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There are two seemingly unrelated puzzles about the cuprate superconductors. The first puzzle concerns the
strong non-BCS behavior around xc, the end point of the superconducting dome on the overdoped side, where
the cuprate is believed to be well described by the Fermi-liquid theory. This is the most evident in the observed
ρs(0) − Tc scaling and the large amount of uncondensed optical spectral weight at low energy. The second
puzzle concerns the remarkable robustness of the d-wave pairing against the inevitable disorder effect in such
a doped system, which is also totally unexpected from the conventional BCS picture. Here we show that these
two puzzles are deeply connected to the origin of a third puzzle about the cuprate superconductors, namely,
the mysterious quantum critical behavior observed around x∗, the so called pseudogap end point. Through a
systematic variational Monte Carlo (VMC) study of the disordered 2D t − J model from the resonating valence
bond (RVB) perspective, we find that the d-wave pairing in this model is remarkably more robust against the
disorder effect than that in a conventional d-wave BCS superconductor. We find that such remarkable robustness
can be attributed to the spin-charge separation mechanism in the RVB picture, through which the d-wave
RVB pairing of the charge-neutral spinons becomes essentially immune to the disorder potential except for the
secondary effect related to the modulation of the local doping level by the disorder. We propose that there exists
a Mott transition at x∗, where the RVB pairing in the underdoped regime is transmuted into the increasingly more
BCS-like pairing for x > x∗, whose increasing fragility against the disorder effect leads to the non-BCS behavior
and the ultimate suppression of superconductivity around xc.
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I. INTRODUCTION

It is generally believed that the cuprate superconductors
will evolve gradually into the conventional BCS supercon-
ductors when the doping concentration becomes sufficiently
large [1–3]. This is supported by the ARPES observation of
an increasingly more coherent quasiparticle excitation around
the large closed Fermi surface expected from the band theory
picture as we increase the doping in the overdoped regime.
Results from the quantum oscillation and the Hall response
measurement are also consistent with such an understanding.
However, recent transport measurements in the heavily over-
doped side of the cuprate phase diagram cast serious doubt on
such a belief [4,5]. In particular, the zero temperature super-
fluid density ρs(0) of the cuprate superconductor is found to
follow a nonmonotonic evolution with the hole concentration,
with a prominent peak around the so called pseudogap end
point [3,6] x∗ ≈ 0.2. Quantum critical behaviors of unknown
origin are found [2] in the low temperature specific heat,
DC resistivity and the Hall response around x∗. In the over-
doped side of the phase diagram, ρs(0) is found to decrease
with the increase of hole concentration and vanish with the
superconducting critical temperature at the end point of the
superconducting dome [4] (xc ≈ 0.26 in La-214 system), in
stark contrast to the continuing increase of the Drude weight
with doping found in optical measurement [7]. This is a totally
unexpected behavior for conventional BCS superconductors,
in which we expect all Drude weight should be transformed
into the superfluid density at zero temperature in the clean
limit [8].

Some people argue that the non-BCS behavior around xc

may indicate the potential role of an underlying quantum
critical point separating the superconducting phase and an
unknown competing phase. For example, a ferromagnetic
quantum critical point is proposed in a recent experiment [9]
and it is argued [10] that the dominant spin fluctuation would
transform from antiferromagnetic to ferromagnetic around xc.
However, most researchers believe that the non-BCS behav-
ior around xc should be attributed to the inevitable disorder
effect related to the dopant out of the CuO2 plane [11–15].
In this scenario, the suppression of superconductivity at xc

is attributed to the pair breaking effect of the impurity po-
tential in a conventional d-wave superconductor. Indeed,
in a recent study of the La-214 system in which the Sr
dopant is replaced by Ca to reduce the disorder level of
the system (as a result of better match of the Ca dopant
ion radius in the system), it is found the end point of
the superconducting dome may be extended to substantially
higher doping level [16], for example, to doping as high
as x = 0.5.

The effect of disorder in a conventional d-wave BCS
superconductor has been studied extensively with both the
self-consistent T-matrix theory in the continuum limit at weak
disorder level [11,17–19] and the Bogoliubov-de Gennes
mean field theory(BdG) on a lattice [13,20,21]. It is found
that distinct from the situation in an s-wave superconduc-
tor, in which nonmagnetic disorder potential hardly affect
the pairing amplitude (the Anderson’s theorem) [22], the d-
wave pairing is extremely fragile against the introduction of
the nonmagnetic disorder potential. Such a sensitivity can
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be resorted to the destructive interference of the d-wave
pairing amplitude during the impurity scattering process. At
strong disorder level, the BdG theory predicts strong spatial
inhomogeneity in the pairing amplitude and the emergence
of puddles with strong pairing amplitude. Such strong pair-
ing puddles are immersed in a matrix with much reduced
pairing amplitude [13]. Exactly such puddling behavior is
observed recently in heavily overdoped cuprates around xc

through scanning microscopic spectroscopy [23]. The weak
links between such sparse strong pairing puddles are ar-
gued to be responsible for the strong phase fluctuation effect
around xc. This may offer a consistent interpretation for
the Tc − ρs(0) scaling and the large amount of uncondensed
low energy spectral weight in the optical spectrum observed
around xc.

On the other hand, the superconducting state in the un-
derdoped cuprates seems to be remarkably robust against the
out-of-plane disorder caused by the dopants, even though it
possesses exactly the same d-wave symmetry [16,18]. This is
strikingly distinct from our understanding based on the stan-
dard BCS scenario. It was proposed early on that the strong
correlation effect inherent in the cuprates may help to enhance
the robustness of the d-wave superconductivity against the
out-of-plane disorder [24–26]. Based on a BdG treatment of
the t − J Hamiltonian supplemented by a Gutzwiller approxi-
mation of the no-double-occupancy constraint in the 2D t − J
model (BdG+GA), the authors of Ref. [24] argued that the
spatial variation in the Gutzwiller factor of the hopping term
acts to compensate the effect of the disorder potential. Here
the Gutzwiller factor is introduced to approximate the effect of
no-double-occupancy constraint in the t − J model. However,
an exact treatment of such local constraint in the presence of
the disorder potential is absent.

Here we perform a systematic variational Monte Carlo
study of the disorder effect in the 2D t − J model based
on the resonating valence bond (RVB) theory [27,28], in
which the no-double-occupancy constraint is treated exactly.
We model the disorder effect caused by out-of-plane dopants
with a random on-site impurity potential. Similar to what
is found in previous BdG+GA treatment, we find that the
d-wave pairing in the 2D t − J model is remarkably more
robust against the disorder effect than that in a conventional
d-wave BCS superconductor. For example, we find that the
reduction in the off-diagonal-long-range-order (ODLRO) in
the presence of the impurity potential never exceeds 20 per-
cent of its clean limit value at any doping, even if the impurity
potential is more than 8 times stronger than the Heisenberg
exchange coupling J in the t − J model. We find that such
remarkable robustness of the d-wave pairing can be attributed
to the spin-charge separation mechanism in the RVB pic-
ture, through which the d-wave RVB pairing of the charge
neutral spinons becomes essentially immune to the impu-
rity potential. Indeed, we find that it is the holon degree
of freedom that is most significantly affected by the impu-
rity potential and that the impurity effect on the spinon part
is much reduced. For example, the spatial variation in the
spinon chemical potential is found to be an order of mag-
nitude smaller than that in the bare impurity potential. This
forms a strong contrast with the situation in a disordered

d-wave BCS superconductor, in which the impurity poten-
tial acts directly on the electron participating in the d-wave
pairing.

Based on these results, we propose the following scenario
for the nonmonotonic doping dependence of ρs(0). For x <

x∗, where the cuprate superconductor is well described by a
doped Mott insulator, the d-wave pairing should be better un-
derstood as the RVB pairing between charge neutral spinons
which is essentially immune to the impurity potential. ρs(0)
in this regime should be dominated by the density of mobile
charge carriers and should thus increase monotonically with
x, as what we expect for a doped Mott insulator. For x > x∗,
a description in terms of the conventional Fermi-liquid metal
becomes increasingly more relevant with the increase of the
doping level. The RVB pairing in the underdoped regime will
be gradually transmuted into the conventional BCS pairing
that is fragile in the presence of impurity scattering. This
explains the increasing fragility of the d-wave pairing against
the disorder effect and the ultimate suppression of supercon-
ductivity at xc in the overdoped regime. The superfluid density
is expected to decrease with increasing doping as a result of
such transmutation in the nature of the electron in the system,
namely the transmutation from local moments to itinerant
quasiparticles.

A sharp transition at x∗ from a doped Mott insulator to
a less correlated Fermi-liquid metal is implicitly assumed
in the above scenario. While Mott transition at a general
incommensurate filling is still not a well accepted notion,
several measurements are consistent with the abrupt enhance-
ment of electron itineracy at x∗ [29–32]. In addition, x∗

is also found to be the position where field-induced spin
glass behavior starts to emerge [33]. Theoretically, such a
transition has been claimed in a DMFT study of the Hub-
bard model [34]. In the real cuprate superconductors, both
the feedback effect of the enhanced electron itineracy on
the screening of the Coulomb repulsion and the reduction
in the charge transfer gap with hole doping may play an
important role in driving such a transition. As x∗ is also
the doping where the strange metal behavior becomes the
most evident and that pseudogap phenomena starts to emerge,
we think that these two major mysteries of the cuprate
physics should all be attributed to such a finite doping Mott
transition. Such a transition is surely beyond the Landau
paradigm of conventional quantum phase transition which
involves spontaneous symmetry breaking order. In particu-
lar, we think the Mottness of electron and the RVB pairing
between the charge neutral spinons in such a doped Mott in-
sulator is at the heart of the origin of the enigmatic pseudogap
phenomena.

The paper is organized as follows. In the next section, we
describe the disordered 2D t − J model and its variational
ground state. In the third section we discuss the optimization
of the variational parameters in the RVB state constructed
in Sec. II. The fourth section is devoted to the presenta-
tion of the results we got from the VMC calculation. We
draw conclusion from these numerical results in the last sec-
tion and discuss their implication on the physics of the cuprate
superconductors.
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II. THE DISORDERED 2D t − J MODEL
AND ITS VARIATIONAL GROUND STATE

The model we study in this work is described by the follow
ing Hamiltonian

H = −t
∑

〈i, j〉,α
(ĉ†

i,α ĉ j,α + h.c.) +
∑
i,α

μiĉ
†
i,α ĉi,α

− t ′ ∑
〈〈i, j〉〉,α

(ĉ†
i,α ĉ j,α + h.c.)

+ J
∑
〈i, j〉

(
Si · S j − 1

4
nin j

)
. (1)

Here t and t ′ denote the hopping integral of elec-
tron between nearest-neighboring (NN) and next-nearest-
neighboring (NNN) sites. ĉi,σ denotes the electron annihila-
tion operator on site i and with spin α. It should satisfy the
following constraint of no double occupancy∑

α

ĉ†
i,α ĉi,α � 1. (2)

J denotes the Heisenberg exchange coupling between NN
sites. The last term in the first line represents the disorder
effect of a random onsite potential μi. We choose a box distri-
bution for μi in this study, namely, μi is distributed uniformly
in a box region [−V

2 , V
2 ]. In our study, we set t ′/t = −0.3

and J/t = 0.3. We will use t as the unit of energy. The dis-
order strength V/t is varied in the range of V/t ∈ [0, 2.5].
Such a disorder strength is strong enough to kill the d-wave
superconducting pairing totally if we ignore the electron cor-
relation effect, namely, if we ignore the no-double-occupancy
constraint on the electron operator.

Here we study the ground state property of the disordered
2D t − J model with the variational Monte Carlo (VMC)
method within the fermionic RVB framework. To motivate
the form of the variational ground state, we represent the con-
strained electron operator ĉi,σ in terms of the charge-neutral
spinon operator fi,σ and the spinless holon operator bi as
follows:

ĉi,σ = fi,σ b†
i . (3)

Here fi,σ and bi are fermionic and bosonic operators. This is
an exact representation of the constrained electron operator if
the spinon and the holon operator satisfy the constraint∑

α

f †
i,α fi,α + b†

i bi = 1. (4)

The RVB variational ground state we adopted to describe the
ground state of the disordered 2D t − J model takes the form
of

|RVB〉 = PG| f − BCS〉 ⊗ |b − Condens〉 (5)

in which PG denotes the Gutzwiller projection enforcing the
no-double-occupancy constraint in Eq. (4). | f − BCS〉 de-
notes the mean field ground state of the fermionic spinon in
the slave boson mean field theory of the disordered 2D t − J
model. |b − Condens〉 denotes the wave function of holon
condensate on such a disordered background. We emphasize
that the no-double-occupancy constraint in the t − J model is

crucial to arrive at our conclusion and is treated exactly in the
variational approach adopted in this work.

To derive the detailed form of both | f − BCS〉 and |b −
Condens〉, we rewrite the Hamiltonian of the disordered 2D
t − J model in terms of the spinon and th e holon operator as
follows:

H = − t
∑

〈i, j〉,α
( f †

i,α f j,αb†
i b j + h.c.) +

∑
i,α

μi f †
i,α fi,α

− t ′ ∑
〈〈i, j〉〉,α

( f †
i,α f j,αb†

i b j + h.c.)

+ J

2

∑
〈i, j〉,α,β

[ f †
i,α fi,β f †

j,β f j,α − f †
i,α fi,α f †

j,β f j,β ] (6)

in which α, β =↑,↓. Here we have represented the spin
operator as

Si = 1

2

∑
α,β

f †
i,ασα,β fi,β (7)

in which σ is the usual Pauli matrix for electron spin. The
electron number operator is represented as

ni =
∑

α

f †
i,α fi,α. (8)

We then perform the mean field decoupling of the
Hamiltonian by introducing the following RVB order param-
eters for the spinon:

χi, j = 〈 f †
i,↑ f j,↑ + f †

i,↓ f j,↓〉
�i, j = 〈 f †

i,↑ f †
j,↓ + f †

j,↑ f †
i,↓〉 (9)

and the boson condensate amplitude for the holon

b̄i = 〈bi〉 = 〈b†
i 〉. (10)

In this study we will assume χi, j , �i, j and b̄i to be real num-
bers. After the mean field decoupling, the spinon H amiltonian
takes the form of

H f
MF = −

∑
〈i, j〉,α

tv
i, j ( f †

i,α f j,α + h.c.) +
∑
i,α

μv
i f †

i,α fi,α

−
∑

〈〈i, j〉〉,α
t ′v
i, j ( f †

i,α f j,α + h.c.)

+
∑
〈i, j〉

�v
i, j ( f †

i,↑ f †
j,↓ + f †

j,↑ f †
i,↓ + h.c.). (11)

| f − BCS〉 used to construct the variational ground state
|RVB〉 can be obtained by diagonalizing numerically such a
Bogliubov-de Gennes Hamiltonian on a finite lattice. At the
same time, the holon mean field ground state takes the form
of

|b − Condens〉 =
(∑

i

b̄ib
†
i

)Nb

|0〉b. (12)

Here Nb is the number of doped holes, |0〉b denotes the vac-
uum of the holon Hilbert space.

We emphasize again that the mean field state | f − BCS〉
and |b − Condens〉 are just intermediate steps used to con-
struct the physical variational ground state |RVB〉, in which

024521-3



JIANHUA YANG AND TAO LI PHYSICAL REVIEW B 110, 024521 (2024)

the no-double-occupancy constraint is treated exactly. The
variational parameter involved in |RVB〉 includes tv

i, j , t ′v
i, j , �

v
i, j ,

μv
i appearing in Eq. (11) and b̄i appearing in Eq. (12). Note

that in the presence of the disorder potential, these variational
parameters must be assumed to be spatial inhomogeneous and
be optimized independently.

III. VARIATIONAL OPTIMIZATION
OF THE RVB WAVE FUNCTION

To optimize the variational parameters involved in |RVB〉,
we expand it in an orthornomal basis |R〉 and denote the cor-
responding wave function amplitude as �(R). The variational
ground state energy is then given by

E = 〈H〉� = 〈�|H |�〉
〈�|�〉 =

∑
R |�(R)|2Eloc(R)∑

R |�(R)|2 , (13)

in which the local energy Eloc(R) is defined as

Eloc(R) =
∑

R′
〈R|H |R′〉�(R′)

�(R)
. (14)

The gradient of the variational energy with respect to the
variational parameters is given by

∇E = 〈∇ ln �(R)Eloc(R)〉� − E〈∇ ln �(R)〉�. (15)

Here we denote the variational parameters collectively as α

and abbreviate ∇α as ∇. Both E and ∇E can be computed by
standard Monte Carlo sampling over the distribution gener-
ated by |�(R)|2.

We now derive an expression for �(R). For this purpose
we rewrite the spinon Hamiltonian in the following form:

H f
MF = ψ†Mψ, (16)

in which

ψ† = ( f †
1,↑, ..., f †

N,↑, f1,↓, ...., fN,↓). (17)

Here N denotes the total number of lattice sites and M is a
2N × 2N Hermitian matrix. For computational convenience,
we make the following unitary transformation on the spinon
operator:

fi,↑ → f̃i,↑

fi,↓ → f̃ †
i,↓. (18)

The mean field ground state of H f
MF is then constructed by

filling up all eigenstates with negative eigenvalue for the f̃ -
fermion and takes the form of

| f − BCS〉 =
N∏

n=1

γ †
n |0〉 f̃ , (19)

in which

|0〉 f̃ =
N∏

i=1

f †
i,↓|0〉 f (20)

is the vacuum state of the f̃ -fermion and |0〉 f is the vac-
uum state of the original f -fermion. γ †

n denotes the creation

operator of the n-th Bogliubov quasiparticle with a negative
eigenvalue and is given by

γ †
n =

N∑
i=1

[φn(i) f̃ †
i,↑ + φn(i + N ) f̃ †

i,↓], (21)

in which φn(i) denotes the i-th component of the n-th eigen-
vector of the matrix M.

A general basis vector satisfying the no-double-occupancy
constraint between the spinon and the holon can be written as

|R〉 =
Ne∏

k=1

f̃ †
ik ,↑

N−Ne∏
k′=1

f̃ †
jk′ ,↓|0〉 f̃ ⊗

Nb∏
k′′=1

b†
lk′′ |0〉b, (22)

in which ik denotes the position of the k-th up-spin electrons,
jk′ denotes the position of the k′-th hole of the down-spin
electrons, and lk′′ denotes the position of the k′′-th unoccu-
pied sites. Note that we have equal number of up-spin and
down-spin electron(Ne) in the ground state. The no-double-
occupancy constraint requires that

2Ne + Nb = N. (23)

At the same time, each of the N − Ne sites occupied by the
f̃↓ fermion should either be simultaneously occupied by a f̃↑
fermion or left empty. The wave function amplitude �(R) of
|RVB〉 in this basis is given by

�(R) = Det[�] ×
Nb∏

k=1

b̄lk , (24)

in which � is a N × N matrix of the form

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1(i1) . . φN (i1)
. . . .

φ1(iNe ) . . φN (iNe )
φ1( j1) . . φN ( j1)

. . . .

φ1( jN−Ne ) . . φN ( jN−Ne )

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the calculation of the energy gradient, the key quantity
to be computed is ∇ ln �(R). For the variational parameters
appearing in H f

MF , we have

∇ ln �(R) = Tr[∇��−1]. (25)

The matrix elements of ∇� can be calculated from the first
order perturbation theory as follows:

∇φn =
∑
Em>0

〈φm|∇H f
MF |φn〉

En − Em
φm. (26)

Here |φn〉 and En denote the n-th eigenvector and eigenvalue
of the mean field Hamiltonian H f

MF . The gradient of �(R) in
the holon condensation parameter b̄i is given by

∂

∂ b̄i
ln �(R) = 1

b̄i

Nb∑
k=1

δlk ,i. (27)

On a finite cluster of square lattice with N sites, there
are in total 8N variational parameters to be optimized. These
include 2N NN hopping parameter tv

i, j , 2N NNN hopping
parameter t ′v

i, j , 2N NN pairing parameter �v
i, j , N on-site
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parameter μv
i , and N holon condensate amplitude b̄i. The

efficient optimization of such a large number of variational
parameters constitutes a big challenge for variational Monte
Carlo method. In a recent work, we have proposed several im-
proved algorithms to achieve such a goal [35]. These include
the traditional steepest descent (SD) or the stochastic reconfig-
uration (SR) method accelerated by a self-learning trick and a
finite-depth realization of the BFGS or the conjugate gradient
(CG) method. Here we will adopt the steepest descent method
accelerated by the self-learning trick. The SD algorithm is the
simplest optimization algorithm. It corresponds to setting the
Hessian matrix of the problem proportional to the identity
matrix. In the SD algorithm, the variational parameters are
updated as follows:

α → α − δ∇E , (28)

in which δ is the step length. Instead of using a fixed step
length, here we adjust δ adaptively according to the following
rule:

δ → δ ×
(

1 + η
∇E · ∇E ′

|∇E ||∇E ′|
)

, (29)

in which η ∈ [0, 1] is an acceleration factor, ∇E and ∇E ′ is
the gradient of the energy in the current and the previous step.
According to such a rule, the step length will be enhanced
(reduced) if the successive energy gradients tend to point to
the same (opposite) direction. In our calculation we will set
η = 1.

As a result of the heavy computational cost in the vari-
ational optimization of such a large number of variational
parameters, we will focus on a fixed realization of the impurity
potential μi. More specifically, we set

μi = V (ri − 0.5), (30)

in which ri is a random number uniformly distributed in the
range of [0,1]. We will fix ri and tune the disorder strength
by varying V . Since most of the quantities that concern us are
subjected to self-averaging, the absence of the disorder aver-
age does not cause any essential problem. For example, the
off-diagonal-long-range-order calculated from such a fixed
disorder realization setup exhibits smooth evolution with both
V/t and the doping concentration (see Fig. 8 below).

IV. NUMERICAL RESULTS

We have performed variational optimization of the
2D t − J model using |RVB〉 as the variational ground
state. The calculation is done on a 12 × 12 lattice with
periodic-antiperiodic boundary condition. Since the varia-
tional ground state is invariant under a global rescaling of
the variational parameters appearing in the spinon Hamil-
tonian H f

MF , we will measure the variational parameters
in H f

MF in unit of tv
1,1+x, namely, the first NN hop-

ping parameter in the x-direction. The calculation is done
for 12 hole concentrations corresponding to hole number
Nb = 12, 16, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, which cor-
responds to the doping range x ∈ [0.083, 0.361]. This covers
the majority part of the superconducting dome in the cuprate
phase diagram. The optimized pairing amplitude in the

FIG. 1. The evolution of the optimized pairing amplitude with
the doping concentration x in the absence of the impurity potential.
The calculation is done on a 12 × 12 lattice with periodic-
antiperiodic boundary condition. Here we measure the pairing
amplitude in unit of the NN hopping parameter t v .

absence of the impurity potential is shown in Fig. 1 for ref-
erence. As can be seen from the figure, the pairing amplitude
is already rather small when Nb = 52, which corresponds to a
hole concentration of x = 0.361.

Now we consider the disordered case. We find that the
disorder potential has its most significant effect on the boson
condensate amplitude b̄i and the pairing amplitude �v

i, j . On
the other hand, the hopping parameter tv

i, j , t ′v
i, j and the local

chemical potential parameter μv
i are found to be only weakly

affected. Shown in Fig. 2 are the spatial distribution of the
optimized holon condensate amplitude and the pairing ampli-
tude at x = 0.236 and V/t = 1.0 for a particular realization
of the disorder potential μi. To better visualize the spatial
distribution of the pairing amplitude, we have defined the
following site average for the bond variable �v

i, j :

�v
i = 1

4

[
�v

i,i+x + �v
i,i−x − �v

i,i+y − �v
i,i−y

]
. (31)

We note that the optimized pairing amplitude preserves the
d-wave phase structure both locally and globally, namely, the
pairing amplitude in the x and the y direction are always oppo-
site in their signs. This is very different from the result of plain
BdG calculation, in which the destructive interference of the
pairing amplitude may lead to frustration in its phase [13,15].

From Fig. 2 it is clear that there is strong positive cor-
relation between the optimized holon condensate amplitude
b̄i and the disorder potential μi. This is a naturally expected
result since with the increase of μi the local electron density
would be depleted. This is indeed found in the optimized local
electron density ni shown in Fig. 2(b), which exhibits strong
negative correlation with μi. The optimized pairing amplitude
�v

i is found to exhibit strong negative correlation with μi or
b̄i, implying that it is mainly modulated by the local hole
concentration. It is important to note that while the pairing
amplitude �v

i is spatially inhomogeneous at the lattice scale,
there is no puddling behavior in its distribution even at the
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FIG. 2. The spatial distribution of the optimized holon condensate amplitude b̄i (Fig. 2(c)) and the site average of the pairing amplitude �v
i

(Fig. 2(d)) at x = 0.236 and V/t = 1 for a particular realization of the disorder potential μi (Fig. 2(a)). The optimized local electron density
ni is shown in Fig. 2(b) for reference. As is naturally expected, there is strong positive(negative) correlation between the optimized holon
condensate amplitude b̄i (local electron density ni) and the disorder potential μi. The strong negative correlation between �v

i and μi (or b̄i) is
also evident from Fig. 2(d), implying that the pairing amplitude is mainly modulated by the local hole concentration. The calculation is done
on a 12 × 12 lattice with periodic-antiperiodic boundary condition.

strongest disorder potential with V/t = 2.5, which is more
than 8 times stronger than the Heisenberg exchange coupling
J . This is very different from the result predicted by the plain
BdG calculation.

To be more quantitative, we plot in Fig. 3 the histogram
of the distribution in the value of the optimized variational
parameters. The standard variation in the fluctuation of the
optimized parameters are respectively

δμv
i ≈ 0.03

〈
μv

i

〉
δtv

i, j ≈ 0.016
〈
tv
i, j

〉
δ
∣∣t ′v

i, j

∣∣ ≈ 0.058
〈∣∣t ′v

i, j

∣∣〉
δ
∣∣�v

i, j

∣∣ ≈ 0.26
〈∣∣�v

i, j

∣∣〉
δb̄i ≈ 0.11 〈b̄i〉. (32)

Here 〈 〉 denotes spatial average. To understand how the disor-
der potential plays its role, we plot in Fig. 4 the correlation
between the optimized variational parameters and the bare
local chemical potential μi. Similar to �v

i , we have defined
the site average for the bond variable tv

i, j and t ′v
i, j as follows:

tv
i = 1

4

[
tv
i,i+x + tv

i,i−x + tv
i,i+y + tv

i,i−y

]
t ′v
i = 1

4

[
t ′v
i,i+x+y + t ′v

i,i−x−y + t ′v
i,i+x−y + t ′v

i,i−x+y

]
. (33)

Clearly, it is the holon condensate amplitude b̄i that has the
strongest correlation with the local chemical potential μi. On
the other hand, the variation of the spinon chemical potential
μv

i (measured in unit of tv
1,1+x, the first NN spinon hopping

parameter in the x-direction) is an order of magnitude weaker
than that in the bare chemical potential μi (measured in unit
of the NN hopping integral of the 2D t − J model). Thus,
the 2D t − J model responds to the disorder potential mainly
though the deformation of the holon condensate rather than
the structure of the spinon ground state. This is also evident
in the hopping parameter tv and t ′v , which exhibit negligible
correlation with the bare local chemical potential. The most
natural way to understand such a peculiar behavior is through
the notion of spin-charge separation in a doped Mott insulator.
More specifically, the disorder potential is mainly experienced
by the spinless holon which carries the charge of an electron,
while the charge neutral spinon responsible for the d-wave
RVB pairing is almost immune to the impurity potential. This
is very different from the situation in a BCS superconductor,
in which it is the electron which participates in the Cooper
pairing that experiences the disorder potential.

The correlation between the pairing amplitude �v and the
local chemical potential μi is more subtle. As can be seen in
Fig. 4(b), �v exhibits a clear anti-correlation with μi. Such
a behavior can be understood as the result of the modulation
of the local doping concentration by the disorder potential.
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FIG. 3. The histogram of the distribution in the value of the
optimized variational parameters at x = 0.236 with V/t = 1. The
calculation is done on a 12 × 12 lattice with periodic-antiperiodic
boundary condition. Here t v

i , t ′v
i, j , μv

i , and �v
i, j are all measured in

unit of the first NN hopping parameter in the x-direction, namely
t v
1,1+x .

More specifically, the magnitude of the pairing amplitude will
be suppressed in regions with a higher hole density and be
enhanced in regions with a lower hole density. Such a scenario
is supported by the correlation between the local hole density
and the magnitude of the pairing amplitude shown in Fig. 5,
which follows nicely the doping dependence of the pairing
amplitude in the clean system. This also explains why the
d-wave phase structure is well preserved in the disordered
system.

We find that while the disorder potential can induce
substantial inhomogeneity in the magnitude of the pairing
amplitude �v

i, j , its spatial average is essentially unchanged. To
be more quantitative, we plot the dependence of the spatially
averaged pairing amplitude as a function V/t for x = 0.236
in Fig. 6. It is found that the spatial average of �v

i, j increases
gently with the increase of the disorder strength V/t . This is
an expected result from the above scenario by noting the fol-
lowing two facts. First, the average hole density is fixed when
we tune the disorder strength. Second, the doping dependence
of the pairing amplitude in the clean system is concave (see
Fig. 1). This result however, does not imply that the super-
conductivity of the disordered system would become more
robust with the increase of the disorder strength. To charac-
terize the superconductivity in the disordered system, we have

FIG. 4. The correlation between the optimized variational pa-
rameters and the bare local chemical potential μi at x = 0.236. Here
we set V/t = 1. The calculation is done on a 12 × 12 lattice with
periodic-antiperiodic boundary condition.

calculated the off-diagonal-long-range-order (ODLRO) in the
presence of the disorder potential. The ODLRO is defined as
follows:

F 2 = 1

N

∑
i

〈�̂†
i+R�̂i〉, (34)
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FIG. 5. The correlation between the optimized pairing amplitude
centered on site i, namely �v

i , and the local hole density. Here we
set V/t = 1 and the average hole concentration is x = 0.236. The
calculation is done on a 12 × 12 lattice with periodic-antiperiodic
boundary condition. �v

i is measured in unit of t v
1,1+x , the first NN

hopping parameter in the x-direction. The red line marks the doping
dependence of the pairing amplitude in the clean system.

in which R denotes the largest distance on the 12 × 12 lattice,
�̂i is the pairing field centered on site i. It is defined as

�̂i = 1
4 [�̂i,i+x + �̂i,i−x − �̂i,i+y − �̂i,i−y], (35)

in which

�̂i, j = ĉi,↑ĉ j,↓ + ĉ j,↑ĉi,↓ (36)

is the pairing field on the bond between site i and j.
The evolution of F with the disorder strength is shown

in Fig. 7 for x = 0.236. The ODLRO is found to decrease
monotonically with V/t . However, the level of the reduction
is rather small, amounting to only about 13 percent of its
clean limit value at the strongest disorder potential of V/t =
2.5. Such a disorder potential is already more than 8 times

FIG. 6. The evolution of the spatial-averaged pairing amplitude
with the disorder strength V/t at x = 0.236. The calculation is done
on a 12 × 12 lattice with periodic-antiperiodic boundary condition.
The pairing amplitude is measured in unit of t v

1,1+x , the first NN
hopping parameter in the x-direction.

FIG. 7. The evolution of the ODLRO(F) with the strength of the
disorder potential at x = 0.236. The calculation is done on a 12 × 12
lattice with periodic-antiperiodic boundary condition.

stronger than the bare Heisenberg exchange coupling J . In the
plain BdG treatment, the d-wave superconductivity is totally
suppressed by such a strong disorder. This result emphasizes
again the additional robustness of the d-wave superconducting
pairing aided by the strong correlation effect in the t − J
model.

To have a complete picture of the disorder effect in the 2D
t − J model, we have mapped out the whole doping-disorder
strength phase diagram, which is shown in Fig. 8(a) for the
spatial average of the pairing amplitude 〈|�v|〉 and in Fig. 8(b)
for the ODLRO F . Similar to what is found for x = 0.236, the
average pairing amplitude is seen to increase gently with the
increase of the disorder strength at all doping concentration.
The ODLRO on the other hand is found to decrease gently
with the increase of the disorder potential at all doping con-
centration. However, we find that the reduction in the ODLRO
never exceed 20 percent of its clean limit value even at a
disorder strength that is more than 8 times stronger than the
Heisenberg exchange coupling J . This remarkable robustness
of the d-wave pairing is thus a genuine characteristic of the 2D
t − J model and is surely beyond the BCS theory description.

A quantity of more experimental relevance is the superfluid
density ρs(0) of the disordered system. However, unlike the
off-diagonal-long-range-order (ODLRO) calculated above,
the superfluid density is not a ground state property. As a
dynamical property of the system, the calculation of ρs(0)
involves the information of the excitation behavior of the
system and is currently beyond the reach of the variational
Monte Carlo approach adopted here. Of course, if we relax the
no-double-occupancy constraint and work at the level of the
mean field approximation, the superfluid density can certainly
be calculated. However, as we have emphasized in this work,
the no-double-occupancy constraint is crucial to arrive at our
conclusion. In recent years, variational Monte Carlo algorithm
has also been developed to calculate the dynamical properties
of the 2D t − J model [36]. However, in the absence of the
translational symmetry, as is the case in this study, such a
computation becomes too expensive to be conducted.

An alternative but equivalent way to calculate the super-
fluid density of the system is to study the response of the
ground state to the phase twist in the boundary condition
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FIG. 8. The doping-disorder strength phase diagram of the 2D
t − J model obtained from our variational optimization. (a) The
spatial average of the pairing amplitude 〈|�v|〉. (b) The ODLRO. The
calculation is done on a 12 × 12 lattice with periodic-antiperiodic
boundary condition. The pairing amplitude is measured in unit of
t v
1,1+x , the first NN hopping parameter in the x-direction.

induced by the insertion of a gauge flux [37]. More specifi-
cally, in the natural unit in which e = c = h̄ = 1 we have

ρs(0)

π
= lim

Ly→∞
lim

Lx→∞
1

LxLy

∂2E

∂A2
x

. (37)

Here Lx and Ly are the linear size of the system in the x and
y direction. Ax is a uniform vector potential in the x direction
coupling to the electron through the Peierls substitution in the
hopping integral of the t − J model

ti, j → ti, je
iAx (ix− jx ), (38)

in which ti, j denotes the hopping integral between site i and
j. ix and jx are the x-component of their lattice coordinates.
In principle, Eq. (37) can be used to estimate the superfluid
density through a variational optimization of the ground state
energy of the system in the presence of the vector potential Ax.
However, we note that on a finite system a stable variational
optimization is possible only when the considered variational
ansatz satisfy the closed-shell condition. On the other hand,
such a condition is not always guaranteed when the vector

potential Ax is varied continuously. In fact, the paramagnetic
response of system is just carried by the cloud of quasiparticle
excitation whose energy would drift linearly with Ax and may
cross the fermi level when we increase Ax. A possible way to
solve such a technical problem is under consideration.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we have studied the fate of the d-wave pairing
in the 2D t − J model in the presence of the disorder potential
from a variational perspective. The results can be summarized
as follows. We find that the d-wave pairing in the 2D t − J
model is remarkably more robust against the disorder effect
than that in a conventional d-wave BCS superconductor. More
specifically, we find that the phase structure of the d-wave
pairing is well preserved both locally and globally even at
the strongest disorder strength that we have simulated, which
is more than 8 times stronger than the Heisenberg exchange
coupling in the t − J model. This is very different from the sit-
uation in a disordered d-wave BCS superconductor, in which
the destructive interference of the pairing amplitude caused by
impurity scattering may even lead to frustration in the phase of
the pairing order parameter at large scale [13,15]. The spatial
average of the pairing amplitude is found to increase gently
with the increase of the disorder strength. At the same time,
we find that the reduction in the ODLRO never exceed 20
percent of its clean limit value. We find that these conclusions
hold at all doping levels across the superconducting dome and
is a robust property of the 2D t − J model.

We find that the disorder potential has its most significant
effect on the holon condensate amplitude b̄i. On the other
hand, the spatial variation in the spinon chemical potential μv

i
is found to be an order of magnitude weaker than that in the
disorder potential μi. This implies that the spinon system is
essentially immune to the disorder potential. We find that the
spatial modulation in the d-wave pairing amplitude can be un-
derstood as a secondary effect resulted from the modulation in
the local hole density induced by the disorder potential. This
is very different from the situation in the BCS scenario, the
disorder potential acts directly on the electron participating
in the d-wave Cooper pairing. The drastic suppression of the
disorder effect on the d-wave pairing of the t − J model can
thus be attributed to the spin-charge separation mechanism,
through which the d-wave RVB pairing of the charge neutral
spinon gains its robustness against the action of the disorder
potential.

The remarkable robustness of the d-wave pairing in the
t − J model is clearly at odds with the observations in the
overdoped cuprate superconductors, strong evidences for the
fragility of d-wave pairing against the disorder effect have
been found recently [13,16]. The contrasting behavior of the
underdoped and the overdoped cuprates, namely, the remark-
able robustness of the d-wave pairing in the former and its
fragility in the latter, implies that the d-wave pairing on both
sides of the phase diagram are of different nature. Here we
propose that unlike the situation in the underdoped cuprates,
the d-wave pairing should be understood as the RVB pairing
between charge neutral spinons in a doped Mott insulator
background, the d-wave pairing in the overdoped cuprates
should be better understood as the more conventional BCS
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pairing between electrons in a Fermi-liquid metal background.
This proposition offers a natural explanation for the observed
non-monotonic doping dependence in ρs(0). More specifi-
cally, since the RVB pairing in the underdoped cuprates is
robust against the disorder effect, ρs(0) should be dominated
by the density of mobile charge carriers and should thus in-
crease monotonically with x, as what we expect for a doped
Mott insulator. As the electron becomes increasingly more
itinerant in the overdoped cuprates, a description in terms of
the conventional Fermi liquid becomes increasingly more rel-
evant. As a result, the d-wave BCS pairing between electrons
becomes increasingly more fragile against impurity scatter-
ing. ρs(0) is thus expected to decrease with increasing doping
above some critical doping x∗ as a result of such transmutation
in the nature of pairing.

One inference that can be drawn from the above propo-
sition is that the pseudogap end point x∗ where ρs(0)
reaches its maximum should be understood as the tran-
sition point between a doped Mott insulator and a more
conventional Fermi-liquid metal. Indeed, evidences in sup-
port of the abrupt enhancement of electron itinerancy at x∗
have been reported in many recent measurements [29–32].
However, we note that a Mott transition at a general in-
commensurate filling is still not a well accepted notion,
even though such a transition has been claimed for the
Hubbard model in a previous DMFT study [34]. In real
cuprate superconductors, a finite doping Mott transition may
well be driven by other mechanisms. One such possibility
is the positive feedback between the enhancement of elec-
tron itinerancy and the screening of the Coulomb repulsion.
More specifically, the enhancement of electron itineracy will

strengthen the screening of the Coulomb repulsion between
the electrons, which will again enhance the electron itineracy
further. Such a positive feedback loop may be responsible for
the abrupt breakdown of a doped Mott insulator. This may
be accompanied by the simultaneous reduction of the charge
transfer gap with the increase of the hole concentration. In
real cuprate superconductors, the doped hole mainly occupy
the oxygen 2p orbital. The increase of the hole density will
reduce the charge transfer gap between the oxygen band and
the upper Hubbard band on the copper site if the repulsive
potential between the neighboring copper site and oxygen site
is non-negligible.

We note that no matter what is the ultimate origin of such
a potential finite doping Mott transition, it is surely out of
the Landau paradigm of quantum phase transition involving
spontaneous symmetry breaking order. The key quantity that
gov erns such a transition is the electron itinerancy or electron
coherence, which seems to decrease continuously when we
approach x∗ from above. It is interesting to note that x∗ is also
the place where the pesudogap behavior emerges. This implies
that the Mottness of electron and the RVB pairing between
the charge-neutral spinons in such a doped Mott insulator
is at the heart of the mystery of the enigmatic pseudogap
phenomena. It is also interesting to see how such evolution
of electron itineracy would lead to the observed strange metal
behavior [3].
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