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Message-passing neural quantum states for the homogeneous electron gas
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We introduce a message-passing neural-network (NN)-based wave function Ansatz to simulate extended,
strongly interacting fermions in continuous space. Symmetry constraints, such as continuous translation sym-
metries, can be readily embedded in the model. We demonstrate its accuracy by simulating the ground state of
the homogeneous electron gas in three spatial dimensions at different densities and system sizes. With orders
of magnitude fewer parameters than state-of-the-art NN wave functions, we demonstrate better or comparable
ground-state energies. Reducing the parameter complexity allows scaling to N = 128 electrons, previously
inaccessible to NN wave functions in continuous space, allowing future work on finite-size extrapolations to
the thermodynamic limit. We also show the capability of the Ansatz to quantitatively represent different phases
of matter.

DOI: 10.1103/PhysRevB.110.035108

I. INTRODUCTION

Predicting emergent physical phenomena and system prop-
erties from the ab initio description of the constituents of
the system is notoriously difficult [1,2]. Fermionic systems
can exhibit strong correlations among the particles, leading to
collective phenomena in the form of exotic phases of matter,
e.g., superconductivity and superfluidity [3,4].

In recent years, progress in numerical simulations of
strongly correlated systems was triggered by the development
of increasingly precise machine learning (ML) approxima-
tion techniques. Most notably, artificial neural network (NN)
architectures, in combination with variational Monte Carlo
(VMC), have shown great promise in representing the ground
states of quantum spin systems, especially in >1 spatial di-
mension [5–12]. Due to the universal approximation property
of NNs, NN quantum states (NQS) can, in theory, accu-
rately represent any quantum many-body state [13,14]. NQS
have been extended to fermionic degrees of freedom in a
discrete basis [15–17], by incorporating the indistinguisha-
bility of quantum particles. More recently, advancements
to ground and excited state searches for fermionic and
bosonic continuous degrees of freedom with open [18–20]
and periodic boundary conditions (PBCs) [21–23] have been
introduced.

The flexibility of NQS, compared with more traditional
models, allows for the representation of multiple phases of
matter, and even different physical systems, with a single
Ansatz. To exemplify this point, we refer to NQS studies
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on the ground state of molecular systems [18,19], solu-
tions to effective field theory Hamiltonians describing atomic
nuclei [24–26], bulk studies of fermionic and bosonic ex-
tended systems [21,23,27,28] as well as NQS simulations of
low-density neutron matter found in neutron stars [29]. The
downside of this flexibility, especially in continuous space, is
that NQS typically need a significant amount of variational
parameters to reach a given accuracy. This makes optimiza-
tion challenging and costly, preventing the usage of refined
optimization schemes, e.g., second-order optimization proce-
dures [30,31]. As a result, the accessible system sizes are
limited to a few tens of particles. However, studying larger
system sizes is of utmost importance to estimate physical
properties in the thermodynamic limit [32–35]. To remedy the
situation, NQS architectures must be developed that signifi-
cantly reduce the parameter complexity while retaining high
accuracy.

In this paper, we introduce a NN wave function suitable
for simulating strongly interacting fermionic quantum sys-
tems in continuous space with 1–2 orders of magnitude fewer
parameters than the current state-of-the-art NQS. The general
form of the Ansatz is motivated by an analytical argument,
relating the exact ground-state wave function to a many-body
coordinate transformation of the electronic coordinates. It
uses a permutation-equivariant message-passing architecture
on a graph, inherently implementing the indistinguishability
of quantum particles of the same species [36]. As an ap-
plication, we study the homogeneous electron gas (HEG) in
three spatial dimensions without explicitly breaking any of the
fundamental symmetries of the system, such as translations
and spin-inversion symmetry. We study the onset of Wigner
crystallization at low densities.
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II. METHODS

A. Exact backflow transformations

Throughout this paper, we consider a nonrelativistic
Hamiltonian of identical particles with mass m in d spatial
dimensions:

H = − h̄2

2m

N∑
i

∇2
ri

+ V (X), (1)

where the potential and interaction energy V is assumed to
be diagonal in position representation, defined by the particle
coordinates X = (r1, ..., rN ), ri ∈ Rd . In the following, we
derive an analytic functional form of the ground-state wave
function and relate it to our variational Ansatz.

Given a suitable reference state |�0〉, as the initial
condition for the imaginary-time (τ ) evolution induced
by the Hamiltonian �τ (X) = 〈X| exp(−τH )|�0〉, the ex-
act ground state is obtained in the large imaginary-time
limit: limτ→∞ �τ (X) ∝ �0(X), provided |�0〉 is nonorthog-
onal to the exact ground state |〈�0|�0〉| > 0. For fermions,
nonorthogonality implies that the wave function must be at
least antisymmetric with respect to the exchange of two par-
ticles, i.e., �0[Pi j (X)] = −�0(X) (Pi j permutes particles i
and j). Assuming a valid quantum reference state (twice dif-
ferentiable and integrable) and finite matrix elements of the
propagator [37], we can apply the mean value theorem to the
imaginary-time evolved state, yielding the following:

�τ (X) =
∫

�

dX′Gτ (X, X′)�0(X′) (2)

= Vol(�) × Gτ [X, Y(X)]�0[Y(X)], (3)

where � is the (convex) integration domain for the positional
degrees of freedom, and Gτ (X, X′) = 〈X| exp(−τH )|X′〉 is
the matrix element of the imaginary-time propagator, which is
bounded for finite τ . In Eq. (3), we introduced the mean value
point Y(X) = [y1(X), . . . , yN (X)] ∈ �, depending paramet-
rically on the coordinates X.

For general Hamiltonians in the form of Eq. (1), we
have Gτ (X, X′) � 0, for all X, X′. Moreover, Gτ (X, X′)
is invariant under the exchange of particle coordinates:
Gτ [Pi j (X),Pi j (X′)] = Gτ (X, X′). In the fermionic case, the
latter implies that Y(X) must be equivariant under particle
exchange Y[Pi j (X)] = Pi j[Y(X)] to ensure antisymmetry of
the total wave function. Equation (3) therefore yields the prod-
uct between a permutation symmetric, positive semidefinite
function J (X) = Gτ [X, Y(X)] × Vol(�) and a reference state
computed at modified coordinates Y(X):

�τ (X) = J (X) × �0[Y(X)]. (4)

Identification of the mean value point Y (X ) with a many-body
coordinate transformation gives an alternative justification for
backflow transformations [38] of single-particle coordinates.
With a Slater determinant of given spin orbitals φμ(ri ) as
the initial state �0(X) = det φμ(ri )/

√
N!, Eq. (4) is struc-

turally related to the heuristic Jastrow-Backflow variational
form [39,40]. We note that the symmetric contribution J (X )
can be incorporated into the determinant:

�τ (X) = K × det ϕμ[yi(X)], (5)

FIG. 1. Illustration of the backflow transformation using
message-passing neural quantum state (MP-NQS). Single-particle
coordinates ri ∈ Rd (black dots, top left) are mapped to quasiparticle
coordinates δri ∈ Cd (black/white dots for real/imaginary part, top
right). From an initial graph consisting of an initial feature vector
(dark gray) and a hidden state (green), a new graph, consisting of the
initial features and an updated hidden state (indicated by different
coloring), is constructed via messages. The final node states are
linearly transformed back to δri = W · g(T )

i , containing information
about all particles (D is the dimension of the nodes of the last graph).

with ϕμ[yi(X)] = φμ[yi(X)] × N
√

J (X), and K a normaliza-
tion constant.

The functional form in Eqs. (4) and (5) is exact, provided
that the symmetric factor J (X) and the mean value coordinates
Y(X) satisfy Eq. (3), and the reference state is not orthog-
onal to the exact ground state. An approximate but explicit
form for the coordinate transformation Y(X) can be obtained
by repeatedly applying the imaginary-time propagator to the
reference state in the limit of small τ . This process gives
rise to the iterative backflow transformation, as introduced in
Ref. [41,42].

B. Message-passing neural quantum states

Motivated by Eq. (5), we use single-particle orbitals
{φμ}N

μ=1 evaluated at many-body backflow coordinates Y(X)
to construct the variational Ansatz. The backflow transfor-
mation [Y(X)] is parameterized with permutation-equivariant
message-passing NNs (MPNNs) [36] (see Fig. 1); hence, we
name it message-passing NQS (MP-NQS). In the MPNN,
an all-to-all connected graph, encoding effective particle po-
sitions (nodes) and their interactions (edges):

g(t )
i = [

x(0)
i , h(t )

i

] ∈ RD1 , (6)

g(t )
i j = [

x(0)
i j , h(t )

i j

] ∈ RD2 , (7)

is updated iteratively. Here, we have introduced a discrete step
index t � 0, initial feature vectors x(0)

i ∈ RD(0)
1 , x(0)

i j ∈ RD(0)
2 ,

and we denote concatenation with [·, ·]. The iterative equa-
tions above also contain auxiliary variables known as hidden
states [h(t )

i ∈ RDh
1 , h(t )

i j ∈ RDh
2 ] with suitably chosen feature
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dimensions such that Dh
1 + D(0)

1 = D1, and Dh
2 + D(0)

2 = D2.
The construction of the initial feature vectors [x(0)

i , x(0)
i j ] is

system dependent and will be discussed after the description
of the physical system.

The hidden states are initialized, independently of their
index, with vectors of learnable parameters. They are up-
dated using permutation-equivariant messages, obtained from
a variant of the attention mechanism [43], we dub here
particle attention. Specifically, the messages are given by
weighted transformations of the edges of the graphs: m(t+1)

i j =
ω

(t )
i j [g(t )

i j ] � φ[g(t )
i j ], where � represents element-wise multi-

plication along the feature dimension, and ω
(t )
i j [g(t )

i j ] ∈ RD2 are
weight vectors, given by

ω
(t )
i j = GELU

[∑
l

Q(t )
il K(t )

l j

]
. (8)

where we used query/key matrices given by Q(t )
i j = WQ ·

g(t )
i j and K(t )

i j = WK · g(t )
i j (with WQ,WK ∈ RD2×D2 ) and ap-

plied an element-wise GELU nonlinearity [44] to the overlap
between queries and keys along the particle dimension
(as opposed to the feature dimension [43,45]), resulting in
permutation-equivariant weights. Particle attention compares
the environments of particles i and j and effectively increases
the order of correlations that can be embedded in a single
iteration of the network. This is crucial to reduce the total
number of network iterations (parameters) and capture many-
body effects. A comparison with the self-attention mechanism
introduced in [43] can be found in Appendix C.

We update the hidden states using the nodes and edges of
the current graphs together with the messages:

h(t+1)
i = f

⎡
⎣g(t )

i ,
∑
j �=i

m(t+1)
i j

⎤
⎦ (9)

h(t+1)
i j = f̃

[
g(t )

i j , m(t+1)
i j

]
(10)

The functions φ, f , and f̃ are parameterized by multilayer
perceptrons (MLPs). The final updated graph then has the
same structure as the former but with updated hidden states:

g(t+1)
i = [

x(0)
i , h(t+1)

i

] ∈ RD1 , (11)

g(t+1)
i j = [

x(0)
i j , h(t+1)

i j

] ∈ RD2 . (12)

Inclusion of the initial inputs, referred to as a skip connection
in ML literature [46], mitigates the vanishing gradient prob-
lem and allows a more efficient capture of correlations. For
a comparison of the MP-NQS and conventional MPNN, see
Appendix B.

To obtain the backflow coordinates Y(X), we compute
yi(X) = ri + δri(X), where the displacements δri(X) are ob-
tained by a linear transformation of the final node states
to d dimensions, i.e., δri(X) = W · g(T )

i , with W ∈ Cd×D1 .
The complex-valued backflow transformation allows chang-
ing the degree of localization, determined by the chosen
single-particle orbitals and representing complex-valued wave
functions in general.

Following Eq. (5), we further augment the orbitals with a
permutation-invariant factor J of the form:

J (Y, μ) =
∑

i

j(yi, μ), (13)

where j is parameterized with a MLP, and μ denotes the
quantum numbers of the orbitals, yielding

�(X) = det ϕμ[yi(X)], (14)

with ϕμ(yi ) = exp[J (Y, μ)] × φμ(yi ).

C. Electron gas

We now study the case of the HEG in d = 3 spatial dimen-
sions, a prototypical model for electronic structure in solids.
It includes Coulomb interactions among the electrons of the
solids while treating its positively charged ions as uniform,
static, positive background [47]. Despite this simplification,
the HEG exhibits different phases of matter and captures
properties of real solids, particularly of alkali metals. The
Hamiltonian (in units of Hartree), for a system of N electrons
with uniform density n = N

V , is given by

H = − 1

2r2
s

N∑
i

∇2
ri

+ 1

rs

N∑
i< j

1

‖ri − r j‖ + const., (15)

where we introduced the Wigner-Seitz radius rs = 3
√

3/(4πn)
and a constant arising from the electron-background inter-
action [39]. The conditionally convergent series of pairwise
Coulomb interactions is evaluated using the Ewald summation
technique, as is standard for extended systems in quantum
Monte Carlo (QMC) [48–50]. We will assume a fixed spin po-
larization with N = N↑ + N↓, where N↑/↓ denotes the number
of up/down spins. Furthermore, si ∈ {↑,↓} denotes the spin
of the ith electron. We equip the cubic simulation cell of side
length L with PBCs in all spatial directions to access the bulk
of the system.

As in Eq. (5), we use a single Slater determinant as a refer-
ence state �0(X). We expect a liquid-crystal phase transition
for the HEG, as a function of the density n. The dominating
kinetic energy in Eq. (15) (∼1/r2

s ) for large n leads to the
well-known Fermi liquid behavior. For small n, the potential
energy (∼1/rs) dominates and enforces a crystalline body-
centered cubic (BCC) structure among the electrons, known as
a Wigner crystal [51]. To model the liquid state, we use plane-
wave orbitals as a natural and physically motivated reference
state: φk(r) = exp[ik · r], with k = 2π

L n, where n ∈ Zd .
These orbitals allow modeling of the HEG at fixed total mo-
mentum ktot = ∑N

i=1 ki. To account for the spin s of a particle
located at r, we use spin orbitals φμ(r, s) = φkμ

(r)δsμ,s, where
each spin orbital is characterized by the quantum numbers
μ = (kμ, sμ). This choice of spin orbitals lets the determinant
factorize into a product of determinants of up- and down-spin
orbitals. To study the Wigner crystal phase, we employ local-
ized Gaussian orbitals centered around the BCC lattice sites
Rμ: φμ(r, s) = ∑

Rn
exp[−α(r − Rμ + Rn)2]δsμ,s, where α is

a variational parameter, μ = (Rμ, sμ), and we sum over sim-
ulation cell lattice vectors Rn to ensure periodicity. Note that
it is also possible to use linear combinations of plane-waves
to describe the crystalline phase (as guaranteed by Fourier
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theory). We have experimented with these orbitals and saw
agreement with predictions from Gaussian orbitals. However,
we found that optimizing the plane-waves is hard, such that
Gaussian orbitals are the more practical choice. For all densi-
ties, we use a simple cubic simulation cell.

We further specialize the MP-NQS to the HEG by defining
initial feature vectors. To have the backflow transformation
respect the spin inversion and translation symmetries of the
HEG, we ignore single-particle positions and spins. Instead,
we initialize the nodes to a learnable embedding vector e ∈
RD1−Dh

1 , which does not depend on the particle index i. For
edge features, we use the translation-invariant particle dis-
tances ri j = ri − r j and their norm. Same- and opposite-spin
pairs are distinguished using products of the form si · s j = ±1
in the edge features. Overall, we obtain the following initial
features:

x(0)
i = e, x(0)

i j = [ri j, ‖ri j‖, si · s j]. (16)

Notice that this choice preserves the spin-quantum number of
each particle.

Following Ref. [21], PBCs of the simulation box are
incorporated by mapping the components of the vectors
r ∈ Rd (where r = ri or r = ri j) to a Fourier basis r �→
[sin( 2π

L r), cos( 2π
L r)] ∈ R2d , and the norm of the distance be-

tween two particles ‖ri j‖ to a periodic surrogate ‖ri j‖ �→
‖ sin( π

L ri j )‖. In summary, our Ansatz exhibits translation and
spin-inversion invariance and maintains a fixed total momen-
tum ktot. Its number of parameters is independent of system
size (here, ∼19 000), and using stochastic reconfiguration
(SR) [31], only O(103) optimization steps are needed to reach
convergence. More about optimizing the network and an ad-
ditional comparison with other NQS approaches is given in
Appendixes A and D.

III. RESULTS

We study fully spin-polarized and unpolarized HEGs in
different density regimes rs ∈ [1, 200] and up to system sizes
of N = 128 electrons. We compare our ground-state energies
against state-of-the-art NQS architectures—FermiNet [23]
and WAPNet [22]—for small system sizes N ∈ {14, 19}
and against diffusion Monte Carlo (DMC) with backflow
(BF-DMC) [52,53] for N = 54 electrons (see Appendix E).
Additional benchmarks with respect to common quantum
chemistry methods, including the transcorrelation augmented
full configuration interaction method (FCI) and distinguish-
able clusters with doubles (DCD) method [34], are included in
Appendix F. The effect of the backflow transformation on the
nodal surface is studied by comparing with fixed-node DMC
(FN-DMC) results. We use an energy of 1.5 mHa per parti-
cle (chemical accuracy) to assess the significance of energy
differences between the different methods. An overview of
all results and benchmarks for the various system sizes and
densities is provided in Appendix F.

A. Number of backflow transformations

We show in Fig. 2, for a system of N = 14 particles at
the highest densities rs = 1, 2, 5, that increasing the num-
ber of backflow iterations (and therefore the number of

FIG. 2. Energy obtained with our variational Ansatz for N = 14
particles at densities rs = 1, 2, 5 as a function of the number of
message-passing backflow iterations. We compare to WAPNet and
FermiNet with a single Slater determinant as well as FermiNet with
16 determinants.

variational parameters) systematically improves the accuracy
of our Ansatz. At rs = 1, we score slightly worse than WAP-
Net for a single backflow iteration while reaching the same
accuracy for three backflow iterations. Similarly, for rs =
2, we obtain a slightly higher energy than WAPNet for a
single backflow iteration, but we surpass the performance
of WAPNet after two backflow iterations. For rs = 5, we
obtain more precise results than WAPNet for a single back-
flow iteration. Upon comparison with FermiNet, our results
demonstrate that we consistently outperform the unrestricted,
single Slater-determinant version of FermiNet at these den-
sities. Interestingly, for lower densities (rs = 5), our Ansatz
even outperforms the unrestricted FermiNet with 16 determi-
nants with a single message-passing iteration.

B. Small system size

The best available results for N = 14 are obtained with
the FCI method, compared with which we find an energy
difference of <1.5 mHa per particle. State-of-the-art NQS
architectures perform comparably with the MP-NQS: The un-
restricted FermiNet performs slightly better [O(10−5) Ha/N]
than both MP-NQS and WAPNet for rs � 2, while MP-NQS
and WAPNet improve over this version of FermiNet for rs =
5. The restricted FermiNet yields ground-state energies worse
than the MP-NQS over all probed densities [23] (see Fig. 3).
Note that the energy differences for this system are of the
order of machine precision. For rs � 5, we find slightly bet-
ter performance than WAPNet for all reported densities. All
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FIG. 3. Comparison of ground-state energies obtained with dif-
ferent methods for various densities, polarizations, and system sizes
with respect to the Hartree-Fock energy EHF on the same system.
Each line shows the difference in energy of the respective method
to the message-passing neural quantum state (MP-NQS) energy with
plane-wave orbitals EMP-NQS (values above zero are worse than the
MP-NQS baseline). (top) N = 14, 19; (bottom) N = 54 particles.
Error bars are too small to be visible for most densities. The cor-
responding numerical data can be found in Appendix F.

differences lie within a range of 1.5 mHa per particle.
Similarly, for N = 19, the MP-NQS obtains slightly higher
energies than WAPNet for large densities (rs � 5) and
marginally lower ones at smaller densities (rs � 5) with dif-
ferences <1.5 mHa per particle.

C. Large system size

For N = 54 particles, most accurate results are obtained
with the FCI method [34]. At this system size, the energy
differences per particle are smaller than for N = 14, suggest-
ing size consistency of our Ansatz, provided that the FCI
method is also size consistent. Compared with purely varia-
tional methods, we obtain ground-state energies significantly
better than those of FN-DMC and BF-DMC, especially at high
densities. This is in stark contrast with the (FermiNet-based)
architecture of Ref. [27] (dubbed LiNet in the following),
which does not improve on BF-DMC energies over the whole
density regime (see Fig. 3, bottom). At rs > 50, we observe
improved results using the MP-NQS with Gaussian orbitals
compared with plane waves (see Fig. 3, bottom panel, yellow
line). This strongly suggests a transition from a delocalized
Fermi liquid to a localized crystalline phase, as expected
from previous studies [35,54]. To analyze finite size effects,
we also simulate a larger system of N = 128 electrons at
rs = 50, 110, 200 and confirm that Gaussian orbitals lead to
lower ground-state energies compared with the plane waves
for rs > 50 (see Appendix F). Furthermore, for rs = 110, 200,
the crystalline character of the variational state can be clearly
seen in the radial distribution functions and the corresponding
structure factors shown in Fig. 4. The prominent peak in the
structure factor and the pronounced density fluctuations in the
radial distribution function up to the maximum distance of

FIG. 4. Spin-averaged radial distribution function (top) and cor-
responding structure factor (bottom) for the homogeneous electron
gas (HEG) system with N = 128 electrons at rs = 50, 110, 200. For
rs = 50, we used plane-waves as the reference state, while for rs =
110, 200, Gaussian orbitals centered at body-centered cubic (BCC)
lattice sites were used. Error bars are smaller than the symbols.
The crystal and liquid benchmarks are obtained from Ref. [54] for
rs = 110.

L/2 indicate the crystalline nature of the represented state.
Note that these are absent for rs = 50, suggesting a fluid state.

IV. CONCLUSIONS

We have introduced MP-NQS, a NQS architecture that
leverages MPNNs to build highly expressive backflow co-
ordinates. We demonstrate its power on the HEG system,
reducing the number of parameters by orders of magni-
tude compared with state-of-the-art NQS in continuous space
while reaching at par or better accuracy. We also show im-
provement over state-of-the-art BF-DMC results on large
systems. The favorable scaling allows us to accurately simu-
late large periodic electronic systems, previously inaccessible
to state-of-the-art NQS models. In this paper, we increase
the size of the reachable system from N = 27 and 54
electrons in periodic systems [22,23,27] to N = 128 elec-
trons. Hence, we open the door to extrapolation methods
to the thermodynamic limit for extended systems. Further-
more, we reproduce the liquid-crystal phase transition of the
HEG around rs = 100, matching previous predictions on the
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transition density [35,54,55], showing the ability of MP-
NQS to quantitatively describe different phases of matter
better than previous studies of the HEG based on neural
wave functions [23]. In addition to the numerical results, we
also introduced an analytical argument, justifying commonly
adopted backflow transformations. Our argument shows that
a backflow transformation over a reference state is sufficient
to obtain the exact ground-state wave function. It will be of
particular interest to characterize the geometrical properties
of these transformations and understand in what cases NN
parametrizations can efficiently describe them.
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APPENDIX A: OPTIMIZATION

From the Rayleigh-Ritz principle, we obtain a lower
bound on the expectation value of the Hamiltonian 〈�|H |�〉/
〈�|�〉 ≡ E [�] � E0. We use the energy expectation value
with respect to our variational Ansatz as a cost function to
gauge the proximity of the variational state to the ground state
of the Hamiltonian. Formally, the ground state is given by

�0 = argmin
�

E [�]. (A1)

where H |�0〉 = E0|�0〉.
Since the exact expected value of the Hamiltonian requires

us to analytically solve a high-dimensional integral, which in
general is not feasible, we resort to Monte Carlo sampling
and integration. The energy expectation is evaluated as the
average of a set of local energies Eloc(X) = 〈X|H |�〉/〈X|�〉,
where the samples X are obtained from the probability
distribution |�(X)|2/〈�|�〉 using the Metropolis-Hastings
algorithm.

To update the variational parameters in our Ansatz so
that it exhibits progressively lower energy expectation values,
we apply the SR algorithm [31], which can be shown to
be equivalent to imaginary-time evolution on the variational
manifold and is related to the natural gradient descent method.
The update rule for the variational parameters is given by
δθ = −ηS−1F, where F is the force vector consisting of the
log-derivatives of the energy with respect to the variational
parameters θ given by

Fi = 2

( 〈∂i�|H |�〉
〈�|�〉 − E [�]

〈∂i�|�〉
〈�|�〉

)
, (A2)

and the so-called quantum geometric tensor S is

Si j = 〈∂i�|∂ j�〉
〈�|�〉 − 〈∂i�|�〉〈�|∂ j�〉

〈�|�〉〈�|�〉 , (A3)

and η is the learning rate [59]. To regularize the compu-
tation of S−1, we apply a small diagonal shift such that
we compute (S + εI)−1. For all experiments, we used ε =
10−4. The learning rate was chosen according to the den-
sity as η = {0.05, 0.05, 0.05, 0.1, 0.1, 0.5, 1, 2.5} for rs =
{1, 2, 5, 10, 20, 50, 100, 110}.

APPENDIX B: COMPARISON OF MPNN AND MP-NQS

In the following, we provide an overview of the general
structure of MPNNs [36,60] and relate it to the MP-NQS.
First, the relevant data must be encoded in a graph struc-
ture, where the nodes of the graph g(t )

i = [x(0)
i , h(t )

i ] describe
single-body information and the edges between nodes g(t )

i j =
[x(0)

i j , h(t )
i j ] contain relational information about the connected

nodes. The graph [g(t )
i , g(t )

i j ] then gets successively updated
over T iterations, using a two-step message-passing proce-
dure. In the first step, the messages are typically constructed
for all the nodes of the graphs, but not the edges:

m(t+1)
i =

∑
j∈N (i)

M(t )
[
g(t )

i , g(t )
j , g(t )

i j

]
, (B1)

where M(t ) is a learnable function, and the sum runs over all
nodes in the neighborhood of node i, denoted by N (i). The
second step then consists of updating the graph nodes, using
the constructed messages:

g(t+1)
i = U(t )

[
g(t )

i , m(t+1)
i

]
, (B2)

where U(t ) is again a learnable function. In the MP-NQS, the
message construction is done via the particle attention mech-
anism. Additionally, the explicit dependence on the nodes of
the graph is removed, and an update of the graph edges is
added:

m(t+1)
i j = M(t )

[
g(t )

i j

]
, (B3)

m(t+1)
i =

∑
j �=i

m(t+1)
i j , (B4)

where N (i) is chosen to be all other particles to retain permu-
tation equivariance. The nodes and edges of the graph are then
updated as follows:

g(t+1)
i = U1

[
g(t )

i , m(t+1)
i

]
, (B5)

g(t+1)
i j = U2

[
g(t )

i j , m(t+1)
i j

]
, (B6)

where we introduced another two learnable functions U1, U2.
In traditional MPNN applications, the nodes of the inter-

mediate and final graphs are processed, in a so-called readout
phase, to predict a scalar quantity, e.g., the energy of an atom
in a specific molecular configuration:

Ei =
∑

t

R(t )
[
g(t )

i

]
, (B7)

where R(t ) is again a learnable function. In the MP-NQS, we
replace this step with a transformation of the nodes of the final
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graph to the physical configuration space of the particles:

δri = W · g(T )
i ∈ Rd . (B8)

APPENDIX C: COMPARISON BETWEEN DIFFERENT
ATTENTION MECHANISMS

In this section, we summarize the original self-attention
mechanism introduced in Ref. [43] and provide a comparison
with the particle attention mechanism introduced in this paper.
The attention mechanism builds on the query/key/value con-
cept, which is notably recognized in search algorithms. Given
a query vector (e.g., search phrase), it is compared with a set
of key vectors associated with candidates of a database (e.g.,
words on Websites). The comparison of the query and key
provides a weight determining the relevance of a correspond-
ing value (e.g., Website) given the query. Given (single-body)
input data {x1, . . . , xN }, xi ∈ RD, keys/queries/values are
formally computed using learnable weight matrices W (Q)

i ∈
RD×Dk , W (K )

i ∈ RD×Dk , W (V )
i ∈ RD×Dv :

Qi = W (Q)
i xi, Ki = W (K )

i xi, Vi = W (V )
i xi. (C1)

To obtain permutation-invariant self-attention from the above,
the weight matrices cannot depend on the index i but are the
same, independent of the input data:

Qi = W (Q)xi, Ki = W (K )xi, Vi = W (V )xi. (C2)

Comparing query and key vectors is commonly performed
using the (scaled) dot-product along their feature dimension
(with dimension Dk), such that the self-attention map can be
written as

Att(Q, K, V) = softmax

(
QT K√

d

)
V ∈ RN×Dv , (C3)

where Q, K, V are matrices of stacked queries, keys, and
values, respectively [Q = (Q1, ..., QN ) ∈ RN×Dk ]. The above
can also be written as a weighted sum of value vectors, where
the weights are given by the inner product between queries
and keys.

In the MP-NQS, we develop and extend the idea
of self-attention to two-body input data {x11, . . . ,

x1N , . . . xNN }, xi j ∈ RD. As in self-attention, we utilize
query/key weight matrices to compute query/key pairs:

Qi j = W (Q)xi j ∈ RDk , (C4)

Ki j = W (K )xi j ∈ RDk . (C5)

The comparison between queries and keys is again performed
taking their inner product but, importantly, along the particle
dimension rather than the feature dimension. Additionally, we
replace the softmax activation with a GELU activation:

ωi j = GELU

(∑
l

Qil Kl j

)
, (C6)

where we introduced the weights ωi j . Instead of using a linear
map for the values (as is done for queries and keys), we use a
full MLP to compute the values Vi j = φ(xi j ) from the input
data. We obtain the following attention mechanism, called

particle attention:

PAtt(Q, K, V) = ωi j � Vi j ∈ RN×N×Dv , (C7)

where � denotes element-wise multiplication along the fea-
ture dimension. Using the above as messages for the MPNN,
Eq. (B4), results in weighted permutation-equivariant sums of
edge features:

m(t )
i j = PAtt(Q, K, V) = ωi j � Vi j, (C8)

m(t )
i =

∑
j �=i

ωi j � Vi j . (C9)

APPENDIX D: COMPARISON WITH OTHER NQS
ARCHITECTURES

The most thoroughly investigated NQS architectures for
continuous space are FermiNet and PauliNet [18,19]. Both
have been shown to provide good approximations to the
ground-state energies of molecular systems. FermiNet has
also been applied to the HEG system with very accurate
results [23]. Although FermiNet shows slightly better re-
sults on molecular systems than PauliNet, differences in the
architectures allow PauliNet to reach comparable energies
with considerably fewer parameters than FermiNet. Here, we
compare our MP-NQS with these two Ansätze and highlight
similarities and differences.

Both FermiNet and PauliNet construct the variational wave
function Ansatz by using the antisymmetry of the Slater deter-
minant. PauliNet uses physically motivated orbital functions
as input to the Slater determinant and alters these by an
orbital-aware multiplicative symmetric factor. Additionally,
an overall Jastrow factor is used to increase the expressiveness
of the Ansatz. FermiNet imposes no physical knowledge on
the orbitals (up to an overall envelope function) and does not
need an overall Jastrow factor. To construct the multiplicative
factor in PauliNet and the orbitals in FermiNet, the number
of parameters scales linearly with the size of the system. In
addition, both Ansätze construct multiple Slater determinants
to increase their accuracy, thereby multiplying the number
of parameters by a constant factor. Both Ansätze treat the
different spin species by utilizing distinct parameter sets for
the different possible spin projections.

Like PauliNet, we use physically motivated orbitals, which
are evaluated at backflowed coordinates. These coordinates
are constructed using a powerful MPNN that leverages the
expressiveness of the attention mechanism. There exists yet
another version of FermiNet, called PsiFormer, which uses the
original self-attention mechanism introduced in Ref. [43] but
has not been applied to extended systems. While PsiFormer
applies the attention mechanism along the feature dimension
of the single-particle stream, we find substantially improved
results by applying attention along the particle dimension
instead. This approach introduces additional correlations be-
tween the particles rather than between the features of the
edge-states of our graphs. As PauliNet, we use a multiplicative
factor to alter the orbitals even further, which allows us to
omit the overall Jastrow factor that is present in PauliNet. By
inputting orbital information to the multiplicative factor di-
rectly, we can keep the number of parameters independent of
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FIG. 5. Moving average of the optimization curve (energy per
particle in Hartree averaged over 100 optimization iterations) for
N = 14 particles at rs = 5 obtained with a learning rate η = 0.05
and a diagonal shift ε = 10−4 for stochastic reconfiguration (SR).
We compare to results from WAP-net [22] and FermiNet [23] to
our message-passing neural quantum state (MP-NQS). Note that the
physically motivation orbitals used in our Ansatz makes us start close
to the ground-state energy with our optimization.

the number of particles. Notably, our Ansatz does not require
multiple Slater determinants.

As mentioned above, FermiNet has been applied to study
the HEG in continuous space. The orbitals are constructed
from scratch with plane-wave envelope functions. In contrast
with our approach, FermiNet uses large networks (512 width)
to process the positions of the simulated particles and con-
siderably smaller networks (32 width) to act on the distance
vectors between the particles. The usage of single-particle
coordinates breaks the translation invariance of the system. In
our MP-NQS, we only use the distance information between
the particles and ignore the single-particle information to stay
translation invariant. We only use small networks (32 width)
to construct the messages m(t+1)

i j [Eq. (B4)] that are used to
update the nodes and edges of the particle graph. Overall,
we use ∼19 000 parameters in our Ansatz, which consists
of a single Slater determinant. PauliNet usually uses 70 000–
100 000 parameters and up to 36 Slater determinants, while
FermiNet uses on the order of a million parameters with up
to 32 Slater determinants. The fact that we have considerably
fewer parameters allows us to use SR to optimize our varia-
tional Ansatz (see Appendix A). Both FermiNet and PauliNet
use O(105) optimization steps, but we can reduce this number
to less than O(103) iterations. To illustrate this point, we show
the optimization curve for N = 14 particles at rs = 5 in Fig. 5.

APPENDIX E: DMC

The DMC method projects the variational states |�V 〉 in
imaginary time to filter out its ground-state component:

|�0〉 ∝ lim
τ→∞ exp(−Hτ )|�V 〉. (E1)

The variational state is taken to be of the Slater-Jastrow form
�V = exp[J (X)]S↑S↓, where S↑ and S↓ are the Slater determi-
nants of single-electron states for the spin-up and spin-down
species, respectively. The Jastrow factor captures correlation
between electrons and hence is a function of electron-electron

separation coordinates ri j = {xi j, yi j, zi j}:
J (X) =

∑
i< j

σ,τ∈{↑,↓}

Jστ (ri j ). (E2)

The Pauli principle requires the functional form of Jστ must
be even under exchange of particles i and j. In addition, Jστ

must satisfy the PBCs at the edge of the simulation box. To
fulfill the above requirements, we utilize the parameterization
introduced in Ref. [61]:

Jσ,τ (ri j ) =
Nj∑

n=1

cn,σ τ [ j(xi j )
2 + j(yi j )

2 + j(zi j )
2]n/2, (E3)

where j(x) = |x|[1 − 2(|x|/L)3]. By taking c1,↑↑ = c1,↓↓ = 1
4

and c1,↑↓ = c1,↓↑ = 1
2 , the Kato cusp conditions at particle

coalescence are also automatically fulfilled. The parameters
cn>1,↑↑ are determined by minimizing the energy of the sys-
tems by using the linear optimization scheme [30]. We find
that using more than NJ = 6 variational parameters does not
improve the energy noticeably.

The imaginary-time diffusion is broken into many
small steps δτ . The Trotter-Suzuki decomposition can
be applied to the short-time propagator as exp(−Hδτ ) �
exp(−V δτ/2) exp(−T δτ ) exp(−V δτ/2), where T and V are
the kinetic and potential energy operators, respectively. At
each imaginary-time step, we use the free propagator:

G0(X′, X) ≡ 〈X′| exp(−T δτ )|X〉

=
[√

m

2π h̄2δτ

]3N

exp

[
− (R′ − R)2

2h̄2δτ/m

]
, (E4)

to sample the new coordinates X′ of all particles. As routinely
done in nuclear physics applications [62,63], to remove the
linear terms coming from the exponential of Eq. (E4), we
use two mirror samples X′ = X ± δX, and we consider the
corresponding importance-sampled weights:

w± = �V (X ± δX)

�V (X)
exp

{
− [V (X ± δX) + V (X)]δτ

2

}
.

(E5)
Only one of the two samples is kept in the propagation ac-
cording to a heat-bath sampling among the two normalized
weights w±/(�±w±), and the average weight �±w±/2 is
assigned to the propagated configuration.

The fermion-sign problem is controlled by employing the
fixed-node approximation, which amounts to evaluating the
weights of Eq. (E5) with the replacement:

�V (X ± δX)

�V (X)
→ Re

�V (X ± δX)

�V (X)
. (E6)

Note that, if the real part of the above ratio is negative, the
weight of the configuration is set to zero only after computing
the average weight.

APPENDIX F: NUMERICAL RESULTS

In Tables I–V we show the ground-state energies of
the unpolarized and fully polarized HEG for different
system sizes N = {14, 19, 27, 54, 128} and densities rs =
{1, 2, 5, 10, 20, 30, 50, 70, 90, 100, 110, 200}.
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TABLE I. Total energy per particle in Hartree for unpolarized system of N = 14 particles. WAPNet and FermiNet are alternative NQS
architectures optimized via VMC. We include FCI and DCD results as benchmarks from quantum chemistry.

N rs MP-NQS WAP [22] FermiNet [23] FCI∗/DCD∗∗ [34]

14 1 0.568 967(6) 0.568 965(1) 0.568 904(1) 0.568 61(1)∗

2 −0.008 391(1) −0.008 331 0(3) −0.008 427(1) −0.008 68(2)∗

5 −0.079 854 4(4) −0.079 836 0(1) −0.079 821(1) −0.080 02(2)∗

10 −0.055 212 6(6) −0.055 203 80(3) N/A −0.055 09∗∗

20 −0.032 455 3(2) −0.032 443 4(1) N/A −0.032 01∗∗

50 −0.014 626 31(6) −0.014 622 11(4) N/A −0.013 84∗∗

100 −0.007 730 18(3) −0.007 729 980(2) N/A N/A

TABLE II. Total energy per particle in Hartree for the unpolarized system of N = 54 particles. FN-DMC results are obtained using the
method in Appendix E. We include FCI and DCD results as benchmarks from quantum chemistry.

N rs MP-NQS MP-NQS (Gauss) LiNet [27] FN-DMC BF-DMC [52,53] FCI∗/DCD∗∗ [34]

54 1 0.529 73(1) N/A 0.530 019(1) 0.530 94(2) 0.529 89(4) 0.529 73(3)∗

2 −0.014 046(8) −0.013 90(1) −0.013 840(1) −0.013 26(2) −0.013 966(2) −0.013 79∗∗

5 −0.079 090(2) −0.079 064(4) −0.078 835 4(2) −0.078 67(1) −0.079 036(3) −0.078 37∗∗

10 −0.054 448(1) −0.054 445(1) −0.054 278 5(1) −0.054 269(8) −0.054 443(2) −0.053 22∗∗

20 −0.032 052 4(5) −0.032 048 0(6) −0.031 688 6(1) −0.031 976(8) −0.032 047(2) −0.031 13∗∗

50 −0.014 501 5(1) −0.014 499 9(1) N/A −0.013 87(2) −0.014 487 7(1) −0.012 81∗∗

100 −0.007 679 3(1) −0.007 692 03(5) N/A −0.007 674(3) N/A N/A

TABLE III. Total energy per particle in Hartree for the unpolarized system of N = 128 particles. FN-DMC results are obtained using the
method in Appendix E.

N rs MP-NQS MP-NQS (Gauss) FN-DMC

128 110 −0.007 020 3(1) −0.007 112 1(2) −0.007 009 518(1)
200 −0.004 002 3(2) −0.004 061 5(1) −0.003 992 3(7)

TABLE IV. Total energy per particle in Hartree for the polarized system of N = 19 particles. We compare to results obtained using WAPNet.

N rs MP-NQS WAP [22]

19 1 1.046 262(2) 1.046 241(3)
2 0.096 307(1) 0.096 303(1)
5 −0.067 248 9(3) −0.067 251 05(3)

10 −0.052 862 4(2) −0.052 860 35(1)
20 −0.032 010 1(1) −0.032 008 2(1)
50 −0.014 566 85(3) −0.014 565 71(2)

100 −0.007 718 32(2) −0.007 713 62(2)

TABLE V. Total energy per particle in Hartree for the polarized system of N = 27 particles. FN-DMC results are obtained using the method
in Appendix E.

N rs MP-NQS FN-DMC

27 1 1.051 771(4) 1.052 00(3)
2 0.098 460(2) 0.098 66(2)
5 −0.066 552 3(6) −0.066 429(4)

10 −0.052 601 5(2) −0.052 540(6)
30 −0.022 818 4(1) −0.022 808 0(8)
50 −0.014 579 76(5) −0.014 575 2(6)
70 −0.010 749 86(3) −0.010 749(2)
90 −0.008 531 56(2) −0.008 531 4(5)
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