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Computation of exciton binding energies in exciton condensation
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Exciton binding energies are fundamental to understanding excitonic materials, especially those with the
potential for ground-state exciton condensation. However, these energies are typically defined with significant
limitations in their consideration of electron correlation. Here we present a variational theory for computing
exciton binding energies in ground-state exciton condensates in which we define the binding as the energy dif-
ference between fully correlated many-electron systems with M and M − 1 excitons, respectively. The (M − 1)
system is obtained by adding a constraint to the ground-state energy minimization that removes an exciton while
allowing all other electronic degrees of freedom to relax. We perform the energy minimizations with variational
calculations of the two-electron reduced density matrix (2-RDM) in which the additional constraint is treated
along with the N-representability conditions—necessary constraints for the 2-RDM to represent an N-electron
system—by semidefinite programming. We demonstrate the theory first in the Lipkin model and then in several
stacked organic and inorganic systems that exhibit the beginnings of exciton condensation. We find that in the
Lipkin model the traditional exciton binding model overbinds relative to the constrained approach. This has
significant implications for theoretical characterizations of exciton condensates which rely on exciton binding
energy to make predictions regarding condensate stability and critical temperatures. This correlated approach to
defining and computing exciton binding energies may therefore have important applications for understanding
the relationship between binding and condensation, especially for the BCS-BEC crossover.
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I. INTRODUCTION

Excitons are bosonic quasiparticles formed from bound
electron-hole pairs. Because excitons are bosonic in na-
ture, they can undergo condensation into a single quantum
state, analogous to Cooper-pair condensation in superconduc-
tors [1–3]. Such condensation typically occurs in strongly
correlated systems (systems which cannot be accurately rep-
resented by a single antisymmetrized orbital-product wave
function) and results from correlation exhibited as long-range
order [4]. Condensation of excitons, or exciton condensa-
tion, was initially postulated in the mid-20th century and has
received considerable attention, particularly in recent years,
for its potential for superfluid transport of energy [3,5–16].
Exciton condensates are also sometimes known as excitonic
insulators, which form at low temperatures when the mag-
nitude of the exciton binding energy exceeds that of the
noninteracting energy gap, leading to the opening of a many-
body condensate gap [17–19]. Exciton binding energy is thus
crucial to understanding the formation of exciton condensates
and influences properties of condensation such as exciton
density and critical temperature.

Exciton binding energy is also important as an indicator of
excitonic stability in semiconductors and similar systems in
which excitons function as charge and energy carriers. Like
binding energy in a hydrogen atom, exciton binding energy
can be simply defined as the energy binding the electron and
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hole; however, while physically straightforward, this quantity
is difficult to calculate. For Wannier-Mott excitons, Wannier
used the similarity to the hydrogen atom to develop a hy-
drogenlike model to approximate exciton binding energy, and
other approximate methods have subsequently been devel-
oped based on this model [20–22]. For tight-binding excitons,
exciton binding energy is instead typically calculated from ex-
perimental spectra as the energy difference between the trans-
port gap and the optical gap [23,24]. Computational methods
using the Bethe-Salpeter equation (BSE) and many-body per-
turbation theory determine this through the energy difference
between a quasiparticle—or single-particle—gap and the ex-
citation energy [25–27]. Theoretical predictions of the onset
of exciton condensation are frequently made using these
methods to calculate exciton binding energies and energy gaps
[28–30]. Although these methods provide valuable descrip-
tions of exciton binding for many systems and can even pro-
vide insight into the onset of exciton condensation for some
cases, they rely on mean-field references or simplified models
that neglect strong correlation. Thus, for strongly correlated
systems, interactions may not be accurately treated. In the case
of exciton condensation, a single-particle perspective like this
also ignores the consideration of many-particle interactions,
which are important for understanding condensation, particu-
larly given the many-body nature of the condensate gap [31].

In this paper we introduce a method for calculating exciton
binding energy that is rooted in the correlated nature of ex-
citons and exciton condensation. We directly connect binding
energy to exciton condensation by defining binding energy as
the energy required to remove an exciton from an exciton con-
densate. This represents an integrated exciton chemical po-
tential, i.e., the finite-energy difference due to a change in the
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FIG. 1. A schematic representing the binding energy. The binding energy is defined as the difference between the energy of the condensate
with M excitons and that of the system with M − 1 excitons.

number of particles. In exciton condensates, the exciton chem-
ical potential is used to predict both the onset of condensation
and exciton binding energy, the magnitude of which is associ-
ated with the value of the exciton chemical potential [32–37].
For systems in which the chemical potential can be controlled
through the tuning of carrier densities, exciton binding ener-
gies can be experimentally obtained from the exciton chemical
potential. This accounts for the influence of condensation on
exciton binding due to excitonic interactions. The definition of
exciton binding energy we introduce is conceptually similar,
potentially allowing for insights into the effect of conden-
sation on exciton binding. Using a computational signature
for exciton condensation [38,39], we present a method for
calculating this energy and demonstrate this method for the
exactly solvable but highly correlated Lipkin model [40].
Results from the Lipkin model display divergence of the tradi-
tional exciton binding picture from our method as interaction
increases, with the traditional model overbinding relative to
our method. We then apply this method to several molecular
systems [41,42]. The method is based on variational 2-RDM
theory, previously developed by one of the authors and ap-
plied to a variety of strongly correlated systems [43–49]. We
observe binding energies on the same orders of magnitudes as
reported exciton binding energies in similar systems. Consis-
tent with other reports, the binding energies are impacted by
structural factors influencing exciton delocalization and size,
such as interlayer distance and number of layers.

II. THEORY

Like Bose-Einstein condensation (BEC) of liquid helium
and superconductivity resulting from condensation of Cooper
pairs, exciton condensation is associated with long-range or-
der. This long-range order is identifiable from signatures in
the relevant reduced density matrices (RDMs) [4,50,51]. Ex-
citons are bound particle-hole pairs, so there is a signature for
exciton condensation in the particle-hole RDM:

2Gi, j
k,l = 〈ψ |â†

i â j â
†
l âk|ψ〉. (1)

The particle-hole RDM is related to the two-electron RDM
(2-RDM) by a linear mapping as follows:

2Gi, j
k,l = 1I j

l
1Di

k − 2Di,l
k, j, (2)

where 1I is the identity matrix, 1D is the one-electron RDM,
and 2D is the 2-RDM:

2Di,l
k, j = 〈ψ |â†

i â†
l â j âk|ψ〉. (3)

The signature for exciton condensation is obtained from the
eigenvalues of the particle-hole RDM [38,39]:

2Gvi = λivi. (4)

Because of the Pauli exclusion principle, in an uncorrelated
system, all but one of the eigenvalues of the particle-hole

RDM are bound by 1. (The first eigenvalue corresponds to
ground-state-to-ground-state projection, essentially an elec-
tron counting operator, and is always larger than 1.) When
exciton condensation occurs, however, there is a second eigen-
value greater than 1. This eigenvalue is therefore a definitive
signature for long-range order associated with exciton con-
densation since in the absence of condensation it cannot
exceed 1.

As Penrose and Onsager [4] showed for BEC—for which
they demonstrated that the signature of BEC is an eigen-
value greater than 1 in the one-boson RDM—the size of
the eigenvalue indicates the number of particles in a single
boson orbital, or the number of bosons in the condensate state.
When Yang [50] and Sasaki [51] showed that an eigenvalue
greater than 1 in the 2-RDM represents electron-electron con-
densation, they demonstrated that the size of the eigenvalue
of the 2-RDM represents the occupation of a geminal, or
two-particle wave function. By analogy, a similar interpreta-
tion of the size of the eigenvalue of the particle-hole RDM
applies to excitons [38,39]. Thus, the magnitude of the large
eigenvalue indicates the occupation of a particle-hole wave
function or the size of the exciton condensate; e.g., if the
eigenvalue equals 3, there are three excitons in the exciton
condensate. Note, however, that the eigenvalue need not be
an integer because any value greater than 1 results from more
than one exciton occupying a single particle-hole orbital or
condensation of excitons such that, for instance, an eigen-
value of magnitude 1.5 indicates the beginnings of exciton
condensation. The beginnings of exciton condensation rep-
resent the start of the long-range order associated with such
condensation, which is a critical seed necessary for exciton
condensation to occur on the macroscopic scale.

We define the exciton binding energy as the energy re-
quired to remove one exciton from an exciton condensate,
i.e., the energy difference between an exciton condensate of
M excitons and the same condensate with M − 1 excitons. A
schematic representation of this is shown in Fig. 1, illustrating
the energy change when one exciton is removed from the sys-
tem. In the molecular framework, this definition of the exciton
binding energy represents the particle fluctuation energy—
the chemical potential—which is associated with the exciton
binding energy [32–37]. In contrast to methods that calculate
a single-particle binding energy, this definition corresponds to
a many-body exciton condensate binding energy that accounts
for exciton binding in the condensate.

The binding energy is calculated as the energy difference
of the ground state with an exciton condensate of size M (E∗

gs)
and a nonequilibrium ground state for which a constraint is
placed on the large eigenvalue signature to reduce the same
condensate to size M − 1 (E∗

noneq), such that the exciton bind-
ing energy is equal to the energy difference:

�E = E∗
noneq − E∗

gs. (5)
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The energy of the ground state associated with the exciton
condensate of M excitons is expressible as

E∗
gs = min

2D∈2PN

E [2D], (6)

where 2PN is the set of N-representable or approximately
N-representable 2-RDMs. The 2-RDM is N-representable if
and only if it is representable by at least one N-electron
density matrix [52]. The set of density matrices 2PN can
be selected from a hierarchy of N-representability condi-
tions in the form of linear matrix inequalities, i.e., positive
semidefinite constraints [53,54]. Hence, the minimization
problem is expressible as a semidefinite program [43–45,55–
57]. The Appendix summarizes the approximate set of
N-representability constraints known as the 2-positivity con-
ditions. An additional constraint is added to calculate the
nonequilibrium ground state energy constraining the large
eigenvalue signature of exciton condensation. As the first
large eigenvalue corresponding to ground-state-to-ground-
state projection is unrelated to exciton condensation, this
eigenvalue is ignored, and the signature for exciton conden-
sation is the second large (greater than one) eigenvalue in the
particle-hole RDM. The magnitude of the large eigenvalue
determines the value of M that defines the exciton condensate
of M excitons, so a constraint is placed on the eigenvector cor-
responding to this eigenvalue in the ground state calculation to
remove up to one exciton from the eigenvalue. The energy of
the nonequilibrium ground state associated with the exciton
condensate of c excitons is therefore expressed as

E∗
noneq = min

2D∈2PN

E [2D] (7)

such that

vT 2G[2D] v = c, (8)

where c is the value of the constrained eigenvalue and v is
the eigenvector associated with the large eigenvalue mode.
Effectively, this calculates a new ground state energy, but for a
state with an exciton removed from the original ground state.
Thus, while our system will be higher in energy because the
constraint forces the system away from the original ground
state, the resulting energy is still relaxed to a minimum energy
for the constrained state. Physically, the energy difference
between the ground and constrained states is the energy asso-
ciated with removing the exciton from the condensate or the
binding energy of an exciton in the condensate. The constraint
does not specify what happens to the exciton after removal,
so the particle and hole are free to separate. Additionally,
it is important to note that because the new energy corre-
sponds to a relaxed ground state, constraining the original
exciton condensate does not preclude formation of a new
exciton condensate, discernible as a different large eigenvalue.
The constraint applies only to the mode corresponding to
the specified eigenvector, so it is possible to observe a new
signature for exciton condensation if such a phase exists in the
lowest energy state meeting the conditions of the constraint.
However, it is not necessary to constrain every possible large
eigenvalue, as the physical interpretation of this would be the
removal of multiple excitons, each from a different mode, and
would confuse the interpretation of the binding energy.

III. APPLICATIONS

A. Lipkin model

We use the correlated method to calculate exciton binding
energies for the Lipkin model [40] and compare the results to
the traditional picture of exciton binding. The Lipkin model
is an exactly solvable model of electrons confined to a two-
level system with scattering terms which excite and deexcite
pairs of electrons between the upper and lower levels. The
Hamiltonian is given by

Ĥ = ε

2

∑
p

â†
1,pâ1,p − â†

−1,pâ−1,p (9)

+V

2

∑
p,q

â†
1,pâ†

1,qâ−1,qâ−1,p + â†
−1,pâ†

−1,qâ1,qâ1,p,

(10)

where â1,p (â†
−1,p) annihilates (creates) a particle in the upper

(lower) level of site p, ε/2 is the energy gap of the two levels,
and V/2 is the interaction strength between pairs of scattered
particles. When V = 0, the system is completely noninteract-
ing, but the interaction in the system increases with V , leading
to a macroscopic large eigenvalue in the particle-hole RDM
for strongly interacting systems with a large particle number
N [58].

Exciton binding energies and λG are shown for the Lipkin
model with ε = 1 and N = 10 in Fig. 2(a). Figure 2(a) shows
the growth of the magnitude of λG (blue) with the interaction
strength for N = 10. Note that λG approaches an upper bound
determined by N in the strongly interacting regime. Binding
energies are calculated for the traditional binding energy as
the difference between the noninteracting gap (V = 0) and the
interacting gap (V > 0) obtained from exact diagonalization
of the Hamiltonian according to

EB = 1

N
[(EG,I − EN,I ) − (EG,NI − EN,NI)], (11)

where EG is the ground state energy of either the interacting
(I) or noninteracting (NI) model, EN is the excitation energy,
and 1/N is the normalization. The Lipkin model is also solved
using variational 2-RDM theory (see the Appendix), and bind-
ing energies are calculated by constraining λG as described
in Sec. II. Constraints for calculating the binding energies
according to the constrained eigenvalue definition are applied
in two ways: (1) the large eigenvalue is constrained by 1, i.e.,
removal of a single exciton, and (2) the eigenvalue is fully
constrained to 1, then scaled by the eigenvalue difference,
i.e., the energy to destroy the condensate normalized by the
size of the condensate. Note that binding energies for the
constrained method can be obtained for the model only when
λG > 1. It is important to compare the two constraints for
calculating binding energy from the constrained eigenvalue
definition—the energy to remove a single exciton versus a
normalized condensate constraint—because in systems which
exhibit only the beginnings of exciton condensation, as in the
section below, while λG is large enough to indicate the begin-
nings of exciton condensation, the magnitude is too small to
remove one whole exciton, but by constraining the eigenvalue
to 1 and normalizing by the eigenvalue difference, we obtain
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FIG. 2. (a) Exciton binding energies (red) and λG (blue) calcu-
lated for the Lipkin model with ε = 1, N = 10, and variable V using
the traditional definition (dashed line with squares), the correlated
method with the eigenvalue constrained by one exciton (dotted line
with circles), and the correlated method with the eigenvalue con-
strained to 1, then scaled by the eigenvalue difference (solid line
with circles). (b) Exciton binding energies for the Lipkin model with
ε = 1, V = 2.0, and variable N for the correlated method with the
eigenvalue constrained by 1 (blue) and the eigenvalue constrained to
1 and scaled by the eigenvalue difference (red).

an estimate of the binding energy. As shown in Fig. 2(a), this
way of estimating the binding of a single exciton by a normal-
ized condensate constraint converges with the binding energy
calculated by constraining a single exciton in the strongly
interacting limit.

The results of the Lipkin model allow us to make compar-
isons between the traditional definition of binding energy and
the constrained definition and infer the relationship of the two
binding energies. In the weakly interacting regime (V = 0.2),
the traditional binding energy and the constrained binding
energy are in agreement [Fig. 2(a)]; however, while binding
energies produced from both methods then increase ap-
proximately linearly with interaction strength, the traditional
binding energy increases much more rapidly, demonstrating
divergence of the two definitions with strong interaction. This
leads to traditional binding energies that approach an order of
magnitude larger than the noninteracting excitation energy in
the extreme interaction limit.

By increasing the value of N , we observe the behavior
of the system as it approaches the thermodynamic limit.
Figure 2(b) shows the binding energy per exciton for the con-
strained method in the strongly interacting regime (V = 2.0)
with increasing N , calculated both by the removal of a single
exciton and by the normalized condensate constraint estimate.
In this regime λG approaches the upper limit of condensation
for N . The binding energy quickly converges as the number
of particles increases to reach a constant value on the order of
the noninteracting excitation energy, indicating exciton bind-
ing and condensation results in a gap of magnitude similar
to the noninteracting excitation energy. The convergence of
the binding energy with increasing N seems intuitive, as one
might expect that the size of the condensate would impact the
strength of binding significantly in small systems, but in large
systems a “bulk material” limit of binding should be reached
where the size has less impact on the strength of the binding
energy. Note that for low particle numbers there is a difference
between the single-exciton constraint and normalized conden-
sate constraint binding energies. This is due to slight overes-
timation of the binding energy by the normalized condensate
constraint for low numbers of particles which approaches the
single-exciton energy as N increases. Additionally, for N = 2,
1 < λG < 2 due to the small number of particles in the sys-
tem, so only the normalized condensate constrained binding
energy can be calculated. However, despite the slight overes-
timation these results suggest that the normalized condensate
constraint provides a reasonable estimate of the true binding
energy per exciton, which can provide insight into the nature
of exciton binding even in a small system.

B. Molecular systems

We apply our method of calculating the binding energy
of several molecular systems in which we previously ob-
served the beginnings of exciton condensation via the large
eigenvalue: van der Waals stacks of benzene [41], Bechgaard
saltlike tetrathiafulvalene (TTF) stacks, and the molecular
analog of the amorphous polymer nickel tetrathiafulvalene-
tetrathiolate (NiTTFtt) [42]. The molecular structures of
dimers of the three materials are shown in Fig. 3. We demon-
strate the influence of structural factors on binding energy,
including molecular composition, interlayer separation dis-
tance, and system size. All calculations are performed using
the variational 2-RDM method as described in Sec. II and
the Appendix. The method is implemented as an extension
of the variational 2-RDM method in the Quantum Chemistry
Toolbox in Maple [59,60]. The 6-31g basis set is used for all
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FIG. 3. (a) Benzene dimer, (b) TTF dimer, and (c) NiTTFtt dimer.

calculations. All bilayer calculations employ a [12,12] active
space, and the active space grows with system size for greater
numbers of layers, i.e., [18,18] for three layers, [24,24] for
four layers, etc.

In a macroscopic system, the large eigenvalue signature of
exciton condensation would be expected to have values much
larger than 1, so that M � 2 and M − 1 � 1. The true binding
energy is therefore the energy difference if one whole exciton
is removed, so in a system where the eigenvalue is greater
than 2, this would be the energy for a constraint of size 1.
However, in the molecular systems we explore, the signature
indicates only the beginnings of exciton condensation; thus,
the eigenvalue is greater than 1 but is not greater than 2. Con-
sequently, we calculate the binding energy by constraining the
whole condensate and normalizing the energy difference to
one exciton by scaling the energy by the magnitude of the
eigenvalue constraint. From the Lipkin model calculations we
observe that while this overestimates the binding energy in
the low-interaction and small-N limit, it converges with the
true binding energy, making it an appropriate estimate of the

binding energy that can be used to interpret trends in binding
energy.

Figure 4 shows plots of the interlayer distance versus the
large eigenvalue (blue, right axis) and the binding energy
(red, left axis) for bilayers of benzene, TTF, and molecular
NiTTFtt. One notable feature of the plots is the difference in
the magnitudes of binding energies for the three materials.
TTF has the largest binding energies, with binding energies
ranging from about 0.5 to 5 eV. Binding energies for benzene
are only slightly lower, with binding energies ranging from
about 0.2 to 0.9 eV. NiTTFtt has the lowest binding energies,
with energies ranging from about 15 to 100 meV.

Exciton binding energies reported for thiophenes of in-
creasing length are on the order of several eV, like binding
energies we observe for TTF, indicating the binding energies
for TTF are reasonable [61]. The magnitudes of the benzene
dimer binding energies are also consistent with reported exci-
ton binding energies for organic molecules, including benzene
and other acenes, which can range from ∼0.5 to 1.5 eV and
are reported to be larger for small molecules [62–65]. The
smaller magnitudes of the binding energies for NiTTFtt also
appear to be reasonable with respect to binding energies for
other inorganic materials. The large range of exciton binding
energies for these three materials are not dissimilar to ranges
reported in the literature for a variety of inorganic layered
materials which range from several meV to thousands of
meV (several eV). The large differences in binding energies
between materials have been attributed to differences in the
delocalization of the excitons [66]. We do not compare exact
values of binding energies to traditional methods because the
constrained definition of binding energy is based on condensa-
tion rather than single-particle binding, so the two definitions
are not mathematically equivalent, as demonstrated for the
Lipkin model. However, we observe that the trends in binding
energy, which are important for predicting exciton condensa-
tion, are consistent between definitions.

Interlayer excitons, excitons formed from electrons and
holes contained in separate molecular layers or layers of a
material, have increased stability because the spatial separa-
tion helps prevent recombination, extending the lifetime of
the exciton [67]. As such, layered structures with interlayer

FIG. 4. Exciton binding energy and signature of condensation as a function of interlayer distance for double layers of (a) benzene, (b) TTF,
and (c) NiTTFtt. Binding energy is shown in red (left axis), and the eigenvalue is shown in blue (right axis).

035110-5



SCHOUTEN, SAGER-SMITH, AND MAZZIOTTI PHYSICAL REVIEW B 110, 035110 (2024)

excitons appear to be good candidates for exciton condensa-
tion. Indeed, the molecular systems in which we observe the
signature for exciton condensation are layered systems, and
we observe that in molecular layers, the interlayer distance
influences the potential for exciton condensation indicated by
the large eigenvalue. The plots in Fig. 4 display a pattern with
respect to the relationship between the binding energy and in-
terlayer or sulfur-sulfur (S-S) distance for all three materials.
The S-S distance is similar to interlayer distance but accounts
for a face-to-face shift between layers that mimics the amor-
phous geometry of NiTTFtt. Although the binding energies
are generally higher with larger eigenvalues, indicating that
greater potential for exciton condensation occurs with larger
possible binding energies, at short interlayer or S-S distances,
the binding energy is increased relative to bilayers with similar
potential for exciton condensation and larger interlayer or S-S
distances. This trend suggests these systems contain interlayer
excitons which are more tightly bound at closer interlayer
distances.

For TTF, we observe two important peak regions: the small
interlayer distance region (interlayer distance of less than 2 Å)
and a region with interlayer distance of around 3 Å. Where
the eigenvalue is only slightly greater than 1 (�1.05), it is
difficult to interpret the binding energy because the degree
of condensation is so small, so we focus on regions where
λG � 1.05. At lower interlayer distance, the magnitudes of
both the eigenvalues and the binding energy are influenced
by close interlayer interactions. Note that within this region
the interlayer distance is near or slightly below the average
van der Waals radii of sulfur and carbon, resulting in more
tightly bound states and leading to large peaks in binding
energy, like the peak around 1.6 Å interlayer distance. Dips in
the binding energy in this region correspond to approaching
the van der Waals radii, which could influence the interlayer
versus intralayer excitonic character, which would have an
impact on how delocalized, and hence how tightly bound, the
excitons are. The issue of interlayer versus intralayer character
also plays a role in the peak in binding energy near 3 Å. From
examining exciton densities (see description in Refs. [41,42])
we see that the maximum binding energy occurs just prior
to a crossover from interlayer to intralayer excitons, in a re-
gion where the excitons are much more localized, resulting in
large binding energies even with relatively small eigenvalues.
For NiTTFtt, the pattern is more clear, where, generally, the
binding energy peaks at low S-S distances where an interlayer
exciton would be more localized and thus tightly bound and
again peaks near the maximum eigenvalue. (Here we again
focus on eigenvalues greater than ∼1.05.)

Previously, we observed system size to play an important
role in the signature for condensation, which typically grows
with system size in the materials we have explored. To un-
derstand the influence of system size on binding energy, we
examine the binding energy in stacks of benzene and NiT-
TFtt with greater numbers of layers and extended chains in
NiTTFtt. Figure 5 shows a plot of the binding energy and
eigenvalues for increasingly large benzene stacks with 2.5 Å
interlayer separation. Although the large eigenvalue signature
increases almost linearly with the number of layers, the bind-
ing energy decreases as the system size grows. In the limit
of a finite number of benzene layers the decrease appears

FIG. 5. The binding energies and eigenvalues versus the number
of layers in a stack for stacks of benzene molecules.

to be continuous, but the flattening of the curve with larger
numbers of layers suggests this behavior may be asymptotic,
approaching a value in the large system limit that we would
consider to be a “bulk material” binding energy. The trend
is similar for NiTTFtt, decreasing from a binding energy of
78 meV for a bilayer to 25 meV for a stack of four NiT-
TFtt molecules. Horizontal growth also exhibits this trend,
as a two-chain dimer with interlayer distance of 3.5 Å has
a binding energy of ∼67 meV and a three-chain dimer has
a binding energy of ∼32 meV, in spite of an increase in
eigenvalue from 1.28 to 1.64. Such behavior is consistent with
trends in binding energies calculated using other methods that
show decreases in exciton binding energy with the number of
layers in perovskites and the length of molecule for organic
acenes [68–70], also appearing to approach a limit as the
system size nears the bulk material. In our results, we hypoth-
esize that the drop in binding energy in large systems results
from increased exciton delocalization. Smaller systems have
less space for exciton delocalization, forcing excitons closer
together and enabling tighter binding, whereas in larger sys-
tems the excitons delocalize more and could be more loosely
bound. This was evident from analyzing exciton densities (see
Refs. [41,42]), where we observe increased delocalization of
excitons in larger molecular stacks and chain lengths.

IV. DISCUSSION AND CONCLUSIONS

We presented a method for defining and calculating exciton
binding energy rooted in the correlation associated with exci-
ton condensation. The exciton binding energy is defined here
as the energy required to remove an exciton from an exciton
condensate. Using the large eigenvalue signature for exciton
condensation, we calculated the binding energy as the differ-
ence between the ground state energy and a nonequilibrium
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ground state energy for the same system, each state computed
by semidefinite programming, with the nonequilibrium state
subject to an additional constraint on the large eigenvalue.
The relationship with exciton condensation ties this method
for determining exciton binding energy inherently to corre-
lation and the many-body nature of exciton condensation.
Other approaches for calculating binding energy are generally
based on mean-field references or orbital representations, and
while correlation may be accounted for using the BSE and
many-body perturbation theory, these approaches are strongly
influenced by the reference calculation, usually done using
density functional theory (DFT) [27]. Consequently, some of
the limitations introduced by the DFT reference in treating
strong correlation can be inherited by the results. This can
introduce deficiencies in interpreting the interactions that are
responsible for exciton formation and character in strongly
correlated systems. Particularly for exciton condensation,
which relies on strong correlation and many-body interac-
tions to occur, methods based on a mean-field, single-particle
picture that neglects many-body interactions may obscure the
nature of excitons in an exciton condensate.

From our results for the Lipkin model, we observe that in
the weakly interacting regime the traditional perspective of
exciton binding agrees with the constrained definition, but the
two diverge as the interaction and, consequently, the degree of
condensation increase. In the weakly or noninteracting regime
a mean-field perspective should be able to reasonably capture
the character of an exciton, as in this case, but as the system
moves into the highly interacting regime of exciton condensa-
tion, such a model will break down. As the two methods for
calculating the binding energy diverge, the traditional picture
of exciton binding is notably large, suggesting this result may
correspond to overbinding. In a framework that accounts for
some correlation, like the BSE, the difference would likely be
smaller. However, overbinding has implications for prediction
and characterization of exciton condensation, as predictions
of the properties of exciton condensates, including the crit-
ical temperature, are often based on the magnitude of the
exciton binding energy [7]. Using methods that predict artifi-
cially large exciton binding energies would lead to inaccurate
characterization of the stability of an exciton condensate and
overestimation of the critical temperature. Connecting exciton
binding energy directly to condensation should better account
for the interaction involved in exciton condensation and create
a framework for characterizing excitonic properties in these
systems.

Exciton condensation has been achieved in double-layer
systems in which the electron and hole layers are separated
and each is connected to a gate. In these types of devices, the
carrier density is highly tunable via the bias voltage, allowing
for control of the number of particles [33,34]. If the voltage
were applied to a system exhibiting exciton condensation such
that the number of excitons in the condensate changed from
M to M − 1, the difference in energy between the two could

allow for experimental measurement of the exciton binding
energy we describe.

Understanding the nature of excitons in exciton conden-
sates is beneficial for predicting the formation of condensates
and other properties like the critical temperature and density.
Moreover, the nature of exciton binding in exciton conden-
sates is associated with a crossover within the condensate
state. Exciton condensation is understood to have two limits
related to exciton binding: the BEC limit, where particles and
holes are tightly bound and have high spatial localization, and
the BCS limit, where particles and holes are loosely bound
and spatially delocalized [71,72]. Through tuning of the inter-
action strengths and physical properties, exciton condensates
shift from one limit to the other in a process known as BCS-
BEC crossover. Because the two limits can be distinguished
by the strength of binding and spatial localization, obtaining
binding energy directly from a signature of exciton condensa-
tion that accounts for strong correlation could have important
implications for exploring the BCS-BEC crossover.
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APPENDIX

The energy is obtained using the variational 2-RDM
(V2RDM) method [43–45,55–57], in which the energy is
computed as a function of the 2-RDM according to the
semidefinite program described in Eq. (6). In the V2RDM
method, the constraint applies what are known as 2-positivity
conditions so that ⎛

⎝
2D 0 0
0 2Q 0
0 0 2G

⎞
⎠ � 0, (A1)

where 2D is the 2-RDM [Eq. (3)], 2Q is the two-hole RDM,

2Q j,k
l,i = 〈ψ |â j âk â†

i â†
l |ψ〉, (A2)

and 2G is the particle-hole RDM [Eq. (1)]. Additionally, the
2-positivity conditions enforce linear mappings between pairs
of the three two-body RDMs, 2D, 2Q, and 2G, as well as
Hermiticity and antisymmetry requirements. An active space
of size [N , r], N particles in r orbitals, is treated with V2RDM,
and the remaining orbitals are treated with a mean-field
method. In the ground state calculation the active orbitals
are optimized using the complete active space self-consistent-
field method, and the same active orbitals are used for the
nonequilibrium ground state calculation.
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