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Magnetic polarons in the Kondo lattice
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We investigate the formation of magnetic polarons in the Kondo lattice model. Calculations are done in the
framework of the bond particle formalism. We show that the quasiparticles correspond to spin polarons with a
k-dependent spatial extent. Polaron formation leads to a significant enhancement of the effective mass in the
heavy parts of the band structure.
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I. INTRODUCTION

Heavy fermion compounds are a much studied field of
solid state physics. These materials show a number of remark-
able phenomena which are widely believed to be caused by
the strong Coulomb repulsion between the electrons in the
4 f shells of rare earth elements or the 5 f shell of actinides.
In particular, they show a crossover from a high temperature
state, where a lattice of localized f electrons coexists with
weakly or moderately correlated conduction electron bands,
to an exotic Fermi liquid with high effective masses at low
temperature, where the f electrons now contribute to the
Fermi-surface volume [1,2]. Heavy fermion compounds can
be described by the Kondo-lattice model (KLM) which is de-
rived from the more realistic periodic Anderson model (PAM)
by means of the Schrieffer-Wolff transformation [3]. In the
simplest case of no orbital degeneracy each unit cell n contains
one f orbital and one conduction band orbital, and denoting
the creation operators for electrons in these orbitals by f †

n,σ

and c†
n,σ the Kondo lattice Hamiltonian is HKLM = Ht + HJ

with

Ht =
∑
m,n

∑
σ

tm,n c†
m,σ cn,σ , HJ = J

∑
n

Sn,c · Sn, f ,

Sn,c = 1

2

∑
σ,σ ′

c†
n,σ τσ,σ ′ cn,σ ′ . (1)

Here τ denotes the vector of Pauli matrices and an analogous
definition holds for Sn, f . Inherent to the model is the constraint∑

σ f †
n,σ fn,σ = 1 which must hold separately for each n and

reflects the strong-coupling nature of the KLM. In the follow-
ing we consider a two-dimensional square lattice with N unit
cells and N conduction electrons, a case frequently referred to
as the Kondo insulator. Throughout we assume that tm,n = −t
for nearest neighbors m and n and zero otherwise and we
choose t as the unit of energy. The generalization to longer
range hopping integrals is straightforward.

The impurity versions of the Kondo and Anderson model
are well understood. In addition to various approximate calcu-
lations [4–12] they can be solved exactly by renormalization
group [13] and Bethe ansatz [14]. All calculations agree in
that the ground state is a singlet formed from the f electron on
the impurity and an extended but localized state formed from

conduction band states, whereby for weak coupling (J �
t) the binding energy—the so-called Kondo temperature—is
kBTK ∝ We−1/ρJ (W and ρ are bandwidth and density of states
of the conduction band).

The lattice versions of the model are less well understood.
Approximate results have been obtained by mean-field ap-
proximation both to the KLM [15–26] and the PAM [27,28]
and in addition a variety of numerical methods have been
applied to these models [29–52]. The resulting band structure
is consistent with a simple hybridization picture: a disper-
sionless effective f band close to the Fermi energy of the
decoupled conduction electron system hybridizes with the
conduction electron band via some effective hybridization
matrix element. Mean-field theories predict the strength of the
hybridization matrix element to be ∝ kBTK at weak coupling,
the inverse of which accordingly sets the scale for the band
mass of the effective f band. This results in a Fermi surface
with a volume corresponding to itinerant f electrons [53] and
the heavy bands characteristic of heavy fermion compounds.
These features are qualitatively reproduced by numerical stud-
ies but it should be noted that these usually have problems
accessing the limit of small J/t and thus do not reproduce the
Kondo scale kBTK for the heavy bands.

As pointed out by Nozières [54], it is not immediately obvi-
ous why the Kondo scale kBTK for the impurity models should
play a role in the lattice case and determine, e.g., the width of
the heavy bands. Namely in the impurity models only a very
small fraction ∝ e−1/ρJ of the conduction electrons takes part
in the formation of the Kondo screening cloud. It is unclear
how this small fraction of conduction electrons can simulta-
neously screen an entire lattice of magnetic impurities—the
famous Nozières exhaustion problem [54]. This raises the
question of whether the large band mass in heavy fermion
systems is really related to the impurity Kondo effect. In the
following we want to discuss a mechanism which can enhance
the effective masses in the heavy bands considerably, namely
the formation of magnetic polarons.

II. BOND PARTICLE FORMULATION

Bond particle theory was proposed originally by Sachdev
and Bhatt [55] and was used subsequently to study spin
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systems and applied to spin ladders [56], bilayers [57,58],
intrinsically dimerized spin systems [59,60], and the Kondo
necklace [61]. It was also applied to the PAM [62] and anti-
ferromagnetic ordering in the planar KLM [63,64]. In bond

particle theory the eigenstates of the single-cell Hamiltonian
hn = J Sn, f · Sn,c are represented as bosons (for eigenstates
with even electron number) or fermions (for odd electron
number). More precisely, one identifies

1√
2

∑
σ,σ ′

c†
n,σ (iτy)σ,σ ′ f †

n,σ ′ |0〉 → s†
n|0〉, 1√

2

∑
σ,σ ′

c†
n,σ (τiτy)σ,σ ′ f †

n,σ ′ |0〉 → t†
n|0〉,

f †
n,σ |0〉 → a†

n,σ |0〉, c†
n,↑c†

n,↓ f †
n,σ |0〉 → b†

n,σ |0〉. (2)

The physical sector of the bond particle Hilbert space is defined by the constraint

s†
nsn +

∑
σ

(a†
n,σ an,σ + b†

n,σ bn,σ ) + t†
n · tn = 1, (3)

because only if this is obeyed in every cell n the bond particle state can be uniquely translated back to a state of the original
KLM.

We identify the eigenvalue of hn as the energy of the respective bond particle; i.e., the singlet boson created by s†
n has energy

−3J/4, the three triplet bosons t†
n have energy J/4, whereas the holelike fermion a†

n,σ and the electronlike fermion b†
n,σ have

energy zero. Accordingly, using (3), the exchange term can be written as

HJ =
∑

n

{
3J

4

∑
σ

(b†
n,σ bn,σ + a†

n,σ an,σ ) + J t†
n · tn

}
− 3NJ

4
. (4)

From now on we take a fermion operator with omitted spin index to denote a two-component spinor, e.g.,

cn =
(

cn,↑
cn,↓

)
. (5)

The electron annihilation operator then takes the form

cn = 1√
2

: [(sn + tn · τ) iτya†
n − (s†

n − t†
n · τ ) bn] : (6)

where : · · · : denotes normal ordering. Inserting this into Ht in (1) one finds [65] Ht = H1 + H2 + H3 + H4 with

H1 =
∑
m,n

tm,n

2

∑
σ

(b†
m,σ bn,σ − a†

m,σ an,σ ) s†
n sm −

∑
m,n

tm,n

2
[(b†

m,↑a†
n,↓ − b†

m,↓a†
n,↑) sm sn + H.c.],

H2 =
∑
m,n

tm,n

2

∑
σ

(b†
m,σ bn,σ − a†

m,σ an,σ ) t†
n · tm +

∑
m,n

tm,n

2
[(b†

m,↑a†
n,↓ − b†

m,↓a†
n,↑) tm · tn + H.c.],

H3 = −
∑
m,n

tm,n

2
{[π†

m,n · (sm tn − tm sn) + H.c.] + (bm,n − am,n) · (t†
n sm + s†

n tm)},

H4 =
∑
m,n

tm,n

2
{[iπ†

m,n · (tm × tn) + H.c.] − i (bm,n − am,n) · (t†
n × tm)}. (7)

The vectors bm,n and bm,n in H3 and H4 are defined as

bm,n =
∑
σ,σ ′

b†
m,σ τσ,σ ′ bn,σ ′ , (8)

and analogously for am,n, whereas the vector π†
m,n is defined

as

π†
m,n =

∑
σ,σ ′

b†
m,σ (τ iτy)σ,σ ′ a†

n,σ ′ .

Strictly speaking the individual terms in Ht have to be sitewise
normal ordered, e.g., b†

m,σ bn,σ t†
n,αtm,α → b†

m,σ tm,αt†
n,αbn,σ , but

since this normal ordering always involves commutation of a
fermion and a boson neither nonvanishing commutators nor
Fermi signs will arise.

The quartic terms H1 and H2 can be treated in mean-field
approximation, which has been carried out in Ref. [65]. The
term H4 also would lend itself to mean-field factorization,
but this would result in exotic magnetic order parameters
formed from the triplets such as 〈 t†

n × tm 〉 or 〈 t†
n × t†

m 〉
which we do not consider here. Instead, in the following we
focus on the term H3. In a mean-field treatment this would
requite a condensation of triplets, i.e., 〈t†

n〉 �= 0, which is
equivalent to magnetic ordering. This has been considered
elsewhere [63,66,67] and here we focus instead on another as-
pect of this term, namely the formation of magnetic polarons.

III. PROPAGATION OF A SINGLE FERMION

As a preliminary study we consider the motion of a sin-
gle b†-like fermion added to the Kondo insulator. Thereby
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we will closely follow the well-known treatment of a single
hole in an antiferromagnet as described by the t − J model.
This has been studied in a variety of ways [68–72] and the
solution is quite reliable in that it agrees well with numerical
studies [73–75] and also with angle resolved photoemission
experiments on cuprate materials [76].

We collect the terms which describe just a single b†-like
fermion from HJ , the first term of H1, and the second term
in H3:

Hb,0 =
∑

n

(
3J

4

∑
σ

b†
n,σ bn,σ + J t†

n · tn

)
,

Hb,1 =
∑
m,n

tm,n

2

∑
σ

b†
m,σ bn,σ s†

n sm,

Hb,2 = −
∑
m,n

tm,n

2
Tm,n,

Tm,n =
∑
σ,σ ′

b†
m,σ τσ,σ ′ bn,σ ′ · (t†

n sm + s†
n tm). (9)

Hb,0 describes the exchange energy of the various particles,
Hb,1 the direct hopping of the b† fermion, and Hb,2 hopping of
the b† fermion with a triplet being radiated off or absorbed.
We start out with a normalized state with a single b†-like
particle at site n0:

|n0〉 = b†
n0,↑

∏
n �=n0

s†
n|0〉. (10)

We arbitrarily assign an ↑ spin to the fermion, and the follow-
ing development can be carried out mutatis mutandis for a ↓
spin. Let n1 be a nearest neighbor of n0, then

Tn1,n0 |n0〉 = [b†
n1,↓(t†

n0,x + it†
n0,y) + b†

n1,↑t†
n0,z]

∏
n �=n0,n1

s†
n|0〉.

(11)

The right-hand side is the sum of three orthonormal states with
coefficients that have unit modulus, the norm of which is 3.
We can continue like this and consider a sequence of sites
n0, n1, n2, . . . , nν such that ni+1 is a nearest neighbor of ni

and all ν + 1 sites are pairwise unequal. In other words the
ν + 1 sites n0, n1, n2, . . . , nν form a non-self-intersecting path
of nearest neighbors which connects n0 and nν . Then consider

ν−1∏
i=0

Tni+1,ni |n0〉. (12)

This is the sum of Nν = 3ν orthonormal states each of which
has a total of νt† bosons at the sites n0, n1, n2, . . . , nν−1 and
a b† fermion at site nν . All Nν states have coefficients with
modulus 1. Accordingly, the state

|n0, n1, n2, . . . , nν〉 = 1√
Nν

ν−1∏
i=0

Tni+1,ni |n0〉 (13)

has norm 1 and we call this a string state. It corresponds to the
b† fermion hopping along the path n0, n1, n2, . . . , nν thereby
radiating off a triplet in each step and the spins of the triplets
and the b† fermion are always coupled to a spin of S = 1/2.

Obviously

〈n0, . . . , nν |Hb,0|n0, . . . , nν〉 = νJ + 3J

4
. (14)

Next, consider the matrix element of Hb,2 between
two successive string states |n0, n1, n2, . . . , nν〉 and
|n0, n1, n2, . . . , nν, nν+1〉:

〈n0, . . . , nν, nν+1|Hb,2|n0, . . . , nν〉 = − tnν+1,nν

2

Nν+1√
NνNν+1

=
√

3 t

2
. (15)

We call t̃ = √
3 t/2. So far we have considered only one path

n0, n1, n2, . . . , nν , but clearly there are many of them. More
precisely, if we denote the number of nearest neighbors of a
given site by z, the number of different paths n0, n1, n2, . . . , nν

is approximately

lν =

⎧⎪⎨
⎪⎩

1 ν = 0,

z ν = 1,

z(z − 1)ν−1 ν > 1.

(16)

This is exact for ν � 3 but then the first self-intersecting paths
become possible and the exact lν is less than this. However, we
adopt the Bethe-lattice approximation for simplicity and as-
sume this to hold true for any ν. Then, we make the following
ansatz for a magnetic polaron centered on the site n0:

|φn0〉 =
∞∑

ν=0

αν

′∑
n1,n2,...,nν

|n0, n1, n2, . . . , nν〉. (17)

The prime on the sum indicates that we are summing over
all sets of sites {n0, n1, n2, . . . , nν} which form a non-self-
intersecting path of nearest neighbors and the αν are real
variational parameters. This may be thought of as a state
where the fermion starts out from site n0 and hops along a
given path, thereby radiating off a triplet at each step, but since
the energy increases linearly with the number of triplets—
see Eq. (14)—the fermion is eventually forced to return to
n0, from which it starts anew along a different path and so
on. We assume that all strings of a given length ν have the
same coefficient αν irrespective of their geometry, which is
plausible because all strings of the same length have the same
energy. The norm of a state of the type (17) is

〈φn|φn〉 =
∞∑

ν=0

lν α2
ν =

∞∑
ν=0

β2
ν , (18)

where we have introduced βν = √
lν αν . The expectation

value of the Hamiltonian is

〈φn|Hb|φn〉 =
∞∑

ν=0

[
2t̃ lν+1 αν+1αν + lν εν α2

ν

]

=
∞∑

ν=0

[
2t̃ fν βν+1βν + εν β2

ν

]
, (19)

where f0 = √
z and fν = √

z − 1 otherwise. We may now
introduce a cutoff νmax for the length of the string and perform
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the variational procedure with respect to βν . This results in the
Hermitian eigenvalue problem

ε0β0 + t̃ f0β1 = E β0,

t̃ fν−1βν−1 + ενβν + t̃ fνβν+1 = E βν, (20)

where the second line holds for ν � 1. We denote the ith
eigenvalue and eigenfunction by Ei and |φn,i〉, and the coef-
ficients of the latter are denoted by βν,i.

So far we have considered a self-trapped state centered on
a given site n0. In addition to Hb,2 which describes hopping
combined with emission/absorption of a triplet, we also have
the term Hb,1 which describes simple hopping of the fermion.
Hb,1 could transport the fermion at the end of a string state
|n0, n1, n2, . . . , nν〉 to some site m �= ni for any i. This would
mean that the string of triplets is detached from the hole or,
put another way, the fermion radiates off the entire string
of triplets. Such a process cannot contribute to the coherent
motion of the magnetic polaron. The only way to translate the
polaron without leaving a trace is to act with Hb,2 on the string
of length zero |n0〉. Since the coefficient of this state in |φn,i〉 is
β0,i the matrix element of Hb,1 between two magnetic polaron
states at the sites m �= n is

〈φm,i|H |φn, j〉 = tm,n

2
β0,i β0, j . (21)

Moreover, any two self-trapped states centered on different
sites m �= n are orthogonal:

〈φm,i|H |φn, j〉 = δm,n δi, j . (22)

Accordingly we construct orthonormal Bloch states

|φk,i〉 = 1√
N

∑
n

eik·Rn |φn,i〉, (23)

and make the tight-binding-like ansatz

|ψk,ζ 〉 =
νmax+1∑

i=1

γζ,i |φk,i〉, (24)

with the variational parameters γζ,i for a propagating magnetic
polaron. This leads to a Hermitian eigenvalue problem with
the (νmax + 1) × (νmax + 1) Hamilton matrix

H (b)
k = E + εk

2
B, (25)

where E = diag(E1, E2, . . . , Eνmax+1), Bi, j = β0,iβ0, j , and
εk = −2t[cos(kx ) + cos(ky)]. Figure 1 shows the resulting en-
ergy bands Ek for the propagating polaron where the different
bands originate from the individual string levels Ei. The fig-
ure illustrates the convergence of the low energy bands with
increasing cutoff νmax for the length of the string. Figure 2
compares the bare single-fermion dispersion 3J/4 + εk/2 to
the variational result for the lowest band, ζ = 1, for differ-
ent J . All bands are shifted such that the band bottom at
k = (0, 0) has energy zero. While the bands for different J
have similar curvature around k = (0, 0), the curvature varies
strongly with J around k = (π, π ). Put another way, the quite
substantial band narrowing for small J occurs predominantly
around the band maximum at k = (π, π ). The mechanism
which leads to this band narrowing becomes apparent in

-2

0

2

4

6

(0,0) (π,π) (π,0)(0,0) (0,0)

E
k

k

FIG. 1. Band dispersion Ek (in units of t) for a single b† fermion,
J = 1. The figure compares results for νmax = 4 (full line) and
νmax = 8 (dotted line).

Fig. 3, which shows the k dependence of the magnetic
polaron wave function for the lowest band:

βν,tot(k) =
∑

i

γζ,1(k) βν,i. (26)

As k moves from (0, 0) → (π, π ) the wave function βν,tot

expands, i.e., the amplitude for ν = 0 becomes small and the
weight of longer strings increases. This is what one would
expect intuitively because for k → (π, π ) it becomes more
and more unfavorable for the fermion to propagate because
εk becomes large and positive. The magnetic polaron wave
function βν,tot reacts to this by expanding so that its amplitude
at the center, β0,tot, becomes smaller and the expectation value
of coherent intersite hopping, which is β2

0,tot εk/2, becomes
less positive, whereas for k → (0, 0) the magnetic polaron

0

1

2

3

4

(0,0) (π,π) (π,0)(0,0) (0,0)

E
k

J=2.0

J=1.0

J=0.5

J=0.1

FIG. 2. Dispersion Ek (in units of t) for a single b† fermion
for different J (dashed lines) compared to the unrenormalized band
structure 3J

4 + εk
2 (full line). A J-dependent constant has been sub-

tracted from all bands to align them at k = (0, 0).
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0

1

0 1 2 3 4

k=0

k= π/5

k=2π/5

k=3π/5

k=4π/5

k= π
β2 ν,

to
t(k

,k
)

ν

FIG. 3. Magnetic polaron wave function β2
ν,tot(k, k) for the low-

est band for different k, J = 0.5.

contracts so as to maximize the energy gain due to polaron
propagation, β2

0,tot εk/2. Figure 3 refers to J = 0.5; it is obvi-
ous that as J becomes smaller the cost in energy for expanding
the polaron—and hence to minimize β2

0,tot—becomes less and
less. For this reason, we expect that in the heavy part of the
band the magnetic polaron is more extended, i.e., the number
of triplets carried by the fermion is larger than for the strongly
dispersive part near k = (0, 0). This is also confirmed by
Fig. 4, which shows the number of triplets nt = ∑

n〈t†
n · tn〉

in the polaron state for the lowest band as a function of k for
various J . For momenta near (π, π ) and small J this is large,
which shows that the polaron becomes extended in real space.

Had we started from a state with a single a† fermion at
site n0 instead of (10) we would have obtained the same
equations but throughout t̃ → −t̃ and εk → −εk because the

0

1

2

3

(0,0) (π,π) (π,0) (0,0)

n t

k

J=2.0

J=1.0

J=0.5

J=0.1

FIG. 4. Triplet content nt for the lowest magnetic polaron state
of a single b† fermion as a function of wave vector k.

hopping integral for a holelike fermion has opposite sign
as compared to the electronlike fermion. If we choose the
same νmax for the a†-like polaron—which we do in all that
follows—the energies Ei are the same and the polaron wave
functions can be obtained by a gauge transformation: βν.i →
(−1)ν βν.i.

To conclude this section we discuss the representation of
the operator Nf t which counts the total number of fermions
and triplets:

Nf t =
∑

n

[∑
σ

(a†
n,σ an,σ + b†

n,σ bn,σ ) + t†
n · tn

]
. (27)

Each string state |n0, n1, n2, . . . , nν〉 is an eigenstate of Nf t

with eigenvalue ν + 1, from which we obtain

〈φm,i|Nf t |φn, j〉 = δm,n

∞∑
ν=0

(ν + 1)βν,i βν, j = δm,n ñi, j .

(28)

IV. FULL HAMILTONIAN

So far we have studied a single fermion and found that
it creates a k-dependent dressing cloud of triplets around
itself. The discussion is incomplete, however, because we
have neglected the fact that there are pair creation processes—
described by the second term in H1 in (7)—where pairs of
a† fermions and b† fermions are created/annihilated, so there
never will be a single b† fermion in the lattice. It seems
reasonable to assume, however, that all a† fermions and b†

fermions also will surround themselves by a triplet cloud with
k-dependent structure so as to optimize the energy. Before
we proceed with this problem, however, we need to consider
the hard core constraint (3) inherent in the bond particle
formalism. In the calculations so far this has been taken into
account exactly, because all string states such as (10) and (11)
do obey this constraint exactly. For the case of a system with a
finite density of fermions and triplets, however, we are forced
to make approximations. One possibility is the Gutzwiller
approximation [77] but here we follow the simpler treatment
of Jurecka and Brenig [63]. These authors assumed that the
singlet bosons created by s†

n can be taken as condensed and
thus the singlet creation and annihilation operators can be
replaced by a real condensation amplitude s which moreover
is taken as site independent:

s†
m → s, sm → s. (29)

The constraint (3) then becomes

N (1 − s2) − Nf ,t = 0 (30)

and the relevant part of the Hamiltonian changes to

H1 =
∑

n

(
3J

4

∑
σ

(b†
n,σ bn,σ + a†

n,σ an,σ ) + J t†
n · tn

)

+
∑
m,n

s2 tm,n

2

{∑
σ

(b†
m,σ bn,σ − a†

m,σ an,σ )
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−[(b†
m,↑a†

n,↓ − b†
m,↓a†

n,↑) + H.c.]

}

−
∑
m,n

s tm,n

2
(bm,n − am,n) · (t†

n + tm). (31)

Without the pair creation terms ∝ b†
m,↑a†

n,↓ − b†
m,↓a†

n,↑ this
would be the combination of two decoupled Hamiltonians
describing the propagation of the b† fermions and the a†

fermions which we have treated in the preceding section, the
only difference being that the hopping integrals are renormal-
ized by the factors of s2 and s. It is the pair creation term
which couples these problems and establishes an equilibrium
concentration of fermions. To get an idea how this problem
can be treated we note that the eigenvalue problem (25) may
be thought of as having been obtained from the effective
Hamiltonian:

Heff =
∑
k,σ

⎛
⎝νmax+1∑

i, j=1

H (b)
k,i, j b̃†

k,i,σ b̃k, j,σ

+
νmax+1∑
i, j=1

H (a)
k,i, j ã†

k,i,σ ãk, j,σ

⎞
⎠, (32)

where H (a)
k is obtained from H (b)

k by replacing εk → −εk. In
this effective Hamiltonian each of the localized polaron states
|φn,i〉 is considered as an effective fermion, created by b̃†

n,i,σ
and similar for the holelike polarons.

Next, the pair creation term b†
m,↑a†

n,↓ creates a b† fermion
and an a† fermion at sites m and n, which would have
the coefficients β0,i and β0, j in their respective polaron
states described by b̃†

m,i,σ ã†
n, j,σ̄ . Therefore, to incorporate the

pair-creation process consistently we augment the Hamilto-
nian (32) by

H ′
eff =

∑
k,σ

νmax+1∑
i, j=1

�k,i, j,σ b̃†
k,i,σ ã†

−k, j,σ̄ + H.c., (33)

�k,i, j,σ = −εk

2
β0,i β0, j sign(σ ). (34)

Note that we are actually making a simplification here: if a b̃†

fermion and an ã† fermion are pair created on nearest neigh-
bors, the respective polaron wave functions βi,ν would have
to be modified because for each of the fermions the number
of neighbors available for the first hop is z − 1 rather than
z. The matrix element for hopping of the magnetic polaron
away from the site where it was created therefore would be
slightly different than that for hopping in empty space. This
would result in an effective interaction between b̃† fermions
and ã† fermions. The same would actually happen if any two
of these polarons come close to each other and their triplet
clouds overlap. However, we neglect this interaction in the
following. Lastly, the operator Nf ,t which counts fermions and
triplets becomes

Nf ,t =
∑
k,σ

νmax+1∑
i, j=1

ñi, j (b̃†
k,i,σ b̃k, j,σ + ã†

k,i,σ ãk, j,σ ) (35)

with ñi, j given in (28). Using this the constraint (30) can be
added to the Hamiltonian with Lagrange multiplier λ.

The resulting Hamiltonian is readily diagonalized by
canonical transformation, i.e., we make the ansatz

γ
†
k,ζ ,σ =

∑
i

(uk,ζ ,i b̃†
k,i,σ + vk,ζ ,i ã−k,i,σ̄ ) (36)

and demand [H tot
eff , γk,ζ ,σ ] = Ekγk,ζ ,σ . This results in a Her-

mitian eigenvalue problem the dimension of which now is
(2νmax + 2) × (2νmax + 2):

H =
(

E + εk
2 B − λñ − εk

2 B sign(σ )

− εk
2 B+ sign(σ ) −E + εk

2 B∗ + λñ

)
. (37)

The central bands, i.e., ζ = νmax + 1 and νmax + 2, again con-
verge rapidly with the cutoff νmax.

Let us next consider the electron number, more precisely
the sum of both c electrons and f electrons:

Ne =
∑
i,σ

( f †
i,σ fi,σ + c†

i,σ ci,σ ). (38)

The vacuum state has a singlet at each site and therefore 2N
electrons. Each ã† quasiparticle corresponds to a superposi-
tion of states with precisely one a† fermion and a variable
number of triplets. Since the triplets have the same number of
electrons as the singlets—namely two—the ã† quasiparticle
reduces Ne by one. Similarly, a b̃† quasiparticle increases Ne

by one and we find

Ne = 2N +
∑
k,σ

νmax∑
ν=0

(b†
k,ν,σ bk,ν,σ − a†

k,ν,σ ak,ν,σ )

=
∑
k,σ

νmax∑
ν=0

(b†
k,ν,σ

bk,ν,σ + ak,ν,σ a†
k,ν,σ

) − 2Nνmax

=
∑
k,σ

2νmx+2∑
ζ=1

γ
†
k,ζ ,σ γk,ζ ,σ − 2Nνmax. (39)

The first term on the right-hand side is the total number of
quasiparticles. If we assume for simplicity that the quasipar-
ticle bands do not overlap, the lowest νmax bands must be
filled completely, whereas the central bands ζ = νmax + 1 and
νmax + 2 must be filled such that the number of occupied k
points corresponds to the the number of both c† electrons and
f † electrons, i.e., the Luttinger theorem is fulfilled. This is
actually true already for the simplest form of bond particle
theory [66]—which is obtained by setting νmax = 0 in all the
above calculations—and this highly desirable property also
transfers to the magnetic polaron Hamiltonian.

As already mentioned we restrict ourselves to the case
Ne = 2N so that the Fermi energy coincides with the center of
the gap between the two central bands. The parameters s2 and
λ then have to be determined by minimization of the ground
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FIG. 5. The values of s2, λ, and the ground state energy per site,
e0, vs J for different νmax.

state energy per site:

e0 = 2

N

∑
k

νmax+1∑
λ=1

Eλ,k − λ(s2 − 1 + 2 tr ñ) + 2tr E

(40)

where we used
∑

k εk = 0. Figure 5 shows s2, λ, and e0 as
functions of J , calculated with different string length νmax. In
particular νmax = 0 is equivalent to the original theory of Ju-
recka and Brenig [63], where no strings are taken into account.
Already νmax = 1 gives quite a substantial lowering of the
ground state energy e0 and the results then converge rapidly
with νmax. For small J the value of s2 is reduced as compared
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FIG. 6. Band structure for J = 1 for νmax = 0 and 4. For νmax = 4
only four of the ten bands are shown.
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FIG. 7. Effective mass meff for the heavy part of the band struc-
ture at (π, π ) and quasiparticle gap � between k = (0, 0) and (π, π )
vs J for νmax = 0 and 4.

to νmax = 0, which is clear because with νmax > 0 also the
triplet cloud contributes to Nf ,t . This is also the reason why
the parameter λ is more negative than for νmax = 0. Adding
the constraint to the Hamiltonian means replacing the energy
of the triplet from J → J − λ and that of the fermions from
3J/4 → 3J/4 − λ.

Figure 6 shows the band structure for J = 1 and νmax =
0 and 4, both calculated with the respective self-consistent
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FIG. 8. Quasiparticle gap � between k = 0 and π vs J for νmax =
0 and 4 for the one-dimensional KLM compared to DMRG results by
Yu and White [29] (DMRG).
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FIG. 9. Band structure at J = 2 for the one-dimensional KLM
from the present theory compared to the series expansion result by
Trebst et al. [42] (SE).

parameters. For νmax > 0 additional sidebands appear roughly
at the energies of the string levels. Together with the smaller
values of s2 this leads to a reduction of the bandwidth
of the central bands. Figure 7 shows the effective mass
meff = ( ∂2Ek

∂k2
x

)−1 of the lower central band, νmax + 1, at k =
(π, π ) and the energy gap between the two central bands
versus J . For J � 1 polaron formation results in an apprecia-
ble enhancement of the effective mass, and at the same time
the gap is reduced substantially.

To conclude this section we apply the present theory to
the one-dimensional KLM and compare with numerical re-
sults. Figure 8 compares the quasiparticle gap � for the
one-dimensional model to the numerical results of Yu and
White [29] obtained by density matrix renormalization group
(DMRG) calculation. Inclusion of the magnetic polaron effect
obviously improves the agreement with numerics signifi-
cantly. This can also be seen in Fig. 9, which shows the
band structure for the one-dimensional model at J = 2 and the
bands obtained by Trebst et al. [42] via series expansion. The
magnetic polaron effect significantly improves the agreement
with respect to bandwidth and quasiparticle gap, although the
mass enhancement near k = π obviously is still not sufficient
to obtain good agreement with numerics.

V. SUMMARY AND DISCUSSION

In summary, we have investigated a mechanism for en-
hanced band mass in the KLM, namely the formation of
magnetic polarons. This mechanism is quite well known from
the problem of hole motion in an antiferromagnet [68–72] and
the present theory largely adapts these ideas to the KLM. The

essence can be seen already by considering the motion of a
single hole in the half-filled KLM: the hole can on one hand
gain kinetic energy by creating and reabsorbing strings of
triplets, and on the other hand it can avoid coherent motion in
those parts of the Brillouin zone where free propagation would
increase the energy, i.e., where εk > 0. This also implies that
the spatial extent of the polaron wave function depends on
its wave vector k: the polaron contracts when coherent prop-
agation lowers the energy and expands in the opposite case.
We have also investigated the full Kondo lattice, but while
in the case of the single-hole problem the constraint inherent
in the bond particle formulation of the KLM could be taken
into account rigorously, for the full Kondo lattice we had to
resort to the mean-field procedure of Jurecka and Brenig [63]
to deal with this constraint. This is somewhat unsatisfactory
because it is ultimately an uncontrolled approximation, but
the results indicate that the magnetic polaron effect yields an
enhancement of the mass in the heavy parts of the quasipar-
ticle bands also in the framework of this formalism. While
for the extreme Kondo limit J/t � 1 the results of the mean-
field procedure probably have at best qualitative significance,
they are probably reasonably reliable for J/t � 1—this is also
suggested by the agreement with numerics demonstrated in
Figs. 8 and 9. At this point it may be worth noting that using
the mean-field approximation Jurecka and Brenig obtained
the critical value J/t = 1.5 for antiferromagnetic ordering
in the half-filled Kondo lattice [63] in very good agreement
with the exact value of J/t = 1.45 ± 0.05 found by quantum
Monte Carlo [39].

As a second major approximation we have neglected a
number of terms in the Hamiltonian (7), i.e., the parts H2 and
H4. These terms are quadratic in both the fermion operators
and the triplet operators and thus could be treated in mean-
field approximation. For the case of H2 this has actually been
carried out in Ref. [65] and it was found that the resulting
correction to the dispersion was relatively small. The terms
H4 would produce exotic magnetic order parameters such as
〈 t†

n × tm 〉 or 〈 t†
n × t†

m 〉 in a mean-field description, and it is
plausible that these are zero in a nonmagnetic phase. When
H2 and H4 are not treated in mean-field approximation they
describe scattering between fermions and triplets. Switching
to string states instead of the bare fermions, these terms there-
fore would describe scattering between magnetic polarons
and triplets, which in turn would introduce a damping of the
resulting quasiparticles as well as some renormalization of
the band dispersion. However, for the valence and conduction
bands in the Kondo insulator these effects are probably small
because they would require scattering across the insulating
gap.

Lastly we note that evidence for spin polaron formation
can also be seen in exact diagonalization calculations for the
PAM [48], in that the single particle spectral function of diag-
nostic operators which describe an electron accompanied by a
spin excitation shows enhanced spectral weight for the heavy
bands. All in all it therefore seems plausible that the formation
of magnetic polarons may play a role in the enormous mass
enhancement observed in heavy fermion materials.
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