Uα}α∈I , we choose a representative cocycle(

wα0...αp−1 , θ
1
α0...αp−2

, . . . , θ p−1
α0

)
(161)

of c. Second, we choose a triangulation K of Y which is
sufficiently fine such that there exists a map φ : K → I sat-
isfying σ ⊂ Uφσ

for each σ ∈ K . Such map is called index
map. Third, we fix an index map φ : K → I .

Then, we define the higher holonomy as

HolY (c) := exp

⎛
⎝ p−2∑

i=0

∑
σ∈F (i)

∫
σ p−i−1

θ
p−i−1
φ

σ p−1 φ
σ p−2 ...φ

σ p−i−1

⎞
⎠

×
∏

σ∈F (p−1)

wφ
σ p−1 φ

σ p−2 ...φ
σ0 (σ 0), (162)

where F (i) is the set of flags of simplices

F (i) := {σ = (σ p−i−1, . . . , σ p−1)|
dim σ k = k, σ p−i−1 ⊂ · · · ⊂ σ p−2 ⊂ σ p−1}. (163)

This definition is independent of all choices. Remark that if we
have a representative constant cocycle (wα0...αp−1 , 0, . . . , 0),
then the higher holonomy is simplified as follows:

HolY (c) =
∏

σ∈F (p)

wφ
σ p−1 φ

σ p−2 ...φ
σ0 (σ 0). (164)

In general, HolY (c) takes value in U(1), and not quantized.
However, if there is k ∈ N such that k[Y ] = 0 ∈ Hn−1(X ;Z),
we can extract the information of the torsion part of Hn(X ;Z),
by considering the following quantity:

ntop.(Y ) := HolY (c) exp

(
1

k

∫
�

η

)
∈ Z/kZ, (165)

where � is a bounding manifold of kY , i.e., ∂� = kY . This
can be considered as a generalization of an expression given
in [32] on Chern-Simons forms which live on total spaces of
principal bundles. This value is only dependent on wα0,...,αp−1

and [Y ] ∈ Hn−1(X ;Z), and not dependent on the choice of
connections θ1

α0...αp−2
, . . . , θ

p−1
α0 . We call ntop.(Y ) as the dis-

crete higher Berry phase of c along Y .
In the case of p = 2, ntop.(Y ) is the discrete Berry phase

in the usual sense. In Sec. III B, we will verify that a fermion
parity pump invariant proposed in [4] can be written as the dis-
crete Berry phase in the usual sense (p = 2), and in Sec. IV A,
a higher pump invariant can be written as the discrete higher
Berry phase. See Appendix C for a clarification of terminol-
ogy and basic facts about complex line bundles.
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B. Example: Ordinary pump invariant

Let us reformulate the invariants of the fermion par-
ity pump proposed in [4] as an integration of a smooth
Deligne cohomology class. In the case of usual pumps, we
consider a family of invertible states parametrized by S1.
Therefore, take an open covering {Uα}α∈I of S1 and consider
a family of Z/2Z graded injective 2n × 2n MPS matrices
{Ai

α, uα} [33,34] on each patch Uα . For simplicity, consider the
case where {Ai

α, uα} has the Wall invariant (+). Then, by using
the fundamental theorem for Z/2Z graded injective MPS [4],
there exist unique U(1) phases eiφαβ , eiϕαβ ∈ U(1) and unique
projective unitary matrix Vαβ ∈ PU(n) on each intersections
Uαβ := Uα ∩ Uβ so that

Ai
α = eiϕαβVαβAi

βV †
αβ, (166)

uα = eiφαβVαβuβV †
αβ. (167)

We claim that the quantity (wαβ, θα ) = (eiφαβ , 1
2 d log tr(u2

α ))
is a 2-cocycle of the smooth Deligne cohomology, and the
pump invariant is given as its (ordinary) discrete Berry phase.

Let us check cocycle conditions (δw)αβγ = 1 and
(δθ )αβ = d log wαβ . On Uα ∩ Uβ ∩ Uγ ,

Ai
α = eiϕαβVαβAi

βV †
αβ = eiϕαβ eiϕβγ VαβVβγ Ai

γV †
βγV †

αβ (168)

and

Ai
α = eiϕαγ Vαγ Ai

γV †
αγ . (169)

Since {Ai
α} are Z/2Z graded injective with the Wall invariant

(+), there is some U(1) phase eiωαβγ so that

VαβVβγ = eiωαβγ Vαγ . (170)

Similarly, on Uα ∩ Uβ ∩ Uγ ,

uα = eiφαβ eiφβγ VαβVβγ uγV †
βγV †

αβ (171)

and

uα = eiφαγ Vαγ uγV †
αγ . (172)

Comparing Eqs. (171) and (172) and using (170), we obtain

eiφαβ eiφβγ = eiφαγ ⇔ (δw)αβγ = 1. (173)

Next, taking the square of both sides of Eq. (167), we obtain

u2
α = e2iφαβVαβu2

βV †
αβ, (174)

and taking log tr of both sides of this equation,

log tr
(
u2

α

) = log e2iφαβ + log tr
(
u2

β

)
(mod2π iZ) (175)

⇔ log eiφαβ = 1
2 log tr

(
u2

α

) − 1
2 log tr

(
u2

β

)
(modπ iZ). (176)

Therefore,

d log eiφαβ = 1
2 d log tr

(
u2

α

) − 1
2 d log tr

(
u2

β

) ⇔ (δθ )αβ

= d log wαβ. (177)

Thus, (eiφαβ , 1
2 d log tr(u2

α )) is a cocycle of degree 2 in the
sense of the smooth Deligne cohomology.

To write the discrete Berry phase explicitly, we take a
triangulation as shown in Fig. 5 and take an index map defined
by φ(σα ) = α for all α ∈ I and φ(σαβ ) = β for all α, β ∈ I

FIG. 5. A part of a triangulation of S1. The elongated circles
represent open coverings, the red dots represent 0-simplices, and the
blue edges represent 1-simplices.

such that Uα ∩ Uβ �= ∅. In this case, the discrete Berry phase
of (wαβ, θα ) = (eiφαβ , 1

2 d log tr(u2
α )) is given by

ntop.(S
1) = exp

(
1

2

∑
α

∫
σα

d log tr
(
u2

α

)) ×
∏
σαβ

eiφαβ , (178)

and it takes value in π iZ/2π iZ � Z/2Z. Note that the cor-
rection by the 2-form curvature has disappeared since the
cocycle (wαβ, θα ) is always flat. We will check that the an-
alytic and algebraic invariants proposed in [4] are realized as
a special case of Eq. (178) by taking suitable gauges. First,
we take the gauge with wαβ = 1 for any α and β. From the
cocycle condition, we obtain

1
2 d log tr

(
u2

α

) − 1
2 d log tr

(
u2

β

) = 0 ⇔ (δθ )αβ = 0, (179)

and this implies that 1
2 log tr(u2

α ) is global 1-form over S1.
Therefore, the discrete Berry phase (178) is recast into

ntop.(S
1) = exp

(
1

2

∫
S1

d log tr
(
u2

α

)) ∈ Z/2Z, (180)

and this is nothing but the analytic invariant of fermion par-
ity pump. Next, we take the gauge with d log tr(u2

α ) = 0.
From the cocycle condition, we obtain d log eiφαβ = 0, and
this implies that log eiφαβ = cαβ + π inαβ for some cαβ ∈ R
and nαβ ∈ {0, 1}. Remark that

∑
σαβ

cαβ = 0 (modπ iZ). In

fact, 2cαβ = log tr(u2
α ) − log tr(u2

β ) (mod2π iZ) at σαβ , and∫
σβ

d log tr(u2
β ) = log tr(u2

β )|σαβ
− log tr(u2

β )|σβγ
= 0. Thus,

∑
σαβ

cαβ

= 1

2

∑
σαβ

[
log tr

(
u2

α

) − log tr
(
u2

β

)]∣∣
σαβ

(modπ iZ) (181)

=
∑
σαβ

(
−1

2
log tr

(
u2

β

)∣∣
σαβ

+ 1

2
log tr

(
u2

β

)∣∣
σβγ

)
(modπ iZ)

(182)

= 0 (modπ iZ). (183)
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Therefore, the holonomy (178) is recast into

ntop.(S
1) =

∏
σαβ

wαβ ∈ Z/2Z, (184)

and this is nothing but the algebraic invariant of fermion parity
pump.

IV. MATRIX PRODUCT STATE REPRESENTATION AND
HIGHER PUMP INVARIANT

In this section, we define the higher pump invariant as an
integration of the smooth Deligne cohomology. To this end,
we utilize an injective MPS bundle over the parameter space.
By using this bundle, we can construct a smooth Deligne
cocycle, and define the higher pump invariant as an integration
of the cocycle. In Sec. IV A, we explain the construction of the
higher pump invariant. In Secs. IV B and IV C, we compute
the higher pump invariant for the models introduced in Secs. II
and II B 1, respectively.

A. Definition of the higher pump invariant

Fix an n-dimensional manifold X as a parameter space
and its good open covering {Uα}α∈I . Let {Ai

α (x)}i be an n × n
injective matrix [4] on Uα and assume that {Ai

α (x)}i is in the
right canonical form [35], i.e.,∑

i

Ai
α (x)Ai†

α (x) = 1n, (185)

for any α and x.We call this an injective MPS bundle over
X . On Uαβ := Uα ∩ Uβ , {Ai

α (x)}i and {Ai
β (x)}i give the same

MPS. Thus, by using the fundamental theorem for bosonic in-
jective MPS [35], we obtain a PU(n)-valued function {gαβ (x)}
and U(1)-valued function {eiθαβ } on Uαβ such that

Ai
α (x) = eiθαβ gαβ (x)Ai

β (x)gαβ (x)†. (186)

Remark that {gαβ (x)} and {eiθαβ } are unique. By using the
uniqueness of {gαβ (x)}, we can easily check that {gαβ (x)}
satisfy the cocycle condition

(δg)αβγ = 1. (187)

We call {gαβ (x)} a transition function.16

Next, we take a U(n) lift {ĝαβ (x)} of the transition function,
i.e., {ĝαβ (x)} is a U(n)-valued continuous function such that
π (ĝαβ ) = gαβ . Here, π : U(n) → PU(n) is a projection. Since
{gαβ} satisfy the cocycle condition (187), (δĝ)αβγ takes value
in U(1). We define

cαβγ := ĝαβ ĝβγ ĝγα. (188)

By definition, cαβγ is a cocycle, i.e., (δc)αβγ δ = 1. Thus,
cαβγ defines a cohomology class [cαβγ ] ∈ H2(X ; U(1)) �
H3(X ;Z). [cαβγ ] is called the Dixmier-Douady class [13].
Since [cαβγ ] takes values in H3(X ;Z), we may already con-
sider this as a higher pump invariant. However, to extract this

16We may regard gαβ (x) as a U(n)-valued function, but in that case,
the definition (186) remains redundant in the U(1) phase of gαβ (x).
Thus, it is natural to regard gαβ (x) as a function that takes value in
PU(n) = U(n)/U(1).

quantity numerically by integration, we need to introduce a
1-form and 2-form connection θ1

αβ and θ2
α as an element c =

(cαβγ , θ1
αβ, θ2

α ) ∈ H3(X ;D(3)) and 3-form curvature η|Uα
=

dθ2
α . This procedure can be explained as an analogy with com-

plex line bundles. A complex line bundle over X is completely
characterized by a transition function {gαβ} and it defines
an element of [gαβ] ∈ H2(X ;Z). Since isomorphism classes
of complex line bundles are classified by H2(X ;Z), [gαβ]
is a topological invariant. However, in order to numerically
extract the Chern number and the discrete Berry phase, we
need to take a connection Aα and a curvature F |Uα

= dAα and
integrate it. A complex line bundle with connection (gαβ, Aα )
determines an element of H2(X ;D(2)) and computation of the
Chern number and the discrete Berry phase can be regarded as
an integration of the smooth Deligne cohomology class as we
saw in Sec. III.

The existence of θ1
αβ and θ2

α is guaranteed from the gen-
eralized Mayer-Vietoris theorem [36], and the value of the
integration does not depend on how to take θ1

αβ and θ2
α . In

this case, for example, we can take θ1
αβ and θ2

α as follows:

θ2
α = 0, θ1

αβ = d log det(ĝαβ ). (189)

Since cαβγ is defined by Eq. (188), (θ2
α, θ1

αβ, cαβγ ) is a 3-
cocycle. Consequently, our pump invariant ntop. is the discrete
Berry phase of (cαβγ , θ1

αβ, θ2
α ) over a suitable 2-cycle Y ∈

Z/kZ ⊂ H2(X ;Z)tor.:

ntop.(Y ) := HolY
(
cαβγ , θ1

αβ, θ2
α

)
× exp

(
1

k

∫
�

η

)
∈ H3(X ;Z)tor., (190)

where H3(X ;Z)tor. is the torsion part of H3(X ;Z) and � is
a bounding manifold of kY , i.e., ∂� = kY . Here, the choice
of the homology class of Y depends on which charge we
measure. From the universal coefficient theorem, there is
an isomorphism between H2(X ;Z)tor. and H3(X ;Z)tor.. If
H3(X ;Z)tor. has more than one component, we integrate over
the 2-cycle Y , which is determined as a pullback by the iso-
morphism of the generator of the component. For example,
consider the case where the parameter space X is given by the
direct product of some manifold Mn and S1: X = Mn × S1.
In this case, a model of quantum mechanics parametrized by
Mn on the boundary is pumped by the deformation of the
system along the S1 direction. If we are interested in whether
the discrete Berry phase along a path γ ⊂ Mn is pumped, we
choose Y = γ × S1 ⊂ X and compute ntop.(Y ).

B. Computation of the higher pump invariant: RP2 × S1 model

1. MPS representation and transition function

In this section, we compute our higher pump invariant for
the model (17). The ground state of (17) is known to be
the cluster state, of which an MPS representation is given
by [35,37]

|GS(�n, t )〉 =
∑

{ik},{ jl }
tr
(
Ai1

τ (�n)A
jl
σ (t ) . . . AiL

τ (�n)A
jL
σ (t )

)
× ∣∣τi1 (�n)σ j1 (t ) . . . τiL (�n)σ jL (t )

〉
(191)
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with

A↑
τ (�n) =

(
1 1
0 0

)
, A↓

τ (�n) =
(

0 0
1 −1

)
, A0

τ (�n) =
(

0 0
0 0

)
,

(192)

A↑
σ (t ) =

(
1 1
0 0

)
, A↓

σ (t ) =
(

0 0
1 −1

)
. (193)

Here, |τi(�n)〉 is basis diagonalizing τ z(�n). Explicitly,

|τ (�n)↑〉 = 1√
2

[|u+(�n)〉 + |u−(�n)〉] = 1√
2

⎛
⎝ 1

n3

n1 + in2

⎞
⎠,

|τ↓(�n)〉 = 1√
2

[|u+(�n)〉 − |u−(�n)〉] = 1√
2

⎛
⎝ 1

−n3

−n1 − in2

⎞
⎠,

|τ0(�n)〉 = |u⊥
−(�n)〉 =

⎛
⎝ 0

−n1 + in2

n3

⎞
⎠. (194)

In the expression (191), the basis depends on the parameters
�n, t , whereas the MPS matrices do not. We move to parameter-
independent basis |τi〉 = |τi(�n = �z0)〉 and |σ j〉 = |σ j (t = 0)〉
to get

|GS(�n, t )〉 =
∑

{ik},{ jl }
tr
[
Ai1

τ (�n)Ajl
σ (t ) . . . AiL

τ (�n)AjL
σ (t )

]
× ∣∣τi1σ j1 . . . τiL σ jL

〉
(195)

with

Ai
τ (�n) :=

∑
k

Kτ (�n)i,kAk
τ (�n),

Ai
σ (t ) :=

∑
k

Kσ (t )i,kAk
σ (t ). (196)

Here, Kτ (�n) and Kσ (t ) are basis transformations de-
fined by |τk (�n)〉 = ∑

i |τi(�n = �z0)〉 Kτ (�n)i,k and |σk (t )〉 =∑
i |σi(t = 0)〉 Kσ (t )i,k , explicitly given by

Kτ (�n) =

⎛
⎜⎜⎝

1+n3
2

1−n3
2 − n1−in2√

2
1−n3

2
1+n3

2
n1−in2√

2
n1+in2√

2
− n1+in2√

2
n3

⎞
⎟⎟⎠, (197)

Kσ (t ) =
(

cos t
4 −i sin t

4

−i sin t
4 cos t

4

)
. (198)

Considering τ and σ spins as a unit site, we have a transla-
tional invariant MPS

Ai, j
τ,σ (�n, t ) := Ai

τ (�n)Aj
σ (t ). (199)

The ground state (195) is parametrized by RP2 × S1 as a
family of physical states, while the matrices (199) are not, i.e.,

Ai, j
τσ (−�n, t ) �= Ai, j

τσ (�n, t ), Ai, j
τσ (�n, t + 2π ) �= Ai, j

τσ (�n, t ).
(200)

The fundamental theorem for matrix product state [35] im-
plies the existence of unitary matrices gRP2 (�n, t ), gS1 (�n, t )
and phases eiα, eiβ so that

Ai, j
τσ (�n, t ) = eiαgRP2 (�n, t )Ai, j

τσ (−�n, t )gRP2 (�n, t )† (201)

FIG. 6. Transition functions on RP2 × S1.

and

Ai, j
τσ (�n, t ) = eiβgS1 (�n, t )Ai, j

τσ (�n, t + 2π )gS1 (�n, t )†. (202)

It is easy to find that

eiα = 1, gRP2 (�n, t ) = σx, (203)

eiβ = i, gS1 (�n, t ) = σz, (204)

as in Fig. 6. It is important to note that the unitary matrix
given by the fundamental theorem is unique up to a U(1)
phase factor. Thus, we should regard σ x and σ z as elements
of PU(2), not of U(2). To indicate this explicitly, we write an
element of PU(2) as [σ x] instead of σ x, for example.

2. Calculation of the higher pump invariant

As we showed in Sec. II A 2, we found that a quantum
mechanical system parametrized by RP2 was pumped by
adiabatic deformation along S1, and it had a nontrivial discrete
Berry phase along the nontrivial path γ of RP2. This implies
that the higher pump invariant defined in the Sec. IV A along
the surface Y =γ×S1 ⊂ RP2×S1 is nontrivial. Hence, let us
compute the discrete higher Berry phase along this surface Y .

To calculate this invariant, first, we need to take a good
open cover of X = RP2 × S1. We take the good open cover
as in Fig. 7. Note that the intersections of the common part of
the balls are taken to be contained within the interior of the

FIG. 7. A part of an open covering of RP2 × S1. These consist
of one open ball centered at the center of the cube, one open ball
centered at the vertex, three open balls centered at the midpoints of
the edges, and three open balls centered at the midpoints of the faces.
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FIG. 8. A polyhedral decomposition of RP2 × S1. This is com-
patible with the open cover, that is, for any dimensional cells, there
is a patch so that the cell is included within the patch.

cube. In the following, we formally write this open covering
as U = {Ui}i∈I .

Next, we take a polyhedral decomposition T of RP2 × S1

which is compatible with the open covering U . We take the
polyhedral decomposition T as in Fig. 8:

The open set corresponding to a simplex τ in T is written
by Uiτ . To implement the injective MPS bundle on this cube,
we assign transition functions on the faces of the polyhedral
decomposition. We would like to perform this assignment sys-
tematically. To this end, we take base points of each patch, and
define transition functions on the intersection U12 = U1 ∩ U2

under the following rules:
(1) Take a path starting from the base point of the patch

U1 and passing through U12 and terminating at the base point
of U2.

(2) If the path is through the side of the cube, we give [σ x],
and if the path is through the top or bottom, we give [σ z].

Under these assignment rules, the configuration of the in-
jective MPS bundle is determined by fixing the base points
of each patch. We fix the base points as in Fig. 9. In the

FIG. 9. (Left) A based polyhedral decomposition of RP2 × S1.
The two in the middle belong to the back patch and the center patch
of the cube, respectively. (Right) For example, the transition function
on the blue surface is [12] since the base points of the front- and back-
side patches are directly connected. On the other hand, the transition
function on the red surface is [σ xσ z] since the path connecting the
base points of the front- and back-side patches have to get through
the bottom and side faces of the cube one at a time.

FIG. 10. The configuration of cαβγ . On the red lines, cαβγ = −1
on them and cαβγ = 1 on the others.

following, we formally write the transition functions as {gαβ :
Uα ∩ Uβ → PU(2)}.

The Dixmier-Douady class can be viewed as a violation of
the cocycle condition for lifting a transition function that takes
values in PU(2) to U(2). We take the following lifts:

[12] �→ 12, [σ x] �→ σ x, [σ z] �→ σ z, [σ xσ z] �→ σ xσ z,

(205)

In the following, we formally write the lifted transition
functions as {ĝαβ : Uα ∩ Uβ → U(2)}. Under these lifts, the
violation of the cocycle condition can only occur if the sur-
faces with the transition functions [σ x], [σ z], and [σ xσ z] =
[σ zσ x] intersect each other, and the violation occurs by −1 on
them. For example, let the bottom patch of the front side be
Uα , the center patch of the front side be Uβ , and the center
patch of the cube Uγ . By the assignment rule of transition
functions, we can easily check that gαβ = [σ z], gβγ = [σ x],
and gαγ = [σ xσ z]. Thus, lifted transition functions are ĝαβ =
σ z, ĝβγ = σ x, and ĝαγ = σ xσ z. The Dixmier-Douady class
cαβγ on the line is given by

cαβγ = ĝαβ ĝβγ ĝγα = −1. (206)

Consequently, we can identify the edge with nontriv-
ial cαβγ over whole RP2 × S1, as in Fig. 10. Note
that cαβγ defines a cohomology class [cαβγ ] ∈ H2(RP2 ×
S1; U(1)) � H3(RP2 × S1;Z) � Z/2Z and a cohomology
class [(cαβγ , 0, 0)] ∈ H3(RP2 × S1;D(3)) which is flat. The
group H2(RP2 × S1; U(1)) is a subgroup of H3(RP2 ×
S1;D(3)) under the map [cαβγ ] �→ [(cαβγ , 0, 0)].

Let us compute the higher holonomy of c = (cαβγ , 0, 0)
along this surface Y = γ × S1. We take the diagonal line of
the top square of the cube as a nontrivial path in RP2 and
take a polyhedral decomposition17 of Y induced from that of
RP2 × S1. We label the open sets of Y with roman letters
(i, j, k, . . . ) instead of greek letters (α, β, γ , . . . ). We show

17Although what is shown in Fig. 11 is a polyhedral decomposi-
tion, we theoretically consider a triangulation that subdivides it and
assume that the index map takes the same value for all simplices in
each polyhedron.
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FIG. 11. The polyhedral decomposition of Y induced from that
of RP2 × S1, and a vertex on which the Dixmier-Douady class has a
value −1.

the nontrivial cocycle on Y in Fig. 11. It is necessary to
take an index map φ to perform an integration. However, to
compute the invariant on Y , it is sufficient to determine the
index map on Y . We take an index map as in Fig. 12. Then
the higher holonomy is given by the following formula:

HolY (c) =
∏

σ=(σ 0⊂σ 1⊂σ 2 )∈F (2)

cφ
σ2 φ

σ1 φ
σ0 (σ 0). (207)

As seen in Fig. 11, the only intersection where the Dixmier-
Douady class is nontrivial is Ui jk . Moreover, a full flag σ =
(σ 0 ⊂ σ 1 ⊂ σ 2) satisfying {l, k, j} = {φσ 2 , φσ 1 , φσ 0} is only
one (s0 ⊂ s1 ⊂ s2). We show this flag in Fig. 13. Therefore,
we have

HolY (c) =
∏

σ=(σ 0⊂σ 1⊂σ 2 )∈F (2)

cφ
σ2 φ

σ1 φ
σ0 (σ 0) (208)

= cφs2 φs1 φs0 (s0) (209)

= clk j (210)

= −1. (211)

Since the cocycle c is flat, there is no correction by the 3-form
curvature. As a result, we have that the higher pump invariant
is

ntop.(Y ) = HolY (c) = −1 ∈ Z/2Z. (212)

FIG. 12. An index map of the polyhedral decomposition of Y .
Blue arrows are index maps for edges, and the direction of it indicates
the patch to which the edge belongs. Similarly, orange arrows are
index maps for vertices, and the direction of it indicates the patch to
which the vertex belongs.

FIG. 13. A flag contributing to integration. The red circle rep-
resents s0, the red wavy line represents s1, and the red shaded face
represents s2.

Therefore, the higher pump invariant is nontrivial. This in-
variant can be regarded as an element of H3(S1 × RP2;Z) �
H3(S1 × BZ/2Z;Z), where BZ/2Z is the classifying space
of Z/2Z. As explained in [38], G-charge Thouless pump is
classified by the cohomology theory of S1 × BG. Therefore,
this invariant can be understood as a Z/2Z-charge pump
invariant in the interacting phase.

C. Computation of the higher pump
invariant: L(3, 1) × S1 model

1. MPS representation and transition function

Let us compute an MPS representation of the ground
state (105). We find that the following MPS representation∣∣{Ai

u(�z), Aj
σ̃ (t )

}〉 =
∑
{ik , jl }

tr
(
Ai1

u(�z)A
j1
σ̃ (t ) . . .

) ∣∣ui1 (�z)σ̃ j1 (t ) . . .
〉

(213)

with

A0
u(�z) = 1

3

⎛
⎝ 1 1 1

ω2 1 ω

ω2 ω 1

⎞
⎠, A1

u(�z) = 1

3

⎛
⎝ 1 ω ω2

ω2 ω 1
ω2 ω2 ω2

⎞
⎠,

A2
u(�z) = 1

3

⎛
⎝ 1 ω2 ω

ω2 ω2 ω2

ω2 1 ω

⎞
⎠, (214)

A0
σ̃ (t ) = 1√

3

⎛
⎝1 0 0

1 0 0
1 0 0

⎞
⎠, A1

σ̃ (t ) = 1√
3

⎛
⎝0 ω 0

0 1 0
0 ω2 0

⎞
⎠,

A2
σ̃ (t ) = 1√

3

⎛
⎝0 0 ω

0 0 ω2

0 0 1

⎞
⎠. (215)

In fact, these matrices satisfy the desired properties: First,

Ai
σ̃ (t )A

j
u(�z)A

k
σ̃ (t ) =

{
0 (i + j �= k mod 3),
pikAi

σ̃ (t )A
k
σ̃ (t ) (i + j = k mod 3),

(216)

holds, where pik are phase factors

p00 = 1, p01 = 1, p02 = 1, (217)

p10 = ω2, p11 = 1, p12 = ω, (218)

p20 = ω2, p21 = ω, p22 = 1. (219)
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Therefore, the MPS is a superposition of decorated domain
wall states with the additional decoration of U(1) phases pik .
We can also show that

pi0 p0 jA
i
σ̃ (t )A

0
σ̃ (t )A

j
σ̃ (t ) = pi1 p1 jA

i
σ̃ (t )A

1
σ̃ (t )A

j
σ̃ (t )

= pi2 p2 jA
i
σ̃ (t )A

2
σ̃ (t )A

j
σ̃ (t ). (220)

Hence, all weights are equal to tr(A0
σ̃ (t )A

0
σ̃ (t ) . . . A0

σ̃ (t ) ) = 1.

Therefore, |{Ai
u(�z), Aj

σ̃ (t )}〉 is an MPS representation of the
ground state (105).

The basis of the MPS (213) depends on �z and t , but the
matrices do not. We rewrite the MPS (213) in the basis of
|τ̃i〉 and |σ̃ j〉. To do so, using the basis transformation |uk〉 =∑

i |τ̃i〉 Ti,k with

T = 1√
3

⎛
⎝ 1 1 1

ω 1 ω2

ω2 1 ω

⎞
⎠, (221)

and

|uk (�z)〉 = Ṽτ (�z) |uk〉
=

∑
i

Ṽτ (�z) |τ̃i〉 Ti,k =
∑

i

|τ̃i〉 [Ṽτ (�z)T ]i,k, (222)

|σ̃k (t )〉 = Ṽσ (t ) |σ̃k〉 =
∑

j

|σ̃ j〉 Ṽσ (t ) j,k (223)

with matrices Ṽτ (�z) and Ṽσ (t ) introduced before in Eqs. (90)
and (97), respectively, we have∣∣{Ai

τ̃ (�z), Aj
σ̃ (t )

}〉 =
∑
{ik , jl }

tr
(
Ai1

τ̃ (�z)Aj1
σ̃ (t ) . . .

) ∣∣τ̃i1 σ̃ j1 . . .
〉

(224)

with

Ai
τ̃ (�z) =

∑
k

[Ṽτ (�z)T ]i,kAk
u(�z), Aj

σ̃ (t ) =
∑

k

Ṽσ (t ) j,kAk
σ̃ (t ).

(225)

Regarding τ and σ spins as a unit site, we get the translational
invariant MPS

Ai, j
τ̃ σ̃ (�z, t ) := Ai

τ̃ (�z)Aj
σ̃ (t ). (226)

With this MPS, it is straightforward to show that the transition
functions are given as

Ai, j
τ̃ σ̃ (ω�z, t ) = g̃L(3,1)A

i, j
τσ (�z, t )g̃†

L(3,1),

Ai, j
τσ (�z, t + 2π ) = g̃S1 Ai, j

τσ (�z, t )g̃†
S1 , (227)

where

g̃L(3,1) :=
⎡
⎣
⎛
⎝ω

1
ω2

⎞
⎠

⎤
⎦, g̃S1 :=

⎡
⎣
⎛
⎝ 1

ω2

ω

⎞
⎠

⎤
⎦.

(228)

Here, [·] implies that g̃L(3,1) and g̃S1 are not an element of
U(3), but also PU(3).

2. Calculation of the higher pump invariant

Finally, let us compute the discrete higher Berry phase
defined in Sec. IV A. As we showed in Sec. II B 2, we found

FIG. 14. A part of the open covering of L(3, 1) × S1. The bottom
and top triangles represent the surface of the ball, and the vertical
direction represents the S1 direction. The open covers consist of one
open ball centered at the center of the prism, one open ball centered
at the vertex, two open balls centered at the midpoints of the edges,
and two open balls centered at the midpoints of the faces.

that a quantum mechanical system parametrized by L(3, 1)
was pumped by adiabatic deformation along S1 and it had a
nontrivial discrete Berry phase along the nontrivial path γ of
L(3, 1). This implies that the higher pump invariant defined
in Sec. IV A along the surface Y = γ × S1 ⊂ L(3, 1) × S1 is
nontrivial. Let us compute the discrete higher Berry phase
over γ × S1 ⊂ L(3, 1) × S1.

To integrate the discrete Berry phase, we need to take
an open cover of X = L(3, 1) × S1. Since L(3, 1) × S1 is a
four-dimensional manifold, we cannot draw a picture similar
to the RP2 × S1 model. Thus, instead of drawing the entire
L(3, 1) × S1, we draw the direct product of the surface of the
ball18 and S1, and take an open cover as in Fig. 14.

Next, we take a polyhedral decomposition T of L(3, 1) ×
S1 which is compatible with the open covering U . We take the
polyhedral decomposition T as in Fig. 15.

The open set corresponding to a simplex τ in T is written
by Uiτ . To implement the injective MPS bundle on this tri-
angular prism, we assign transition functions on the faces of
the polyhedral decomposition. We would like to perform this
assignment systematically. To do this, we take base points of
each patch, and define transition functions on the intersection
U12 of patches U1 and U2 under the following rules:

(1) Take a path starting from the base point of the patch
U1 and passing through U12 and terminating at the base point
of U2.

18Strictly speaking, the surface of the ball is not a manifold. In fact,
the neighborhood of the point on the equator is not homeomorphic
to the Euclidian space because there are three directions to move.
However, for the purpose of performing the integration, it is sufficient
to know the cocycle on the integration surface γ × S1, so in this
paper, it is sufficient to examine its surface instead of the ball.
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FIG. 15. A polyhedral decomposition of L(3, 1) × S1.

(2) If the path is through the side of the triangular prism,
we give g̃L(3,1), and if the path is through the top or bottom,
we give g̃S1 .

Under these assignment rules, the configuration of the tran-
sition function of the injective MPS bundle is determined by
fixing the base points of each patch. We fix the base points as
in Fig. 16. In the following, we formally write the transition
functions as {gαβ : Uα ∩ Uβ → PU(3)}.

We take a lift of the transition functions as follows:

[13] �→ 13, g̃L(3,1) �→
⎛
⎝ω

1
ω2

⎞
⎠,

g̃S1 �→
⎛
⎝ 1

ω2

ω

⎞
⎠,

FIG. 16. A base point of the polyhedral decomposition of Y . The
two in the middle belong to the back patch and the center patch of
the prism, respectively.

FIG. 17. The configuration of cαβγ . (Left) cαβγ = ω2 on red
lines, cαβγ = ω on green lines, and cαβγ = 1 on the others. (Right)
Configuration of cαβγ projected on the bottom.

g̃L(3,1)g̃S1 �→
⎛
⎝ω

1
ω2

⎞
⎠

⎛
⎝ 1

ω2

ω

⎞
⎠. (229)

Under these lifts, the violation of the cocycle condition
can only occur if the surfaces with the transition func-
tions g̃L(3,1), g̃S1 , and g̃L(3,1)g̃S1 = g̃S1 g̃L(3,1) intersect each
other, and the violation occurs by ω or ω2 on them. Thus,
we can easily identify the edge with nontrivial cαβγ as in
Fig. 17. Note that cαβγ defines a cohomology class [cαβγ ] ∈
H2(L(3, 1) × S1; U(1)) � H3(L(3, 1) × S1;Z) � Z/3Z and
a cohomology class [(cαβγ , 0, 0)] ∈ H3(L(3, 1) × S1;D(3))
which is flat. The group H2(L(3, 1) × S1; U(1)) is a sub-
group of H3(L(3, 1) × S1;D(3)) under the map [cαβγ ] �→
[(cαβγ , 0, 0)].

Let us compute the higher holonomy of c = (cαβγ , 0, 0)
along this surface Y = γ × S1. We take the front edge of the
top triangle of the prism as a nontrivial path γ in L(3, 1) and
take a polyhedral decomposition19 of Y induced from that of

19Although what is shown in Fig. 18 is a polyhedral decomposi-
tion, we theoretically consider a triangulation that subdivides it and
assume that the index map takes the same value for all simplices in
each polyhedron.

FIG. 18. The triangulation of Y induced from that of L(3, 1) ×
S1, and vertices on which the Dixmier-Douady class has a value ω2.
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FIG. 19. An index map of the triangulation of Y . Blue arrows are
index maps for edges, and the direction of it indicates the patch to
which the edge belongs. Similarly, orange arrows are index maps for
vertices, and the direction of it indicates the patch to which the vertex
belongs.

L(3, 1) × S1. We label the open sets of Y with roman letters
(i, j, k, . . . ) instead of greek letters (α, β, γ , . . . ). We show
the nontrivial cocycle on Y in Fig. 18. It is necessary to
take an index map φ to perform an integration. However, to
compute the invariant on Y , it is sufficient to determine the
index map on Y . We take an index map as in Fig. 19. Then
the higher holonomy is given by the formula

HolY (c) =
∏

σ=(σ 0⊂σ 1⊂σ 2 )∈F (2)

cφ
σ2 φ

σ1 φ
σ0 (σ 0). (230)

As we saw in Fig. 18, the Dixmier-Douady class takes non-
trivial values only on Ujkl and Ui jk . Moreover, a full flag
σ = (σ 0 ⊂ σ 1 ⊂ σ 2) satisfying {i, k, j} = {φσ 2 , φσ 1 , φσ 0} is
only one (s0 ⊂ s1 ⊂ s2) and {l, k, j} = {φσ 2 , φσ 1 , φσ 0} is only
one (s̃0 ⊂ s̃1 ⊂ s̃2). We show these flags in Fig. 20. Therefore,
we have

HolY (c) =
∏

σ=(σ 0⊂σ 1⊂σ 2 )∈F (2)

cφ
σ2 φ

σ1 φ
σ0 (σ 0) (231)

= cφs2 φs1 φs0 (s0)cφs̃2 φs̃1 φs̃0 (s̃0) (232)

= cik jclk j (233)

= ω2ω2 (234)

= ω. (235)

FIG. 20. Flags contributing to integration. In the bottom flag, the
red circle represents s0, the red wavy line represents s1, and the red
shaded face represents s2. In the left flag, the red circle represents s̃0,
the red wavy line represents s̃1, and the red shaded face represents s̃2.

Since the cocycle c is flat, there is no correction by the 3-form
curvature. As a result, we have that the higher pump invariant
is

ntop.(Y ) = HolY (c) = ω ∈ Z/3Z. (236)

Therefore, the higher pump invariant is nontrivial. This invari-
ant can be regarded as an element of H3(S1 × L(3; 1);Z) �
H3(S1 × BZ/3Z;Z), where BZ/3Z is the classifying space
of Z/3Z. As explained in [38], G-charge Thouless pump is
classified by the cohomology theory of S1 × BG. Therefore,
this invariant can be understood as a Z/3Z-charge pump
invariant in the interacting phase.

V. DISCUSSIONS AND FUTURE DIRECTIONS

In this paper, we investigated a higher pumping phe-
nomenon by constructing two models: the model parametrized
by RP2 × S1 and the model parametrized by L(3, 1) × S1.
We obtain these models by deforming models in a nontrivial
SPT phase with Z/2Z × Z/2Z symmetry and Z/3Z × Z/3Z
symmetry, respectively. As a generalization, it is expected to
be possible to construct a model parametrized by (a subspace
of) BG based on a model in the nontrivial SPT phase with G
symmetry. It is an interesting problem to develop such a model
construction method.

Also, the boundary condition obstacle discussed in
Secs. II A 3 and II B 3 seems to be related to an anomaly of
the edge theory with parameter [39,40]. It is an interesting
problem to consider the bulk-anomaly correspondence from
an MPS perspective.
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APPENDIX A: OTHER BOUNDARY CONDITIONS

In our model, the general boundary term is given
by τ δ

1/2(�n)σ z
1 , where τ δ

1/2(�n) := cos(δ)τ x
1/2(�n) + sin(δ)τ y

1/2(�n).
Let us consider the following initial and final Hamiltonians:

H δ
in.(�n) = −τ δ

1
2
(�n)σ z

1 −
∑

j=1,2,...

τ z
j− 1

2
(�n)σ x

j τ
z
j+ 1

2
(�n)

−
∑

j=1,2,...

σ z
j τ

x
j+ 1

2
(�n)σ z

j+1, (A1)

and

H δ
fin.(�n) = τ δ

1
2
(�n)σ z

1 −
∑

j=1,2,...

τ z
j− 1

2
(�n)σ x

j τ
z
j+ 1

2
(�n)

−
∑

j=1,2,...

σ z
j τ

x
j+ 1

2
(�n)σ z

j+1. (A2)
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Under this boundary condition, we can check that the ratio rδ

of the holonomy defined by

rδ = nδ
in.(γ )

nδ
fin.(γ )

= exp

(∫
γ

(
Aδ

in.−Aδ
fin.

)−1

2

∫
�

(
dAδ

in. − dAδ
fin.

))

×
〈
G.S.δin.(γ0)

∣∣G.S.δin.(γ1)
〉

〈
G.S.δfin.(γ0)

∣∣G.S.δfin.(γ1)
〉 (A3)

is equal to −1. Here, � is a bounding manifold of 2γ . Let
Aδ

in.(�n) and Aδ
fin.(�n) be the Berry connections of the above

Hamiltonians. Then the difference between these connections
is

Aδ
in.(�n) − Aδ

fin.(�n) = 1
4

[ 〈
Refδ

in.

∣∣ f1h 1
2
(�n) f1

∣∣Refδ
in.

〉
− 〈

Refδ
fin.

∣∣ f1h 1
2
(�n) f1

∣∣Refδ
fin.

〉 ]
, (A4)

where |Refδ
in.〉 is a simultaneous eigenstate of τ δ

1
2
σ z

1 and

σ z
j τ

x
j+ 1

2
σ z

j+1 with eigenvalue 1, and |Refδ
fin.〉 is a simultaneous

eigenstate of −τ δ
1
2
σ z

1 and σ z
j τ

x
j+ 1

2
σ z

j+1 with eigenvalue 1. By

doing the same computation as in Sec. II A 2, we obtain that

Aδ
in.(�n) − Aδ

fin.(�n)

= 1
4

[ 〈
Refδ

in.

∣∣ (1 + τ z
1
2

)
h 1

2

(
�n
)(

1 + τ z
1
2

) ∣∣Refδ
in.

〉
− 〈

Refδ
fin.

∣∣ (1 + τ z
1
2

)
h 1

2
(�n)

(
1 + τ z

1
2

) ∣∣Refδ
fin.

〉 ] = 0.

Let |G.S.δin.(�n)〉 and |G.S.δfin.(�n)〉 be the ground state of the
Hamiltonians (A1) and (A2). Then, they meet |G.S.δfin.(�n)〉 ∝
τ z

1
2

(�n) |G.S.δin.(�n)〉 since τ z
1
2

(�n) is anticommute with τ δ
1
2
(�n).

Therefore,〈
G.S.δfin.(�n)

∣∣G.S.δfin.(−�n)
〉

= 〈
G.S.δin.(�n)

∣∣ τ z
1
2
(�n)τ z

1
2
(−�n)

∣∣G.S.δin.(−�n)
〉

(A5)

= − 〈
G.S.δin.(�n)

∣∣G.S.δin.(−�n)
〉
, (A6)

and, consequently, the ratio of the holonomy is

rδ = nδ
in.(γ )

nδ
fin.(γ )

= −1. (A7)

APPENDIX B: A COMMENT ON UNITARY MATRICES
Ṽτ (�z) AND Ṽσ (t )

In Sec. II B 1, we introduced unitary matrices Ṽτ (�z) and
Ṽσ (t ) defined in Eqs. (90) and (97) without explanation. Here
we comment on the background of its construction.

First, we would like to give L(3, 1) dependence to τ sites.
To this end, we define a unitary matrix

Vx := 1√
3

⎛
⎝1 ω2 ω

1 1 1
1 ω ω2

⎞
⎠ (B1)

that diagonalizes τ̃ x:

|ū0〉 := Vx |u0〉 =
⎛
⎝1

0
0

⎞
⎠, |ū1〉 := Vx |u1〉 =

⎛
⎝0

1
0

⎞
⎠,

|ū2〉 := Vx |u2〉 =
⎛
⎝0

0
1

⎞
⎠. (B2)

Under this basis, we mix |ū1〉 and |ū2〉 by SU(2) transforma-
tion. Let �z := (z1, z2) be complex numbers such that |z1|2 +
|z2|2 = 1, which is coordinate of SU(2). We also define a
unitary matrix

U (�z) =

⎛
⎜⎝1 0 0

0 z1 −z∗
2

0 z2 z∗
1

⎞
⎟⎠, (B3)

and

|ū0(�z)〉 := U (�z) |ū0〉 =
⎛
⎝1

0
0

⎞
⎠,

|ū1(�z)〉 := U (�z) |ū1〉 =
⎛
⎝0

z1

z2

⎞
⎠,

|ū2(�z)〉 := U (�z) |ū2〉 =
⎛
⎝ 0

−z∗
2

z∗
1

⎞
⎠. (B4)

Finally, let us get back to the z basis:

|ui(�z)〉 := V †
x |ūi(�z)〉 = V †

x U (�z)Vx |ui〉 . (B5)

In fact,

Ṽτ (�z) = V †
x U (�z)Vx. (B6)

This is the origin of the unitary matrix Ṽτ (�z).
Next, we give S1 dependence to σ sites. To this end, we

interpolate 13 and σ̃x. For a unitary matrix

W = 1√
3

⎛
⎝1 ω2 ω

1 ω ω2

1 1 1

⎞
⎠, (B7)

σ̃ x satisfies

σ̃ x = W

⎛
⎝1

ω

ω2

⎞
⎠W †. (B8)

Ṽσ (t ) is a path connecting 12 and σ̃ x as following:

Ṽσ (t ) = W

⎛
⎝1

exp
(
i t

3

)
exp

(
i 2t

3

)
⎞
⎠W †. (B9)

This is the origin of the unitary matrix Ṽσ (�z).

APPENDIX C: COMPLEX LINE BUNDLE

Let X be a parameter space20 and let L → X be a complex
line bundle over X . It is well known that a complex line bundle
over X is classified by H2(X ;Z). Here, H2(X ;Z) is the second
cohomology group with coefficient Z. Since H2(X ;Z) is a

20Strictly speaking, we assume that X is compact Hausdorff space.
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finitely generated Abelian group, there are integers k, l ∈ N
so that

H2(X ;Z) � Z⊕k ⊕ Z/p1Z ⊕ · · ·Z/plZ, (C1)

where {pi}l
i=1 is a set of prime numbers. We define

H2(X ;Z)free := Z⊕k, (C2)

H2(X ;Z)tor. := Z/p1Z ⊕ · · ·Z/plZ. (C3)

H2(X ;Z)free is called the free part of H2(X ;Z) and
H2(X ;Z)tor. is called the torsion part of H2(X ;Z). In this
Appendix, we review the way to extract these data for a
given complex line bundle over X numerically, i.e., the way
to identify the image of L → X under the isomorphism (C1).

Fix an open covering {Uα}α∈I of X . The topological class
[L] is determined by the transition function {gαβ : Uαβ →
U(1)} which satisfies the cocycle condition

gαβgβγ = gαγ . (C4)

In fact, {gαβ} determine an element of the first sheaf cohomol-
ogy group with coefficient U(1),

[gαβ] ∈ H1(X ; U(1)), (C5)

and since H1(X ; U(1)) � H2(X ;Z), we obtain the element
of H2(X ;Z) for given L → X mathematically. However, this
construction is a little abstract and it is not clear to which num-
ber of the right-hand side of Eq. (C1) the given L corresponds.
A connection and a curvature are useful tools to compute this
number numerically.

A connection on a line bundle L → X is a set of 1-form
{Aα}α∈I such that Aβ = Aα − g†

αβdgαβ on nonempty intersec-
tion Uαβ := Uα ∩ Uβ . Then {Fα := dAα} is called a curvature
form of the connection {Aα}α∈I :

(i) The free part of H2(X ;Z): Since Fα − Fβ =
d (g†

αβdgαβ ) = 0 on Uαβ , {Fα} define a global 2-form F ,
which is also called a curvature form. We can also show that
an integration of F for any closed surface � takes value in
2π iZ:

n(�) :=
∫

�

F

2π i
∈ Z. (C6)

By using the universal coefficient theorem, the free part
of H2(X ;Z) is isomorphic to the free part of H2(X ;Z). If
we would like to know the ith component of H2(X ;Z), we
compute the integration (C6) over the surface which generates
the ith component of H2(X ;Z). This is the way to compute the
free part of the line bundle.

(ii) The torsion part of H2(X ;Z): Let γ be a closed path
in X such that p copies of γ is trivial in the homology group
H1(X ;Z):

p[γ ] = 0 ∈ H1(X ;Z). (C7)

Then, we have a surface � such that ∂� = pγ . Let {Ũi}n
i=1 be

the open covering of γ induced from {Uα}. We take a point
γi j ∈ γ from each intersection Ũi j and let γi ⊂ γ be a interval
between γi−1,i and γi,i+1 as in Fig. 21. Now, we consider the

FIG. 21. The open covering of γ and the triangulation of γ .

following quantity:

n(γ ) = exp

(∑
i

∫
γi

Ai − 1

p

∫
�

F

)∏
i

g†
i,i+1(γi,i+1) (C8)

= Hol(γ ) exp

(
−1

p

∫
�

F

)
. (C9)

Note that n(γ ) does not depend on the choice of the bounding
manifold � and point γi j . We can show that n(γ ) is a gauge-
invariant quantity and n(γ ) ∈ Z/pZ ⊂ U(1). In fact, by using
the Stokes theorem,

n(γ )p = Hol(γ )p exp

(
−

∫
�

F

)
= 1, (C10)

and this implies n(γ ) ∈ Z/pZ. In addition, under the gauge
transformation with {gi : Ui → U(1)}, each component of
n(γ ) transforms as

Ai �→ Ai + g†
i dgi, (C11)

F �→ F, (C12)

gi j �→ gigi jg
†
j . (C13)

Therefore, n(γ ) transforms as

n(γ ) �→ n(γ ) exp

(∑
i

∫
γi

g†
i dgi

)∏
i

g†
i (γi,i+1)gi+1(γi,i+1)

(C14)

= n(γ )
∏

i

exp

(∫ γi,i+1

γi−1,i

d

dt
log[gi(t )]dt

)

×
∏

i

gi(γi−1,i )g
†
i (γi,i+1), (C15)

= n(γ ), (C16)

and this implies the gauge invariance of n(γ ). Here, we use
the logarithmic derivative for a U(1)-valued function g†dg =
d log g.

By using the universal coefficient theorem, the torsion part
of H2(X ;Z) is isomorphic to the torsion part of H1(X ;Z). If
we would like to know the kth component of the torsion part of
H2(X ;Z), we take a generator [γ (k)] of the kth component of
the torsion part of H1(X ;Z), and compute the integration (C8)
over the path γ (k). This is the way to compute the torsion part
of the line bundle. We call n(γ ) the discrete Berry phase.
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