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Quantum theory of phonon-induced anomalous Hall effect in two-dimensional massive Dirac metals
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Phonon-induced anomalous Hall or thermal Hall effects have been observed in various systems in recent
experiments. However, the theoretical studies on this subject are still incomplete and not unified, and the current
works mainly focus on the semiclassical Boltzmann equation approach. In this work, we present a systematic and
fundamental quantum field theory study on the phonon-induced anomalous Hall effect, including both the side
jump and skew scattering contributions, in a two-dimensional massive Dirac metal, which is considered as the
minimum anomalous Hall system. We reveal a significant difference from the anomalous Hall effect induced by
the widely studied Gaussian disorder which is known to be insensitive to temperature. While the anomalous Hall
effect induced by phonons (deformation potential) approaches that by Gaussian disorder at high temperature, it
behaves very differently at low temperature. Our work provides a microscopic and quantitative description of the
crossover from the low to high temperature regime of the phonon-induced anomalous Hall conductivity, which
may be observed in two-dimensional Dirac metals with broken time-reversal symmetry.
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The anomalous Hall effect (AHE), a transverse voltage
arising in a metal or semiconductor in response to an applied
current without magnetic field, was experimentally discovered
as early as 1881 [1]. Ever since then, the search for the
microscopic origin of the AHE has been one of the main
issues of condensed matter physics [2–12]. Subsequent dis-
coveries have brought the important aspect of topology to
modern condensed matter physics [13,14] and led to many
important applications. After a long-lasting debate, it has been
established that there are two types of mechanisms which
may result in AHE in materials with broken time-reversal
symmetry (TRS) [10–12]: One is the intrinsic contribution
which comes from the nontrivial Berry curvature of the band
structure; the other is the extrinsic contribution which orig-
inates from electron scatterings by impurities in materials
with (pseudo-)spin-orbit interaction. The latter can be further
divided to the side jump contribution, which is due to trans-
verse coordinate shift by scatterings, and the skew scattering
contribution, which is due to asymmetric scatterings [10].

Most previous studies on the extrinsic contribution have fo-
cused on electron scatterings off static disorder [9–12,15,16].
However, recent experiments have detected various anoma-
lous Hall or thermal Hall effects dominated by electron
scatterings off phonons [17,18]. Yet the theoretical studies
on the phonon-induced AHE are still incomplete and not
unified. Recent theoretical works on this subject mainly focus
on the semiclassical Boltzmann equation (SBE) approach. In
[19], the authors present a SBE approach for the phonon-
induced side jump conductivity in the 2D massive Dirac
model with a justification by the Argyres-Kohn-Luttinger and
Lyo-Holstein quantum transport theory. In a following work
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[20], the authors further applied the SBE approach to the
phonon-induced intrinsic skew scattering contribution (which
comes from noncrossing diagrams) and studied the scaling
parameters between the anomalous Hall and longitudinal re-
sistivity based on this approach. In a later work by another
group [21], the authors studied a related effect, the valley
Hall effect in a two-dimensional (2D) massive Dirac model in
the high-temperature regime due to phonon drag and phonon
scatterings with the same semiclassical approach verified by
the Keldysh technique. Due to the different formulation and
approximations taken in the semiclassical approach, the semi-
classical results from different groups are often different.
Besides, the skew scattering contribution from the crossed
diagrams due to phonon scatterings has not been studied
quantitatively in previous work. For these reasons, a funda-
mental and systematic quantum field theory (QFT) study of
the phonon-induced AHE is valuable and a good test of the
different semiclassical works, and this is what we do in this
work.

In this paper, we present a systematic QFT study of the
AHE induced by phonon scatterings in a 2D massive Dirac
metal [10,16], including the contributions from both the non-
crossing and crossed Feynman diagrams. For simplicity, we
focus on the scalar phonon mode, or the deformation potential
(DP) induced AHE in this system. We obtained the AH con-
ductivity, including both the side jump and skew scattering
contributions due to phonon scatterings in the temperature
range T � εF , as plotted in Fig. 2. The analytic results of the
AH conductivities in the limit T � TBG and T � TBG, where
TBG ≡ 2skF is the Bloch-Gruneisen temperature, are shown
in Table I. Compared to the widely studied AHE induced
by Gaussian disorder, we reveal significant differences in the
phonon-induced AHE: (a) While the disorder-induced AHE is
insensitive to temperature, the phonon-induced AHE depends
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FIG. 1. The Feynman diagrams of phonon-induced (a) side
jump, (b) noncrossing skew scattering, and (c) coherent skew scat-
tering contributions in the eigenstate band (or chiral) basis. The
solid and curvy lines represent the electron and phonon propagators,
respectively. The + and − label the propagators of the upper and
lower band electrons, respectively. (d) The depiction of the recursion
equation of the renormalized current vertex. (e) The electron self-
energy in the first Born approximation.

on temperature significantly. Only at the high-temperature
limit T � TBG, the unscreened DP induced AHE saturates to
the AHE induced by Gaussian disorder. (b) While the side
jump contribution due to phonon scatterings is finite as T goes
to zero, both the phonon-induced intrinsic skew scattering
contribution and the coherent skew scattering contribution
(which comes from the crossed diagrams) approach zero as
∼T 2 when the temperature T goes to zero. This is a significant
difference from the AHE induced by Gaussian disorder in

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

Α
Η
/(e
2 /
h)

side jump

side jump(screening)

T/TBG

skew scattering

skew scattering(screening)

intrinsic

FIG. 2. The intrinsic, side jump, and skew scattering conductivi-
ties in the noncrossing limit as a function of t = T/TBG for �/εF =
1/2 and α = 2. The dashed and solid lines of the side jump and skew
scattering contributions represent the results with and without the
screening effect, respectively.

TABLE I. The expansion of the parameters a, b, c with (ε, k)
on the Fermi surface, and the leading order AH conductivities at
the low and high temperature limit without screening, where C ≡

1
2π

g2
D

ρv2s3
εF
kF

(kBT )2, t ≡ T/TBG, and we set h̄ = 1.

T � TBG T � TBG

σ side
xy − e2

4π

�

εF

(
1 − �2

ε2
F

) − e2

π

�

εF

v2k2
F

ε2
F +3�2

σ sk−nc
xy − πe2

2
�

εF

(
1 − �2

ε2
F

)2 T 2

T 2
BG

− 3e2

4π

�

εF

( v2k2
F

ε2
F +3�2

)2

σ X+�
xy

πe2

2
�

εF

(
1 − �2

ε2
F

)2 T 2

T 2
BG

2e2

π

εF �

(
ε2

F −�2
)

(
ε2

F +3�2
)2

a π2

4 C
(
1 + π2

4 t2 + 3
8 π 4t4

)
π

2 C
(
1/t − 1

12 t
)

b π2

4 C
(
1 − 3π2

4 t2 − 5
8 π 4t4

)
π

48C/t3

c π2

4 C
(
1 − 7π2

4 t2 + 19
8 π 4t4

)
π

4 C
(
1/t − 1

12 t
)

a 2D massive Dirac metal, for which both the side jump
and skew scattering contributions are finite as ∼T 0 in the
whole temperature range. (c) Moreover, at low temperature,
the phonon-induced skew scattering contributions from the
noncrossing and crossed diagrams cancel each other in the
leading order of ∼T 2. The total phonon-induced skew scatter-
ing contribution is proportional to ∼T 4 at low temperature.

The side jump and intrinsic skew scattering contributions
we obtained from the QFT for unscreened DP are consistent
with the results from the semiclassical approach in [19,20].
We also studied the screening effect on the AH conductivity
and found that the screening does not change the AH con-
ductivity at the zero-temperature limit but modifies the AH
conductivities at finite temperature.

We start with a 2D massive Dirac model with

H0 = vσ · k + �σz, (1)

where σ = (σx, σy) is composed of Pauli matrices and � is
the mass of the Dirac fermion which breaks the time-reversal
symmetry of H0. The two energy bands of H0 are ε±

k =
±√

v2k2 + �2. The corresponding eigenstates are |u+
k 〉 =

(cos α
2 , sin α

2 eiθ0 )T and |u−
k 〉 = (sin α

2 ,− cos α
2 eiθ0 )T where

cos α ≡ �/|ε±
k | and θ0 is the polar angle of k.

The electron-phonon interaction can be written as

Hep =
∑
k,q

�̂
†
k+qM̂(q)�̂k(b̂q + b̂†

−q), (2)

where �̂k and b̂q represent the electron and phonon field,
respectively. For simplicity, in this work we focus on the AHE
induced by acoustic DP for which the e-phonon interaction
vertex can be written as a scalar as M̂DP(q) = gq ≡ iqξqgD,
where ξq ≡ √

1/2ρωq, ωq ≈ sq is the phonon frequency, ρ is
the atomic mass density, and gD is the DP strength. We ignore
the screening effect on the DP at first and discuss its correction
at the end of the calculation.

We set the electron Fermi energy εF > � as the largest
energy scale in this work, i.e., εF � T, TBG. The phonon-
scattering-induced AHE can be obtained by treating the
phonons as impurities excited by the temperature. We assume
weak e-phonon interaction such that εF τ � 1 where τ is the
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mean lifetime of electrons. The AH conductivity is the sum
of two contributions σxy = σ I

xy + σ II
xy using the Kubo-Streda

formula [7,10]. The quantity σ I
xy may be considered as a

contribution from electrons on the Fermi surface whereas σ II

is determined by all electron states under the Fermi surface.
Since σ II is insensitive to impurity scatterings at εF τ � 1 and
vanishes for εF > � for the 2D massive Dirac model [10], we
focus on the study of σ I

xy. The contribution to σ I
xy from the

noncrossing diagram in the spin basis can be written as [10]

σ I
xy = −

∑
k

∫
dε

2π
∂εnF (ε)Tr[�̂xGR(ε, k) ĵyGA(ε, k)], (3)

where GR/A is the retarded/advanced electron Green’s func-
tion (GF), and ĵy and �̂x are the bare and renormalized current
vertex, respectively.

The intrinsic contribution of σ I is independent of
phonon scattering and has been obtained in [10] as σ int

xy =
−e2�/4π

√
�2 + v2k2

F . The phonon-induced side jump and
skew scattering contributions from the noncrossing diagram
can be most easily separated by expanding the trace in Eq. (3)
in the eigenstate band basis [10,22]. The results are depicted in
Figs. 1(a) and 1(b). Besides, the skew scattering contribution
can also come from the crossed diagrams shown in Fig. 1(c).
We first study the side jump and skew scattering contribution
in the noncrossing limit, i.e., from Eq. (3), in the following
and study the skew scattering contribution from the crossed
diagram at the end.

The phonon propagator in the imaginary-time formalism is

D0(iqn, q) ≡ −〈Tτ uqu−q〉 = 2ωq

(iqn)2 − ω2
q
, (4)

where uq ≡ bq + b†
−q and iqn = 2nπ i/β, n ∈ Z , is the phonon

Matsubara frequency. Here we do not include the phonon
self-energy due to e-phonon interaction explicitly because it
only results in a renormalization of the phonon velocity s.
Therefore we only need to assume the phonon velocity is the
renormalized one.

The leading order contribution to the AHE requires the
electron GF in the first Born approximation G(iεn, k) =
[iεn − H0 − �(iεn, k)]−1 [10,22], where the electron self-
energy �(iεn, k) due to e-phonon interaction is depicted in
Fig. 1(e). Since the phonon energy is much smaller than the
electron Fermi energy εF , we make the approximation that
the electrons are bound to the Fermi surface both before and
after the scattering with a phonon; i.e., the scatterings are
quasielastic. The inclusion of the energy transfer during the
scatterings only results in a correction smaller in the order of
TBG/εF in the AH conductivity. With this approximation, we
obtain the electron self-energy after analytic continuation to
the real energy axis as (see Appendix A)

�R(ε, k) ≈ − i

2

[
a

(
1 + �

ε
σz

)
+ v

b

ε
σ · k

]
, (5)

where

a = 1

4π

g2
D

ρv2s3

ε

k

∫ kBTBG

0
�d�

(
1 − �2

4s2k2

)− 1
2

×[2nB(�) + 1 + nF (ε + �) − nF (ε − �)], (6)

b = 1

4π

g2
D

ρv2s3

ε

k

∫ kBTBG

0
�d�

(
1 − �2

2s2k2

)(
1 − �2

4s2k2

)− 1
2

×[2nB(�) + 1 + nF (ε + �) − nF (ε − �)]. (7)

The Feynman diagrams for the AH conductivity include a
vertex correction to the current operator by the e-phonon inter-
action, as shown in Fig. 1(d). The leading order current vertex
correction involves scatterings only within the upper electron
band and the vertex correction due to such scatterings needs
to be summed to infinite order [10]. Instead, for the vertex
correction due to interband scatterings, only the lowest order
needs to be kept in the calculation of the AH conductivity. As
shown in Appendix B, the renormalized band-diagonal matrix
element of the current vertex in the dc limit associated with
the upper band, i.e., �++

α (ε, ε; k) ≡ 〈u+
k |�̂α (ε, ε; k)|u+

k 〉, α =
x, y, satisfies the recursion equation

�++
α (ε, ε; k)

= j++
α (k) +

∑
q

∫
dξ |gq|2|〈u+

k+q|u+
k 〉|2

× GR+(ξ, k + q)GA+(ξ, k + q)�++
α (ξ, ξ ; k + q)

× {δ(ξ − ε − ωq)[nB(ωq) + nF (ξ )]

+ δ(ξ − ε + ωq)[nB(ωq) + 1 − nF (ξ )]}, (8)

where j++
α (k) = 〈u+

k |evσα|u+
k 〉 = ev vkα

εk
is the bare current

matrix element and

GR/A,+(ε, k) = 〈u+
k |GR/A|u+

k 〉 = 1

ε − ε+
k ± i

2τ+
k

(9)

are the retarded and advanced GF of the upper-band electrons.
The upper-band scattering rate is

1/τ+
k =

(
1 + �2

εεk

)
a + v2k2

εεk
b. (10)

The recursion Eq. (8) is hard to solve exactly. But with
the quasielastic scattering approximation, we can obtain the
renormalized current vertex element �++

α by an order-by-
order iteration of Eq. (8) followed by a sum over all the orders,
as shown in Appendix B. We get the renormalized current
vertex as

�++
α (ε, ε; k) = γ

ev2kα

ε
, (11)

γ = 1

1 − λ
, λ = b + c + �2

ε2 (b − c)

a + b + �2

ε2 (a − b)
, (12)

where a and b are given in Eqs. (6) and (7) and

c = 1

4π

g2
D

ρs3v2

ε

k

∫ kBTBG

0
�d�

(
1 − �2

2s2k2

)2(
1 − �2

4s2k2

)− 1
2

×[2nB(�) + 1 + nF (ε + �) − nF (ε − �)]. (13)

It is interesting to note that the vertex correction factor γ

we obtained above from Eq. (8) is equal to τ tr
k /τ+

k , where τ tr
k

and τ+
k are respectively the transport and mean lifetime of

the upper-band electrons with phonon scatterings defined in
Appendix B and [19].
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Since the AH conductivity σ I
xy comes from electron scat-

terings on the Fermi surface, ε and k in a, b, c take the values
εF and kF at the end of the calculation. In the low and high
temperature limit, by expanding the parameters a, b, c on the
Fermi surface, as shown in Table I, we obtain

γ ≈ 1

π2

(
TBG

T

)2
[

1 + 3π2

4

(
1 − 2

�2

ε2
F

)(
T

TBG

)2
]

(14)

at T � TBG and

γ ≈ 2
ε2

F + �2

ε2
F + 3�2

+ 1

12

(
TBG

T

)2
ε4

F + �4 + 6ε2
F �2(

ε2
F + 3�2

)2 (15)

at T � TBG. It seems unusual that γ diverges as ∼1/T 2 when
T → 0. This is because both 1/τ+

k and 1/τ tr
k vanish as a

power law of T when T → 0, but the transport scattering rate
1/τ tr

k ∼ T 4 vanishes faster than 1/τ+
k ∼ T 2. We will see later

that this divergence of γ at T → 0 does not lead to the diver-
gence of the AH conductivity at T → 0. At high temperature

T � TBG, γ reduces to 2 ε2
F +�2

ε2
F +3�2 , which is the same as the

current vertex renormalization factor due to Gaussian disorder
[10].

With the above ingredients, we can compute the side jump
and intrinsic skew scattering conductivities due to phonon
scatterings depicted in Figs. 1(a) and 1(b). After a lengthy
calculation (see Appendix C), we obtain the two AH con-
ductivities in the dc limit in a 2D massive Dirac metal
as

σ side
xy = − e2

2π

�

εF

(
1 − �2

ε2
F

)
(a − b)

a − c + �2

εF
(a + c − 2b)

, (16)

σ sk−nc
xy = − e2�

4πεF

(
1 − �2

ε2
F

)2 (a + c − 2b)(a − c)[
a − c + �2

εF
(a + c − 2b)

]2 .

(17)

Defining t ≡ T/TBG, the parameters a, b, c with ε = εF , k =
kF can be written as

a = C
∫ 1/t

0
xdx(1 − t2x2)−

1
2 F (x), (18)

b = C
∫ 1/t

0
xdx(1 − 2t2x2)(1 − t2x2)−

1
2 F (x), (19)

c = C
∫ 1/t

0
xdx(1 − 2t2x2)2(1 − t2x2)−

1
2 F (x), (20)

where F (x) ≡ 1
ex−1 + 1

ex+1 and C ≡ 1
2π

g2
D

ρv2s3
εF
kF

(kBT )2. The

AH conductivities σ side
xy and σ sk−nc

xy then depend only on two
parameters: �/εF and t . The numerical plots of σ side

xy (t ) and
σ sk−nc

xy (t ) as a function of t = T/TBG for a given �/εF = 1/2
are shown in Fig. 2.

The analytical results of the phonon-induced side jump
and intrinsic skew scattering conductivities in the limits T �
TBG and T � TBG are shown in Table I. At T � TBG, both
the side jump and intrinsic skew scattering conductivities
approach the values induced by Gaussian disorder in [10],
indicating the saturation of phonon scatterings in this limit.
At low temperature, however, the AH conductivity induced by

deformation potential is significantly different from that in-
duced by Gaussian disorder.

At T � TBG, we obtain the side jump contribution due to
phonon scatterings as

σ side
xy ≈ − e2

4π

�

εF

(
1 − �2

ε2
F

)[
1 + 2π2

(
1 − �2

ε2
F

)(
T

TBG

)2
]
.

(21)

This result is consistent with the side jump contribution at
T → 0 obtained from the SBE approach for phonon scatter-
ings in [19], but different from the result due to Gaussian
disorder in [10].

For the phonon-induced intrinsic skew scattering con-
tribution, the expansion of a, b, c at T � TBG in Table I
gives

σ sk−nc
xy = −πe2

2

�

εF

(
1 − �2

ε2
F

)2
T 2

T 2
BG

+ O[(T/TBG)4]; (22)

i.e., the intrinsic skew scattering contribution approaches zero
as ∼(T/TBG)2 at T → 0, as can be also seen from the nu-
merical plot in Fig. 2. This is significantly different from the
intrinsic skew scattering contribution induced by Gaussian
disorder with the noncrossing approximation, which is finite
as T → 0. We note that the vanishing of the phonon-induced
skew scattering contribution at T → 0 from our quantum
theory is consistent with the scaling analysis of the solution
of the Boltzmann equation at low temperature for long-range
scalar impurity scatterings in [20].

We next study the skew scattering contribution from the
crossed or so-called X and � diagrams in Fig. 1(c) due to
phonon scatterings. The importance of such diagrams to the
skew scattering contribution was demonstrated in recent years
for systems with Gaussian disorder [23–27]. It is difficult to
get a quantitative result of this contribution for phonon scatter-
ings in the whole temperature regime due to the complexity of
the calculation. But we are able to obtain the contribution from
the crossed diagrams due to phonon scatterings in both the
low and high temperature limits, as shown in Table I. At high
temperature T � TBG, the e-phonon scatterings saturate and
this contribution reduces to that of the crossed diagrams with
Gaussian disorder, which has been studied in Ref. [23]. In the
low-temperature limit T � TBG, the e-phonon interaction is
dominated by the small phonon momentum scatterings. By
expansion in terms of the phonon momentum in the calcula-
tion and keeping only the leading order contribution, as shown
in Appendix C, we found that the skew scattering contribution
from the crossed diagrams is exactly opposite to the skew
scattering contribution from the noncrossing diagrams in the
leading order, which is proportional to T 2, as shown in Table I.
The total skew scattering contribution at low temperature is
proportional to ∼T 4.

The above calculation ignored the e-e interaction [28].
For simplicity, we only consider the screening effects. To
take into account this effect, we add the Thomas-Fermi (TF)
screening factor to the deformation potential by replacing
gD with gD

q
q+qT F

, where qT F ∼ αεF /v is the TF wave vec-

tor and α = e2/h̄v is the fine-structure constant [29,30]. The
AH conductivities for noncrossing diagrams including the

035105-4



QUANTUM THEORY OF PHONON-INDUCED ANOMALOUS … PHYSICAL REVIEW B 110, 035105 (2024)

FIG. 3. (a) Feynman diagram of the electron self-energy due to e-phonon interaction. The solid and curvy lines represent the electron
and phonon propagators, respectively. (b) The integration contour for the summation of the phonon Matsubara frequency of the self-energy.
(c) Quasielastic scattering of an electron off a phonon near the Fermi surface. Here k and k′ are the initial and final momentum of the electron
and q is the momentum of the phonon.

screening effect are plotted in Fig. 2 (for which we set α = 2
as for graphene). One can see that the inclusion of screening
does not change the AH conductivities at T → 0. Particu-
larly, for the intrinsic skew scattering contribution, σ sk−nc

xy

still vanishes as ∼T 2/T 2
BG at T → 0 but with a modified

coefficient as σ̃ sk−nc
xy ≈ 17

8 σ sk−nc
xy . The same happens to the

coherent skew scattering contribution at low temperature. At
finite temperature, the screening effect modifies the AH con-
ductivities and their limiting values at T � TBG depend on α.
More detailed discussion of the screening effect is given in
Appendix D.

The temperature dependence of the phonon-induced AH
conductivity has been pointed out and analyzed in previous
works with the semiclassical approach [19,20,31]. This is in
contrast to the AHE due to Gaussian disorder for which the
AH conductivity is independent of the temperature. The rea-
son is because the AH conductivity depends on the scattering
range [25], which depends on the temperature T for phonon
scatterings [19,31] but independent of T for Gaussian disor-
der. At T � TBG, the phonons participating in the scatterings
saturate and the momentum transfer during the scatterings is

randomly distributed from 0 to 2kF . The average momentum
transfer, or the scattering range, then approaches that for
Gaussian disorder in [10]; so does the AH conductivity. The
quantum approach in this work provides a microscopic and
quantitative description of the crossover from the low to high
temperature of the AH conductivity due to phonon scatterings.

The phonon-induced AHE and its temperature dependence
we discussed above may be observed in clean 2D Dirac metals
with TRS breaking, such as Fe3Sn2, which is a quasi-2D fer-
romagnetic Dirac metal with TBG ∼ 20 [32], or graphene with
spin-orbit interaction and TRS breaking [16]. The spin-orbit
interaction results in a gap or finite mass in the graphene. The
TRS breaking avoids the cancellation of the AH conductivities
from the two valleys and may be achieved by spin polarization
of the graphene through optical orientation [33], or ferromag-
netic contacts [16].

We thank C. Xiao for very helpful discussion. This work is
supported by the NNSF of China under Grant No. 11974166
and the Natural Science Foundation of Jiangsu Province under
Grant No. BK20231398.

APPENDIX A: ELECTRON SELF-ENERGY AND GREEN’S FUNCTION IN THE FIRST BORN APPROXIMATION

1. Electron self-energy

We show the detailed calculation of the electron self-energy due to the e-phonon interaction and the electron GF in the first
Born approximation in this Appendix.

The bare electron Matsubara GF of the 2D massive Dirac model is

G0(iεn, k) = 1

(iεn)2 − ε2
k

(iεnσ0 + �σz + vk · σ), (A1)

where iεn = (2n + 1)π i/β is the electron Matsubara frequency with β = 1/kBT, n ∈ Z .
For the e-phonon interaction given in Eq. (2), the electron self-energy in the first Born approximation depicted in Fig. 3(a)

can be expressed as

�(iεn, k) = − 1

β

∑
iqn

∑
q

|gq|2D0(iqn, q)G0(iεn + iqn, k + q), (A2)
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where D0(iqn, q) is the bare phonon propagator given in the main text. The sum over the phonon Matsubara frequency iqn may
be obtained by performing the following integral over the contour in Fig. 3(b):∫

C

dz

2π i
nB(z)D0(z, q)G0(z + iεn, k + q)

=
∫ ∞

−∞

dξ

2π i
nB(ξ − iεn)D0(ξ − iεn, q)[G0(ξ + i0+, k + q) − G0(ξ − i0+, k + q)]

= 1

β

∑
iqn

D0(iqn, q)G0(iqn + iεn, k + q) +
∑

z j=±ωq

Res[D0(z = z j, q)]G0(z j + iεn, k + q)nB(z j ), (A3)

where nB(z) is the Bose-Einstein distribution function and Res[D0(z = z j, q)] is the residue of D0(z, q) at z = z j .
We assume that the e-phonon interaction is weak so the real part of the self-energy is much smaller than the Fermi energy

and we can ignore it. We then only need to compute the imaginary part of the electron self-energy. From Eq. (A3), we obtain the
self-energy (i.e., imaginary part) after the sum over the Matsubara frequency iqn and the analytic continuation iεn → ε + i0+ to
real energy axis as

�R(ε, k) = (−iπ )
∑

q

|gq|2
∫ ∞

−∞

dξ

2ξ
δ(ξ − εk+q)[ξσ0 + �σz + v(k + q) · σ] (A4)

×{δ(ξ − ε − ωq)[nB(ωq) + nF (ξ )] − δ(ξ − ε + ωq)[nB(−ωq) + nF (ξ )]}, (A5)

where nF (ξ ) is the Fermi-Dirac distribution function and we have used nB(ξ − iεn) = −nF (ξ ).
For an electron with momentum k on the Fermi surface, and the phonon energy ωq much smaller than the Fermi energy εF ,

the electron after scattering with a phonon is still very close to the Fermi surface so the maximum momentum (energy) of the
phonon participating in the scatterings is about 2kF (2skF ). The sum over the phonon momentum q in the self-energy may be
converted to the integral over k′ = k + q as

�R(ε, k) = (−iπ )

(2π )2

g2
D

2ρs2

∫ ∞

−∞

dξ

2ξ

∫ kBTBG

0
�d�{δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}

×
∫ 2π

0
dθδ(� − ωq)

∫
k′dk′δ(ξ − εk′ )

⎛
⎝ξ + � vk′e−iθ e−iθ0

vk′eiθ eiθ0 ξ − �

⎞
⎠, (A6)

where θ0 is the polar angle of k, θ is the angle between k and k′ as shown in Fig. 3(c), and ωq ≈ 2sk sin θ
2 . We have introduced an

integration over d� through the factor δ(� − ωq) in the above equation. This procedure converts the integration over the angle
dθ to the integration over d� through the relationship ωq ≈ 2sk sin θ

2 . Since εk′ = √
v2k′2 + �2, k′dk′ = εk′

v2 dεk′ , the integration
over k′ can be converted to εk′ . After the integration over εk′ and θ , we get

�R(ε, k) = − i

4π

g2
D

2ρv2s4

∫ kBTBG

0
�2d�

1

kp

[
1 −

(
k2 + p2 − (�/s)2

2kp

)2
]−1/2

×
∫ ∞

−∞
dξ{δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}

×

⎛
⎜⎝ξ + � vpe−iθ0 k2+p2−(�/s)2

2kp

vpeiθ0 k2+p2−(�/s)2

2kp ξ − �

⎞
⎟⎠, (A7)

where p =
√

ξ 2−�2

v
.

We can write the above self-energy as

�R(ε, k) = − i

2

(
a + �

ε
ã v(kx − iky) b

ε

v(kx + iky) b
ε

a − �
ε

ã

)
, (A8)

where the parameters a, ã, b are

a(ε, k) = 1

4π

g2
D

ρv2s4

1

k

∫ ∞

−∞
dξ

∫ kBTBG

0
�2d�

1

p

[
1 −

(
k2 + p2 − (�/s)2

2kp

)2
]−1/2

×ξ{δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}, (A9)
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ã(ε, k) = ε

4π

g2
D

ρv2s4

1

k

∫ ∞

−∞
dξ

∫ kBTBG

0
�2d�

1

p

[
1 −

(
k2 + p2 − (�/s)2

2kp

)2
]−1/2

×{δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}, (A10)

b(ε, k) = ε

4π

g2
D

ρv2s4

1

k2

∫ ∞

−∞
dξ

∫ kBTBG

0
�2d�

k2 + p2 − (�/s)2

2kp

[
1 −

(
k2 + p2 − (�/s)2

2kp

)2
]−1/2

×{δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}. (A11)

In this work, we are interested in the AH conductivity σ I which comes from the contribution of electrons on the Fermi surface.
For this reason, (ε, k) is bound to the Fermi surface. The electron energy after scattering with a phonon is ξ = ε ± ωq. Since
TBG � εF in our setting, the phonon scattering is quasielastic, i.e., ξ ≈ ε = εF in Eqs. (A9)–(A11) and a ≈ ã. The self-energy
can then be written as

�R(ε, k) ≈ − i

2

[
a

(
1 + �

ε
σz

)
+ v

b

ε
σ · k

]
(A12)

as in the main text, where a, b can be simplified as

a(ε, k) = 1

4π

g2
D

ρv2s3

ε

k

∫ kBTBG

0
�d�

(
1 − �2

4s2k2

)− 1
2

[2nB(�) + 1 + nF (ε + �) − nF (ε − �)], (A13)

b(ε, k) = 1

4π

g2
D

ρv2s3

ε

k

∫ kBTBG

0
�d�

(
1 − �2

2s2k2

)(
1 − �2

4s2k2

)− 1
2

[2nB(�) + 1 + nF (ε + �) − nF (ε − �)]. (A14)

At the end of the calculation of σ I
xy, we set k = kF , ε = εk = εF . At T � TBG and T � TBG, we can expand the integrand in

Eqs. (A13) and (A14) and get the analytic results of a and b in the two limits as shown in Table I in the main text.

2. Electron Green’s function in the first Born approximation

The electron GF in the first Born approximation is

GR(ε, k) = [
G−1

0 (ε, k) − �R(ε, k)
]−1

=
⎛
⎝ε − � + i

2 a
(
1 + �

ε

) −v(kx − iky)
(
1 − i

2
b
ε

)
−v(kx + iky)

(
1 − i

2
b
ε

)
ε + � + i

2 a
(
1 − �

ε

)
⎞
⎠

−1

= 1

ε − ε+
k + i

2τ+
k

1

ε − ε−
k + i

2τ−
k

[(
1 + i

2ε
a

)
ε +

(
1 − i

2ε
a

)
�σz +

(
1 − i

2ε
b

)
vk · σ

]
, (A15)

where ε±
k are the two energy bands of H0 and

1/τ±
k = a ± v2k2b + �2a

εεk
. (A16)

The above GF can be written in the band basis as

GR(ε, k) = |u+
k 〉〈u+

k |
ε − ε+

k + i
2τ+

k

+ |u−
k 〉〈u−

k |
ε − ε−

k + i
2τ−

k

, (A17)

where |u±
k 〉 are the two eigenvectors of H0.

APPENDIX B: VERTEX CORRECTION

1. Recursion equation of the renormalized current vertex

The renormalized current vertex is shown in Fig. 4(a) and satisfies the recursion equation

�̂α (iεn + iωn, iεn; k) = ĵα − 1

β

∑
iqn,q

|gq|2D0(iqn, q)G(iε′
n + iωn, k′)�̂α (iε′

n + iωn, iε′
n; k′)G(iε′

n, k′), (B1)

where iε′
n ≡ iεn + iqn, k′ ≡ k + q, ĵα = evσα is the bare current vertex, iωn is the external frequency of the vertex, and we have

set the external momentum of the vertex to be zero.
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FIG. 4. (a) Feynman diagram of the recursion equation of the renormalized current vertex. The solid and curvy lines represent the electron
and phonon propagators, respectively. (b) The integration contour for the summation of the phonon Matsubara frequency in the recursion
equation of the renormalized current vertex.

We may express the current vertex in the Pauli matrix basis as

�̂α (iεn + iωn, iεn; k) = ev�αβ (iεn + iωn, iεn; k)σβ, (B2)

where α, β = 0, x, y, z and the sum over repeated indices is implied in the whole text.
The recursion Eq. (B1) then becomes

�αγ (iεn + iωn, iεn; k) = δαγ − 1

β

∑
iqn

∑
q

D0(iqn, q)�αβ (iε′
n + iωn, iε′

n; k + q)Iβγ (iε′
n + iωn, iε′

n; k + q), (B3)

where

Iβγ (iε′
n + iωn, iε′

n; k + q) = 1
2 Tr[σβG(iqn + iεn + iωn, k + q)σγ G(iqn + iεn, k + q)] (B4)

is the polarization operator.
The sum over the Matsubara frequency in Eq. (B3) may be done by performing the contour integral in Fig. 4(b). Denoting

Q(iεn + iωn, iεn) ≡ − 1

β

∑
iqn

D0(iqn, q)�αβ (iqn + iωn + iεn, iqn + iεn; k + q)Iβγ (iqn + iεn + iωn, iqn + iεn; k + q) (B5)

and

S(iεn + iωn, iεn) ≡
∫
C

dz

2π i
nB(z)D0(z, q)�αβ (z + iεn + iωn, z + iεn; k + q)Iβγ (z + iεn + iωn, z + iεn; k + q), (B6)

where C is the integration contour in Fig. 4(b), we get

S(iεn + iωn, iεn) = −Q(iεn + iωn, iεn)

+
∑

z j=±ωq

Res[D0(z = z j, q)]�αβ (z j + iεn + iωn, z j + iεn; k + q)Iβγ (z j + iεn + iωn, z j + iεn; k + q)nB(z j ). (B7)

The contour integral S on the circle vanishes and the integral becomes

S(iεn + iωn, iεn) =
∫ ∞

−∞

dξ

2π i
nB(ξ − iεn)D0(ξ − iεn)

[�αβ (ξ + iωn, ξ + i0+)Iβγ (ξ + iωn, ξ + i0+) − �αβ (ξ + iωn, ξ − i0+)Iβγ (ξ + iωn, ξ − i0+)]

+
∫ ∞

−∞

dξ

2π i
nB(ξ − iεn − iωn)D0(ξ − iεn − iωn)

[�αβ (ξ + i0+, ξ − iωn)Iβγ (ξ + i0+, ξ − iωn) − �αβ (ξ − i0+, ξ − iωn)Iβγ (ξ − i0+, ξ − iωn)].

(B8)

For brevity we have dropped the momentum appearing in Eq. (B7) in the above equation.
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The dominant vertex correction comes from the GRGA or GAGR term in the polarization operator I. For the reason, we
perform the analytic continuation iεn → ε − i0+, iωn → ω + i0+ and get

SRA(ε + ω, ε) = S(iεn + iωn → ε + ω + i0+, iεn → ε − i0+)

= −
∫ ∞

−∞

dξ

2π i
nF (ξ )DR

0 (ξ − ε)
[
�RR

αβ (ξ + ω, ξ )IRR
βγ (ξ + ω, ξ ) − �RA

αβ (ξ + ω, ξ )IRA
βγ (ξ + ω, ξ )

]

−
∫ ∞

−∞

dξ

2π i
nF (ξ )DA

0 (ξ − ε − ω)
[
�RA

αβ (ξ, ξ − ω)IRA
βγ (ξ, ξ − ω) − �AA

αβ (ξ, ξ − ω)IAA
βγ (ξ, ξ − ω)

]

≈
∫ ∞

−∞

dξ

2π i

[
nF (ξ )DR

0 (ξ − ε)�RA
αβ (ξ + ω, ξ )IRA

βγ (ξ + ω, ξ ) − nF (ξ )DA
0 (ξ − ε − ω)

×�RA
αβ (ξ, ξ − ω)IRA

βγ (ξ, ξ − ω)
]
. (B9)

In the last equation, we dropped the IRR and IAA terms because they are small compared to the IRA terms.
We are interested in the dc AH conductivity so we take the dc limit ω → 0 at the end and get

SRA(ε, ε) =
∫ ∞

−∞

dξ

2π i
nF (ξ )

[
DR

0 (ξ − ε) − DA
0 (ξ − ε)

]
�RA

αβ (ξ, ξ )IRA
βγ (ξ, ξ ). (B10)

Since

DR
0 (ξ − ε) − DA

0 (ξ − ε) = −2iπ [δ(ξ − ε − ωq) − δ(ξ − ε + ωq)], (B11)

we get

SRA(ε, ε) = −
∫ ∞

−∞
dξnF (ξ )[δ(ξ − ε − ωq) − δ(ξ − ε + ωq)]�RA

αβ (ξ, ξ )IRA
βγ (ξ, ξ ; k + q), (B12)

where

IRA
βγ (ξ, ξ ; k + q) = 1

2 Tr[σβGR(ξ, k + q)σγ GA(ξ, k + q)]. (B13)

Performing the same analytic continuation for the residue terms in Eq. (B7) and then taking the limit ω → 0, we get∑
z j=±ωq

Res[D0(z = z j )]�αβ (z j + ε + ω + i0+, z j + ε − i0+)Iβγ (z j + ε + ω + i0+, z j + ε − i0+)nB(z j )

= nB(ωq)�RA
αβ (ωq + ε, ωq + ε)IRA

βγ (ωq + ε, ωq + ε) − nB(−ωq)�RA
αβ (−ωq + ε,−ωq + ε)IRA

βγ (−ωq + ε,−ωq + ε)

=
∫ ∞

−∞
dξ �RA

αβ (ξ, ξ )IRA
βγ (ξ, ξ ){δ(ξ − ε − ωq)nB(ωq) + δ(ξ − ε + ωq)[1 + nB(ωq)]}. (B14)

From Eqs. (B7), (B12), and (B14), we get

QRA(ε, ε) =
∫ ∞

−∞
dξ�RA

αβ (ξ, ξ )IRA
βγ (ξ, ξ ){δ(ξ − ε − ωq)[nB(ωq) + nF (ξ )] + δ(ξ − ε + ωq)[nB(ωq) + 1 − nF (ξ )]}. (B15)

The recursion Eq. (B3) after analytic continuation to the real energy axis becomes

�RA
αγ (ε, ε; k) = δαγ +

∑
q

|gq|2QRA(ε, ε)

= δαγ +
∑

q

|gq|2
∫

dξ�RA
αβ (ξ, ξ ; k + q)IRA

βγ (ξ, ξ ; k + q)

×{δ(ξ − ε − ωq)[nB(ωq) + nF (ξ )] + δ(ξ − ε + ωq)[nB(ωq) + 1 − nF (ξ )]}. (B16)

The recursion equation of the current vertex �α after analytic continuation to the real energy axis is then

�̂RA
α (ε, ε; k) = ĵα +

∫
dξ

∑
q

|gq|2GA(ξ, k + q)�̂RA
α (ξ, ξ ; k + q)GR(ξ, k + q)

×{δ(ξ − ε − ωq)[nB(ωq) + nF (ξ )] + δ(ξ − ε + ωq)[nB(ωq) + 1 − nF (ξ )]}. (B17)

To lighten the notation, we drop the superscript RA in �̂RA
α ,�RA

αγ , and IRA
βγ and assume we are discussing the RA component

of these quantities by default in the following text.
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2. Renormalized current vertex in the band basis

The dominant vertex correction comes from the phonon scatterings of electrons within the upper band. It is then convenient
to work in the eigenstate band basis (chiral basis) to compute the dominant vertex correction.

The renormalized current vertex in the Feynman diagrams of the AH conductivities corresponds to the band diagonal matrix
element

�++
α (ε, ε; k) ≡ 〈u+

k |�̂α (ε, ε; k)|u+
k 〉

= j++
α (k) +

∫
dξ

∑
q

|gq|2GR+(ξ, k + q)GA+(ξ, k + q)�++
α (ξ, ξ ; k + q)|〈u+

k+q|u+
k 〉|2

×{δ(ξ − ε − ωq)[nB(ωq) + nF (ξ )] + δ(ξ − ε + ωq)[nB(ωq) + 1 − nF (ξ )]}, (B18)

where j++
α (k) = 〈u+

k | ĵα|u+
k 〉 = ev vkα

εk
and

GR/A,+(ε, k) = 〈u+
k |ĜR/A|u+

k 〉 = 1

ε − ε+
k ± i

2τ+
k

. (B19)

The recursion Eq. (B18) of the current vertex is hard to solve exactly. We then apply the approximation that the scattering by
phonon is quasielastic as before, i.e., εk′ = εk ± ωq ≈ εk, k′ ≈ k in Eq. (B18), where k′ ≡ k + q. Under this approximation, we
can compute the renormalized current vertex �++

α (ε, ε; k) order-by-order by iteration of Eq. (B18). In the following, we show
this process for �++

x (ε, ε; k).
The sum over the phonon momentum q in Eq. (B18) may be replaced by the sum over k′ as in the calculation of the self-energy

and Eq. (B18) becomes

�++
α (ε, ε; k) = j++

α (k) +
∫

dξ

∫
k′dk′

(2π )2

∫ 2π

0
dθ |gq|2GR+(ξ, k′)GA+(ξ, k′)�++

α (ξ, ξ ; k′)|〈u+
k′ |u+

k 〉|2

×{δ(ξ − ε − ωq)[nB(ωq) + nF (ξ )] + δ(ξ − ε + ωq)[nB(ωq) + 1 − nF (ξ )]}. (B20)

For �++
x , the zeroth order is j++

x (k) = ev2kx/εk . The first order can be obtained by replacing �++
α (ξ, ξ ; k′) in Eq. (B20) with

j++
x (k′). Since v2k′dk′ = εk′dεk′ , we can replace the integration over dk′ by dεk′ in Eq. (B20). Employing

GR+(ξ, k′)GA+(ξ, k′) = 2πτ+
k′ δ(ξ − εk′ ), τ+

k′ = 1/

(
a + bv2k′2 + a�2

ξεk′

)
, (B21)

|〈u+
k′ |u+

k 〉|2 = 1
2 (1 + cos α′ cos α + sin α′ sin α cos θ ), (B22)

j++
x (k′) = ev

vk′

εk′
cos(θ + θ0), (B23)

we get the first order of �++
x after integration over dk′ as

�(1),++
x (ε, ε; k) ≈ g2

D

h̄

4πρs2v2

ev2k

εk
τ+

k

∫ ∞

−∞
ξdξ

∫ 2π

0
dθ

∫ 2kBTBG

0
�d�δ(� − ωq)(cos θ0 cos θ − sin θ0 sin θ )

×1

2
(1 + cos2 α + sin2 α cos θ ){δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}.

(B24)

In the above integration, we have applied the quasielastic scattering approximation so that τ+
k′ ≈ τ+

k , cos α′ ≈ cos α =
�/εk, sin α′ ≈ sin α. We also introduced an integration over d� through the factor δ(� − ωq) to convert the integration over
the angle dθ to the integration over d� as in the calculation of the self-energy. The integration over dθ can be done using the
following integrals:

∫ 2π

0
dθδ(� − ωq) ≈ 2

sk

1∣∣ cos θ�

2

∣∣ ≈ 2

sk

1√
1 − �2

4s2k2

, θ� ≡ 2 arcsin
�

2sk
, (B25)

∫ 2π

0
dθ cos θδ(� − ωq) ≈ 2

sk

cos θ�∣∣ cos θ�

2

∣∣ ≈ 2

sk

1 − �2/2s2k2√
1 − �2

4s2k2

, (B26)

∫ 2π

0
dθ cos2 θδ(� − ωq) ≈ 2

sk

cos2 θ�∣∣ cos θ�

2

∣∣ ≈ 2

sk

(1 − �2/2s2k2)2√
1 − �2

4s2k2

, (B27)
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∫ 2π

0
sin θdθδ(� − ωq) = 0,

∫ 2π

0
sin θ cos θdθδ(� − ωq) = 0. (B28)

After the integration over dθ in Eq. (B24), we get the first order of �++
x as

�(1),++
x (ε, ε; k) ≈ g2

D

4πρs4v2k2

ev2kx

εk
τ+

k

∫ 2kBTBG

0
d��2

∫ ∞

−∞
ξdξ

cos θ�

| sin θ�| ×
[(

1 + �2

ξεk

)
+ v2k2

ξεk
cos θ�

]
×{δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}

≈ ev2kx

εk
τ+

k

[(
1 + �2

εεk

)
b(ε, k) + v2k2

εεk
c(ε, k)

]
, (B29)

where b(ε, k) is defined in Eq. (A11) and c(ε, k) is defined as

c(ε, k) = 1

4π

g2
D

ρs4v2

1

k2

∫ ∞

−∞
ξdξ

∫ kBTBG

0
d� �2 cos2 θ�

| sin θ�|
×{δ(ξ − ε − �)[nB(�) + nF (ξ )] + δ(ξ − ε + �)[nB(�) + 1 − nF (ξ )]}

≈ 1

4π

g2
Dh̄

ρs3v2

ε

k

∫ kBTBG

0
�d�

(
1 − �2

2s2k2

)2(
1 − �2

4s2k2

)− 1
2

[2nB(�) + 1 + nF (ε + �) − nF (ε − �)]. (B30)

We denote

λ(ε, k) = τ+
k

[(
1 + �2

εεk

)
b(ε, k) + v2k2

εεk
c(ε, k)

]
. (B31)

From Eq. (B29), we get

�(1),++
x (ε, ε; k) = λ(ε, k) j++

x (k). (B32)

By iteration order-by-order we get

�(n),++
x (ε, ε; k) = λn(ε, k) j++

x (k), (B33)

and the renormalized current vertex

�++
x =

∞∑
n=0

�(n),++
x (ε, ε; k) = 1

1 − λ
j++
x (k). (B34)

Since the system is isotropic, �++
y = ∑∞

n=0 �(n),++
y (ε, ε; k) = 1

1−λ
j++
y (k).

We have checked that the current vertex renormalization factor γ ≡ 1
1−λ

is equal to τ tr
k /τ+

k where τ tr
k and τ+

k are respectively
the transport and mean lifetime of the upper-band electrons with phonon scatterings defined in Ref. [19] as

1/τ+
k =

∑
k′

ω
(2)
k,k′

1 − f 0
k′

1 − f 0
k

, (B35)

1/τ tr
k =

∑
k′

ω
(2)
k,k′

1 − f 0
k′

1 − f 0
k

(1 − cos φk′,k ), (B36)

where ω
(2)
k,k′ = 2π |gk′k|2|〈u+

k′ |u+
k 〉|2{δ(εk′ − εk − ωq)nB(ωq) + δ(εk′ − εk + ωq)[nB(ωq) + 1]} is the second-order e-phonon scat-

tering rate from k to k′, φk′,k is the angle between k and k′, and f 0
k is the Fermi distribution function for energy εk . Note that

1/τ+
k defined in Eq. (B35) is also equal to that in Eq. (A16).

APPENDIX C: ANOMALOUS HALL CONDUCTIVITY

The extrinsic contribution of the dc AH conductivity comes from σ I
xy which can be written as

σ I
xy = e2v2

∑
k

∫
dε

2π
[−∂εnF (ε)]Tr[�̂x(ε, ε, k)GR(ε, k)σyGA(ε, k)]. (C1)

Since ∂εnF (ε) ∼ δ(ε − εF ), the contribution to σ I
xy comes from the electrons on the Fermi surface.

The contribution to σ I
xy can be separated to three parts due to different mechanisms: the intrinsic, the side jump, and the

skew scattering contributions. The intrinsic contribution is due to the nontrivial band structure of the clean system and has been
calculated in previous works for 2D massive Dirac metals [10]. The side jump and skew scattering contributions can be most
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FIG. 5. (a) Feynman diagrams of the side jump conductivity in the chiral basis. The thin and thick solid lines represent the bare electron
GF and the electron GF in the first Born approximation, respectively. The curvy lines represent the phonon propagators. Note that replacing
the thin solid lines by the thick ones in the diagrams, as shown in Fig. 1 of the main text, does not change the AH conductivity of the diagrams
in the leading order.

easily separated by expanding the trace in Eq. (C1) in the eigenstate band basis (or chiral basis), as shown in our previous work
[22]. The resulting AH conductivities are depicted by the Feynman diagrams in the chiral basis in Fig. 1 of the main text or
Figs. 5 and 6 of this Appendix.

1. Side jump contribution

We first calculate the side jump contribution. The dc AH conductivity from Figs. 5(a) and 5(b) can be written as

σ a+b
xy =

∑
k

∫
dε

2π
[−∂εnF (ε)]

[
�′+−

x (ε, ε; k)GR−
0 (ε, k) j−+

y (k)GA+
0 (ε, k) + �′−+

x (ε, ε; k)GR+
0 (ε, k) j+−

y (k)GA−
0 (ε, k)

]
, (C2)

where �̂′
x ≡ �̂x − ĵx and �′+−

x ≡ 〈u+
k |�̂′

x|u−
k 〉.

Applying the recursion Eq. (B17) of the renormalized current vertex �̂x, we get

�′+−
x (ε, ε; k) =

∫
dξ

∑
k′

|gk′−k|2GR+(ξ, k′)GA+(ξ, k′)�++
x (ξ, ξ ; k′)〈u+

k |u+
k′ 〉〈u+

k′ |u−
k 〉

×{δ(ξ − ε − ωk′−k )[nB(ωk′−k ) + nF (ξ )] + δ(ξ − ε + ωk−k′ )[nB(ωk′−k ) + 1 − nF (ξ )]}, (C3)

where

〈u+
k |u+

k′ 〉 = cos
α′

2
cos

α

2
+ sin

α′

2
sin

α

2
eiθ , 〈u+

k′ |u−
k 〉 = cos

α′

2
sin

α

2
− sin

α′

2
cos

α

2
e−iθ , (C4)

GR+(ξ, k′)GA+(ξ, k′) = 2πτ+
k′ δ(ξ − εk′ ), �++

x (ε, ε; k) = 1

1 − λ

ev2kx

ε
. (C5)

The sum over k′ in Eq. (C3) can be done by the same procedure as for the calculation of �(1),++
x under the quasielastic scattering

approximation. We get

�′+−
x (ε, ε; k) = τ+

k

1 − λ(ε)

v2k

ε2

[
�

εk
[b(ε, k) − c(ε, k)]kx − id (ε, k)ky

]
, (C6)

where d (ε, k) = a(ε, k) − c(ε, k). Similarly, we get

�′+−
y (ε, ε; k) = τ+

k

1 − λ(ε)

v2k

ε2

[
�

εk
[b(ε, k) − c(ε, k)]ky + id (ε, k)kx

]
. (C7)

FIG. 6. Feynman diagrams of the intrinsic skew scattering conductivity in the chiral basis. The notations are the same as in Fig. 5.
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With the above ingredients, we can compute the AH conductivity in Eq. (C2) corresponding to the Feynman diagrams in
Figs. 5(a) and 5(b):

σ a+b
xy = 1

2π

∑
k

[
�′+−

x (ε, ε; k)GR−
0 (ε, k) j−+

y (k)GA+
0 (ε, k) + �′−+

x (ε, ε; k)GR+
0 (ε, k) j+−

y (k)GA−
0 (ε, k)

]|ε=εF , (C8)

where

j−+
y (k) = evσ−+

y (k), σ−+
y (k) = −i cos θ0 − cos α sin θ0, (C9)

GR−
0 (ε, k) = 1

ε − ε−
k + iη

, GA+
0 (ε, k) = 1

ε − ε+
k − iη

, η → 0+, (C10)

�′+−
x j−+

y = [�′−+
x j+−

y ]∗ = e2v2 iτ+
k

1 − λ(ε)

v2k2

ε2
{−[b(ε, k) − c(ε, k)] cos α cos2 θ0 + d (ε, k) cos α sin2 θ0}. (C11)

The sum over k in Eq. (C8) may be converted to the integral

∑
k

→
∫ +∞

0

kdk

(2π )2

∫ 2π

0
dθ0. (C12)

After the integration over dθ0, we get

σ a+b
xy = i

2

�

ε2

∫
kdk

4π2

τ+
k

1 − λ(ε)

e2v4k2

εk
[a(ε, k) − b(ε, k)]

(
1

ε − ε−
k + iη

1

ε − ε+
k − iη

− 1

ε − ε+
k + iη

1

ε − ε−
k − iη

)∣∣∣
ε=εF

= i

8π2

�

ε2

∫
kdk

τ+
k

1 − λ(ε)

e2v4k2

εk
[a(ε, k) − b(ε, k)]

1

ε + ε+
k

× 2iπδ(ε − ε+
k )|ε=εF

= − e2

8π

�

εF

(
1 − �2

ε2
F

)
τ+

kF

1 − λ(εF , kF )
[a(εF , kF ) − b(εF , kF )]. (C13)

The total contribution from the diagrams Figs. 5(c) and 5(d) is identical to that of Figs. 5(a) and 5(b). We then get the total
side jump contribution due to Figs. 5(a)–5(d) as

σ side,(1)
xy = − e2

4π

�

εF

(
1 − �2

ε2
F

)
τ+

kF

1 − λ(εF , kF )
[a(εF , kF ) − b(εF , kF )]. (C14)

We next compute the contribution from Fig. 5(e). The AH conductivity corresponding to this diagram can be written as

σ e
xy = 1

2π

∑
k

�++
x GR+

0 �R,+−GR−
0 j−+

y GA+|ε=εF , (C15)

where

�R,+− = 〈u+
k |�R|u−

k 〉 = − i

2

vk�

εεk
(a − b). (C16)

After the sum over k in Eq. (C15), we get

σ e
xy = − e2

16π

�

εF

(
1 − �2

ε2
F

)
τ+

kF

1 − λ(εF , kF )
[a(εF , kF ) − b(εF , kF )]. (C17)

Each of the diagrams (f)–(h) contributes the same as diagram (e) in Fig. 5 so the total contribution from the diagrams (e)–(h)
is

σ side,(2)
xy = − e2

4π

�

εF

(
1 − �2

ε2
F

)
τ+

kF

1 − λ(εF , kF )
[a(εF , kF ) − b(εF , kF )]. (C18)

The total side jump conductivity is

σ side
xy = σ side,(1)

xy + σ side,(2)
xy

= − e2

2π

�

εF

(
1 − �2

ε2
F

)
τ+

kF

1 − λ(εF , kF )
[a(εF , kF ) − b(εF , kF )]

= − e2

2π

�

εF

(
1 − �2

ε2
F

)
a(εF , kF ) − b(εF , kF )

a(εF , kF ) − c(εF , kF ) + �2

ε2
F

[a(εF , kF ) + c(εF , kF ) − 2b(εF , kF )]
. (C19)
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FIG. 7. Feynman diagrams of the coherent skew scattering conductivity in the spin basis. The notations are the same as in Fig. 5.

2. Intrinsic skew scattering contribution

The intrinsic skew scattering contribution from noncrossing diagrams is described by the Feynman diagrams in Fig. 6. The
AH conductivity due to diagrams (a) and (b) in Fig. 6 can be written as

σ sk,a+b
xy =

∑
k

∫
dε

2π
[−∂εnF (ε)]

[
�′+−

x GR−�′−+
y GA+

0 + �′−+
x GR+

0 �′+−
y GA−]

, (C20)

where �′+−
x = [�′−+

x ]∗, �′+−
y = [�′−+

y ]∗ and �′+−
x , �′+−

y are given in Eqs. (C6) and (C7). And G0 and G are the bare electron
GF and the GF in the first Born approximation, respectively, both of which are given in the previous text. After the sum over k,
we get

σ sk,a+b
xy = e2�

4πεF

(
1 − �2

ε2
F

)2
[

τ+
kF

1 − λ(εF , kF )

]2

[b(εF , kF ) − c(εF , kF )]d (εF , kF ). (C21)

The AH conductivity due to diagram (c) in Fig. 6 can be written as

σ sk,c
xy =

∫
dε

2π
[−∂εnF (ε)]

∑
k

�++
x GR+

0 �R,+−GR−
0 �′−+

y GA+

= − e2�

16πεF

(
1 − �2

ε2
F

)2
[

τ+
kF

1 − λ(εF , kF )

]2

[a(εF , kF ) − b(εF , kF )]d (εF , kF ). (C22)

The contribution from each diagram of Figs. 6(e) and 6(f) is identical to that of (c). The total skew scattering contribution of
Figs. 6(a)–6(f) is then

σ sk−nc
xy = − e2�

4πεF

(
1 − �2

ε2
F

)2
[

τ+
kF

1 − λ(εF , kF )

]2

[a(εF , kF ) + c(εF , kF ) − 2b(εF , kF )]d (εF , kF ), (C23)

where
τ+

kF
1−λ(εF ,kF ) = τ tr

kF
= {a(εF , kF ) − c(εF , kF ) + �2

ε2
F

[a(εF , kF ) + c(εF , kF ) − 2b(εF , kF )]}−1 and d (εF , kF ) = a(εF , kF ) −
c(εF , kF ).

3. Coherent skew scattering contribution

In this Appendix we show that the phonon-induced coherent skew scattering contribution is exactly opposite to the intrinsic
skew scattering contribution in the leading order expansion of the phonon momentum at low temperature, and both contributions
vanish as ∼T 2 as the temperature approaches zero.

The crossed X and � diagrams in the spin basis are shown in Fig. 7. We first calculate the response function of the X diagram,
which can be written as

�X
αβ (iωn, q = 0) = − 1

β3

∑
k

∑
q1

∑
q2

∑
iqn

∑
ipn

∑
ikn

D0(iqn, q1)D0(ipn, q2)

×Tr[G(ikn, k)�α (ikn, ikn + iωn)G(ikn + iωn, k)gq1 G(ikn + iωn + iqn, k + q1)gq2

×G(ikn + iωn + iqn + ipn, k + q1 + q2)�β (ikn + iωn + iqn + ipn, ikn + iqn + ipn)

×G(ikn + iqn + ipn, k + q1 + q2)g†
q1

G(ikn + ipn, k + q2)g†
q2

]. (C24)

For brevity, we denote

ϒ̂α (ikn, ikn + iωn; k) ≡ G(k, ikn)�̂α (ikn, ikn + iωn)G(k, ikn + iωn). (C25)
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FIG. 8. Feynman diagrams of the coherent skew scattering conductivity in the chiral basis. The notations are the same as in Fig. 5.

The response function Eq. (C24) can then be written as

�X
αβ (iωn, q = 0) = − 1

β3

∑
k

∑
q1

∑
q2

∑
iqn

∑
ipn

∑
ikn

|gq1 |2|gq2 |2D(iqn, q1)D(ipn, q2)Tr[ϒ̂α (ikn, ikn + iωn; k)

×G(ikn + iωn + iqn; k1)ϒ̂β (ikn + iωn + iqn + ipn, ikn + iqn + ipn; k′)G(ikn + ipn, k2)], (C26)

where k1 = k + q1, k2 = k + q2, k′ = k + q1 + q2.
We next expand the trace in the above equation in the band or the chiral basis, and keep only the leading order terms. We get

�X
αβ (iωn, q = 0) = − 1

β3

∑
k

∑
q1

∑
q2

∑
iqn

∑
ipn

∑
ikn

|gq1 |2|gq2 |2D(iqn, q1)D(ipn, q2)

×ϒ++
α (ikn, ikn + iωn; k)ϒ++

β (ikn + iωn + iqn + ipn, ikn + iqn + ipn; k′)

×[〈u+
k |u+

k1
〉〈u+

k1
|u+

k′ 〉〈u+
k′ |u−

k2
〉〈u−

k2
|u+

k 〉G+(ikn + iωn + iqn, k1)G−(ikn + ipn; k2)

+〈u+
k |u−

k1
〉〈u−

k1
|u+

k′ 〉〈u+
k′ |u+

k2
〉〈u+

k2
|u+

k 〉G−(ikn + iωn + iqn; k1)G+(ikn + ipn; k2)], (C27)

where ϒ++
α (ikn, ikn + iωn; k) ≡ G+(ikn, k)�++

α (ikn, ikn + iωn)G+(ikn + iωn, k) and k1, k2, k′ are the same as in Eq. (C26).
Equation (C27) corresponds to the Feynman diagrams in Figs. 8(a) and 8(b).

Denoting

MX (k, q1, q2) ≡ 〈u+
k |u+

k1
〉〈u+

k1
|u+

k′ 〉〈u+
k′ |u−

k2
〉〈u−

k2
|u+

k 〉, NX (k, q1, q2) ≡ 〈u+
k |u−

k1
〉〈u−

k1
|u+

k′ 〉〈u+
k′ |u+

k2
〉〈u+

k2
|u+

k 〉, (C28)

Eq. (C27) can be written as

�X
αβ (iωn, q) = − 1

β3

∑
k

∑
q1

∑
q2

|gq1 |2|gq2 |2MX (k, q1, q2)

×
∑
ikn

∑
iqn

∑
iQn

D(iqn, q1)D(iQn − iqn, q2)ϒ++
α (ikn, ikn + iωn; k)ϒ++

β (ikn + iωn + iQn, ikn + iQn; k′)

×G+(ikn + iωn + iqn; k1)G−(ikn + iQn − iqn; k2) + (MX ↔ NX ,+ ↔ −), (C29)

where iQn ≡ iqn + ipn, and + ↔ − is applied only to G+ and G− but not on ϒ++
α .

The sum over the Matsubara frequency iQn, iqn, and ikn in Eq. (C29) can be performed one-by-one with the method in
the previous sections employing the integration contour in Figs. 9(a)–9(c), respectively. After the sum over the Matsubara

FIG. 9. Integration contour for the sum of the Matsubara frequency iQn, iqn, ikn in Eq. (C29), respectively.
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frequencies and keeping only the leading order terms, we get

�X
αβ (iωn → ω + i0+)

= iω

2π

∑
k

∑
q1

∑
q2

|gq1 |2|gq2 |2MX (k, q1, q2)
∫

dε[−∂εnF (ε)]ϒAR
α (ε, k)

×{
ϒRA

β (ε + ωq1 + ωq2 , k′)GR+(ε + ωq1 , k1)GA−(ε + ωq2 , k2)[nB(ωq1 ) + nF (ε + ωq1 )][nB(ωq2 ) + nF (ε + ωq1 + ωq2 )]

+ϒRA
β (ε + ωq1 − ωq2 , k′)GR+(ε + ωq1 , k1)GA−(ε − ωq2 , k2)[nB(ωq1 )+nF (ε + ωq1 )][1 + nB(ωq2 ) − nF (ε + ωq1 − ωq2 )]

+ϒRA
β (ε − ωq1 + ωq2 , k′)GR+(ε − ωq1 , k1)GA−(ε + ωq2 , k2)[1+nB(ωq1 ) − nF (ε − ωq1 )][nB(ωq2 ) + nF (ε − ωq1 + ωq2 )]

+ϒRA
β (ε − ωq1 − ωq2 , k′)GR+(ε − ωq1 , k1)GA−(ε − ωq2 , k2)

×[1 + nB(ωq1 ) − nF (ε − ωq1 )][1 + nB(ωq2 ) − nF (ε − ωq1 − ωq2 )]
} + (MX ↔ NX ,+ ↔ −), (C30)

where ϒAR
α (ε, k) ≡ GA+(ε, k)�++(ε, ε)GR+(ε, k).

The above equation can also be written as

�X
αβ (ω → 0) = iω

2π

∑
k

∑
q1

∑
q2

|gq1 |2|gq2 |2MX (k, q1, q2)
∫

dε[−∂εnF (ε)]ϒAR
α (ε, k)

×
∫

dε1{δ(ε1 − ε − ωq1 )[nB(ωq1 ) + nF (ε1)] + δ(ε1 − ε + ωq1 )[1 + nB(ωq1 ) − nF (ε1)]}GR+(ε1, k1)

×{
ϒRA

β (ε1 + ωq2 , k′)GA−(ε + ωq2 , k2)[nB(ωq2 ) + nF (ε1 + ωq2 )]

+ϒRA
β (ε1 − ωq2 , k′)GA−(ε − ωq2 , k2)[1 + nB(ωq2 ) − nF (ε1 − ωq2 )]

} + (MX ↔ NX ,+ ↔ −). (C31)

Since the phonon energy ωq is much smaller than the Fermi energy εF , we ignore the phonon energy in all the electron GFs
and ϒRA

β , and only keep the phonon energy dependence in the distribution functions. Moreover, at low temperature, the phonon
scattering processes are dominated by small phonon momentum scatterings. In the leading order of the phonon momentum, we
have

δ(ε1 − ε − ωq1 )[nB(ωq1 ) + nF (ε1)] + δ(ε1 − ε + ωq1 )[1 + nB(ωq1 ) − nF (ε1)]

= {δ(ε1 − ε − ωq1 )nB(ωq1 ) + δ(ε1 − ε + ωq1 )[1 + nB(ωq1 )]}1 − nF (ε1)

1 − nF (ε)

≈ 2ωq1

kBT
nB(ωq1 )[1 + nB(ωq1 )]δ(ε1 − ε), (C32)

and

δ(ε2 − ε1 − ωq2 )[nB(ωq2 ) + nF (ε2)] + δ(ε2 − ε1 + ωq2 )[1 + nB(ωq2 ) − nF (ε2)] ≈ 2ωq2

kBT
nB(ωq2 )[1 + nB(ωq2 )]δ(ε2 − ε1).

(C33)

Applying Eqs. (C32) and (C33) and ϒRA
β (ε, k) ∼ δ(ε − εk ), Eq. (C31) can be written as

�X
αβ (ω → 0) ≈ iω

2π

∑
k

∑
k′

∑
k1

∑
k2

δ(k + k′ − k1 − k2)Wk1−kWk2−k

∫
dε[−∂εnF (ε)]ϒAR

α (ε, k)ϒRA
β (ε, k′)

×[MX (k, k1, k2)GR+(ε, k1)GA−(ε, k2) + NX (k, k1, k2)GR−(ε, k1)GA+(ε, k2)], (C34)

where Wq ≡ |gq|2 2ωq

kBT nB(ωq)[1 + nB(ωq)].
Since

ϒAR
α (ε, k) = GA+(ε, k)�++

α (k)GR+(ε, k) ≈ 2πτ+
k δ(ε − ε+

k )�++
α (k), (C35)

and �++
α (k) = γ j++

α (k) = (τ tr
k /τ+

k ) j++
α (k), we have

ϒAR
x (ε, ε; k) = 2πτ tr

k δ(ε − ε+
k ) j++

x (k), ϒRA
y (ε, ε; k′) = 2πτ tr

k δ(ε − ε+
k′ ) j++

y (k′). (C36)

The dc Hall conductivity from the X diagram, i.e., σ X
xy = limω→0 �X

αβ (ω)/iω, is then

σ X
xy = 2π

∑
k

∑
k′

∑
k1

∑
k2

δ(k + k′ − k1 − k2)Wk1−kWk2−k

∫
dε[−∂εnF (ε)]δ(ε − ε+

k )δ(ε − ε+
k′ )

(
τ tr

k

)2

× j++
x (k) j++

y (k′)[MX (k, k1, k2)GR+(ε, k1)GA−(ε, k2) + NX (k, k1, k2)GR−(ε, k1)GA+(ε, k2)]. (C37)
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Denoting

ωX
k,k′ ≡ 2πδ(ε+

k′ − ε+
k )

∑
k1

∑
k2

δ(k + k′ − k1 − k2)Wk1−kWk2−k

×[MX (k, k1, k2)GR+(ε, k1)GA−(ε, k2) + NX (k, k1, k2)GR−(ε, k1)GA+(ε, k2)], (C38)

which corresponds to the scattering rate from state k to k′ through the two phonon scattering process in the X diagram, the AH
conductivity σ X

xy can be written as

σ X
xy =

∑
k

∑
k′

ωX
k,k′

∫
dε[−∂εnF (ε)]δ(ε − ε+

k )
(
τ tr

k

)2
j++
x (k) j++

y (k′). (C39)

The AH conductivity corresponds to the antisymmetric part of σ X
xy:

σ X,a
xy = 1

2

∑
k

∑
k′

ωX
k,k′

∫
dε[−∂εnF (ε)]δ(ε − ε+

k )
(
τ tr

k

)2
[ j++

x (k) j++
y (k′) − j++

y (k) j++
x (k′)]. (C40)

Since j++
x (k) = ev sin α cos θ0, j++

y (k′) = ev sin α′ sin(θ0 + θ ), where sin α′ ≈ sin α = vk/εk ,

σ X,a
xy = 1

2
e2v2

∑
k

∑
k′

ωX
k,k′

∫
dε[−∂εnF (ε)]δ(ε − ε+

k )
(
τ tr

k

)2
sin2 α sin θ, (C41)

where θ = φk′ − φk is the angle between k and k′. Denoting

1

τ⊥
k,X

≡ −
∑

k′
ωX

k,k′ sin θ, (C42)

the AH conductivity for the X diagram can be written as

σ X,a
xy = −1

2
e2v2

∑
k

(
τ tr

k

)2

τ⊥
k,X

∫
dε[−∂εnF (ε)]δ(ε − ε+

k ) sin2 α0

= −e2v2 k2
F

4πεF

(
τ tr

kF

)2

τ⊥
kF ,X

. (C43)

This is consistent with the general result of the skew scattering contribution obtained from the semiclassical Boltzmann
equation approach in Ref. [10].

Similarly, we can get the AH conductivity from the � diagrams as

σ�,a
xy = −e2v2 k2

F

4πεF

(
τ tr

kF

)2

τ⊥
kF ,�

, (C44)

where

1

τ⊥
k,�

≡ −
∑

k′
ω�

k,k′ sin θ, (C45)

and ω�
k,k′ is the scattering rate from k to k′ for the � diagrams.

The leading order � diagrams in the chiral basis are shown in Figs. 8(c)–8(f). Similar to the X diagrams, we obtain the
scattering rates from k to k′ for these diagrams as

ω
�,(c)
k,k′ = 2πδ(ε+

k′ − ε+
k )

∑
k1

∑
k2

δ(k′ + k1 − k − k2)Wk−k1Wk′−kGR+(ε, k1)GA−(ε, k2)〈u+
k |u+

k1
〉〈u+

k1
|u−

k2
〉〈u−

k2
|u+

k′ 〉〈u+
k′ |u+

k 〉,

ω
�,(d )
k,k′ = 2πδ(ε+

k′ − ε+
k )

∑
k1

∑
k2

δ(k′ + k1 − k − k2)Wk−k1Wk′−kGA−(ε, k1)GR+(ε, k2)〈u+
k |u−

k1
〉〈u−

k1
|u+

k2
〉〈u+

k2
|u+

k′ 〉〈u+
k′ |u+

k 〉,

and ω
�,(e)
k,k′ = [ω�,(c)

k,k′ ]∗, ω�,( f )
k,k′ = [ω�,(d )

k,k′ ]∗.
The total scattering rate of all the � diagrams is then

ω�
k,k′ = 2πδ(ε+

k′ − ε+
k )

∑
k1

∑
k2

Wk′−kGR+(ε, k1)GA−(ε, k2)

×[δ(k′ + k1 − k − k2)Wk−k1 M� (k, k1, k2) + δ(k′ + k2 − k − k1)Wk−k2 N� (k, k1, k2)] + c.c., (C46)
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where

M� (k, k1, k2) ≡ 〈u+
k |u+

k1
〉〈u+

k1
|u−

k2
〉〈u−

k2
|u+

k′ 〉〈u+
k′ |u+

k 〉, N� (k, k1, k2) ≡ 〈u+
k |u−

k2
〉〈u−

k2
|u+

k1
〉〈u+

k1
|u+

k′ 〉〈u+
k′ |u+

k 〉. (C47)

Since τ tr
kF

is given in Appendix B, the key ingredient to obtain the AH conductivities σ X,a
xy and σ�,a

xy is to calculate 1/τ⊥
k,X

and 1/τ⊥
k,� or ωX

k,k′ and ω�
k,k′ in Eqs. (C38) and (C46). From Eq. (C40), one can see that only the antisymmetric part of ωX

k,k′

contributes to the AH conductivity; so does ω�
k,k′ . From Eqs. (C38) and (C46), we get the antisymmetric part of the scattering

rates of the X and � diagrams as

ωX,a
k,k′ = 4π2δ(ε+

k′ − ε+
k )

∑
k1

∑
k2

δ(k + k′ − k1 − k2)Wk−k1Wk′−k1

δ(ε − ε+
k1

)

ε − ε−
k2

Im(〈u+
k |u+

k1
〉〈u+

k1
|u+

k′ 〉〈u+
k′ |u−

k2
〉〈u−

k2
|u+

k 〉),

ω�,a
k,k′ = 4π2δ(ε+

k′ − ε+
k )

∑
k1

∑
k2

δ(k′ + k1 − k − k2)Wk−k1Wk′−k

[
δ(ε − ε+

k1
)

ε − ε−
k2

Im(〈u+
k |u+

k1
〉〈u+

k1
|u−

k2
〉〈u−

k2
|u+

k′ 〉〈u+
k′ |u+

k 〉)

+ δ(ε − ε+
k2

)

ε − ε−
k1

Im(〈u+
k |u−

k1
〉〈u−

k1
|u+

k2
〉〈u+

k2
|u+

k′ 〉〈u+
k′ |u+

k 〉)

]
. (C48)

It is hard to compute ωX,a
k,k′ and ω�,a

k,k′ in the whole temperature regime. But at low temperature, the phonon momenta

participating in the scatterings are small and we can expand ωX,a
k,k′ and ω�,a

k,k′ in terms of the phonon momentum. At low temperature

〈
us

k

∣∣us′
k′
〉 ≈ 〈

us
k

∣∣us′
k

〉 + (k′ − k) · 〈us
k

∣∣∇kus′
k

〉 = δs,s′ + Ass′
(k) · (k′ − k), s, s′ = ±, (C49)

where Ass′
(k) ≡ 〈us

k|∇kus′
k 〉 corresponds to the Berry connection. In the leading order of the expansion, we have

Im(〈u+
k |u+

k1
〉〈u+

k1
|u+

k′ 〉〈u+
k′ |u−

k2
〉〈u−

k2
|u+

k 〉) ≈ (k2 − k′)α (k − k2)βIm[A+−
α (k)A−+

β (k)], (C50)

Im(〈u+
k |u+

k1
〉〈u+

k1
|u−

k2
〉〈u−

k2
|u+

k′ 〉〈u+
k′ |u+

k 〉) ≈ (k2 − k1)α (k′ − k2)βIm[A+−
α (k)A−+

β (k)], (C51)

Im(〈u+
k |u−

k1
〉〈u−

k1
|u+

k2
〉〈u+

k2
|u+

k′ 〉〈u+
k′ |u+

k 〉) ≈ (k2 − k1)α (k1 − k)βIm[A−+
α (k)A+−

β (k)], (C52)

where sum over repeated indices is implied.
In the leading order of the phonon momentum expansion, ωX,a

k,k′ and ω�,a
k,k′ then become

ωX,a
k,k′ ≈ 4π2 δ(ε+

k′ − ε+
k )

ε + ε+
k

Im[A+−
α (k)A−+

β (k)]
∑

k1

Wk−k1Wk′−k1δ(ε − ε+
k1

)(k − k1)α (k1 − k′)β, (C53)

ω�,a
k,k′ ≈ 4π2δ(ε+

k′ − ε+
k )

⎡
⎣Im[A+−

α (k)A−+
β (k)]

∑
k1

Wk−k1Wk′−k(k′ − k)α (k − k1)β
δ(ε − ε+

k1
)

ε − ε−
k′+k1−k

+ Im[A−+
α (k)A+−

β (k)]
∑

k2

Wk′−k2Wk′−k(k′ − k)α (k2 − k′)β
δ(ε − ε+

k2
)

ε − ε−
k+k2−k′

⎤
⎦

≈ 8π2 δ(ε+
k′ − ε+

k )

ε + ε+
k

Im[A+−
α (k)A−+

β (k)]
∑
k′′

Wk−k′′Wk′−k(k − k′)α (k′′ − k)βδ(ε − ε+
k′′ ). (C54)

We have applied the quasielastic approximation for the e-phonon scatterings near the Fermi surface and ε−
k = −ε+

k in the above
equations.

The leading order expansion of ωX,a
k,k′ in Eq. (C53) is exactly opposite to the leading order of the scattering rate of the

noncrossing skew scattering diagrams Figs. 6(a) and 6(b), which is shown in Eq. (39) of the Supplemental Material of Ref. [20].
Similarly, the leading order of ω�,a

k,k′ in Eq. (C54) is exactly opposite to the leading order expansion of the total scattering
rate of the diagrams Figs. 6(c)–6(f), which is shown in Eqs. (37) and (42) of the Supplemental Material of Ref. [20]. From
Eqs. (C39)–(C45), we can see that at low temperature, the AH conductivity of the crossed X and � diagrams is exactly opposite
to that of the noncrossing skew scattering contribution in the leading order of the temperature. We have obtained the latter, i.e.,
the intrinsic skew scattering contribution in the last subsection of this work, and checked that it is consistent with that obtained
in the semiclassical approach in Ref. [20].
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APPENDIX D: SCREENING EFFECT

We discuss the screening effect due to e-e interaction in this section. For simplicity, we only consider the effects for the
noncrossing diagrams. To take into account these effects, we add the Thomas-Fermi (TF) screening factor to the deformation
potential; i.e., we replace gD by gD

q
q+qT F

where qT F = αεF /v is the TF wave vector for 2D massive Dirac metals and α = e2/h̄v

is the fine-structure constant. With this replacement, the only change we need to make in the calculation of the AH conductivity
is to replace the parameters a, b, c by

asc(t ) = C
∫ 1/t

0
xdx

⎛
⎝ x

x + α
2t

1√
1−�2/ε2

F

⎞
⎠

2

(1 − t2x2)−
1
2

(
1

ex − 1
+ 1

ex + 1

)
, (D1)

bsc(t ) = C
∫ 1/t

0
xdx

⎛
⎝ x

x + α
2t

1√
1−�2/ε2

F

⎞
⎠

2

(1 − 2t2x2)(1 − t2x2)−
1
2

(
1

ex − 1
+ 1

ex + 1

)
, (D2)

csc(t ) = C
∫ 1/t

0
xdx

⎛
⎝ x

x + α
2t

1√
1−�2/ε2

F

⎞
⎠

2

(1 − 2t2x2)2(1 − t2x2)−
1
2

(
1

ex − 1
+ 1

ex + 1

)
. (D3)

From the above equations, we can see that asc(t ), bsc(t ), csc(t ) not only depend on �/εF and t ≡ T/TBG, but also depend on α

in general.
The modification of a, b, c by the screening results in a modification of the AH conductivities. In Fig. 2 of the main text, we

show the difference of the AH conductivities with and without screening as a function of the rescaled temperature t ≡ T/TBG.
In the low-temperature limit T � TBG, we can expand asc(t ), bsc(t ), csc(t ) and get

asc(t ) ≈ κ

(
1 + π2 T 2

T 2
BG

+ 51

16
π4 T 4

T 2
BG

)
, (D4)

bsc(t ) ≈ κ

(
1 − 3π2 T 2

T 2
BG

− 85

16
π4 T 4

T 2
BG

)
, (D5)

csc(t ) ≈ κ

(
1 − 7π2 T 2

T 2
BG

+ 323

16
π4 T 4

T 2
BG

)
, (D6)

where κ ≡ π2

2α2
T 2

T 2
BG

(1 − �2/ε2
F ).

The AH conductivities at T � TBG with screening are then

σ̃ side
xy

(
�

εF
, t

)
≈ − e2

4π

�

εF

(
1 − �2

ε2
F

)[
1 + 17

4
π2

(
1 − �2

ε2
F

)
T 2

T 2
BG

]
, (D7)

σ̃ sk−nc
xy

(
�

εF
, t

)
≈ −17

16
πe2 �

εF

(
1 − �2

ε2
F

)2
T 2

T 2
BG

. (D8)

Comparing Eqs. (D7) and (D8) with the AH conductivities without screening in Table I of the main text, we can see that the AH
conductivities in the limit T → 0 are not changed by the screening. But at finite temperature, the screening modifies the AH
conductivities as shown in the plots of Fig. 2 in the main text.

At the high-temperature limit T � TBG, the AH conductivities depend on the TF wave vector and there is no simple analytical
result for the screened case.
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