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Xiaoyang Huang

12" Andrew Lucas,"" Umang Mehta,''* and Marvin Qi®'*

' Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder CO 80309, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

® (Received 2 March 2024; accepted 18 June 2024; published 1 July 2024)

We apply hydrodynamic effective field theory techniques to an ersatz Fermi liquid (FL). Our effective theory,
which captures the correlation functions of density operators at each angle on the Fermi surface, can only deviate

from conventional FL behavior if the effective theory is nonlocal. Neglecting nonlocal effects, the effective action
of the ersatz FL is the Legendre transform of the effective action for FLs, based on the coadjoint orbit method,

up to irrelevant corrections.
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I. INTRODUCTION

Ordinary metals are well described by Landau’s Fermi lig-
uid (FL) theory [1-4]. Experimental observations of physics
not apparently compatible with this description, such as T'-
linear resistivity [5,6] (at very low temperatures), incoherent
plasmons [7,8], and rapid quasiparticle decay rates [9], sug-
gest the need for a new theory of a non-FL (NFL): a strongly
correlated metal without quasiparticles. Various approaches
have attempted to tackle this problem, primarily focused on
quantum criticality or singular interactions in metals (see,
e.g., Ref. [10] and references therein) and disorder-driven
strangeness [11-15].

A series of recent papers [16-22] has argued, in the spirit
of an effective field theory (EFT), that a large class of met-
als have an infinite-dimensional emergent symmetry group at
their infrared (IR) fixed point. The resulting phase was dubbed
the ersatz FL (EFL). For a single-component Fermi surface
in two spatial dimensions, the emergent symmetry group of
the EFL is LU(1) (which we will review shortly). If such
an emergent symmetry group is indeed present, it should be
an ingredient into future EFTs of NFL metals and has at
least appeared missing in many previous constructions. For
example, Else [21] has recently argued that LU(1) symmetry
is powerful enough to lead to a conventional-looking theory
of zero sound (at least, before considering dissipation), which
is, at least in principle, a clear prediction of the EFL EFT. (In
practice, since disorder or irrelevant interactions could break
LU(1), such predictions may be hard to find in experiment.
Indeed, this paper is mostly an effort to better understand the
theoretical implications of the EFL theory.)

On the other hand, one of us has recently demonstrated that
LU(1) is the linear approximation to a non-Abelian group that
generates the low-energy space of states and hence controls
the EFT of a conventional FL [23,24] (see Refs. [25-28] for
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previous approaches to bosonizing Fermi surfaces in d > 2).
Since the nonlinear corrections to this bosonized theory for
even an ordinary FL break LU(1), it is thus unclear if LU(1)
should be imposed as a fundamental emergent symmetry of
a more general NFL, especially when trying to build a con-
trolled EFT description of such a NFL.

In this paper, we take the perspective that it is worth un-
packing, from the point of view of an effective field theorist,
what some of the implications must be of the EFL proposal.
We thus present a discussion of the EFT of an EFL using the
formal methods developed for fluids and superfluids over the
past two decades [29-34] (see Ref. [35] for a review). Such
methods are, in fact, quite natural for this problem: After all, a
theory of a superfluid/fluid is simply the EFT of a theory with
U(1) symmetry which is/is not spontaneously broken. Our
goal is to sharply pinpoint where, if at all, the most general
possible EFT of an EFL can differ from the conventional
FL theory. While such tasks are inevitably complicated by
the quite subtle nature of renormalization group analyses for
theories with a Fermi surface [2—4,36-43], we will argue that
if the only slow/gapless degrees of freedom in the theory are
the bosons associated with the LU(1) symmetry (physically,
related to the fermion number at each angle on the Fermi
surface), our EFT either appears inconsistent or consistent
with usual FL theory with very irrelevant interactions. In other
words, EFLs on their own are so strongly constrained that it
is not possible for them to behave differently from ordinary
FLs in the IR. The exception to this conclusion is when the
EFL is coupled to another gapless mode, such as a critical
boson, in an LU(1)-invariant manner, in which case the EFL
EFT may become strongly correlated; we do not attempt a
careful analysis of such a regime in this paper, except to note
that such an EFT will necessarily appear nonlocal.

Using the hydrodynamic interpretation of the EFL EFT, we
can also make a physically transparent connection to the coad-
joint orbit formalism of Ref. [23]. Up to irrelevant corrections,
the EFL EFT we obtain is simply the Legendre transform of
the coadjoint orbit theory (written in an alternative way). This
simple relationship is, in fact, required for consistency with
thermodynamic requirements on the hydrodynamic EFTs for
fluids.

©2024 American Physical Society
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In this paper, we focus only on EFTs in flat spacetime
in d = 2; however, we note that our approach is the natural
starting point for coupling an EFL to general backgrounds, in-
cluding curved space. We also neglect the higher-dimensional
setting, although our conclusions do not sensitively depend on
the dimensionality of space.

II. SYMMETRIES OF THE EFL

We set out to construct an EFT for a fluid charged under
an LU(1) symmetry. An element of LU(1) can be presented
as a function « : U(1) — U(1); here, we are thinking of
U(l) = R/2xZ; the group operation is simply addition of
functions, i.e., LU(1) is Abelian. In an EFT for a system with
an (unbroken) LU(1) symmetry, following Refs. [29,30,32],
we anticipate the slow degrees of freedom to include phase
variables associated with each generator of LU(1). Letting
0 € R/2nZ denote the parameter of LU(1)—in more phys-
ical terms, the angle along the Fermi surface—this implies we
have degrees of freedom:

(", 0) > p(x", 0) + a(6), ey

that shift nonlinearly under LU(1) transformations. Here,
x* = (t, x") includes both time and space coordinates: As is
usual, puv denote spacetime indices, while ij denote space
indices alone.

We assume that there are no further degrees of freedom
in the theory. From a hydrodynamic perspective, this should
be reasonable: The only other slow degrees of freedom not
accounted for could be the energy and momentum. However,
to the extent that the energy and momentum currents have
vacuum expectation values (as we focus on zero-temperature
physics in this paper), these overlaps are expected to come
entirely from the presence of the LU(1) conserved charges.
For this reason, we will build an effective Lagrangian L(¢)
alone. The LU(1) conserved charge densities will be denoted
as p(x*,60) and can be obtained from Noether’s theorem
straightforwardly:

p(x*,0) = L- @)
[0, p(x+, 0)]

To ensure that the LU(1) symmetry is not spontaneously
broken, we demand that the theory be invariant under the
following reparameterization symmetry:

9 — ¢+ x(x',0), 3)

where x is a time-independent function from spatial co-
ordinates to LU(1). We note that the need for such a
reparameterization symmetry has been a somewhat confusing
aspect of hydrodynamic EFTs—at least insofar as its physical
origin is not clear. When we compare with the coadjoint orbit
formalism, we will see at least one interpretation for this
symmetry.

We can also couple the EFT to background LU(1) gauge
fields. As we have emphasized above, LU(1) is an Abelian
group; its gauge fields therefore look like conventional U(1)
gauge fields, labeled by an additional flavor 6: A, (x*,6),
which transform under the gauge transformations as

A,(x"0) = A, (x",0) — 3,1(x", 0). @)

Since the same gauge transformation would transform
P, 0) = @(x",0) + 1 (x", 0), )
gauge-invariant objects are given by
B, =0,0+A,. 6)

Not all of them will be our invariant building blocks. In fact,
because the reparameterization symmetry in Eq. (3) is not a
special case of the gauge transformation above (y does not
modify A,,), we forbid the spatial components to appear at the
leading order in EFT. The timelike component

B,(x",0) = u(x",0) @)

is the chemical potential for the LU(1) conserved charges;
notice that there is one for every 0. Other invariant blocks
can be obtained by acting spatial and temporal derivatives,
and they should be organized by the derivative expansion; 6
derivative, however, is allowed to be added on invariant blocks
without raising its derivative orders [44].

In addition to LU(1), we assume an SO(2) rotational sym-
metry that not only acts on the spatial manifold but also
transforms 6. Unlike the usual fluid, LU(1) contains a vec-
torlike object under SO(2) given by [45]

n(®) = (cos @, sin0)7, (8)

which denotes the direction of the Fermi momentum/velocity
(for a circular Fermi surface) as a function of 6. From the
perspective of the EFT, this vector can be incorporated into
invariant building blocks and into the Lagrangian.

A particularly critical place where this will appear is in
the description of an LU(1) anomaly, which encapsulates the
earlier result that [25,26,46]

(0@, xi,6), p(t, x],6")] = iCn - V6@ (x; — x))8(6 — 6"),
©)

with a constant C. This commutation relation gives a central
extension of the Abelian LU(1) algebra. The physical con-
sequence of this generalized algebra is that, under a static
perturbation:

AH = —/dtdzxdG V(x)p(x*, 0), (10)

the charge density is no longer conserved and is broken by the
electric field E = —VV:

3,p(x",0) = i[AH, p(x*,0)] = Cn - E. (11)

In analogy to the Luttinger liquid, the anomalous charge con-
servation renders the filling v to be fixed by the volume of
the Fermi sea Vg: v = |C|Vr/pr, which is Luttinger’s theorem
when |C| = pr/Q2n )2 [16,47]; we will see later when compar-
ing with the coadjoint orbit theory that this is indeed the case.

Intriguingly, if the Fermi surface has lower spatial sym-
metry, the anomaly can be generalized. For example, for a
rectangular Fermi surface with reflection and twofold rotation,
we can have 0,0 = h; jniE /. where h; ;j 1s an invariant tensor.
We shall leave a study of the generic anomaly for future work
and focus on the isotropic Fermi surface in this paper.

In Ref. [16], an extra gauge field component Ay is intro-
duced. Introducing this extra gauge field component enables
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a simple interpretation of the anomaly discussed above in
terms of a single anomaly coefficient. At the same time, these
authors demanded Ay to vanish at linear order to not gen-
erate responses in the absence of the magnetic field, which
essentially forbids Ay to couple to the dynamical degrees
of freedom. This condition raises the question of whether
to include Ay in an EFT Lagrangian. We argue that it is
not natural to incorporate Ay, in part because it is not clear
whether the corresponding operator it would source has a
physical interpretation. [In contrast, A, (6) sources J*(0), the
conserved current associated with each LU(1) conservation
law.] Moreover, since there is only spacetime diffeomorphism,
Ay behaves like a scalar rather than a 1-form and thus is
distinct from the U(1) gauge field A,. Therefore, we do not
couple our EFT to Ay, and for this reason, we did not discuss
Ay when describing the LU(1) anomaly.

We will not include momentum conservation in our hy-
drodynamic EFT. However, unlike in usual kinetic theory,
we do not then also explicitly break the LU(1). In ordinary
kinetic theory, this arises through impurity scattering in the
collision integral, but our EFT is dissipationless and at zero
temperature.

Lastly, given the application of the LU(1)-invariant EFT to
metallic physics, it might be natural to consider the possibil-
ity of an instability to superconductivity. This would require
introducing additional bosonic degrees of freedom for such
cooperons [23,24], and we do not do so in this paper; our goal
is to understand the EFL.

III. LAGRANGIAN EFT

Having discussed LU(1) symmetry and the degrees of free-
dom for our EFT, it remains to build the Lagrangian. To do
so at the ideal fluid level, it is useful to think of the fluid
Lagrangian as defined in such a way that it reproduces the
generating function of correlation functions in the ground
state of the system:

exp(W[A,]) = <exp |:i/dtd2xd9 A#(G)J“(G)i|>

= /D(p exp (i/dtdzx/:[(p;AM]). (12)

We now find the effective Lagrangian L that satisfies the
symmetries discussed in Sec. II. At the lowest order, we have

Lo =P, ...), 13)

where P is the thermodynamic pressure [32,33], and ... in-
cludes one of 9;B;, 0;B;, dyB;, etc. Taking the system to be
in thermal equilibrium at chemical potential w(0), we can
expand the Lagrangian in perturbations §;u = @ — o as

1
Lo ~ 5/d@de/gz(é‘,9/)8/L(x“,9)8u(x“,9/)

1
+§/d9d9’d9”g3(9,9’, 081 (x", 0)

X Su(xt, 08, 0"+ -+, (14)

where the dots include higher order in §u organized by
the function g,.3. Notice that the functionals g,(@, ...) are

in principle completely nonlocal in 6 and can contain 6
derivatives acting on §u. According to the first law of ther-
modynamics, the charge density is given by

aP
Pt 0) = -~ /d@’gz(e,e/)Su(x“,H')-i—-~- . (15)
"

Due to the anomalous charge conservation in Eq. (11), the
generating function in the presence of the background gauge
fields is not invariant under a small gauge transformation; it
thus has a local LU(1) anomaly. Equation (11) implies that
(48]

C .
WA, = 3,21 = —IWIA]+ 5 / drd®xd6 An'Fy,  (16)

where F,, =9,A, —d,A, and E; = F;. The minimal La-
grangian that satisfies Eq. (16) is given by

C )
Eanom = E / de (pnlE't~ (17)

However, Ly,om is not invariant under the reparameterization
symmetry in Eq. (3). To make the total action invariant, we
write

L= EO + Einv + Ean0m9 (18)

where Ly and L,,om are given by Egs. (13) and (17), and Liyy
is the additional part that is gauge invariant. Choosing

C .
ﬁinv = E/de l’llB,'Bt

c .
= E/dG n'(0ip + A9 + Ay, 19)

we find that (after subtracting off total derivatives) the total £
is invariant under the reparameterization symmetry. Collect-
ing Eqgs. (13), (17), and (19), we arrive at

C ; C i
£:P(M)+5/d6n(8;¢+A;)M+5/d6<an,. (20)

This Lagrangian (and the symmetries that underlie the effec-
tive theory) appear different from those put forth in Ref. [47];
the construction of Ref. [47] does not impose the repa-
rameterization symmetry in Eq. (3), which suggests that
LU(1) is spontaneously broken (from the hydrodynamic EFT
perspective).

By varying with respect to ¢, we obtain the equation of
motion:

dp(x*,0)+Cn - Véu(x*,0) = Cn -E. 1)

This equation of motion is exact at the ideal hydordynamic
level. Nonlinear terms are, of course, allowed in the expres-
sion of §u as a function of p. In the limit where the EFL
describes Landau’s FL, we may write

S, 8) ~ Ep(at. 0)
C
UF / ! 4
+E/d0 FO.0)0(",6)+-, (22
where the first term is due to the approximate linear dispersion

near the Fermi surface, and we have parameterized interacting
effects through the Landau parameter F(0,0") = F(0’,0).
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With rotational symmetry, one finds F(6,6') = F(6 —6’).
Comparing with Eq. (15), we find

20,0 = ”C—F[aw —0)+F 0.6, (23)

and the resulting equation of motion in Eq. (21) is the Boltz-
mann equation.

Having constructed the most general LU(1) EFT, we now
discuss the scaling dimensions of the operators within the
EFT to determine the stability of our fixed point u = pg. To
determine the zero-order scaling dimension of the dynamical
field ¢, we look at the Gaussian action:

1
SO — 5 / drdxd6de’ g,(6, 0))3,0(x*, 0)3,0(x", 6')

c
+5/dtd2xd0n~V(p(x“,e)atw(x“,e). (24)

Let us divide the spatial directions into ¢y =n-q and ¢, =
€''n;q;. First, the scaling dimensions [o] = [¢;] = 1 are fixed
by the local LU(1) anomaly (we also take [¢;] = 1 as a mat-
ter of convention): at each angle 6, the action in Eq. (24)
describes a 1 4 1D Luttinger liquid propagating along n(6).
Second, the transverse direction €”/n; does not enter the Gaus-
sian action in Eq. (24); therefore, we are allowed to choose
[gi] =« > 0 as an arbitrary number [49]. We remind the
reader that the fact that ¢ and ¢, scale differently is a general
feature of field theory in the presence of a Fermi surface
[3,4]. Further, we assume that [0] = 0: If [#] < 0, the Landau
parameter would be more relevant than the noninteracting
term in Eq. (23), and if [8] > 0, terms with more 6 derivatives
would be more relevant, and they both suggest an ill-defined
EFT. Then we have

[p] = = 25
90—5- (25)

The leading nonlinear correction is the cubic action:
1
§3 = 3 / drd*xd0de’do” g3(6, 6, 6")d,p(x", 0)

x dp(x*, 00, p(x", 07). (26)

The scaling dimension of its coefficient g3 is given by
o
[gsl =—1— 5 < 0, 27

meaning that it is irrelevant. Since all corrections to £ must
be reparameterization invariant and thus depend on (0;¢)"
with n > 2, there is no other spatially local (in x**) operator
that could be relevant. Therefore, the Gaussian fixed point
governed by Eq. (24) is stable.

We can infer from the irrelevant nonlinear action the
typical decay rate of our LU(1) system according to LU(1)-
symmetric decay channels. The fastest decay rate I' is
determined by the leading nonlinear correction given in
Eq. (26). From Fermi’s golden rule and Eq. (27), we find

I~ gt (28)

Note that, when estimating I', we have neglected the pos-
sibility of ultraviolet (UV)-IR mixing. From the EFL EFT
perspective, this seems like a reasonable assumption. We
highlight that this decay rate is qualitatively slower than the

V. f] = /dt<fvlatv> /dtH[f]

0,f +ady,uf =0 Vo,V

Legendre tranbformatlon !

f = Ay feet IR limit

v

Coadjoint Orbit Theory EFL EFT

FIG. 1. The connection between the ersatz Fermi liquid (EFL)
effective field theory (EFT) and the coadjoint orbit theory.

ordinary w? decay rate of the local density p(x*, #), or equiv-
alently the quasiparticle lifetime, in a FL, which arises due
to two-body scattering on a Fermi surface. This two-body
scattering is an LU(1)-breaking irrelevant perturbation, and
it cannot be written down within our EFT [50]. Thus, at
least for ordinary FLs, the LU(1)-invariant EFT does not
capture the leading irrelevant corrections to the free (Boltz-
mann) IR fixed point. For systems with simply connected
and convex Fermi surfaces in two spatial dimensions, in the
so-called tomographic regime [51], the dominant decay rates
scale faster than w3, so it is possible that, in these regimes,
such LU(1)- mvarlant perturbations could become the domi-
nant corrections.

We then conclude that, if the LU(1) charges are the only
slow degrees of freedom in the EFL EFT, then the EFL EFT
is identical to Boltzmann transport. This is not just a statement
about linear response, as was already highlighted in Ref. [21],
but rather a statement about the EFT as a whole. It is not pos-
sible to find NFL (larger than w?) decay rates for excitations.

We remark that this is not in contradiction to the 1 4 1D
Luttinger liquid theory, where changing the coefficient of
the Gaussian theory will lead to NFL phase. This is be-
cause the typical lifetime in a Luttinger liquid is O(w) larger
than w? [52].

These statements do not preclude the possibility of cou-
pling the EFL to additional gapless modes, and we will briefly
discuss this possibility in Sec. V. However, we emphasize
that, without such additional gapless modes, the EFL EFT
must be identical to conventional kinetic theory up to irrel-
evant corrections.

IV. COMPARISON WITH THE COADJOINT
ORBIT METHOD

In this section, we will show a concrete connection be-
tween the EFL EFT above and a certain limit of the coadjoint
orbit theory of Ref. [23] (see Ref. [24] for a pedagogical
review); see Fig. 1 for a summary of the result.

To begin, take the Lie group G of canonical transforma-
tions of a single-particle phase space (X, p). Its Lie algebra,
denoted by g, is the space of all functions F (X, p) which are
interpreted as 1-particle observables. The dual space g* is the
space of 1-particle distributions f (X, p). The Lie bracket in g
is the Poisson bracket of functions {F, G}. The Lie algebra

035102-4



EFFECTIVE FIELD THEORY FOR ERSATZ FERMI LIQUIDS

PHYSICAL REVIEW B 110, 035102 (2024)

adjoint/coadjoint actions are given by adgF = {G, F} and
adif = {G, f}, while the group adjoint/coadjoint actions are
obtained by exponentiating the algebra adjoint/coadjoint ac-
tions:

AdexpcF = exp(adg)F = F +{G,F} +-- -,
Ady,6f =expady)f = f+1{G, fi+---.  (29)

The group adjoint/coadjoint actions will often be denoted as
conjugation AdyF = UFU~! and Ad;f =gfg~! for nota-
tional simplicity, even though the objects involved are not
matrices. Elements of the Lie group will be denoted by up-
percase Latin letters starting from U, V, .. .. Elements of the
Lie algebra will be denoted by uppercase Latin letters starting
from F, G, . . .. Elements of the dual space will be denoted by
lowercase Latin letters starting from f, g, . . .. The exponential
map from the Lie algebra to the Lie group will be denoted by
exp.

The most general action for a system whose configuration
space is G lives on the cotangent bundle 7*G = G x g* and is
given by

SIV. f] = / dr (F.V 9,V — / dHIfL  (30)

where (f, F) = f d’xd’p/(2m)? F f is the inner product be-
tween the Lie algebra and the dual space and H is the
Hamiltonian. We have demanded the action to be invariant
under left translation on G, i.e., the transformation V — WV,
so H[f] cannot depend on V [53]. Let us first vary the action
with respect to f, and we get

V=19,V —a;H[f]=0. 31)

Then variation of V is implemented by the transformation
V — exp(K)V for arbitrary K(x, p), expanded to linear or-
der in K, and we find 6§ = f dt(w, V=1(8,K)V). After some
algebra, and using Eq. (31), we have

of =—U'8U, Y = —{o;H, [} = —adj , f. (32

This equation of motion on g* is known as the Euler-Poisson
equation [54]. One can show that time evolution as determined
by this equation occurs via the action of canonical transfor-
mations on the initial state, so the phase space g* gets foliated
into coadjoint orbits which do not mix under time evolution. If
we restrict the dynamics to the coadjoint orbit which consists
of all the points from Ad:xp P fret With a reference state fier
and a field ¢ € g, then there is a symplectic structure due
to the Kirillov-Kostant-Souriau theorem [55], from which we
recover the coadjoint orbit action for ¢ studied in Ref. [23].
Instead of integrating out V from the action in Eq. (30),
we can equally integrate out f. Doing this in a saddle point

J

approximation amounts to the Legendre transformation:
(f,V7'aV) —HIf1 =PIV '9V], (33)

where P[u] is the pressure function for pu = V-13,V, the
(phase space) chemical potential. Note that the pressure func-
tion is invariant under left translations V — WV for any
W € G. Letus denote V = exp g, ¢ € g, and we will see that
¢ corresponds to the dynamical field in the EFL EFT. The
left translation symmetry of V' then turns into the shift sym-
metry ¢ — ¢ + o + %{cp, o} + ... which, to leading order in
both ¢ and «, is simply the hydrodynamic reparameterization
symmetry in Eq. (3). The nonlinear terms are a consequence
of the fact that, unlike LU(1), canonical transformations are
non-Abelian. Expanding the pressure in terms of its argument:

3P >
Ny
I

P[M]=Po+<a—
42 o°p s’ ), 8
=0

+1 93P s s\ s
3l PTG 0, W) ou ), op
¢7:

TR (34)

where dP/du € g* given its differential forms and Py =
P(uo), 6 = ;¢ — wo- The chemical potential admits its own
expansion in ¢:

nw=po+0p+5{00. 0} + t{{o0. 0} 0} +--- . (35)

where the equilibrium value (V! 0;V)eq = Mo 1s taken to be
constant. We identify 0P/du as the (phase space) density or
the distribution function f. Its deviation from the equilibrium
distribution fy = @(pr — p) + - - - can be related to the LU(1)
charge density p through the equation of motion (in the g = 0
limit). Specifically, according to the perturbation in Eq. (10),
we have o, f = {§H, fo} = —n - ES§(p — pr), where we used
3, fo = —8(pr — p)n’. Comparing it with Eq. (11), we find
f— fo=—C"'p8(p— pr). Therefore, we can expand the
distribution function as

_ o
b
_ . 8(p—pr) , W 8(p—pr)
=h-—(c— /9 820, 08u(0) — —— —
X / 83(0,6',0")51u (080" + - - - . (36)
06"

Gathering the above, we arrive at

plut =+ [ 25 (a0 + L Lo
(]l =h +f ) fo(P)< v+ {0 ol + 2l tw,w},so}>(p)

_ PF
2C(2m)?

_ PF
6C(2m)?

1 1
/dzﬂi@d@/gz(@, 9/)<3z<p(9)3r</)(9/) + 3 900) 0. e}(0") + §3z¢(9/){3z<ﬂ, <p}(9))

/ d*xd0de’'de” g3(8, 6", 60") 8,¢(6)3,0(8")d,0(8") + O(p™). 37
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The term linear in ¢ is a total derivative; thus, we ignore it. At
the quadratic level, we have

P® = —% / d*xd0de’ g2, 6)3,0(0)3,¢0(0")
- 2(5;)2 /dzxd0n~V(p8,¢. (38)

By comparing with the EFL EFT action in Eq. (24), we arrive
at
_ __PF
Qm)?

(39)

With this value of C, we see that the commutation relation in
Eq. (9) agrees with that in Ref. [23], and Luttinger’s theorem
reads v = Vg/(2m)>.

The most general cubic pressure P®) does not match the
cubic EFT action §® in Eq. (26) due to the additional cross-
terms upon expanding the pressure function. However, in the
long-wavelength limit g = 0, the cross-terms containing the
Poisson bracket vanish, and only the third line in Eq. (37)
survives. Hence, we see that [ df P®|,_o = S©@).

The only discrepancy between our EFL EFT and the coad-
joint orbit action appears at finite g. This can be intuitively
understood as that LU(1) is a larger symmetry that forbids
finite-g transfer among different points on the Fermi surface.
More precisely, the reparameterization symmetry that protects
our EFL EFT from having g-dependent terms is broken ex-
plicitly in the coadjoint orbit method. Indeed, in the ¢ = 0
limit, the action in Eq. (30) only contains d;¢, so after inte-
grating out f, the resulting Lagrangian formalism can only be
functions of 9;¢.

To summarize, our EFL EFT is the Legendre transfor-
mation of the coadjoint orbit action for FL up to irrelevant,
LU(1)-breaking corrections including cubic and higher-order
terms in the dynamical field, and the nonlinear part of the
action agrees with the coadjoint orbit method in the ¢ = 0
limit.

V. TOWARD NFLs?

We have argued above that the EFL EFT by itself
reproduces the EFT of a conventional FL. Here, let us
remark on one possible route to a low-energy EFT that
manifestly looks like a NFL, while enforcing LU(1) sym-
metry. Suppose that the charge density of LU(1) is cou-
pled to an additional bosonic degree of freedom &. The
minimal coupling that obeys LU(l) symmetry is given
by

Sint = /dtdzxde AMOYD(xH)d, p(x*, 0). (40)

One can generalize the boson field to be multicomponent,
but for simplicity, we focus on a single boson mode. Such
an interaction describes the coupling between different points
on the Fermi surface mediated by the bosons, and coincides
with the mid-IR theory studied in Refs. [19,20]. The full
effective action is then supplemented by actions for ¢ and ®:
S =S, + Sint + So, where S, is the LU(1) action, and we can

parameterize Sq¢ by
1 .
Se = E/dtdzx (af/“cb)2 — m?®? —J(VEDY 4 -,
(4D)

where - - - denote nonlinear corrections and m? is tuned to a
critical point (the value of which depends on regularization
scheme). Note that the critical exponents z, € could a priori
take nontrivial values determined by the IR fixed point; we
will not attempt to derive such z and € self-consistently in this
paper but rather explore the consequences of these exponents.
If we treat the Gaussian theory above as exact and integrate
out the boson ®, we will obtain a new quadratic effective
action (at leading order) for 0, ¢:

ASgpr, ~ — A2 / dwdgdads’

y 3p(0;w, )00 —w, —q)

wZe/z _ q2€ (42)

Notice that such a theory will continue to have LU(1) sym-
metry; however, it is no longer spatially local. Note that the
bosonic action is already generally nonlocal for noninteger z
or €. The framework developed in this paper, based simply on
the LU(1) symmetry, is not enough to systematically deduce
the most general such nonlocal theory. Nonlocal couplings
such as in Eq. (42) will generally qualitatively modify the zero
sound dispersion, at a minimum.

In Refs. [21,56], the authors find that the effective bosonic
action does not effectively have a critical mass: Integrating
out ® above simply modifies the Landau parameter Fy [57].
Such a case is already handled by the EFT of Sec. III. We em-
phasize that any nonlocal effective action in Eq. (42) requires
fine-tuning which may be unphysical, but such fine-tuning is
needed to avoid the conclusion of Sec. III that the EFL EFT
appears identical to the FL. EFT up to irrelevant corrections.

Lastly, we remark that some of our other scaling assump-
tions, including that [0] = 0, could be relaxed to provide
another route to NFL physics. However, to avoid an infinite
tower of increasingly relevant interactions, additional struc-
ture must be imposed to constrain the Lagrangian [58]. In the
EFL formalism, this inevitably requires further symmetries or
constraints beyond LU(1) symmetry.

VI. ADDING DISSIPATION

To construct a dissipative EFT at finite temperature, we
put the action on the Schwinger-Keldysh (SK) contour with
two legs labeled by s = 1,2; see a recent development of
dissipative EFT [29,30], which we will review only tersely
here. It is convenient to work with the 7, a variables defined as
y, = Dt

2
where W, denote collectively the background and dynamical
fields. Most of the symmetries in Sec. II straightforwardly
generalize to the two copies, except for the reparameterization
symmetry which becomes diagonal:

Y, =V — ¥, (43)

@5 = o5+ x(x', 0), (44)
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with the same shift on the SK contour. Therefore, the simplest
invariant building blocks are

w=B,, B, (45)

The presence of two copies of each field implies that the
resulting EFT will combine both dissipative effects as well
as stochastic fluctuations; the presence of both is mandated by
the fluctuation-dissipation theorem.

To describe a system approaching thermal equilibrium, the
generating function should satisfy an additional Z, symme-
try, known as the Kubo-Martin-Schwinger (KMS) symmetry.
(This is the generalization of time-reversal symmetry to the
dissipative EFT.) Consider a system that preserves 7 Z, where

J

T is the time reversal and Z is the inversion. The KMS
transformation in the classical limit is given by

Bu(—x",0) = B, (x".0), (46a)

1§u,u(—x“, 0) = B, ,(x*,0)+iBoB,,(x*,0), (46b)

or(=x",0) = —@.(x", 9), (46¢0)

Pa(—=2",0) = —@,(x", 0) —1B0,0,(x", 0),  (46d)

where S is the inverse temperature, and 6 is taken to be TZ
even.

The most general first-order dissipative EFT can be
written as

o 1
S = /dtdzdedG' X |:g2(9, 0B, (x*, 0)B,,(x*,0") +i(n' s)HX(O, 9/)<Z/j>3“’i(xﬂ’ 0)(B,,j +1B0;B; ;) (x", 9’)i|

C ) . . )
+ 5 / dtdZXde[nlBa,iBr,t + nlBr,iBa,t + (paFr,itnl + gorFa,itnl]v (47)

where s' = €//n; and X is a 2x2 symmetric positive-definite
noise matrix [59]. The first two lines in Eq. (47) characterize
the equilibrium pressure (the first term) and the first-order
dissipation and fluctuation (the second term), while the second
line generates the anomaly in Eq. (16). Explicitly, by varying
with respect to ¢, and then turning off all the a variables, we
obtain the dissipative, noise-free equation of motion:

dhp(x*,60)— B / do'="(0,0")3;0;81(x*, 6)
+Cn-Véu@xt, o)

=Cn-E-8 / do's" (6, 0"d,E;, (48)

where we denoted =Y (0,8) = (n' s)X(@, 07 sHT. In
the noninteracting limit § ;. = C~'vgp and diagonal noise ma-
trix £(0, 6") = CDv 1'siig(e — 6, the quasinormal modes
have

w = vgn - q — iDg?, (49)

which features a Fermi surface chiral mode damped by di-
agonal U(1) diffusion. The normal mode structure could be
more complex if g, and X/ are nontrivial functions, but the
quadratic scaling of the dissipative contribution will persist.
In general, we will have a dynamical scaling exponent z # 1
in the dissipative EFL EFT.

We can now repeat the same dimensional analysis of
Sec. III, now deducing if the dynamical universality class of
EFL hydrodynamics is stable or not from an RG perspective.
Such a possible instability would mimic the instability of
the Navier-Stokes equations [60] or biased diffusion [34] in
one spatial dimension to the Kardar-Parisi-Zhang fixed point.
Repeating the scaling analysis from before using [g;] =1,
[¢1] = @, and [w] = z, we find that

14+«

z = min(2, 2a), 2

[@a] = [0r0] = (50

(

Notice that, if & # 1, one of the components of noise is irrel-
evant [61]. The most relevant nonlinearity in this problem is
subtle [34] and is easiest to see by changing variables from
W = 0;¢, to the density p using thermodynamic relations in
Eq. (2). In this case, the quadratic nonlinearity in the thermo-
dynamic relation (o) gives rise to a cubic nonlinearity in the
anomaly term of the action above, whose scaling dimension
can be shown to be nonnegative in any d > 2. We thus deduce
that, up to the likely marginal relevant corrections in d = 2
which are analogous to the marginally relevant corrections
to the Gaussian fixed point of the Navier-Stokes equations in
d = 2[62], the LU(1) hydrodynamics is stable as a dynamical
fixed point as well.

VII. CONCLUSIONS

We have presented above the general hydrodynamic EFT
of an LU(1)-symmetric system, i.e., an EFL. Our analysis
leads us to conclude that, if the LU(1) densities are the only
low-energy degree of freedom and one can build a local EFT
for the EFL, the zero-temperature thermodynamics and dy-
namics of an EFL look identical to an ordinary FL in IR,
differing only in irrelevant corrections. Similar conclusions
hold for the dynamical fixed point of LU(1) hydrodynamics
at finite temperature, up to possibly marginally relevant per-
turbations in d = 2.

The renormalization group in the presence of a Fermi sur-
face is quite subtle in general, and while we have ignored
some of these subtleties in our analysis, such as potential
UV/IR mixing in loops as well the question of nonzero scal-
ing dimension for the angle [0] # 0, our goal here is not to
solve these hard questions but instead to address the question
of whether LU(1) as an emergent symmetry can circumvent
such concerns and ultimately lead to a better-posed EFT for
NFLs. We found that the Gaussian truncation of the EFL
EFT is equivalent to earlier approaches to higher-dimensional
bosonization of Fermi surfaces [25-27], albeit without the
need for a patch decomposition of the Fermi surface. As we
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showed, the LU(1) approach is very similar to the coadjoint
orbit theory [23,24] and differs only in irrelevant corrections.
As such, the EFL EFT provides a systematic prescription
for nonlinear corrections to higher-dimensional bosonization,
albeit one that differs from the coadjoint orbit theory.

Since the degree of freedom in the EFL EFT is inherently
bosonic, this formalism can also capture Luttinger liquids in
1D, which are NFLs in the sense of having the microscopic
fermion destroyed at low energies. From a low-energy per-
spective, however, an effective description does not readily
identify such details. We therefore leave open the possibility
that an EFL EFT describes NFLs where the fermionic Green’s
functions are qualitatively changed, albeit the bosonic collec-
tive modes appear identical to an ordinary FL. However, we
still expect that a general NFL phase could be distinguished
from conventional metallic phases via bosonic observables
(electrical conductivity, plasmon dispersion, thermodynamic

susceptibilities, etc.), and such bosonic observables are within
the purview of our EFT. From this perspective, the simplest
EFLs look (at leading order) identical to FLs at a first glance.
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