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Quarter-metal phases in multilayer graphene: Ising-XY and annular Lifshitz transitions
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Recent experiments have uncovered a distinctive magnetic metal in lightly doped multilayer graphene,
coined the quarter metal. This quarter metal consolidates all the doped carriers, originally distributed evenly
across the 4 (or 12) Fermi surfaces of the paramagnetic state, into one expansive Fermi surface by breaking
time-reversal and/or inversion symmetry. In this work, we map out a comprehensive mean-field phase diagram
of the quarter metal in rhombohedral trilayer graphene within the four-dimensional parameter space spanned by
the density ne, interlayer electric potential U , external magnetic field parallel to the two-dimensional material
plane B‖, and Kane-Mele spin-orbit coupling λ. We found an annular Lifshitz phase transition and an Ising-XY
phase transition and located these phase boundaries on the experimental phase diagram. The movement of the
Ising-XY phase boundary offers insights into λ. Our analysis reveals that it moves along the line ∂ne/∂B‖ ∼
−0.5 × 1011 cm−2 T−1 within the ne-B‖ parameter space when λ = 30 µ eV. Additionally, we estimated the
in-plane spin susceptibility of the valley-Ising quarter metal χ‖ ∼ 8 µeV T−2. Beyond these quantitative findings,
two general principles emerge from our study: (1) The valley-XY quarter metal’s dominance in the ne-U
parameter space grows with an increasing number of layers due to the reduced valley-polarization variations
within the Fermi sea. (2) Layer polarization near the band edge plays an important role in aiding the reentrance of
the paramagnetic state at low density. The insights derived from the quarter-metal physics may shed light on the
complex behaviors observed in other regions of the phase diagram.
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I. INTRODUCTION

The recent discoveries of symmetry-broken electronic
phases [1–5] in the density-interlayer potential (ne-U ) param-
eter space of multilayer graphene have opened new avenues
to explore strongly correlated physics [6–15] and energy-
efficient electronic devices [16–30]. The observed phases
include spin-singlet superconductor, spin-polarized supercon-
ductors, and generalized metallic ferromagnets, where the
order parameter is characterized by the 15 generators of the
SU(4) space spanned by spin (s) and valley (τ ) degrees of
freedom.

Among the various magnetic phases, the so-called quarter
metal is particular noteworthy because of its simplicity and its
analogies to the relatively well-understood ν = ±1 graphene
quantum Hall magnet. In the large hole-density regime of the
quarter metal, the area enclosed by the Fermi surface extracted
from magnetic oscillation data precisely corresponds to
4π2 times the carrier density. This implies that, despite the
fourfold-degenerate density of states implied by time-reversal
and inversion symmetries, all holes are enclosed by a sin-
gle Fermi surface. Progressing to lower hole density in this
phase, Zhou et al. [1] found a Lifshitz transition where the
simple Fermi sea becomes an annular Fermi sea. Despite its
extensive capability, magnetic oscillation on its own does not
provide insight into the nature of the order parameter. In-
deed, the order parameter can rotate in 15-dimensional space
without altering the area enclosed by the Fermi surface(s).
Such variations in the order parameter lead to variations in
ground-state energy, which we found to be much smaller than
the Coulomb energy scale. We termed this energy landscape

as magnetic anisotropy energy landscape, and it holds pivotal
importance in the study of magnetism. The intrinsic spin-
orbit coupling (SOC) of graphene profoundly influences this
magnetic anisotropy energy landscape. Since Kane and Mele
first introduced it [16], numerous experiments have employed
varied techniques to measure the SOC [31–37].

In this paper, we present a comprehensive study of quarter-
metal phase diagram in the parameter space spanned by
ne,U , in-plane magnetic field B‖, and SOC in rhombohedral
trilayer graphene (RTG). Our findings indicate two distinct
magnetic ground states for the quarter metal, termed the
valley-XY phase and valley-Ising phase, separated by a first-
order phase transition. The momentum distribution of their
holes either forms a conventional Fermi sea or adopts an
annular shape, with the two types being separated by an
annular Lifshitz transition (ALT). This ALT corresponds to
the enhanced resistance (depicted in yellow) line running
from (ne, D) ∼ (−4.5 × 1011 cm−2, 0.35 V/nm) to (ne, D) ∼
(−4.2 × 1011 cm−2, 0.3 V/nm) in Fig. 1(e) of Ref. [3]. The
microscopic origin of magnetic anisotropic energy is at-
tributed to the nonidentical nature of wave functions across
opposite valleys, SOC and U . Notably, the Ising-XY phase-
boundary shift generated by an in-plane field B‖ is strongly
influenced by the strength of Kane-Mele spin-orbit cou-
pling λ, see Fig. 1. This correlation enables us to relate the
slope dne/dB‖ to the strength of the spin-orbit coupling, as
shown in Fig. 7. Additionally, we have calculated the in-
plane magnetic susceptibility within the valley-Ising phase.
These theoretical outcomes can be readily corroborated with
experimental data to provide deeper insights into graphene
magnetism.
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FIG. 1. The displacement of the valley-Ising and valley-XY
phase boundaries induced by in-plane magnetic field depends on the
strength of spin-orbit coupling λ. Experimental observation of these
shifts can be used to estimate λ.

The remainder of this paper is structured as follows: In
Sec. II, we study the quarter-metal phase diagram without
SOC. Section III discusses the role of layer polarization in
assisting the reentrance of paramagnetic state at low densities.
Section IV examines the impact of SOC on the magnetic states
within the quarter metal. In Sec. V, we use the displacement
of the Ising-XY phase boundary to estimate the magnitude of
SOC. In Sec. VI, we compare the quarter-metal phase diagram
between Bernal bilayer graphene and rhombohedral trilayer
graphene. Finally, we summarize our work in Sec. VII.

II. QUARTER-METAL PHASE DIAGRAM
WITHOUT SPIN-ORBIT COUPLING

In this section, we study the evolution of the quarter-metal
ground state in the ne-U parameter space when spin-orbit
coupling is neglected. We first discuss the band structure
of the valley-Ising phase |θv = 0〉 and the valley-XY phase
|θv = π/2〉 obtained from self-consistent mean-field calcula-
tion, where θv indicates the polar angle in valley polarization
Bloch sphere. Then we compare their band energy and Fock
exchange-energy evolution as a function of ne. These analyses
reveal that the first-order phase transition between |θv = π/2〉
and |θv = 0〉 is driven by the decrease of exchange energy
associated with the winding of pseudospin enforced by the
band topology of multilayer graphene.

In the absence of spin-orbit coupling, the spin-quantization
axis of a spin-polarized ground state can be rotated without
any energy cost. In contrast, there is a preferred direction to
polarize valley degree of freedom because the wave functions
and energy dispersion are different in the two valleys.

We use self-consistent Fock approximation to estimate the
ground-state energy of the quarter-metal state. The itinerant
exchange effect, as described by Herring [38], is arguably
the most important factor in shaping the total energy of a
quarter metal. This assertion is supported by the oscillation
data, which strongly suggest that time-reversal and/or inver-
sion symmetry of the quarter metal is broken to maximize its
pseudospin polarization. Given these observations, it seems

likely that the self-consistent mean-field approximation would
work better for the quarter metal than for other identified mag-
netic states, such as the half-metal. The mean-field eigenvalue
equation is Ĥk|ψnk〉 = εnk|ψnk〉 where

Ĥk = T̂k + �̂F
k . (1)

The band Hamiltonian T̂k is parametrized by the experimen-
tally informed [1] Slonczewski-Weiss-McClure parameters
and the Fock self-energy is given by �̂F

k = −∑
k′ Vk−k′ ρ̂k′ .

Here Vq are the Fourier components of the gate-screened
Coulomb potential Vq = 2πke

A tanh(|q|d )/(εr |q|) where A is
area of the sample, Coulomb constant ke = 1.44 eV nm,
screening constant εr = 15, and d = 5 nm is the distance
from the gate to the material. Note, the interlayer potential U
used in T̂k is a phenomenological parameter, which inherently
accounts for the Hartree self-energy effect in our calculation.
The density matrix is constructed from the eigenvector and
eigenvalue of the self-consistent Hamiltonian:

ρ̂k =
∑

n

nF (εnk)|ψnk〉〈ψnk|. (2)

Here, nF (εnk) represents the Fermi-Dirac distribution. The
total energy of the self-consistent mean-field approximation
is a sum of the band energy E θv

b and the Fock exchange
energy E θv

ex ,

E θv

b =
∫

d2k

4π2
Tr

[
T̂kρ̂

θv

k

]
, (3)

E θv

ex = 1

2

∫
d2k

4π2
Tr

[
�̂F

k ρ̂
θv

k

]
, (4)

where the superscript θv stands for the polar angle of valley
polarization of the converged density matrix. The valley-
polarization vector can be expressed as

τ = 1

|ne|
∫

d2k

4π2
Tr

[
ρ̂

θv

k (τ̂xex + τ̂zez)
]

∼ sin (θv )ex + cos (θv )ez. (5)

Here the trace Tr operates on the 24-dimensional space gen-
erated by the 6pz orbitals, the two spin and two valley degree
of freedoms, and ex, ez represent unit vectors along x and z
directions, respectively. Note, the valley polarization is a con-
served quantity, which is related to momentum polarization.
This conservation can be expressed as [Ĥk, eiφv τ̂z ] = 0, where
Hamiltonian Ĥk commutes with symmetry generator eiφv τ̂z .
Therefore, the ground state can be parametrized by a family
of states related through the azimuthal angle φv . In the above
equation, we have considered φv = 0. More discussion of the
Hamiltonian can be found in Ref. [20]. We used a Lagrange
multiplier to generate the energy landscape associated with
order-parameter rotations.

As shown in Fig. 2, we identified four unique phases of the
quarter metal. These phases are characterized by differences
in the number of Fermi surfaces and their valley polariza-
tion. They are separated by first-order Ising-XY transition
boundaries and first-order annular Lifshitz transition phase
boundaries. The simplest phase among these four appears
at large |ne| and U . It has an Ising-type valley polarization
(|θv = 0〉 or |θv = π〉) and all holes are enclosed in a simply
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FIG. 2. Mean-field phase diagram shows four unique phases of
quarter metal distinguished by their valley-polarization (XY or Ising)
and Fermi-surface topology (simple Fermi sea or annular Fermi sea).
The evolution of band and Fock energies along the white dashed line
as well as the band structure of the black and red points are further
expanded in Fig. 3.

connected Fermi surface (SFS). Designated as the Ising-SFS,
this phase is colored blue in Fig. 2. Its unconventional rela-
tionship between orbital magnetization and valley polarization
is discussed in Ref. [39]. As |ne| decreases in the interlayer
potential range 30 < U < 35 meV, the Ising-SFS undergoes
an annular Lifshitz transition (ALT) where an electronlike
Fermi surface appears at the center of the Fermi sea. This
leads to an expansion of the holelike Fermi surface without
changing the valley or spin polarization. We refer to this state
as the Ising-AFS which is represented as green in Fig. 2. In

contrast, when |ne| decreases at smaller interlayer potential
17 < U < 30 meV, we found that the Ising-SFS goes through
a magnetic phase transition and changes its valley order pa-
rameter from θv = 0 to π/2. We dubbed this state as XY-SFS
because it enclosed all the holes in a single Fermi surface.
Note that the Fermi surface is intrinsically tied to the valley-
order parameter: it adopts a C6 symmetry for θv = π/2 and
C3 for θv = 0. As |ne| reduces to smaller values, XY-SFS also
encounters an ALT. We have labeled this phase as XY-AFS,
and it is distinguished by purple color in Fig. 2.

Figures 3(a) and 3(b) show the band structure εn,kx,ky=0

vs kx for the valley-Ising and valley-XY states, respectively.
While the low-energy electronic states in multilayer graphene
are centered at the zone corner, we fold the bands into the
� point to visualize valley mixing [40]. The valence band
projected valley polarization shows that the quasiparticles in
valley-XY states are a linear superposition of states from
opposite valleys. Such valley mixing is enabled by tripling of
the area of the real-space unit cell. In contrast, the valley-Ising
state merely redistributes the holes all into one valley [say
τz = −1 in Fig. 3(a)] without changing the valley content
of the spinor. We note that Fermi surface of both of these
symmetry-broken metals can undergo annular Lifshitz transi-
tion because the band structure has a local minimum at k = 0,
as shown in Figs. 3(a) and 3(b).

In order to understand the Ising-XY phase transition,
we break down the energy difference between |θv = 0〉 and
|θv = π/2〉 into the band contribution and exchange contri-
bution across various ne. As illustrated by the purple curve
in Fig. 3(c), the band energy of the Ising state is higher than
that of the XY state. This is because the XY state requires a

FIG. 3. (a) Band structure (along kya = 0) of valley-Ising phase at ne = −2.9 × 1011 cm−2 and (b) valley-XY phase at ne = −2.5 ×
1011 cm−2, respectively, at U = 25 meV. The chemical potential (μ) is marked by gray horizontal dashed line in both cases. (c), (d) Band and
Fock exchange energy difference of valley-Ising and valley-XY phases per charge as a function of density (marked by white dashed line in
Fig. 2) shows the energy difference is increasing while approaching charge neutrality. The band energy in Ising phase is higher than valley-XY
phase, whereas exchange energy of valley-XY phase is higher than valley-Ising phase. (e) Difference in layer pseudospin average Lθv

x per
charge in valley-Ising and valley-XY states decreases while approaching charge neutrality. This indicates why exchange energy difference
between these two states is increasing with decreasing hole density. (f) The total energy difference between valley-Ising and valley-XY phases
vs ne identifies the phase transition at ne ≈ −2.78 × 1011 cm−2. The positive slope indicates the chemical potential of the Ising state is higher
than the XY state.
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lesser degree of quasiparticle redistribution from the param-
agnetic state. Consequently, from a band energy perspective,
the XY state is favored over the Ising state as the quarter
metal’s magnetic ground state. Importantly, this preference is
reinforced at lower |ne|, thus, the band energy contributes to
driving the density-induced first-order Ising-XY phase transi-
tion. The chemical potential difference between Ising and XY
states from the band energy can be inferred from the slope in
Fig. 3(c):

∂
(
E θv=0

b − E θv=π/2
b

)
∂ne

≡ μ
θv=0
b − μ

θv=π/2
b > 0. (6)

Figure 3(d) shows that the XY state’s exchange energy
is elevated compared to the Ising state’s exchange energy.
This energy difference can be traced back to the nonuniform
alignment of quasiparticle valley polarization in the XY state,
as shown by the color variations in Fig. 3(a). However, as
|ne| decreases, the difference between these exchange energies
E θv=π/2

ex − E θv=0
ex narrows, leading to

∂
(
E θv=0

ex − E θv=π/2
ex

)
∂ne

≡ μθv=0
ex − μθv=π/2

ex > 0. (7)

This trend is attributed to the reduction of interlayer coherence
Lθv=π/2

x − Lθv=0
x with decreasing |ne|, as shown in Fig. 3(e).

The interlayer coherence and layer polarization (per area) is
defined as Lθv

j = ∫
d2k
4π2 Lθv

j (k) where j = x, y, z:

Lθv

x (k) = Tr
[
ρ̂

θv

k (|A1〉 〈B3| + |B3〉 〈A1|)
]
, (8)

Lθv

y (k) = −i Tr
[
ρ̂

θv

k (|A1〉 〈B3| − |B3〉 〈A1|)
]
, (9)

Lθv

z (k) = Tr
[
ρ̂

θv

k (|A1〉 〈A1| − |B3〉 〈B3|)
]
. (10)

Here |A1〉 and |B3〉 represent the outermost layer sublattices.
Note the antisymmetric layer coherence remains zero for
both types of valley polarization Lθv=0

y = Lθv=π/2
y = 0.

For all ne and U , although the layer polarization is
greater in magnitude than layer coherence, for exam-
ple, Lθv=0

z /|ne| ∼ −7.584, Lθv=π/2
z /|ne| ∼ −7.583, and Lθv=0

x

/|ne| ∼ −1.283, Lθv=π/2
x /|ne| ∼ −1.228 at ne,U = −2.9 ×

1011 cm−2, 25 meV, their difference (Lθv=π/2
z − Lθv=0

z )
/|ne| ∼ 10−3 is an order of magnitude smaller than those
shown in Fig. 3(e). This is because the Lz is mainly
determined by the interlayer potential and the position of
the Fermi level.

As a result, while the exchange energy leans towards the
Ising state as the magnetic ground state of quarter metal, this
inclination becomes less pronounced at smaller |ne|. In this
sense, the exchange energy also contributes to driving the
Ising-XY phase transition as |ne| reduces. Figure 3(f) plots the
total energy difference between Ising and XY and indicates
the phase-boundary at ne ∼ −2.78 × 1011 cm−2.

III. REENTRANCE OF PARAMAGNETIC METAL AT LOW
DENSITY AND THE LAYER VORTICITY

In the large interlayer potential (U ) and lowest-density (ne)
region of the ne-U phase diagram for multilayer graphene,
an interesting question arises: Why does the spin- and

valley-polarized magnetic quarter metal transition into a para-
magnetic metal as density (|ne|) decreases, in sharp contrast
to the two-dimensional electron gas (2DEG)? In this section,
we discuss how the distinctive topological band properties of
multilayer graphene lead to a narrowing energy gap between
the magnetic states and paramagnetic state as |ne| decreases.
This trend provides a crucial ingredient in understanding
the reentrance of the paramagnetic phase observed at low
densities [1,2].

Figures 4(a) and 4(b) plot the band energy and exchange
energy per particle of the Ising states relative to the para-
magnetic state. The first feature to notice is that the energy
difference of the Ising state relative to the paramagnetic state
significantly surpasses the energy gap between the Ising and
XY states, i.e., the magnetic anisotropic energy [cf. Figs. 3(c)
and 3(d) and 4(a) and 4(b)]. A second important feature
is the swift decline in exchange energy per particle of the
magnetic state relative to the paramagnetic state as |ne| de-
creases. Meanwhile, the band-energy difference per particle
stays relatively constant. This disparity, which is on the or-
der of a magnitude, contrasts significantly with behaviors
seen in 2DEG. In 2DEG, as ne decreases, the kinetic energy
difference between the fully spin-polarized state and the para-
magnetic state,

(
EFM

b − EPM
b

)
/ne = 1

r2
s

Ry, (11)

changes more quickly than their Fock energy difference

(
EFM

ex − EPM
ex

)
/ne = −8

√
2

3π

(
√

2 − 1)

rs
Ry, (12)

where π (rsaB)2 = 1
ne

, aB = 5.29 × 10−11 m is Bohr radius,
and Ry = 13.6 eV. We found that such different density de-
pendencies of the band and Fock energies between 2DEG
and multilayer graphene arise from the topological band prop-
erties of multilayer graphene. In an N-layer rhombohedral
graphene electronic system, the first valence and conduc-
tion band can be approximately described by an effective
two-orbital Hamiltonian comprised of the outermost layer
pz orbitals, e.g. A1-BN . These two degrees of freedom A1

and BN form a layer pseudospin and it winds 2πN around
the Brillouin zone corner, leading to a vortex structure in
the momentum space. The exchange energy, which favors a
uniform distribution of layer pseudospin in momentum space,
challenges this vortex configuration. See [41] for more details.

Figures 4(c) and 4(d) depict the valence band projected
layer pseudospin orientation inside the holelike Fermi surface
for both the valley-Ising and paramagnetic phases. Arrows
indicate the in-plane layer polarization Lx(k), Ly(k) and [cf.
Eq. (8)] the color indicates the values of Lz(k). These vortex
cores are highlighted by the black dots. The vortex cores
are situated close to the valence band maximum and their
corresponding layer polarization (Lx, Ly, Lz ) ∼ (0, 0,−1). As
the pseudospins approach the vortex cores (or the band edge),
they change rapidly to align their pseudospin towards the
(0, 0,−1) directions.

In the paramagnetic state, the Fermi level is situated very
close to the valence band edge with a Fermi energy of εF ∼
2.5 meV at ne,U = −2.9 × 1011 cm−2, 25 meV. Thus, LPM

z
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FIG. 4. (a) The band energy of the Ising state with respect to paramagnetic state decreases while approaching charge neutrality. (b) The
Ising Fock energy increases linearly with respect to paramagnetic Fock energy as |ne| deceases. (c) Layer pseudospin orientation of the holes
enclosed in a C3 Fermi surface in the valley-Ising quarter metal. As we circle the Fermi surface anticlockwise, the pseudospin rotates by 6π .
Result is obtained at ne,U = −2.9 × 1011 cm−2, 25 meV. (d) Layer pseudospin orientation of the holelike Fermi pockets shown in one valley
in paramagnetic phase at same ne,U . (e) The layer pseudospin Lz of paramagnetic phase changes faster than valley-Ising phase with respect to
density, and consequently the exchange energy gap between valley-Ising and paramagnetic phases shrinks towards charge neutrality.

changes rapidly with decreasing |ne|. On the other hand, in
the quarter metal (be it Ising or XY), the area of the single
holelike Fermi surface expands by a factor of 12 compared
to the area enclosed by the small holelike Fermi pocket in
the paramagnetic state. This causes the Fermi energy to be
situated further from the valence band edge even when both
states share the same values of ne and U , with εF ∼ 4.8 meV.
Therefore, Lθv=0,π/2

z changes slowly with decreasing |ne|. In
Fig. 4(e), we show (Lθv=0

z − LPM
z )�ex/|ne| vs ne and note that

this slope closely resembles the slope in (E θv=0
ex − EPM

ex )/|ne|
vs ne shown in Fig. 4(b). Thus, this density dependence of the
layer polarization can reduce the exchange energy difference
between the quarter metal and paramagnetic state, thereby
significantly influencing the reemergence of the paramagnetic
state.

IV. EFFECT OF SPIN-ORBIT
COUPLING ON QUARTER METAL

It is not unreasonable to assume that SOC plays a more
important role in shaping the magnetic anisotropy landscape
compared to the lattice-scale Coulomb interaction [42,43].
When we approximate lattice-scale Coulomb interaction by a
delta-function interaction, it is clear that it will not alter the
distribution of particles with identical spin-valley quantiza-
tion. Notably, unlike the zeroth Landau-level wave functions
in graphene where sublattice and valley degrees of freedom
are identical, the quasiparticle wave functions in RTG exhibit
rather complex orbital dependence. Nevertheless, a direct
mean-field calculation suggests that intervalley scattering with

a magnitude of u⊥ = 0.5 meV has very small impact on the
quarter-metal phase diagram (see Appendix B). Therefore, our
analysis of magnetic anisotropy energy of quarter metal will
center on the SOC.

Since spin-orbit coupling that is off diagonal in layer de-
gree of freedom (e.g., Rashba SOC) is suppressed by the
application of large electric displacement field, we focus on
the simple momentum-independent Kane-Mele–type SOC,

ĤKM = λ σ̂z τ̂zŝz. (13)

This Hamiltonian reduces the full SU(2) spin-rotation sym-
metry down to U(1) symmetry as it only commutes with
the generator of sz rotation: [ĤKM, eiφs ŝz ] = 0. Note σ̂z =
|A1〉 〈A1| − |B3〉 〈B3| here is taken as the layer polarization
between the A1-B3 sublattice [41,44]. This form of SOC can
be derived by considering the point-group symmetry of rhom-
bohedral trilayer graphene [45,46].

When adding Eq. (13) (with λ = 30 µ eV) to Eq. (1), and
carrying out the self-consistent calculations, we obtained the
phase diagram shown in Fig. 5(a). A quick comparison be-
tween Figs. 5(a) and 2 shows that even a modest value of
SOC (λ = 30 µ eV) has a pronounced effect on the ne-U phase
diagram for the quarter metal. Note λ has almost no effect
on the annular Lifshitz transition (ALT) phase boundaries.
This is because the two phases on both sides of the ALT
phase boundary have identical spin-valley order parameters.
Thus, SOC lowers their energy in a similar way. In contrast,
the Ising-XY phase boundary is shifted dramatically in the
direction that expands the Ising phase, strongly influencing
the magnetic anisotropy energy landscape.
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FIG. 5. (a) Modification of the phase diagram in Fig. 2 due to a Ising spin-orbit coupling of λ = 30 µ eV. (b) Valley and spin texture of
valley-Ising state with simply connected Fermi surface (Ising-SFS) for ne,U = −2.9 × 1011 cm−2, 18 meV. (c) Valley and spin texture of
valley-XY state with simply connected Fermi surface (XY-SFS) for ne,U = −2.4 × 1011 cm−2, 18 meV.

The principal effect of ĤKM is to introduce correlation
between the quasiparticle valley polarization and its spin
quantization. In order to understand this correlation, we plot
the momentum-space distribution of spin and valley polar-
izations for the holes in the Ising and XY states. For the
Ising ground state, the spin polarizations of all the holes are
aligned in the +z direction while their valley polarizations are
all aligned in the −z direction. This state is represented by
the notation |θv, θs〉, specifying the valley-polarization angle
θv and the spin-polarization angle θs. This state is called
the Ising state because the energies of |θv = π, θs = 0〉 and
its time-reversed counterpart |θv = 0, θs = π〉 are the same.
The effect of SOC in the Ising phase is to introduce a uni-
axial easy axis normal to two-dimensional material plane.
Note while the spin-quantization axis contains spatial infor-
mation (in this case, it is perpendicular to the two-dimensional
material plane), the valley polarization lacks any spatial
interpretation.

In addition to the the Ising state, we identified another sta-
tionary solution characterized by an order parameter defined
by nonzero values of τx, sx, and τzsz. We named this station-
ary solution the valley XY, denoted as |θs = π/2, θv = π/2〉.
Note the total energy of this state remains unchanged under
rotations generated by eiφs ŝz and eiφv τ̂z rotations, justifying the
valley-XY nomenclature. Figure 5(c) shows the valley po-
larization and spin polarization of |θs = π/2, θv = π/2〉 for
the holes enclosed inside the C6 Fermi surface. Navigating
around the Fermi surface clockwise, the valley polarization
exhibits an oscillatory pattern about the τx axis. This specific
valley-polarization configuration aims to minimize both the
exchange and band energies: it minimizes the exchange en-
ergy by predominantly aligning the valley polarization along
the x direction and introduces a valley-population imbalance
across six unique momentum regions to further reduce band
energy. The presence of a finite SOC generates a similar
oscillatory pattern in spin so that the valley polarization
(〈ψnk| τ̂ |ψnk〉) is almost locally antiparallel to spin polariza-
tion (〈ψnk| ŝ |ψnk〉) in momentum space. Contrary to the Ising
state, which reduces its energy linearly with SOC, the XY
state decreases its energy quadratically in λ.

The valley-XY and valley-Ising order parameters are
visualized on two Bloch spheres in Fig. 6. Arrows touch-
ing the Bloch sphere represent maximium polarization, as
seen in the valley-Ising state. Note, the valley-XY phase
lacks maximum spin and valley polarizations because of its

FIG. 6. The effect of Kane-Mele spin-orbit coupling (SOC) on
the order parameters of valley-Ising and valley-XY quarter metals is
illustrated on the two Bloch spheres. The ±z directions on the these
spheres correspond to the |↑, ↓〉 and |K, K ′〉 degrees of freedom. In
the valley-Ising state, SOC pins the spin and valley polarizations
in the ±z and ∓z directions. Conversely, in the valley-XY phase,
it aligns them in directions orthogonal to z. The XY phase features
two soft modes, arising from independent rotations of spin and valley
order parameters within the magnetic easy plane. Refer to the main
text (Sec. IV) for discussion on the magnitude of the arrows.
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FIG. 7. (a) The slope of the phase boundary for ne,U = −2.9 × 1011 cm−2, 18 meV indicates that the rate at which B‖ lowers the energy

of valley-XY state is less than the rate at which λ lowers the energy of the valley-Ising state. (b)
MXY

‖
(μXY−μI ) is calculated along the phase boundary

which is equal to the slope ∂ne
∂B‖

indicated in Fig. 1 for the specific ne and U .

nonuniform momentum distribution of spin polarization and
valley polarization as shown in Fig. 5(c).

In Appendix D, we use the Lagrange multiplier ĤL(n) =
λL[n · ŝ + n · (ei π

2 τ̂x τ̂e−i π
2 τ̂x )] to further expand on the energy

landscape of other possible quarter-metal phases in the pres-
ence of spin-orbit coupling.

V. DISPLACEMENT OF THE ISING-XY
PHASE BOUNDARY

In this section, we extend the electronic phase diagram of
the quarter metal from the two-dimensional ne-U parameter
space to the more comprehensive four-dimensional ne-U -λ-B‖
space. Here, λ denotes the Kane-Mele SOC (introduced in
the last section) and B‖ represents the in-plane Zeeman field.
In this expanded parameter landscape, we first examine the
movement of Ising-XY phase boundary as a function of λ

and B‖, keeping ne,U fixed. Then, we study the movement
of this phase boundary as a function of ne and B‖, keeping
λ,U fixed. The latter analysis enables us to correlate λ to the
experimentally observable metric dne/dB‖.

We compute the ne-U -λ-B‖ phase diagram by solving the
following self-consistent mean-field equation at various den-
sity ne and interlayer potential U :

Ĥk = T̂k + �̂F
k , T̂k = T̂k + ĤKM + ĤB‖ , (14)

where T̂k and �F
k are described in Eq. (1). The Kane-Mele

SOC ĤKM is defined in Eq. (13) and the Zeeman energy is
given by the following:

ĤB‖ = − 1
2 gμBŝxB‖. (15)

Here g = 2 is the gyromagnetic ratio, μB is the Bohr magne-
ton, and ŝx is the first Pauli matrix.

The valley Ising-XY phase boundary is defined by the
following equation:

E θv=0(ne,U, λ, B‖) = E θv=π/2(ne,U, λ, B‖), (16)

where the total energy is

E θv (ne,U, λ, B‖) ≡ 1

2

∫
d2k

4π2
Tr

[
(T̂k + Ĥk)ρ̂θv

k

]
. (17)

Figure 7(a) shows the movement of the Ising-XY phase
boundary as a function of B‖ and λ for fixed ne and
U . To leading order in B‖, the total energy of the state
|θv = π/2, θs = π/2〉 is lowered while |θv = 0, θs = π〉
is unaffected. In contrast, to leading order in λ, the
total energy of the state |θv = 0, θs = π〉 is lowered
while |θv = π/2, θs = π/2〉 is unaffected. The slope
d (gμBB‖)/dλ > 1 means SOC is more effective in reducing
the energy of the Ising state compared to the energy
reduction achieved by the Zeeman effect on the XY
state |θv = π/2, θs = π/2〉. This is simply because the
out-of-plane spin polarization of the Ising state is greater
than the net in-plane spin polarization of the XY state, as
shown in Fig. 6. Note that when the Zeeman field reaches
a sufficiently high value (i.e., gμBB‖ � λ), the Ising state
manifests field-induced in-plane spin polarization, such that
θs = π − δ and θv = δ, with δ � π .

Next, we consider the Ising-XY phase boundary as a
function of ne and B‖ for fixed λ and U . Since ne and B‖
are thermodynamical conjugate to chemical potential and
magnetic moments, a small variation of density ne around
Ising-XY boundary at n∗

e and B‖ around 0, results in the
following energy changes:

E θv=0(ne,U, λ, B‖) = E∗ + μθv=0dne − Mθv=0
‖ dB‖, (18)

E θv=0(ne,U, λ, B‖) = E∗ + μθv=π/2dne − Mθv=π/2
‖ dB‖,

(19)

where E∗ = E θv=0 (n∗
e , U, λ, B‖ = 0) = E θv=π/2(n∗

e ,U, λ,

B‖ = 0) is the equilibrium free energy when B‖ = 0. As the
spins of the Ising phase are pinned out of the two-dimensional
material plane by the Kane-Mele SOC, the in-plane spin
moment vanishes at leading order in B‖, i.e., Mθv=0

‖ = 0.
Thus, the Ising-XY phase boundary evolves in ne-B‖ space
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according to

∂ne

∂B‖
= Mθv=π/2

‖
μθv=π/2 − μθv=0

. (20)

Note Mθv=π/2
‖ is the magnitude of the spin magnetization so

the sign of ∂ne
∂B‖

is determined by the denominator:

μθv=π/2 − μθv=0 ≡ μ
θv=π/2
b + μθv=π/2

ex − μ
θv=0
b − μθv=0

ex < 0.

(21)

We used Eqs. (6) and (7) to establish the above relationship.
Figure 7(b) shows that the ratio Mθv=π/2

‖ /(μθv=π/2 − μθv=0)
has very weak dependence on the strength of SOC λ. Given
that Mθv=π/2

‖ = gμBsθv=π/2
x and considering sθv=π/2

x ≈ 1 per
hole at the densities where the XY state is the ground state,
it is clear that the weak λ dependence in ∂ne

∂B‖
is attributed to

the small increment of |μθv=π/2 − μθv=0| as λ increases.
Our analysis enables to compute the in-plane spin suscep-

tibility χ‖ of the Ising state |θv = 0, θs = π〉:

χ‖ = ∂2E θv=0

∂B2
‖

∼ 8 µeV T−2. (22)

See Appendix C for more about in-plane spin susceptibility.
Since 1/χ‖ represents the resistance to collectively rotating
the spin away from the uniaxial magnetic easy axis, 1/χ‖
increases with the strength of spin-orbit coupling.

VI. QUARTER METALS IN BERNAL BILAYER
GRAPHENE AND BEYOND

So far, our study has primarily focused on the quarter-metal
phase diagram of rhombohedral trilayer graphene (RTG).

In this section, we contrast the phase diagram of RTG with
Bernal bilayer graphene (BBG). BBG is another system where
experimental studies [3,8,9] have confirmed the presence of
the quarter metal. Our objective here is to elucidate the core
principles of magnetism that could be universally applicable
to all multilayer graphene electron gas systems, while also
highlighting specific nuances that are harder to predict.

The mean-field phase diagram of BBG is shown in Fig. 8,
which agrees qualitatively with Ref. [36]. Both RTG and
BBG’s quarter-metal phase diagrams feature the valley-XY
and valley-Ising states, yet they differ significantly in certain
aspects. First, quarter metal in BBG occurs at density |ne|
that is three to five times smaller than that in RTG. This is
consistent with the experimental observations in Refs. [1,2].
Second, the valley-XY phase in BBG occupies a very small
region in the ne-U phase diagram. Finally, there is a notable
distinction in the magnetic anisotropic energy landscape: in
RTG, the valley-Ising transitions into the valley-XY as |ne|
decreases, whereas in BBG, the transition occurs from the
valley-XY to the valley-Ising with decreasing |ne|. We will
first address the initial two points using general principles
inherent to multilayer graphene systems. Subsequently, we
will discuss the difference in magnetic anisotropic energy
landscape, which exemplifies the nuanced specifics that chal-
lenge predictability.

Half 
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FIG. 8. Mean-field phase diagram of quarter-metal phases in
BBG shows valley-XY phase is the ground state close to the half-
metal. As the hole density decreases, the valley-XY state transitions
into the valley-Ising state.

Given that BBG’s quarter metal is observed at a density
roughly five times less than RTG, the area of the Fermi sea
in BBG contracts by the same factor when compared to RTG.
While this reduced Fermi sea area does not alter the spin and
valley order parameters of the Ising phase, it does enhance
the variation of valley polarization within the Fermi sea for
the valley-XY phase. This variation raises valley-XY’s ex-
change energy rendering it less stable as the ground state.
This underlines the reason why the valley-XY phase occu-
pies a smaller ne-U phase space in BBG compared to RTG.
To further elucidate this point, we plot the valley polariza-
tion τz of the valley-XY phase in BBG in Table I, obtained
from self-consistent mean-field calculations. Similar to RTG,
as the Bloch states traverse the Fermi surface, the vector
τk = (τx,k, τz,k ) exhibits oscillatory behavior reminiscent of

TABLE I. Comparison of the valley-XY quarter metal in rhom-
bohedral trilayer graphene (RTG) and Bernal bilayer graphene
(BBG). Here ne, Eex/|ne|, and τx represent density, the exchange
energy per particle (measured with respect to the paramagnetic state),
and the order parameter, respectively. τz,k = 〈ψnk|τ̂z|ψnk〉 denotes
the valley polarization of the hole-occupied Bloch states and τz =
cos θv = 0. Note the stronger variation of τz,k in BBG raises the ex-
change energy per hole in comparison to RTG. For these calculations,
we set U = 28 meV.
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a domain wall. Yet, a closer look at the color bar in Table I
shows that the variations of τz,k in BBG are more pronounced
than in RTG.

We now turn our attention to the magnetic anisotropic
energy landscapes of quarter metal in RTG and BBG. In both
systems, the exchange energy invariably promotes the Ising
phase as the ground state, while the band energy gives always
preference to the XY phase. However, their mean-field energy
differences are minimal and are swayed by detailed factors
such as layer polarization. For BBG, our observations indicate
that, at large |ne|, the band-energy difference is greater than
the exchange-energy difference. This means the valley-XY
phase is the dominant ground state. In contrast, RTG behaves
oppositely.

VII. SUMMARY

In conclusion, we have addressed four pertinent questions
concerning the low-density portion of the magnetic phase
diagram in rhombohedral trilayer graphene:

(1) Magnetic anisotropy of the quarter-metal ground state.
We identified two competing ground states for the quarter
metal: the valley-Ising state and the valley-XY state, detailed
extensively in Sec. II. At large values of |ne| and U , the
valley-Ising state is the quarter-metal ground state. As we
decrease |ne| and U , it undergoes a first-order phase transi-
tion to become the valley-XY state. This transition is driven
by both the band and exchange energies. Although the ex-
change effect unambiguously favors the valley-Ising state as
the ground state, the exchange energy of the valley-XY state
becomes similar to the valley-Ising state with reducing |ne|.
This narrowing of exchange energy gap between them is due
to the subtle differences in their layer polarization.

(2) Sublattice pseudospin polarization and the reentrance
of paramagnetic state. We found that the exchange-energy
difference between the quarter metal and the paramagnetic
state, denoted as E θv

ex − EPM
ex , can be strongly influenced by

the layer pseudospin. Given that the area of the Fermi sea in
the quarter metal is 12 times larger than the Fermi pockets
in the paramagnetic state, the Fermi level of the quarter metal
is situated further from neutrality compared to that of the
paramagnetic state. As a result, as |ne| reduces, the layer
polarization in the paramagnetic phase increases more rapidly
than in the quarter-metal phase, resulting in ∂ (E θv

ex − EPM
ex )/

∂ne > 0.
(3) Magnetic anisotropy and Kane-Mele spin-orbit cou-

pling. We examined the influence of Kane-Mele spin-orbit
coupling (SOC) on the quarter-metal phase diagram. This
SOC term lowers the energy of a many-body state where the
z component of the spin polarization (sz) is antiparallel to
the z component of the valley polarization (τz). Here, the z
direction is normal to the two-dimensional material plane. In
the case of valley-Ising quarter metal, this SOC establishes
a magnetic easy axis. Here, the spin-quantization axis of all
Bloch states is uniformly aligned along ±ez and that the valley
polarization is everywhere antiparallel to it, i.e., ∓ez. For
the valley-XY quarter metal, this SOC introduces a magnetic
easy plane. In this scenario, both the spin polarization and
valley polarization of the Bloch states predominantly orient
themselves perpendicular to ez. Minor oscillations in τz and sz

are observed within the Fermi sea. This anisotropy indicates
that while the Kane-Mele SOC gives preference to the valley
Ising as the ground state, an in-plane magnetic field favors the
valley XY as the ground state.

(4) Displacement of Ising-XY boundary. In our study of
the Ising-XY boundary in the four-dimensional parameter
space, defined by density ne, interlayer potential U , in-plane
magnetic field B‖, and SOC strength λ, we found that the
Ising-XY phase boundary follows the trajectory ∂ne/∂B‖ ∼
−0.5 × 1011 cm−2 T−1 within the ne and B‖ parameter space.
Furthermore, we have computed the in-plane spin susceptibil-
ity of the valley-Ising quarter metal to be χ‖ ∼ 8 µeV T−2.

We centered our attention on RTG due to its experimental
significance and its representation as the most rudimentary
form of rhombohedral-stacked multilayer graphene. It is note-
worthy that the density of states (DOS) in RTG significantly
exceeds that of its ABA Bernal-stacked trilayer graphene
counterpart. Levering on this pronounced DOS, Refs. [5,6]
have recently identified correlated metals and insulators in
rhombohedral-stacked pentalayer graphene even without the
application of an external electric displacement field.

Note added. Recently, we became aware of parallel ex-
perimental work focusing on determining the strength of
Kane-Mele spin-orbit coupling (SOC) using the effect of B‖
on phase transition boundaries in RTG. In the quarter-metal
region, two competing ground states have been identified:
the valley-imbalanced (VI) orbital ferromagnet and the in-
tervalley coherent (IVC) phase, which is equivalent to the
valley-Ising and valley-XY phase, respectively, as discussed
in this work. Reference [31] provides dne/dB‖ ∼ −0.43 ×
1011 cm−2 T−1, which is in rough agreement with our find-
ing. This experiment predicts the Kane-Mele SOC strength
∼50 µ eV.
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APPENDIX A: QUARTER-METAL PHASE DIAGRAM
IN ELECTRON DOPING

At the electron-doping side (ne > 0) in RTG, two types of
quarter metals, namely, valley Ising and valley XY, emerge
within the single Fermi surface (SFS). Unlike the hole-doping
side, the quarter metals on the electron-doping side do not
undergo an annular Lifshitz transition as the charge density
increases. This discrepancy stems from the inherent particle-
hole asymmetry in multilayer graphene, particularly evident
in the conduction bands exhibiting less trigonal warping com-
pared to the valence bands.

In Fig. 9, we present the mean-field phase diagram of
quarter metals in the ne-U phase space. At higher ne and
U , the ground state corresponds to the valley-Ising quarter
metal |θv = 0〉. As ne decreases, the ground state undergoes
a magnetic phase transition, transitioning into the valley-XY
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FIG. 9. Quarter-metal phase diagram at electron-doping side.
The valley-XY phase appears at low electron-doping side. All
quarter-metal phases appear as single Fermi surface (SFS).

phase |θv = π/2〉. Here, θv denotes the polar angle in the
valley-polarization Bloch sphere, as mentioned in the main
text. This phase transition is attributed to the reduced dom-
inance of exchange energy near charge neutrality, analogous
to the discussion in Sec. II of the main text.

APPENDIX B: EFFECT OF INTERVALLEY SCATTERING
ON QUARTER-METAL GROUND STATES

The landscape of magnetic anisotropy energy can be af-
fected by several independent parameters. In the main text,
we have examined four such parameters: ne, U , λ, and B‖. In
this Appendix, we study the impact of intervalley scattering on
quarter-metal ground states and how it alters the ne-U phase
diagram outlined in Fig. 2. We introduce the the self-energy
�̂⊥k into Eq. (1) of the main text, where

�̂⊥k = u⊥
∑

a=x,y

[
Tr

(
τ̂aρ̂

θv

k

)
τ̂a − τ̂aρ̂

θv

k τ̂a
]
. (B1)

Here u⊥ represents the strength of the intervalley Coulomb
scattering. In the above equation, the first term denotes the
Hartree contribution, while the second one corresponds to the
Fock contribution. Their contribution to the total energy is
given by the following:

E θv

⊥H = u⊥
2

∑
a=x,y

∫
d2k

(2π )2

[
Tr

(
τ̂aρ̂

θv

k

)]2
, (B2)

E θv

⊥ex = −u⊥
2

∑
a=x,y

∫
d2k

(2π )2
Tr

[
τ̂aρ̂

θv

k τ̂aρ̂
θv

k

]
, (B3)

TABLE II. Hartree and exchange-energy components of inter-
alley scattering for valley-Ising and valley-XY phases using u⊥ =
0.5 meV at (ne,U ) = −2.9 × 1011 cm−2, 18 meV.

θv 0 π/2

E⊥H/|ne| (meV) 0 0.41
E⊥ex/|ne| (meV) −55.814 −56.228

TABLE III. Change in band and Fock exchange energies for
valley-Ising and valley-XY phases due to change in u⊥ from 0 to
0.5 meV at (ne,U ) = −2.9 × 1011 cm−2, 18 meV.

θv 0 π/2

�Eb/|ne| (meV) 0.761 0.753
�Eex/|ne| (meV) −0.713 −0.703

where ρ̂
θv

k is the density matrix determined self-consistently.
As shown in Table II, despite a notable exchange energy shift
related to the Dirac sea, the energy difference between them is
very small: E θv=0

⊥,H + E θv=0
⊥,ex − E θv=π/2

⊥,H − E θv=π/2
⊥,ex ∼ 4 µ eV per

hole. Furthermore, Table III shows that the variations in both
band energy and (long-range Coulomb) exchange energy, due
to u⊥, are similar for both the Ising and XY states. Con-
sequently, the introduction of intervalley scattering does not
bring about significant alterations to the quarter-metal phase
diagram.

APPENDIX C: SPIN SUSCEPTIBILITY
OF VALLEY-ISING QUARTER METAL

We compute the in-plane spin susceptibility (χ‖) of the
valley-Ising quarter metal for different values of spin-orbit
coupling (λ). χ‖ is defined as

χ‖ = ∂2E θv=0

∂B2
‖

∣∣∣∣
B‖=0

= ∂Mθv=0
‖

∂B‖

∣∣∣∣
B‖=0

. (C1)

Figure 10 shows χ‖ vs λ at ne,U = −2.9 × 1011 cm−2,

18 meV. Since the SOC pinned the spin-quantization axis of
the valley-Ising state in the direction normal to the applied
in-plane field B‖, χ‖ decreases with increasing λ.

APPENDIX D: ENERGY LANDSCAPE OF QUARTER
METAL IN THE PRESENCE OF SPIN-ORBIT COUPLING

So far, we have identified only two quarter-metal ground
states: valley-Ising and valley-XY phases. They are separated
by first-order phase transition boundaries in the ne-U space.
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FIG. 10. In-plane spin susceptibility of valley-Ising quarter metal
is plotted against increasing SOC strength λ for ne,U = −2.9 ×
1011 cm−2, 18 meV.
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FIG. 11. The first column shows the total energy vs θ while the second and third columns show the order parameters of the converged
solution vs θ . θ is defined in Eq. (C1) and we set the λL = 1 µ eV, λ = 30 µ eV.

In this Appendix, we used the following Lagrange multipliers
to further examine their energy landscape:

ĤL(n) = λL[n · ŝ + (n × ez) · τ̂]

= λL(sinθ ŝx + cosθ ŝz + sinθ τ̂x − cosθ τ̂z ). (D1)

Here n = (sin θ, cos θ ) represents the direction of spin po-
larization. We opted not to delve into the two-dimensional
energy landscape generated by independent valley and spin
rotations as ĤKM = λσ̂zŝzτ̂z favors the antialignment of the sz

with τz. Note λσz > 0.
In Fig. 11, we plot the evolution of both the energy

and the associated spin and valley order parameters for the

quarter-metal phases as functions of hole density. At a high
density of ne = −3 × 1011 cm−2, the valley-Ising state, de-
noted by |θv = π, θs = 0〉, establishes itself as the global
minimum, whereas the valley-XY state |θv = π/2, θs = π/2〉
appears unstable. However, when the density is lowered to
ne = −2.8 × 1011 cm−2, the valley-XY state stabilizes and
becomes a local minimum. Reducing the density further
to ne = −2.7 × 1011 cm−2 prompts a shift in the global
minimum from |θv = π, θs = 0〉 to |θv = π/2, θs = π/2〉,
signifying a first-order phase transition. At ne = −2.1 ×
1011 cm−2, |θv = π, θs = 0〉 becomes unstable. Note that the
Lagrange multiplier λL has a minimal impact on shifting the
Ising-XY phase boundary.
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