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Anderson-Higgs amplitude mode in Josephson junctions
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The Anderson-Higgs mode in a superconductor corresponds to a collective and coherent oscillation of the
order parameter amplitude. We propose to detect this mode in a tunnel Josephson junction between two singlet
s-wave diffusive superconductors in presence of a THz external irradiation at angular frequency w. By solving
the Keldysh-Usadel equations, we obtain that the current-voltage relation exhibits a series of peaks of which only
a subset is enhanced by the Anderson-Higgs mode. Furthermore, at zero bias, the junction features an ac current
oscillating at 2w, which is resonant when /iw hits the superconducting gap, thereby indicating the activation of

the Anderson-Higgs mode.
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I. INTRODUCTION

The Josephson effect is a hallmark of superfluidity and
superconductivity. Both superfluids and superconductors are
characterized by a complex-valued order parameter Ae®,
which can be interpreted as a macroscopic wave function
[1]. The absolute phase 6 is nonmeasurable by itself, but a
phase gradient leads to an observable supercurrent flow. In
particular, when two superconductors, with respective phases
01, and 6, are separated by a weak link, an equilibrium current
I(x) flows without dissipation from one lead to the other [2].
In such a Josephson junction, the supercurrent is a flow of
Cooper pairs, which is controlled by the phase difference x =
Or — 6. This Josephson effect has a longstanding and ongo-
ing history yielding to a variety of fundamental effects and
applications in nanotechnology, including sensors and qubits.
The weak link can be a thin insulating layer [2], an atomic
contact [3], a carbon nanotube [4,5], a graphene single layer
[3,6,7], or even a topological insulator [8], thereby allowing
to probe the quantum properties of the link via the Joseph-
son effect. The original and simplest version of a Josephson
junction is the SIS junction where the two superconducting
leads are separated by a thin insulating layer (Fig. 1). By
applying a voltage difference V between the two supercon-
ductors, the phase difference precesses at angular frequency
wy = 2eV/h. At finite bias, a transparent Josephson junction
exhibits ac Josephson effect with subgap harmonic structures
consisting of peaks located at eV = 2A/n, in the differential
conductance dI/dV [9-11], n being an integer number. Those
structures originate from multiple Andreev reflection (MAR)
and does not need any irradiation. If furthermore the junction
is irradiated at frequency w, additional satellite peaks appear
at biases eV = 2A/n & mhw/n [12-14], m being another in-
teger number associated to photon assisted MAR [15]. In
a tunnel junction only the simple Andreev reflection (AR)
corresponding to n = 1 has visible effect on the differential
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conductance. In this case, irradiated SIS junctions only exhibit
PAT structures at biases eV = 2A + mfiw. When a junction
is simultaneously irradiated and biased, a resonance caused
by synchronization of the SCs phase change with the external
excitation happens when the Josephson frequency w; is a mul-
tiple of the drive frequency w, resulting in Shapiro peaks in
the dc current [16]. All these effects have mostly been studied
within the microwave electromagnetic range w ~ GHz.

Another fundamental phenomenon in physics is the mech-
anism of spontaneous symmetry breaking of a local U(1)
gauge symmetry [17], uncovered by Anderson [18] in super-
conductors and adapted to more general field theories and
to the standard model [19,20]. A neutral superfluid has both
Goldstone modes associated with soft global rotations of the
phase 6 and an amplitude mode corresponding to coherent 0s-
cillation of the superconducting gap amplitude A(r) [21,22].
Anderson discovered that for a charged superfluid, like a
BCS superconductor, the Goldstone mode is pushed to higher
energies, while the photon acquires a mass, which is the
Meissner effect. Then the lowest-energy collective mode is the
amplitude mode with mass iwyg = 2A in the meV range, cor-
responding to the gap of conventional superconductors. The
discovery of the Higgs mode in condensed matter was realized
as a result of the development of intense THz laser sources
[23-26]. Setting aside indirect measurements in system with
charge density wave [27] using Raman spectroscopy, several
pump-probe experiments have reported a Higgs signal via
third harmonic generation [28-31]. Besides those all-optical
experiments, Tang er al. [32] proposed recently an elec-
tronic transport protocol based on the differential conductance
of a normal metal/insulator/superconductor interface (NIS).
Other signatures of the Higgs mode have been predicted in
hybrid systems [33,34] or in irradiated bulk superconductors
[35,36].

The interplay of the Josephson effect and the Anderson-
Higgs mechanism has not been considered yet, except in
a recent preprint [37] predicting that the Higgs mode can
be excited internally, in the absence of any irradiation, by
the Josephson precession at w; of the phase in a transpar-
ent Josephson junction. Furthermore, and also in absence of
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FIG. 1. Josephson junction between two diffusive superconduct-
ing leads with a phase difference y = 60g —6.. The left SC is
irradiated by a monochromatic THz light to excite the Higgs mode.
The dc bias between the right and left SC leads is denoted V.

irradiation, such SIS differential conductance has been pre-
dicted to allow for the detection of collective modes for
unconventional superconductors, especially in the planar
junction geometry where the collective mode peak(s) are more
intense than the MAR peaks [38]. In contrast, the interplay of
the (i) THz external pumping, (ii) Josephson precessing, and
(iii) Higgs mode oscillation has not been considered, even in
the simplest version of a Josephson element, namely in a SIS
tunnel junction. Besides, the Higgs response is stronger in
diffusive superconductors compared to the clean ones [32,34].

In this paper we investigate the Higgs mode signatures in
a diffusive SIS Josephson junction pumped by an electromag-
netic drive in the THz range. This external drive resonantly
activates the Higgs mode via nonlinear coupling. We find a
strong enhancement of the Josephson current for any bias volt-
age at the frequency drive corresponding to the equilibrium
gap of the superconductors. Moreover, the current-voltage
characteristics /(V') are predicted to exhibit a distinctive pat-
tern of peaks caused by photon-assisted transmission (PAT)
and a Shapiro peak at bias eV = hiw.

The paper is organized as follows. In Sec. I, the Joseph-
son junction model and the formalism is presented. Then the
Keldysh-Usadel equations are solved for the nonirradiated SIS
tunnel junction in Sec. III, thereby allowing to write down the
zero-order building blocks for the perturbative calculations in
the irradiated case. In Sec. IV, we present our results on the
Josephson tunnel current through the irradiated junction.

II. MODEL

In this section, we present the tunnel Josephson junction
model and the formalism used to study the Josephson effects
in presence of a Higgs mode generated by the irradiation.

A. SIS junction and parameters

We consider a SIS Josephson junction consisting in two
conventional s-wave singlet SCs separated by an insulating
tunnel barrier (Fig. 1). Our system can be viewed as the
Josephson version of the NIS study by Tang et al. [32]. It is
also related to a study by Scalapino and Ferrell considering
SIS’ where S is in the superconducting phase and S’ is in the
normal phase with superconducting fluctuations [39,40]. Both
superconductors are in the diffusive regime, and a dc voltage
bias is also applied through the junction. To excite the Higgs
mode, one of the superconducting lead is pumped by a THz
electric field E = —9,A where A(t) = Ag(x)e’ + e is a
uniform harmonic vector potential with amplitude Ay. In a
dirty diffusive SCs, a uniform potential vector with amplitude

|Ao| introduces a typical energy scale
B De?|Ag|?
= P

In the following, the irradiation strength is characterized by
the dimensionless ratio of energy scales « = Ap/A(. Besides
the electromagnetic drive at angular frequency w, the dy-
namics of the system is also characterized by the Josephson
frequency w; = 2¢V/h.

So far, irradiated Josephson junctions have mostly been ex-
tensively studied in the regime fiw < 24, corresponding to
microwave frequencies ~GHz [12,14,16,41-47]. In this case
no quasiparticles (QPs) nor Higgs modes can be excited by
the electromagnetic drive. Irradiation produces Shapiro spikes
at dc bias V = nhiw/2e and photon-assisted tunneling (PAT)
[16,44]. It also induces a reconstruction of the SC ground state
[48].

Here we consider higher-frequency range allowing to ex-
cite the Higgs mode, typically Zw ~ A, which falls into the
THz range [49]. Moreover, the calculations will be performed
in a perturbative way with respect to the irradiation strength
o, namely in the regime

Ap < how ~ Ao. 2

Ap ey

In this regime, the photon energies /iw are still below the 2A
threshold mandatory to break Cooper pair. Nevertheless, those
photons can excite Higgs mode via a second-order nonlinear
process (Sec. II B).

The low transparency of the tunnel layer between the
two diffusive SCs is characterized by its normal state tunnel
conductance. We use the circuit theory [50] to extract the
Josephson current

=9

16e

from the quasiclassical Green’s functions, g (¢) and gr(€), of

the left (L) and right (R) superconducting leads. The brackets

mean an average over the Fermi surface and the energy in-

tegration over € is performed from —oo to co. The structure

of the quasiclassical Green’s functions is detailed below in
Sec. II B.

de(Tr[w3[g1(e), Zr()IF])p, , A3)

B. Usadel equation for an irradiated SC

The quasiclassical Green’s function (GF) is denoted ¢ =
3(R,1,1"), where R is the center of mass coordinate and (¢, t')
are two time arguments. This GF obeys the Usadel equa-
tion [51]

—iDV(30 V@) + {10, 3} + [A1)e"Pit, 31 =0, (4

where D is the SC diffusion constant and A(z) the time-
dependent gap modulus. The GF has a 4 x 4 structure in
Keldysh-Nambu space and reads

g
()

where & are 2 x 2 matrices acting in electron-hole Nambu
space, with i =r, a, k. The superscript i =r, a, k refers to
retarded, advanced, and kinetic (or Keldysh) blocks. It is
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convenient to introduce a set of standard Pauli matrices t;
acting in electron-hole Nambu space, and associated enlarged
4 x 4 matrices, denoted as ¥; = 1 ® t;, acting in full Keldysh-
Nambu space. The superconducting phase is notated 6. The
(curly)bracket corresponds to the (anti)commutator. The vec-
tor potential is introduced into the Usadel equation via the
minimal coupling relation

V — V —ie[A(t)13, .]. ©6)
Looking for homogeneous solutions for a bulk superconduc-
tor, Eq. (4) simplifies to
iD’[At3030A¥ 08— 30AF 05 0AH]
+ {Hid;, 8} + [A@) ity 81 = 0, (7
with “o” the convolution operator defined by (go g)(t,t') =

[dt"¥@,1")31", ') and A(t) o §(t, 1) = A(1)3(t,1'). The Us-
adel equation is completed with the normalization condition

Gog(t,ty=38@1—1), (®)

and the SC gap obeys the self-consistent equation

A
A(t) = —i”TTr[mg"(r, pe] ©)

with (...),, = [dQ,/4m.
In the absence of irradiation, the equilibrium gap is given
by the BCS interpolation formula

Ao = Ao(T) = Agptanh [1.74/T/T, — 1],  (10)

where T, is the critical temperature and Ag o = Ao(T = 0).
The Higgs mode is a scalar mode that interacts only nonlin-
early with the THz light [52,53]. The coupling is second order
with respect to the vector potential and leads to a coherent
oscillation of the SC gap at 2w on top of the static Ay,

A(l‘) — AO +A2€72iwt + Azem’wz’ (11)

where A, is the Higgs mode amplitude. A resonance is
obtained for excitation pulsation Ziw = A thereby corre-
sponding to a Higgs energy hwy = 2A¢ [53-55]. In our
model, the Higgs mode is directly proportional to o,

[As](w) = af(w) (12)
where f(w) is a function peaked at the resonance w = Ay /h
[32].

It is very useful to define the Fourier-Wigner transform of
the two-times GF as [56]

de ., .
w.) =3 [ Feer e 13)
neZ

where €, = € 4+ nw. In the following we refer to gy as the
time-averaged GF and g, as the nth harmonics of the GF. The
normalization condition Eq. (8) can be rewritten as

@odu(e) = Y filer)gr(e) = o (14)

I+1'=k
We now want to solve order by order the Eq. (7) with re-
spect to the small parameter @« = Ap/Ag < 1, with Ap =
De?|Ay|? /1. We see from Eq. (7) that all g, with n odd vanish,
as A always comes in even powers. In the following, we

focus on the second harmonic g,, which is of order O(«).
The higher harmonics g.1,, are smaller and of order O(a").
Therefore limiting ourselves to first order in «, the two-times
GF can be expanded as

v / d€ it'e —iterv v —2iw v iwi
g(r,r)=/ge’ e LB0(€) + Ba(€)e ! + F_a()X .

5)

Finally, the dc bias V can be included by the following
gauge transformation [51,57,58]:

qo(t.1') =g, eV, (16)

In the following, we will fix V, = 0 and Vzg =V as only the
potential difference is meaningful.

III. NONIRRADIATED JOSEPHSON JUNCTION

In this section, we introduce the time-averaged quasiclas-
sical Green’s functions that serves as building blocks for the
results obtained in presence of irradiation (see next section).
In the absence of irradiation, we recover well-known results
for the current-voltage relation I(V') of Josephson tunnel junc-
tions [57,59].

A. Quasiclassical Green’s functions V =

The Usadel equation Eq. (4) for the retarded g, component
of the GF reads

[eT3 + AoiMy, 8] = 0, (17

where the Nambu space structure of the gap is encapsulated in
the matrix iMy = €9%it,. Using the normalization condition,
the zero-order retarded GF is given by [51]

€T3 + AogiMy
s'(€)

with s7(€) = iv/A3 — (e + iy )*. Here the parameter y, called
Dyne parameter [60], is a small phenomenological energy
scale that characterizes the depairing effects in the SC and
induces a broadening in the optical response functions. Math-
ematically, this parameter is necessary to ensure the proper
analytical behavior of the retarded GF.

The advanced GF is related to the retarded by the relation
8 = —13(*)8" 13, while the equilibrium Keldysh function at
finite temperature 7 is given by

8o,0(€) = ; (18)

2(e) = (&h(e) — g3(e)) tanh (%) (19)

where 8 = 1/(kgT) and the phase subscript 6 is implied in
the Green’s functions.

B. Effect of the voltage bias

We consider that a finite dc bias V is applied between the
right SC and left SC. Using gauge invariance, it is possible
to consider that the left lead is unaffected while the whole
bias V is applied to the right lead : Vxy =V and V, =0,
while 6g = x/2 and 8, = —x /2. Then Eq. (16) provides the
Fourier-Wigner transform of the retarded GF for the right
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lead as
g,r . 4t _ (€ + V)13 N eiV(r+z/)rsl'MX/2A0 20)
IT2 st(e +V13) st(€)

where a matrix analog of the normalization factor 1/s" has
been defined as

1 <1/sr(6+V) 0 )

= 0 1/s'e —V))"

s'(e +V13) - @h

In order to compute the current, it is convenient to expand
those GF and the normalization matrix in the basis consisting
of Nambu space-Pauli matrices as

gv(e, ) = gya(e)l + gys(e)ms + 2V Pgy  (€)iM,, (22)

1/s" (e +Vr3) = s5 (e, V) ' + s5(e, V) . (23)
Finally, one also defines

tanh (B(e +V13)/2) = fo(e, V)1 + f3(€, V)13, (24)

where fy and f; are respectively the symmetric and anti-
symmetric distribution function of the right SC. The Green’s
functions obtained above allow to recover well-known results
for the nonirradiated tunnel junction.

C. Current for the nonirradiated SIS junction

At zero voltage V = 0, the current in a tunnel SIS junction
is given by the Ambegaokar-Baratoff formula [59]

G A
160 = &7 Ay tanh (ﬂ> sin x (25)
2e 2

where Ag = A¢(T) is the temperature-dependent gap. To
set the notations for the following calculus, we rederive
this Ambegaokar-Baratoff formula within the quasiclassical
formalism.

To obtain the dc current in the junction we need to calculate
the commutator

5 . PN X Ak .
[80,—x/25 80,5721 =80, 280,52 T &0,— 280,42
— 80,280, 2 — 86,3285 —y - (26)

From Eq. (3) we see that only terms proportional to 3 will
contribute to the current.
Knowing that

[iM_y 2, iMy 2] = —2iT38in x, (27)
we easily get
v v k 2 2 1 1
73[80,— x /25 £0,x/2]" = —2iAjsin x 2 ()2
Be
X tanh - + ... (28)

and after contour integration in Eq. (3) the dc current is found
to be given by Eq. (25).

At finite bias, the current through the junction gains ac
components at the Josephson pulsation set by w; = 2¢V/hi and

reads
I(t) = Iic + Iosin (wyt + x) + I cos (w;t + x) (29)
= lgc + Iye Sin (wyt + x + @) (30)
with I,c =, /I(% + 162 and cos ¢ = Iy/|I,.|. The various current

amplitudes depend on the voltage V' and their explicit expres-
sions are provided in Appendix C.

IV. IRRADIATED JOSEPHSON JUNCTION

In this section, we present our results describing the effect
of irradiation on the junction in regimes where the Higgs
mode can be excited.

A. Second-harmonics Green’s function

We first compute the second harmonics g, for the Green’s
function in the irradiated lead, which requires a first-order
calculation in irradiation strength «. To first order in «, the
Usadel equation (7) reads

[€T3 + AoiMy, &) + iNoa[Z(e—1) + Zy(e1), &)] = 0. 31)

with O = 13073. In Appendix A, it is shown that the « cor-
rection to Eq. (18) is very weak. Moreover, in the perturbative
expression of the second harmonics g1, only the GF g, at
o = 0 is consistent to stay at first order in «. We can therefore
neglect the « correction in (18) and so the time-averaged GF
stays the same as in Eq. (18) (more details in Appendix A).

In order to disentangle the physics directly to the irradia-
tion from the Higgs mode effects, we decompose the second
harmonics of the retarded GF as

8r(€) =25 4(6) + &5 A(€), (32)

where &, ,(€) is directly proportional to the field strength and
independent of the amplitude of the Higgs mode A,, while
&, a(€) is the contribution due exclusively to the presence of
the Higgs mode. We find [32]

A _ iA()O[ = oA = A

Bale) = PR ETn +sr<e)[g5(€‘) 2(€)Fh(eNg(©)]. (33)
A

& ale) = 2 [iM_yr — B(€)iM_y pgh(e)].

s'(€2) 4 s"(€)
(34)

Finally those 2 x 2 matrices are expanded in Nambu space
Pauli matrices as

82,i(€) = 13823,i(€) +iT282,i(€). (35)

Furthermore upon the change of variables € — ¢ — V 13, the
function g2, ;(€) becomes the following 2 x 2 matrix,

82.i(e —Vnr3) =gn1,(€, V)1 4+ g3, V)13 (36)

with i = A, A. These functions g2 1.;(€¢, V) and gx3.(e, V)
will appear on the current formula below [Eq. (38)].

B. Tunneling current

In presence of an electromagnetic driving at pulsation w
and finite bias V, the total tunneling current gain further har-
monics resulting from the interplay of the Josephson pulsation
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FIG. 2. Current amplitudes given by Eq. (38) as function of the bias V for different irradiation frequencies w. (Top panel) Currents directly
proportional to the irradiation £ 4 (), I, 4 (b), and I3 4 (c). (Bottom panel) Currents because of the Higgs mode 5 4 (d), I; , (€), and I3 A (f),
which are clearly resonant at iw = A(. Different resonances peaks appear at specific voltages V caused by PAT. Note the different scales on
the vertical current axes. Parameters are 7 = 0.057, y = 0.01A¢, @ = 0.01.

w;y and the drive pulsation w,
I(t) = lyc + Lye sin (w5t + x + @)
+2 Z |I; ;| cos et — 6]) cos (w;t + x)

i=A,A

+2 Z |I.;| cos Qwt — 6;) sin (w1 + x)
i=A,A

+2 ) Il cos Qot — 65,). (37)
i=A,A

where we have introduced the index i = A, A to distinguish
contributions proportional to « or A;. To better characterize
the spectral content of the time-dependent current Eq. (37)

J

it is useful to linearize the cosines/sinus products. The term
proportional to cos (x)2wt — 6] cos (*)w,;t + x and the one
proportional to cos (*)2wt — 6] sin (x)w;t + x both yield pul-
+(2w + wy). The 6 phase shift is defined with
the relation cos 61.(’) = i)%e(]z(’g) / |12(/l).|.

Hence, the spectrum of the ac current exhibits the fol-
lowing pulsations: w; = (2w *+ w;), £2w. In particular, this
leads to a dc component contribution when 2w = £w; or
eV = +hw coming from the second-order current in |Ag|,
whose amplitude is denoted I,. This results in Shapiro peaks
[16] in the I;.(V) current. The various current amplitudes
depend both on voltage V and pulsation w (Fig. 2), and are
given by the following explicit formula:

sations w; =

OG[ 1 1 r 1 a
L(V)=— |:tanh (,36/2)(— — a>322,1,i + tanh (,362/2)<sr(€2) — @)gzz,ﬂ,i
1
+<S’(62) + 7,) Jo(e, —V)gaz,]l,i + f3(e, —V)grzz,s,i — fole, —V)ggz,n,,' — fa(ea, —V)ggzg,i + g%'},n,i)}, (38)
’ A0 t 1 1 , 1 a
L,(V)= /de |:tanh (,36/2)<S—r — S_a>822,3,i — tanh (’362/2)(Sr(62) — @)822,3,1'
1 .
—<S,(62) s") fole, =V)ghn 3, + f3(€, =V)gh 1 i — fole2, =V)ghn 3, — f3(€a, =V)gh 1 + 833,3,,-)} (39)
Gf r a r
(V)= T3 / dfggﬁ,i(é’v,n,t - 8@,1,1’) + gI{/.ﬂ,i(EZ)gZ,S.i - 82,3,1'3]\(/,1,1'- (40

The expression of the anomalous GF g5" can be found in
Appendix B. In this system the ac current caused by the irradi-
ation consists of two contributions: one explicitly proportional
to o and directly caused by the irradiation (I4) and the other
induced by the Higgs mode and proportional to |A,| (Ia).

(
C. Resonance and spectroscopy

The amplitudes of the different contributions to the current
are plotted in Fig. 2 as function of the voltage V for various
pulsations w. As a main result, at the resonant condition /i =
Ay, the current generated by the Higgs is always way larger
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FIG. 3. Fourier components of the total current Eq. (37) at frequency 2w + w; (left), 2w — w; (middle), and 2w (right). We clearly see, at
the resonance frequency, the dominance of the peaks eV = 2A, and eV = 4A, because of the fact that the Higgs currents overwhelm the other
contributions to the current: /5 >> I4. Parameters are T = 0.057;, y = 0.01A¢, @ = 0.01.

than the other contributions. This is because of the fact that
A, is resonant at this frequency [32].

Moreover, we further predict a “fine structure” of this
resonant current as function of bias voltage. For the cur-
rents L4 and I, we expect to get peaks at bias eV =
2A¢ + mhw caused by PAT [15,47], with m € Z. In Fig. 2
we indeed observe peaks at bias eV = 2Ay — 2hw, 2A0 —
how, 2A0, 2A¢ + hw, 2Ag + 2hw for hw < Ag. In the case
of I, 4 we have additional peaks at eV = hw, 2hAw. This can
be understood as PAT of Cooper pairs tunneling. When hiw >
Ay, we have additional peak at eV = A + fiw (and also eV =
hw — Ag for I 4). Those large peaks signal resonances in the
QPs tunneling currents, because of the BCS-DOS singularity
shifted by the PAT.

The current /5 o can be compared to the Higgs current
calculated in NIS system in [32]. If we set Ay = O in the right
SC, the I5 A reduces to the Higgs current obtained in [32].
In our case a peak appears at eV = 2A, which is the mass
of the amplitude mode (Fig. 2). Since the Higgs mode can
be interpreted as the pairing and un-pairing of electrons and
holes around the gap at frequency 2Ay, the current will be
maximum if the bands of the two superconductors are biased
by a dc potential eV = 2A,, thus explaining this fixed pic at
all frequencies. At eV = 4hw a kink appears as a result of
sidebands effect. Contrary to the other currents contributions,
the peak at eV = 2A is always the maximum current for any
w, sign that this current comes from only the Higgs mode.

It is interesting to compare this peaks (V') structure of the
current amplitudes because of the Higgs (Fig. 2 bottom panel)
with respect to peaks appearing in the current caused by A
(Fig. 2 top panel). Looking at the Josephson currents IZ(i)A in
Fig. 2, one notices that half the peaks are missing compared to
the A currents. The resonant bias are now at eV = 2A, £ 2hiw
for hw < Ap plus eV = 2w in the case of I, o. This is co-
herent with the fact that the Higgs mode can only interact
with light to second order, such that it can only participate to
half the photon-assisted transport compared to the A current.
This helps to disentangled the contribution because of the
mere irradiation of the SC and the contribution specifically
the result of the generation of the Higgs mode. From Eq. (37),

we can extract the Fourier components of the current. As an
example, the total ac current of frequency 2w £ w; will be
given by

31 e e, @1)

i=A,A

In Fig. 3 the Fourier components are plotted for the frequen-
cies 2w + w; and 2w. At the resonant case w = Ay, the I(V)
curves are characterized by the dominance of the two even-m
peaks eV = 2A( and eV = 4A,. This dominance signals that
at this frequency the currents because of the Higgs mode obey
In > I4. Outside the resonance, the 2A and 2A + 2w peaks
are reduced and becomes of the same order of magnitudes
than all the peaks of the irradiation current (Fig. 2 top panel
blue and green curves).

Note that the effects plotted in Fig. 2 are obtained for
the particular value of the dimensionless irradiation strength
a = 0.01, and are proportional to the light intensity /. For
a=001,A)=1meV,D =10 m?s"! [61], » = 1.5 THz
(which corresponds to 1 meV), one obtains an intensity
I ~1 W cm™2. This corresponds to an electrical field in
the range 1-10 kV m~! while typical fields are around
300 kV m~! in [29]. Note that the observation of these ef-
fects should not be affected by the presence of the Josephson
plasma resonance, which depends on the capacitance of the
junction and arises at GHz frequencies [62,63].

D. Particular case: V =0

Let us discuss the particular case of the unbiased irradiated
JJ. Even for V = 0 a finite I, o amplitude is predicted (Fig. 2).
This is in contrast with previous result in NIS system [32]
where a bias was necessary to produce Higgs mode current.
This new current term can be understood as an ac correction
to the Josephson current caused by the modulation of one
of the gap modulus. In fact, the current in a JJ of the two
SCs with two different but closed constant gaps is given by
Iy ox TAGAY/2(Ag + Ap). If we take one of the gap to be
time dependant such as Aj = Ay + 2A, cos 2wt we except to
get a current & 7w Ag/2 + 1w A, cos (x)2wt, which is what we
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observe. Indeed at V = 0 the current (37) reduces to

I6)=|Ip+ Y |bilcosQut —6;) | sin x. (42)
i=A,A

Near resonance, |l Al > |ba| and numerically we find
el Al/Gi Ao ~ | Az]/ Ao, as expected.

In order to test experimentally the Anderson-Higgs res-
onance at zero bias, it would be convenient to sweep
temperature around the temperature 7, defined by A(T,) =
hiw. As the Higgs mode frequency is 2A(T), the current will
exhibit a resonant behavior around 7,,. This method would be
simpler than varying the frequency of the laser.

V. CONCLUSIONS

We have investigated the interplay of the Higgs mode
physics and the Josephson effect in tunneling SIS junctions
between conventional superconductors subjected to an elec-
tromagnetic irradiation. Using the Keldysh-Usadel formalism,
we have evaluated the contribution to the current, which is
directly generated by the Higgs mode. Various signatures
of the Higgs mode excitation are found in the /(V') charac-
teristics. These currents are very sensitive to the irradiation
frequency and reach a maximum at the resonant condition
how = Ag(T), corresponding to excitation of the Higgs mode.
This resonance can be obtained by tuning the frequency or the
temperature. Even at zero bias, we predict a nonzero ac current
caused by irradiation and whose magnitude is mostly because
of the Higgs mode excitation at resonance w = Ag(T)/h.
Moreover, a Shapiro peak proportional to the Higgs mode
develops at bias eV = hw and should be directly measur-
able in the dc current. Additional resonant current peaks,
originating from photon-assisted transport, appear at biases
eV =2A¢(T) + mho in the I(V') curves, with m integer. Be-
ing selectively enhanced by the Higgs mode resonance, the
even-m peaks are expected to be much stronger than the odd-m
peaks. An interesting perspective would be to generalize this
study to nonconventional superconductors, as studied in [38].
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APPENDIX A: IRRADIATION « CORRECTION FOR g{,’ ?

The Usadel equation for the time-averaged GF is
[6‘1,'3 + AgiMy 2, g{)] + iA()Ot[é{)(éfl) + éro(fl), gl(-)] =0.
(AD)

Let us first look at the simpler situation where we impose
an dc current bias, i.e., @ = 0. The equation slightly simpli-
fies to

[eTs + AoiMuiy o, 8]+ iBoa[8), 8] = 0

where we redefined 2o — «.

(A2)

oo
ot

e/ e/

FIG. 4. Real/imaginary part of the Green’s function Fy(e) for
2a = 0.01, @ = 0. The function Fy, is defined as Fy(o = 0). The
blue curve corresponds to the exact numerical calculation. The red
(black) curves are approximations correct at low 1 («).

In the case y = 0 we can always write

8o(e) = Gole)r3 + Fy(e)ita, (A3)

with Gy and F, some functions. The normalization condition

can be written as G3 — F? = 1. We can rewrite Eq. (A2) as an
algebraic equation for, e.g., the function Fp,
—4AJoPFy + dia A (F; + Fy)

+ Ff (A§ — 4a® — €%) + A§ = 0. (A4)

We discard the second-order terms in o? and using the approx-
imation F} + Fy ~ FJe?/ A2 we get

diae’Fy — (€ — AJ)F; + Aj = 0. (AS)
When |e/Ap| < 1 we can use a perturbative approximation in

«a to find roots of the equation. Defining Fy(€) = Fo o + aF 4,
we find

A
Fou = —, (A6)
' s"(e)
Flo=—2i €A (A7)
“= e

Around |e/Ag| ~ 1, we need to use n = (> — A(z,)/A(z)
as perturbative parameter. Defining F,(¢) = Fy,, + nFi, +
n*F.,, we find

1
—ir AO 3
Ry, =e /6<E>, (A8)
1
iAg el Ag)\?
Fio=——e"f- (=), A9
= g ¢ 3<4a) (&9
b —A(S)/34'/3 ein/6+3. 4 \%3
20 = 144 a3 ! Ay o
e—in/6 4 \*3
_2|:—a1/3 i|<A_o) . (A10)

We see that those solutions are nonperturbative in «, as ex-
pected. We plotted in Fig. 4 the GF F; and its approximations.
When the Dynes parameter y >> a A the first-order approxi-
mation in @ becomes a good approximation, even for € ~ Ay.
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4.0
| T a= 0.0lA[)'(]

FIG. 5. Current Iy, with and without irradiation. The correction
is relatively small for « = 0.01. Here y = 0.01A,00 and w = Ay.

Analytical results have been obtain in the case @ > 0 in the
regime y > a /Ao [65]. We find in this case

2 2

(€1 +¢€)+

. 0€
lFl'Ol = T T 3 st
s'(€1)s"(€) (e~

(e-1 +¢€).
(AL1)

S0
1)s™(e)?

In the case y ~ oAy we need to solve numerically Eq. (A1).
We used the algorithm given in [48]. The dc current correction
Isc(@) is given in Fig. 5. We get it by replacing ¢/s'(¢) —
€/5%(e) in Eq. (C1) by 293e¢(Gj(¢)). Knowing that the density
of states (DOS) N(e) = NoRe(Gj(€)) [48,51], with Ny the

J

1 1

G,
loc(V) = g/df 6(‘ - _>[f3(gv3 8@%) + (g(/,n - 8‘\‘/,1)(]00 — tanh ﬁe/Z)],

normal DOS, we see that the «a correction comes from a
modulation of the DOS. We recover, at least qualitatively, the
results of [15] in the limit of low transmission. The correction
remains small and our approximation is justified.

APPENDIX B: KELDYSH GREEN’S FUNCTION

To find the Keldysh function it is useful to write the solu-
tion as a sum of regular and anomalous term

&)= g% )+ &) (B1)

with g% (e) = gi(€)ho(€) — ho(€;)g*(¢) where the distribution
function hy(e) = tanh (x)Be/2. Solving the Usadel equa-
tion for 25" we find

(o) = iAo [Zl(e1) — Bh(e2)B(€1)E(E)]
faate) = s'(€2) + 5(e)
x [tanh Be,/2 — tanh Be; /2]
iAoar[Zy(€1) — &h(€2)85 (€)@ (6)]
+
s'(€2) + s%(€)
x [tanh Be; /2 — tanh Be /2], (B2)
000 = o M = Be)iMy i (©)]
x [tanh Be,/2 — tanh Be/2]. (B3)
APPENDIX C: JOSEPHSON CURRENT AT ¢ =0
The components of Eq. (29) are given by
(C1)

A2
Io(V) = — 20Gr /de|:tanh (ﬁez)<l ~ l)( !
8e st X SI]‘I(E’ _

1
—+ fole, _V)<§ +

1 1 ~ 1 N
s_a)<slil(€,—V) Si(é,—V)) f3(€ V)

s]l(e —V)

! 1
<_ " _) <S3(E —V) s (6, _V)>:|’ (C2)

AZG, 11 1
L) =——2 fde |:tanh (,Be/Z)(— —)(
8e st s )\ sh(e, —

ST
—fole. VN G- & Si(e. —V) sy, —V)

where fo = fo(e, V) and f3 = f3(€, V).

This result has already been derived by Larkin and Ochin-
nikov [57]. The Josephson current amplitude Iy = Ih(V)
corresponds to the tunneling of Cooper pairs across the junc-
tion, and reduces to Eq. (25) at V =0 as expected. The
current /i, is independent of x and comes from the tun-
neling of quasiparticles across the junction, while I is the
phase-dependent part of the quasiparticle current [2,66,67].
The terms proportional to Iy and I are recasted into the ac

1
) Sa(e, V)(

33(6 V)

Yoy )] ©
sp(e, =V)  si(e, =V)

component with amplitude 7,.. As expected, for eV = 0 only
Iy is nonzero. We cannot evaluate those integrals analytically
except in certain regimes. The dc current is almost zero as long
as eV < 2A( (Fig. 6), as the potential is not strong enough
to actually break a Cooper pair. The ac current presents a
peak at eV = 2A(, known as the Riedel peak [67,68], that
becomes a logarithmic singularity at eV = 2A in the limit
y — 0. It originates from the density of state singularity at
the gap.

(
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V/Ag

FIG. 6. Current I, (solid-black curve with a gap) and /. (solid-
red curve with a peak) as function of the bias V. The dashed curve
represents the asymptotic limit for the dc current V(1 — A%/V?) (see
Appendix C). Parameters are T = 0.05T;, y = 0.01A¢.

Let us recover the low-temperature limits. At 7 = 0 and
forV < 2Ay, we can rewrite Iy as

8ely V+ao 1 1
o=t [ e ()
GtAO Ao \/62 _ A(Z) \/A% — (e — V)Z

1
§/ de !
Vido o e+ Ao/VY = (Dg/V)
1

C5
S BoVE —(e -1+ do/V R ©
1
=§/ de !
VJo J—€(e+2A0/V)
! (©6)

XJ(e —T+2A0/V)(e=1)

To solve this we do the change of variable
2A0/V
g = _ 28o/Ve (C7)
e—1+2A0/V

200/V(2A/V — 1)

knowing that

de = . (]
= T rangvyrangve
We get
8el 82A0/V 'd_ € —1+4+2A0/V
= 6
GiAy  AoRA/YV = 1) Jy e +280/V)T =€)
(C9)
8 /151- ! ! (C10)
= — €
A _ =2 V2 _
0 Jo J1—¢ \/1 _ méz
_ 8 K v (C11)
Ay \4A2)

FIG. 7. Currents Iy (solid-black curve), I, (solid-blue curve), and
I, (solid-red curve) as a function of the dc bias V. The dashed plots
correspond to the asymptotic limits valid for V >> 2A,. Parameters
are T = 0.05T;, y = 0.01A.

with K(x) the complete elliptic integral of the first kind de-
fined as

! 1 1
K(x) = / dt . (C12)
0 V1 =121 —xt?
WhenV > 2A(, we have
8el V+ao 1
e_"z — 8/ de (C13)
Gdo Jv-a  Jer— A A2~ (e -V
16 [4A2
= —K[(-—=2). Cl4
. ( e ) (C14)

From Eq. (C12) we see that K(0) = % We find the correct
limit when V' = 0. In the large bias limit V > A( we get

G, A}
Iy=—m—. C15
o=—r7 (C15)
Now let us look at the low-temperature limit for Iy and I,

We rewrite them as

Sel V—Ap 00

eV:—([ +2/ )dGL
Gl Ao V+Ay /EZ—A%
le = V]|

X—
J(€—=V)2—AZ

x [tanh (B(¢ — V)/2) — tanh (Be/2)],  (C16)
8el) (/V_AU /‘0" ) signe
-2 +2 de—280€
GIA% Ao V+Ao ‘ [e2 — A%
sign(e — V)
X —_—
V€=V — A2
x [tanh (B(¢ — V)/2) — tanh (B/2)].  (C17)
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WhenV > Ay, T we get (Fig. 7)

8 I V—Ay —V
ey :4/ de—J€! e VI (C18)
Gy 8 \/EZ—A(Z) Je—vr— a3
1/2 l—x
= SVf (C19)
No/V \/xz gy \/(1 _x)z _ é_g)
AZ
~ SV(I - W) (C20)

8el)) V=ho 1 1
5 —4/ de (c21)
G A} Ao \/GZ—A(Z) \/(E—V)Z—A(z)
8 /1/2 d ! : (C22)
= —— X
VS \/x2—€—§\/(l—x)2—€—§
16
~ = In(V/A). (C23)
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