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Topological states protected by hidden symmetry
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Symmetries play a paramount role in many aspects of topological physics. A particularly illuminating example
is the Su-Schrieffer-Heeger (SSH) chain, whose reflection and chiral symmetry endow the quantization of the
Zak phase and winding number, subsequently guaranteeing the existence of topological edge states. Here,
we harness recent graph-theoretical results to construct families of setups whose unit cells feature neither of
these symmetries, but instead a so-called latent or hidden reflection symmetry. This causes the isospectral
reduction—akin to an effective Hamiltonian—of the resulting lattice to resemble an SSH model. These latent
SSH models exhibit features such as multiple topological transitions, edge states, a quantized Zak phase,
and, counterintuitively, immunity to orientational disorder. We confirm our findings through electric circuit
experiments, where the topological edge states can be directly observed. Serving as a first proof of principle,
our paper demonstrates the wealth and generality of a stroboscopic point of view, taking advantage of hidden
properties such as symmetries.
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I. INTRODUCTION

In the past years, topological insulators have become a
main research focus of condensed matter and wave physics. A
prototypical model of a one-dimensional topological insulator
is the Su-Schrieffer-Heeger (SSH) chain [1]. The SSH chain
hosts topological edge states, which can be understood from
the quantization of the Zak phase due to the unit cell mirror
symmetry. Alternatively, these topological states can be seen
to be protected by chiral symmetry and characterized by the
winding number topological invariant [2].

The importance of the SSH chain as a simple and proto-
typical topological model is reflected in the large number of
physical realizations, which include acoustic [3,4], photonic
[5] or nanomechanical [6] systems, as well as electric circuits
[7]. Furthermore, the original SSH model has been extended
in different ways, for instance, by adding more sites to the
unit cell [8–10], by adding long-range couplings [11], or by
converting the unit cell to a fractal [12]. The SSH model has
also been generalized to higher dimensions [13,14].

In this paper, we propose a different class of extensions.
Relying on recent advances in graph theory, we propose a
class of models whose unit cells feature neither a chiral
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symmetry nor a reflection symmetry. Instead, they are de-
signed to possess a hidden (so-called latent [15]) symmetry.
In the past few years, latent symmetries have been used
for a variety of purposes, including the generation of lattice
systems with perfectly flat bands [16,17], the explanation of
accidental degeneracies in eigenvalue spectra [18], the design
of asymmetric waveguide networks with broadband equire-
flectionality [19–21], or the realization of stable so-called
exceptional chains in non-Hermitian systems [22]. An intro-
duction into latent symmetry is given in Ref. [23]. As we
show, the effective Hamiltonian of models with latently sym-
metric unit cells is closely related to the classic SSH model.

In the following, we introduce the concept of such latent
SSH models, analyze their properties, and show how large
families of them can be constructed. Furthermore, we experi-
mentally verify our predictions in electric circuit networks.

II. THEORY

A. Topology through latent symmetry

Our main idea is to design topological lattices by relying
on unit cells that feature neither a mirror symmetry nor a
chiral symmetry, but a hidden mirror symmetry. Two such
asymmetric, but hidden symmetric, unit cells are depicted in
Fig. 1(b), while the overall structure of our proposed lattice is
depicted in Fig. 1(a). We emphasize that the unit cells shown
in Fig. 1(b) are only two out of many possible ones. We shall
discuss the systematic generation of large families of such
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FIG. 1. Design of a latent SSH model. (a) The starting point: a
one-dimensional lattice, with a cloud denoting a latently reflection
symmetric subsystem. (b) Two unit cells LS1 and LS2. In both unit
cells, the blue (u) and red (v) site are latently reflection symmet-
ric. (c) Using a latently symmetric structure as a unit cell yields
a latent SSH model. In all subfigures, each line corresponds to a
coupling (with corresponding strength denoted, for instance, by t).
Lines without annotations correspond to a coupling strength of unity.
Loops denote on-site potentials. The sole purpose of (white, blue,
red) colors is to highlight certain sites over others.

latently symmetric unit cells later on and show a couple of
other examples in Appendix B.

Let us now build a lattice by choosing either LS1 or LS2 as
a unit cell. We denote the Hamiltonian of our lattice by H ; its
eigenvalues and eigenstates can be obtained from solving the
linear eigenvalue problem H� = E �. To uncover the hidden
symmetry of the system, we will perform a so-called isospec-
tral reduction, which is akin to an effective Hamiltonian [24].
To perform this reduction, one has to partition the system into
two sets: S and its complement S. For our problem, we will
choose S to be all the blue and red sites in Fig. 1(b), while S
will be all the white sites. The isospectral reduction

H̃S (E ) = HSS + HSS (E I − HSS )−1HSS, (1)

with I the identity matrix, then converts our linear eigenvalue
problem H� = E � into the reduced, nonlinear problem

H̃S (E )�S = E �S. (2)

Here, �S denotes the S components of �. We note that,
in general, the original Hamiltonian and H̃S (E ) possess the
same eigenvalue spectrum,1 which motivates calling H̃S (E ) an
isospectral reduction; see chapter 1 of Ref. [25]. We further
note that the isospectral reduction could be interpreted as a
tool that sheds light only on a fraction of sites (S), while
leaving the remaining sites (S) in darkness. In this sense, it
provides a stroboscopic point of view on the system.

The isospectral reduction of our lattice is shown in pictorial
form in Fig. 1(c). Taking the Fourier transform of the resulting

1The eigenvalue spectrum of H̃S (E ) is defined as the solutions to
det(H̃S (E ) − EI ).

system, Eq. (2) is transformed to

H̃ (B)
S (E , k) �S (k) = E �S (k) (3)

with the effective Bloch Hamiltonian

H̃ (B)
S (E , k) =

(
a(E ) s(E ) + t eik

s(E ) + t e−ik a(E )

)
. (4)

The crucial thing about H̃ (B)
S is the equality of its two

diagonal elements a(E ). This equality is entirely due to a
so-called latent reflection symmetry [15] of our unit cells LS1
and LS2. The name stems from the following observation: If
one would take the isospectral reduction of the isolated unit
cell (which is asymmetric) over S = {u, v} (blue and red site),
one would obtain a reflection-symmetric dimer. Thus, while
the original unit cell is asymmetric, it indeed hosts a hidden
reflection symmetry that is uncovered using the isospectral
reduction. For this reason, we say that the unit cell hosts a
latent reflection symmetry.

Let us note that the equality of the diagonal elements in
H̃ (B)

S (E , k) would also occur if our unit cells would be re-
flection symmetric. For a generic unit cell which is neither
reflection symmetric nor latently symmetric,2 however, the
two diagonal elements are generically unequal, though they
may coincide for some specific values of E .

Due to the equality of the diagonal elements, we can
rewrite Eq. (4) as(

0 s(E ) + teik

s(E ) + te−ik 0

)
�S (k) = ε �S (k), (5)

with ε = E − a(E ). This takes formally the mathematical
form of the classical SSH model, though with energy-
dependent intercell coupling s(E ) and energy-dependent
eigenvalue ε(E ). We thus see that the isospectral reduction of
our initial system mimics the SSH model; this justifies calling
the initial system a latent SSH model.

The algebraic mapping Eq. (5) between the classic SSH
model and our latent SSH model is the key to understand the
properties of the latter. The original SSH model has a topo-
logical transition at eigenvalue zero when s = t . In Eq. (5), an
eigenvalue ε = 0 only occurs when E = a(E ). Consequently,
each solution Ei to ε(E ) = 0 corresponds to one topological
transition, reached when the intercell coupling |t | = |s(Ei )|.
Thus, the system is in the ith topological phase when the
intercell coupling t fulfills |t | > |s(Ei)|. In a semi-infinite
system, the ith topological phase displays edge states whose
amplitudes on the sites un and vn in the n-unit cell are �un =
(− s(Ei )

t )n and �vn = 0.3 We remark that the amplitudes on the
remaining sites [the white ones, see Fig. 1(b)] of each unit cell
can be obtained through �S = (HSS − EI )−1HSS�S and are,
in particular, exponentially localized as well. Let us now apply
the above to a concrete setup. In Fig. 2, we investigate the

2Or when choosing S such that it does not include sites which
are related/mapped to each other by either a classical or a latent
reflection symmetry.

3This expression follows by analogy from the corresponding ex-
pression of the classic SSH model which can be found in chapter
1.5.6. of Ref. [2].

035106-2



TOPOLOGICAL STATES PROTECTED BY HIDDEN … PHYSICAL REVIEW B 110, 035106 (2024)

FIG. 2. Topological transitions of a latent SSH model. (a) The
two curves s(E ) and a(E ) − E (see text for details), with the five
topological transitions—occurring at energies E1 to E5—marked by
different geometrical shapes. (b) The energy spectrum for a finite
setup of N = 12 unit cells in dependence of the intercell coupling
t , with topological transitions marked by the same shapes as in (a).
(c) The spatial profile of one of the two edge states at energy E1 for
t = 2.5. Red/blue crosses denote the amplitude at sites u, v. For all
cases, the lattice was built by using LS1 from Fig. 1(b) as a unit cell.

topological transitions for a setup with the eight-site unit cell
LS1 displayed in Fig. 1(b). In particular, in Fig. 2(a), we show
the two curves a(E ) − E and s(E ). As can be seen, there are
five topological transitions. In Fig. 2(b), we show the energy
eigenvalues for a finite setup of N = 12 unit cells (with eight
sites per unit cell) for varying intercell coupling t . We clearly
see that each transition is accompanied by the appearance of a
pair of topological edge states that are exponentially localized
on the left or the right end of the chain, as is illustrated in
Fig. 2(c) for one of the states.

Regarding the edge states of latent SSH models, two things
are noteworthy. First, by using the latent symmetry of sites
u and v, the existence of these states can further be related to
a quantized Zak phase of both the reduced and the unreduced
system, as we show in Appendix D. Second, it is well known
that the edge states of the conventional SSH lattice are robust
with respect to disorder that respects chiral symmetry. Here,
since the intercell coupling t is independent of the energy, this
robustness with respect to disorder in t is—due to Eq. (5)—
inherited by a latent SSH model as well.

Before we continue, we remark that the presence of topo-
logical edge states in latently symmetric systems is not limited
to latent SSH models, as has very recently been demonstrated
in the context of granular media [26].

B. Robustness with respect to orientational disorder

Besides the aforementioned robustness that it inherits from
the classic SSH model, a latent SSH model furthermore fea-
tures a new kind of robustness with respect to what we call
here “orientational disorder.” Such disorder emerges if one
changes the orientation—that is, performing a rotation of
180◦, which in particular exchanges u and v—of one or more
unit cells. In Appendix C, we show an example realization
of this disorder. Remarkably, the isospectral reduction of the
system is completely unaffected by orientational disorder. As
a consequence, topological transitions, the emergence of edge
states, and even the band structure of the system are all re-
tained, even if the translational invariance of the full system is
broken by orientational disorder.

C. Construction principles

A crucial ingredient to construct latent SSH models is
latently symmetric unit cells, which can be easily designed
using graph theoretical techniques [27]. Alternatively, even
when restricting oneself to systems with less than 12 sites
and all unit couplings, one can easily generate several million
latently symmetric setups through an exhaustive search. More
specifically, using the NAUTY suite [28], one can efficiently
construct all setups with a given number of sites, and then
test each setup for a latent symmetry by scanning the first
few matrix powers of each setup [29]. We emphasize that
latently symmetric systems are rather robust. That is, they can
be altered in certain ways (changing certain couplings and/or
on-site potentials) without breaking latent symmetry [29,30].
For instance, as long as the on-site potentials of two latently
symmetric sites remain identical, they can be set to any value.
In Appendix B we show a couple of such changes of the unit
cell LS2 while maintaining its latent symmetries.
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FIG. 3. Circuit realization of a latent SSH model. (a) Schematic of the latent topological circuit and its unit cell. Each site n is grounded
through a capacitor Cn in parallel to an inductor L, though we depict this grounding only for one site to keep the figure as clear as possible.
(b) Resonance frequency dispersion of a finite 12-unit-cell circuit in dependence of Ct . The topological edge states visible at Ct = 330 pF are
marked by four different geometrical shapes which are used in (d) and (e) as well. (c) Photograph showing three unit cells of the printed circuit.
(d) Theoretical and experimental impedance value across all the latently symmetric points. (e) Impedance profile across the latently symmetric
points at various frequencies that correspond to the topological edge states.

D. Number of topological phases

An important property of a latent SSH model is that it
can possess not only one but multiple topologically protected
edge modes. The number of these modes is equivalent to
the number of solutions to a(E ) = E . Using the definition
of the isospectral reduction, Eq. (1), it can be shown that
a(E ) = p(E )/q(E ) is a rational function in E , with the degree
deg(p) < deg(q) � N − 2, where N is the number of sites in
the unit cell. The number of topological phases is then given

by the degree of the numerator of a(E ) − E = p(E )−Eq(E )
q(E ) . It

follows that a latent SSH model has at least 1 and at most
N − 1 topological phases.

III. EXPERIMENTAL REALIZATION

In the following, we implement a latent SSH model with
electrical circuits. We first review the theoretical description
of the setup, which is depicted in Fig. 3(a). Here, each site
(vertex) of the original eight-site setup of Fig. 1(b) has been
replaced by a junction, and each coupling (edge) by a ca-
pacitor. Additionally, each site n is now grounded through an
inductance L parallel to a capacitance Cn = 5C − �n, where
�n is the total capacitance of capacitors connecting site n to
other sites. To link the electric circuit to the latent SSH model,
we go to an eigenmode analysis. Starting from Kirchhoff’s
and Ohm’s laws in the frequency domain, it can be shown
that the eigenmodes V (whose entries describe the voltages
at the junctions) and eigenfrequencies ω of the circuit are
obtained by solving the eigenvalue problem (see Appendix E
for details)

HPV = λV, (6)

where HP is the tight-binding Hamiltonian of the eight-site
unit cell LS1 of Fig. 1(b), and λ = Lω2(5C+Ct )−1

LCω2 .
In order to test the predictions of the theory, we mea-

sured the circuit eigenmodes and eigenfrequencies, that is,
their resonances. In circuit systems, these generally manifest
themselves as peaks in the impedance spectrum, which can be
conveniently measured [7,31–38]. To see this, let us investi-
gate the single-port impedance Za,a of port a. This impedance
can be obtained by connecting a cable to port a, applying a
voltage Va and measuring the current Ia into/out of this port;
all other ports are not connected to external cables. Using
Kirchhoff’s and Ohm’s law and some algebra, we see that
Za,a can be expanded in terms of the eigenvalues λn and
eigenvectors V(n) of HP as

Za,a(ω) = Va

Ia
= i

ωC

(
1

HP − λ

)
a,a

= i

ωC

∑
n

∣∣V (n)
a

∣∣2

λn − λ
. (7)

At resonance, that is, when the frequency ω is chosen such
that λ(ωR) ≈ λn(ωR), the sum is dominated by the nth term,
and Za,a(ωR) yields the spatial profile of |V(n)|2. We can
thus determine both the eigenfrequencies and eigenmodes of
the circuit by measuring the frequency-dependent single-port
impedances along the circuit.

For our experiments, we fabricated a circuit comprising
12 unit cells using standard printed circuit board (PCB) tech-
nique (sample details are provided in Methods). A snapshot of
three unit cells used in our experiments is given in Fig. 3(c).
Low loss wire wound inductors (CY105-100K) are used,

whose nominal inductance is 10 µH with 10% tolerance.
However, our measurements show that the actual inductance is
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approximately 9 µH, with a parasitic resistance around 2 � at
the frequency range of interest; see Appendix E. Unless oth-
erwise mentioned, the theoretical calculations are performed
with these values. To allow for the impedance measurements,
each node in our circuit is connected to a SMA port [see
Fig. 3(c)]. Utilizing a vector network analyzer (R&S ZNL3)
[39,40], we first measured the circuit single-port scatter-
ing parameters S(ω), and subsequently converted them to
impedance by Z = Z0

1−S
1+S , with Z0 = 50 � being the charac-

teristic impedance of the microwave cable.
In Fig. 3(b), we show a theoretical computation of the

eigenfrequency spectrum of our circuit in dependence of the
intercell capacitance Ct , with 9-µH grounding inductances but
without parasitic resistance according to Eq. (6). Solid red
lines represent the localized edge states.4 For our experiments
shown in the following, we have chosen Ct = 330 pF, for
which the setup has four (out of the five possible) topological
edge state pairs. Further experimental results for Ct = 820 pF,
where all five topological edge state pairs are visible, are
illustrated in Appendix E. In Fig. 3(d), we show both the theo-
retical computation and the measured values of the single-port
impedance Z . Both quantities are shown as a two-dimensional
color map, with the free parameters being the operating fre-
quency and site number. Topological edge states are found
at the four frequencies ES1 to ES4, with the correspond-
ing impedance measurements being shown in more detail in
Fig. 3(e). Overall, our experiments are in excellent agreement
with the theory. We note that the deviation in localization be-
havior from the idealized situation (exponential decay) is due
to the non-negligible parasite resistance of inductors, which is
included in our theoretical calculations.

IV. CONCLUSIONS

Let us now put our paper and its perspectives in a greater
context. In a nutshell, the proposed latent SSH models are the
result of an augmentation principle that combines the richness
of a graph with the topological nature of the SSH model.

As a consequence, latent SSH models inherit the emer-
gence of topological edge states, but are augmented by having
many more than just a single topological transition. On a
technical level, this augmentation was done by choosing an
oversized original system with no apparent symmetries and
then replacing it by another one through isospectral reduc-
tion; it actually provides a stroboscopic point of view on the
system, making to appear symmetries that were hidden.

It is thus clear that our augmentation principle is not limited
to the SSH model, but can be applied to a plethora of other
systems. This includes non-Hermitian systems such as the
iconic Hatano-Nelson model, of which we have very recently
designed a latent version [41].

Overall, both the latent SSH model proposed here as
well the underlying augmentation principle offer various
interesting perspectives. The immediate next steps would be
the design of latent versions of slightly more complex systems

4Note that the latently symmetric sites at the very boundary require
an extra Ct grounding capacitor for faithfully corresponding to the
tight-binding model; see Appendix E.

such as graphene or the Haldane model. Moreover, we foresee
experimental realizations of our latent SSH model in other
platforms such as acoustic or microwave waveguide networks.
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APPENDIX A: SAMPLE FABRICATION DETAILS

We fabricated a double layer PCB comprising 12 unit
cells using LCEDA program software. The substrate material
is FR4 with a 1-oz copper layer on both top and bottom
layers. Ground planes are poured on both the top and bot-
tom layer to create a solid, low-impedance path for return
currents. Low loss wire wound inductors (CY105-100K) are
used to connect all the nodes to the mutual ground, whose
nominal inductance is 10 µH with 10% tolerance. For the
180-pF capacitors that are used for inner-cell couplings and
the 330- and 180-pF capacitors for intercell couplings, we
use SMD ceramic capacitors provided by Murata (serial num-
bers GRM0335C1E181FA01, GRM0335C1E331FA01, and
GRM0335C1E821FA01).

APPENDIX B: MORE EXAMPLES OF LATENTLY
SYMMETRIC SETUPS

In the main text, we mentioned that one can easily gen-
erate a plethora of latently symmetric unit cells by relying on
graph-theoretical tools. Figures 5(b)–5(d) show three example
systems that have been obtained with this method. We further
mentioned that one can analyze the matrix powers of a given
latently symmetric setup to derive changes to the system that
preserve its latent symmetry. In Fig. 5(e), we visualize the
outcome of this approach—whose derivation can be found in
Ref. [30]—for the unit cell LS2 from Fig. 1(b) of the main
text. The latent symmetry of sites u and v is preserved for
any choice of the real coupling strengths a, b, c, d, e, and f .
Moreover, one may freely and individually vary the on-site
potentials of sites x, y, and z, and—though by keeping these
two identical—the on-site potentials of sites u and v.

APPENDIX C: EXAMPLE REALIZATION
OF ORIENTATIONAL DISORDER

Figure 4 shows a finite section of a latent SSH chain that
features orientational disorder. The orientation-changing of
individual unit cells is obtained by rotating them by 180◦
and is additionally indicated by denoting the unit cell as LS1
instead of LS1. As written in the main text, the isospectral
reduction of such an orientationally disordered system is the
same as that of the nondisordered one.

APPENDIX D: QUANTIZATION OF THE ZAK PHASE DUE
TO LATENT SYMMETRY

In the following, we show that a latent SSH model features
a quantized Zak phase. To this end, let us start by assuming
that our unit cell Hamiltonian is real valued and with two la-
tently symmetric sites u and v, like the one depicted in Fig. 5.
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FIG. 4. A part of an orientationally disordered latent SSH chain.

To be explicit, let us choose the setup depicted in Fig. 5(a),
whose Hamiltonian reads

H = h

⎛
⎜⎜⎝

0 0
√

2 0
0 0 1 1√
2 1 0 0

0 1 0 0

⎞
⎟⎟⎠. (D1)

Now, whenever we have such a real-valued latently symmetric
Hamiltonian, there exists a block-diagonal matrix (numbering
the sites such that S = {u, v} are the first two)

Q =
⎛
⎝0 1

1 0
Q

⎞
⎠ (D2)

which (i) commutes with H ; (ii) is symmetric, that is, Q =
QT ; and (iii) is orthogonal, QT = Q−1 (see Lemma 11.1
in Ref. [43],5 or Sec. IV of the Supplemental Material of
Ref. [18]), from which it follows that Q2 = I . In other words,
Q acts as a permutation on the two sites S, while it acts as an
orthogonal transformation Q on the sites S. For our example
of Fig. 5, we have

Q =

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1√

2
1√
2

0 0 1√
2

− 1√
2

⎞
⎟⎟⎟⎠. (D3)

Now, when we use our latently symmetric Hamiltonian H
as a unit cell and build a lattice by connecting sites u and v of

5In this lemma, the phrasing “latently symmetric” is not used;
instead, the two sites u and v are said to be cospectral. For a
real-symmetric matrix H , cospectrality of two sites u and v, and
the statement that they are latently symmetric are equivalent, see
Ref. [42].

neighboring unit cells, our Bloch Hamiltonian HB(k) fulfills

QHB(k)Q = HB(−k). (D4)

This means in particular that if ϕn(k) is an eigenvector for
HB(k), Qϕn(k) is an eigenvector for HB(−k) with the same
eigenvalue. Because we assume the eigenvalues to be all non-
degenerate (nonoverlapping bands) this means

ϕn(−k) = eiθ (k)Qϕn(k), (D5)

where θ (k) is a locally smooth function of k. In particular, on
the band edges, k = 0 or π are mirror symmetric momenta
(since k = −π is equivalent to k = π ). At these values of k,
Q commutes with the Hamiltonian, and hence, ϕn is either
symmetric or antisymmetric, i.e., θ (0) and θ (π ) are either
zero or π .

If ϕn(q) is the Bloch eigenvector of the nth band, we define
the Berry connection [2]

An(k) = −i 〈ϕn|∂kϕn〉 . (D6)

The Zak phase is defined as the integral of the Berry connec-
tion over the Brillouin zone:

αZ =
∮ π

−π

An(k)dk. (D7)

The mirror symmetry commutation relation with the
Hamiltonian in Eq. (D4) gives us a relation between the Berry
connection at k and −k. After taking the derivative of Eq. (D4)
and taking the scalar product with ϕn(−k), we see that

An(−k) = An(k) + ∂qθ. (D8)

In other words, the Berry connection at k differs from that at
−k by a gauge. Now, if we integrate that relation over half of
the Brillouin zone, we obtain

−
∫ 0

−π

An(k)dq =
∫ π

0
An(k)dq + θ (π ) − θ (0). (D9)

FIG. 5. Five latently symmetric systems (see text for details). Unless otherwise marked, all couplings are equal to unity.
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FIG. 6. Snapshot of the full 12-unit-cell latent SSH circuit.

Combining the two integrals gives the integral over the whole
Brillouin zone, and hence, the Zak phase. The latter then has
the simple expression

αZ = θ (π ) − θ (0), (D10)

from which it follows that either αZ = 0 mod 2π (both edge
eigenvectors have the same symmetry) or αZ = π mod 2π

(the two eigenvectors do not have the same symmetry).
We note that one could repeat the above steps for the

effective Hamiltonian as well. The starting point would then

not be Eq. (D4), but

MH̃ (B)
S (E , k)M = H̃ (B)

S (E , k), (D11)

with M = (0 1
1 0) and with H̃ (B)

S (E , k) given by Eq. (4), that
is,

H̃ (B)
S (E , k) =

(
a(E ) s(E ) + t eik

s(E ) + t e−ik a(E )

)
. (D12)
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FIG. 7. Experimentally measured inductance and the parasitic resistance of the inductors utilized in the latent SSH circuit.
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value across all the latently symmetric points. (c) Impedance profile across the latently symmetric points at various frequencies that correspond
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Based on Eq. (D11), the steps of Eqs. (D5)–(D10) can
all be repeated, resulting in a quantized Zak phase of the
effective model.

APPENDIX E: DETAILS REGARDING THE
EXPERIMENTAL SETUP

Before going into details, let us start by providing a snap-
shot of the full 12-unit-cell latent SSH circuits; see Fig. 6.
The latently symmetric points are marked by blue/red circles.
Unit cells 6 to 12 are folded back to keep the circuit compact.
Leftmost and rightmost cells are highlighted by blue and yel-
low dashed lines, respectively. Cospectral sites are highlighted
by blue and red full circles, as they are in Fig. 3(b) of the
main text.

1. Deriving the linear eigenvalue problem and the impedance
formula

In the following, we shall derive the linear eigenvalue
problem Eq. (6) of the main text, that is,

HPV = λV. (E1)

To do so, we assume that each node/site of the circuit is
connected via an extra cable to the exterior, so that current can
flow into/out of the circuit. Denoting by V the voltage at the
current’s nodes, and by I the current flowing into/out of the
nodes, we can use Kirchhoff’s and Ohm’s law in frequency
space to derive the important relation

J (ω)V = I. (E2)

Here, J (ω) = −iωCHP + iω(5C + Ct )I + 1
iωL I is the so-

called circuit Laplacian [7] with HP the tight-binding
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Hamiltonian of the eight-site model of Fig. 1(b) of the main
text. Eigenmodes occur when there is no external current flow-
ing into the circuit, that is, I = 0, and we obtain the quadratic
eigenvalue problem

J (ω)V = 0. (E3)

Since the second and third term of J are proportional to the
identity matrix, Eq. (E3) can be written as the linear eigen-
value problem HV = 1

ω2 V with H = L((5C + Ct )I − CHP ).
Equation 6 is then a direct consequence. We note that we also
have

J (ω) = −iωC(HP − λ). (E4)

When calculating the single-port impedance

Za,a(ω) = Va

Ia
= i

ωC

(
1

HP − λ

)
a,a

= i

ωC

∑
n

∣∣V (n)
a

∣∣2

λn − λ
(E5)

[Eq. (7)], the relations Eqs. (E2) and (E4) can be used to
express

Za,a(ω) = Va

Ia
= (J−1)a,a = i

ωC
[(HP − λ)−1]a,a, (E6)

which is the expression used in Eq. (7). When parasitic resis-
tances R of the inductors are considered, the circuit Laplacian
is modified as

J (ω) = −iωCHP + iω(5C + Ct )I + 1

iωL + R
I (E7)

in which R is the parasitic serial resistance of the inductors
(see below) and can be subsequently implemented for the
single-port impedance calculations. Accordingly under para-
sitic resistance, Eq. (7) can be modified as

Za,a(ω) = i

ωC

∑
n

∣∣V (n)
a

∣∣2

λn − λ + η
,

η = − 1

ω2LC

R

R + iωL
. (E8)

2. Inductance/parasite resistance measurements

In the following, we show the experimentally measured
inductance and parasite resistance of the inductors. The results
are given in Fig. 7. To do so, we unsolder all the grounding
and coupling capacitors of the circuit and measure impedance
of grounding inductors only. The impedance value is then
converted to inductance and resistance for each frequency,
assuming they are serially connected; see Fig. 7. We found
that the inductance is lower than the nominal value of 10 µH
and is close to 9 µH. The parasite resistance dispersed almost
linearly from 1.4 to 2.8 �, which are significantly larger
than the nominal DC resistance, 0.034 �, probably due to
skin effect induced extra loss at higher frequencies. Here we
omit discussing the detailed parasite effects in such surface-
mounted components that introduce dispersed inductance and
resistance rather than constants, and adopting constant values
that are close to experiments in our theoretical model, granted
such means have already provided accurate predictions and
are consistent with experimental results.

3. Experiments with Ct = 820 pF

In Fig. 8, we show the comparisons of experimental and
theoretical results with Ct = 820 pF, for which the setup has
five topological edge state pairs. In Fig. 8(a), we show a
theoretical computation of the eigenfrequency spectrum of
our circuit in dependence of the intercell capacitance Ct ,
with 9-µH grounding inductances but without parasitic re-
sistance, same as Fig. 3 of the main text. Solid red lines
represent the localized edge states. In Fig. 8(b), we show
both the theoretical computation and the measured values of
the single-port impedance Z . Both quantities are shown as a
two-dimensional color map, with the free parameters being
the operating frequency and site number. Topological edge
states are found at the five frequencies ES1 to ES5, with
the corresponding impedance measurements being shown in
more detail in Fig. 8(c). Overall, since the chosen coupling
capacitance Ct = 820 pF is located deep in the topological
region, localization of the edge states is stronger than in Fig. 3
of the main text.
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