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Origin of anomalous magnetotransport in kagome superconductors AV3Sb5 (A = K,Rb,Cs)
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Multiple anomalous features in electronic spectra of metals with a kagome lattice structure—van Hove
singularities, Dirac points, and flat bands—imply that materials containing this structural motif may lie at a nexus
of topological and correlated electron physics. Due to the prospects of such exceptional electronic behavior, the
recent discovery of superconductivity coexisting with charge-density wave (CDW) order in the layered kagome
metals AV3Sb5 (A = K,Rb,Cs) has attracted considerable attention. Notably, these archetypal kagome metals
express unconventional magnetotransport behavior, including an unexpected linear-in-H diagonal resistivity at
low fields, and an even more peculiar, nonmonotonic sign-changing behavior of the Hall resistivity, which has
been speculated to arise from a chiral CDW. We argue here that this unusual magnetotransport derives not from
such unconventional phenomena, but rather from the unique fermiology of the AV3Sb5 materials. Specifically,
it is caused by a large, concave hexagonal Fermi surface sheet formed in the close proximity to the van Hove
singularities, which is backfolded into a small hexagonal sheet and two large triangular sheets in the CDW state.
We introduce and analyze a model of the electronic structure of these Fermi surface sheets that allows for a
full analytical treatment within Boltzmann kinetic theory and that enables semi-quantitative fits of our transport
data. Specifically, we find that the anomalous magnetotransport behavior is caused by the confluence of strong
reduction of the Fermi velocity near the van Hove singularities located near the vertices of the hexagonal sheet
and sharp corners in Fermi surface generated by the CDW reconstruction. Our analytical approach not only
explains the anomalous magnetotransport in the kagome superconductors but also can be extended to a variety
of metallic systems hosting singular features in their Fermi surfaces.
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I. INTRODUCTION

Kagome lattices composed of networks of corner-sharing
triangles have been recognized as a fertile ground to realize
novel electronic and magnetic phenomena. Metallic mate-
rials with layered kagome-lattice crystal structure display
multiple anomalous features in their electronic band struc-
ture including Dirac points, van Hove singularities, and flat
bands [1–3]. These features inspired several theoretical pro-
posals for exotic electronic states [2–10] such as bond order,
loop current state, chiral charge-density wave or unconven-
tional superconductivity. Against this background, the recent
discovery of kagome-lattice superconductors AV3Sb5 with
A = K,Rb,Cs [11] attracted considerable attention and trig-
gered extensive research activity, see recent reviews [12–15].
The dominant structural motif in these layered materials are
kagome nets of vanadium atoms formed around antimony
honeycomb lattices. These materials display two electronic
instabilities [12–15]: a charge-density wave transition at
TCDW = 80–100 K followed by superconducting transition at
TSC = 1–2.7 K (in particular, for CsV3Sb5, TCDW = 94 K and
TSC = 2.7 K). The CDW instability develops simultaneously
at three wave vectors (3Q CDW). The possible realizations are
2 × 2 reconstructions in the form of star of David, inverse star
of David (or trihexagonal) patterns, or alternating combination
of these states [16]. In addition, experimental indications of
chiral charge order and time-reversal symmetry breaking have
been reported [17–24]. The exact nature of the CDW order and
its relation to superconductivity remain open issues.

The band structure of the kagome superconductors ex-
perimentally determined by angle-resolved photoemission
spectroscopy (ARPES) [25–33] and quantum oscillations
[16,34–39] is qualitatively consistent with electronic band-
structure calculations based on density-functional theory
(DFT) [16,27,34,40–43]. The Fermi surface (FS) is rather
complicated and contains several sheets. In the unfolded
hexagonal Brillouin zone (BZ) without CDW order the main
pockets are (i) a warped cylindrical pocket around the � point
derived from Sb 5p orbitals, (ii) a large concave hole hexagon
derived from 3d orbitals of V, and (iii) convex triangular
pockets around K points. While the Dirac points and flat
bands are separated from the Fermi energy, the van Hove
points are very close [25,27,28,41,42] and affect many phys-
ical properties of these materials. In particular, the van Hove
singularities are expected to have a pronounced influence on
both CDW [2,6,8–10,44] and superconducting [2,6,45–49] in-
stabilities. The 3Q CDW order reconstructs the Fermi-surface
structure [30,39,40,43], with the large hexagon pocket being
the most significantly transformed.

The kagome superconductors are characterized by unusual
magnetotransport behavior below the CDW transition [37,50–
53]. The magnetoresistance exhibits a linear field dependence
at low fields up to ∼1 tesla and at higher fields a downward
curvature develops followed by a second region of quasilinear
growth with smaller slope. The Hall resistivity is negative
at small magnetic fields but shows a pronounced nonmono-
tonic behavior and changes sign in fields of several kG. At
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fields higher than 5 tesla the behavior becomes linear again
with the slope strongly dependent on temperature. The un-
usual small-field behavior of the Hall resistivity has been
attributed to the so-called anomalous Hall effect [50,51,53],
which may be caused by chiral or time-reversal symmetry
breaking states [54].

Here we propose that these unusual features in mag-
netotransport mostly originate from unique features of the
Fermi surface of kagome metals. In particular, the un-
usual transport behavior is induced by the proximity of
the Fermi level to van Hove singularities. In this paper,
we present a combined theoretical and experimental study
of the magnetotransport of CsV3Sb5 crystals. We demonstrate
that the anomalous behavior mainly originates from the large
hexagonal Fermi pocket in the pristine Brillouin zone due to
(i) proximity of its corners to the van Hove points and (ii) its
overall concave shape. This observation implies that the prox-
imity to the van Hove singularity has a profound influence on
transport behavior in these materials, as it has been recognized
before for other systems, see, e.g., Refs. [55–57].

We introduce a simplified minimum model for this Fermi
surface allowing for a full analytical consideration. We eval-
uate the magnetoconductivity both in the pristine phase and
the low-temperature 3Q CDW state, where the large hexagon
is transformed into a small hexagon and two large triangular
sheets. The reconstructed Fermi surface is characterized by
sharp corners which enhances the small-field magnetoresis-
tivity. Our model is motivated by our recent observation of a
series of break-down orbits in high-field quantum oscillation
measurements [39], by the observation that the magnetore-
sistance increases strongly at the CDW transition (see, e.g.,
Ref. [37] and discussion below), and by recent DFT calcula-
tions [43]. The model provides a qualitative description of the
behavior for both the diagonal and Hall conductivity. It also
accounts for the strong increase of the magnetoresistance in
the CDW state.

Although the large hexagon is nominally a hole pocket, the
small-field linear Hall conductivity is negative. The reason for
this anomalous feature is the velocity reduction near the van
Hove points leading to suppression of the hole contribution
to the Hall conductivity near the corners. As a result, the
concave hexagon sides provide a dominant negative contri-
bution. Strong velocity variations along the Fermi surfaces
also lead to strong field dependences of both conductivity
components. An important feature of these field dependences
is the existence of two magnetic field scales originating from
van Hove singularities: the lower scale is set by the two effec-
tive masses determining the saddle-point electronic spectrum
at the van Hove point while the upper scale logarithmically
diverges when the Fermi energy approaches the van Hove
energy. The reconstruction of the large hexagon pocket does
not change qualitatively the low-field nonmonotonic behavior
of the Hall conductivity. On the other hand, this reconstruction
generates sharp corners in the new Fermi pockets leading to
enhancement of the low-field diagonal magnetoconductivity
with linear magnetic field dependence. This linear magneto-
conductivity naturally appears in materials with charge and
spin density waves having a nonideal nesting. In such ma-
terials the reconstruction of the Fermi surface in the folded
Brillouin zone leads to the formation of Fermi pockets with

sharp corners. The interruption of the smooth orbital motion
of quasiparticles along the Fermi surface at these corners leads
to linear magnetoconductivity [58–60] and also to strongly
field-dependent Hall conductivity [61]. The rounding of the
corners due to finite CDW gap leads to the crossover from
a linear to a quadratic field dependence of the diagonal
conductivity when magnetic fields drops below the typical
value proportional to the gap. Besides the low-field linear
behavior, the field dependence of the diagonal conductivity
is characterized by an intermediate 1/H field dependence
between the two field scales set by the van Hove singular-
ity and crosses over to standard 1/H2 at higher fields. We
demonstrate that the Hall conductivity from the reconstructed
pockets qualitatively reproduce shapes of the experimental
field dependences.

This paper is organized as follows. In Sec. II, we illustrate
the anomalous behavior of the magnetoconductivity that we
aim to explain. In Sec. III, we introduce the model for the
large hexagon pocket on which our calculations of anoma-
lous magnetotransport are based. In Sec. IV, we consider the
reconstructed Fermi surface arising due to the onset of the
3Q CDW order emphasizing a small hexagonal Fermi surface
sheet near the zone centered surrounded by large triangular
sheets. In Sec. V, we introduce the orbital-integral approach
for the calculation of the magnetoconductivity, which is based
on the relaxation-time approximation of the Boltzmann trans-
port equation. The theoretical analysis of the magnetocon-
ductivity arising from the large hexagonal hole Fermi surface
sheet in the unfolded Brillouin zone is presented in Sec. VI,
while in Sec. VII, we compute the magnetoconductivity com-
ponents for the reconstructed Fermi surface consisting of
small hexagon triangle and two large triangular pockets and in
Sec. VIII, we analyze the modification of the magnetoconduc-
tivity due to the CDW order. In Sec. X, we present our exper-
imental magnetotransport data and their qualitative modeling.

II. ANOMALOUS BEHAVIOR
OF MAGNETOCONDUCTIVITY IN CsV3Sb5 IN CDW STATE

As an illustration of the anomalous behavior, we show in
Fig. 1 the magnetic field dependences of the diagonal and Hall
conductivities for CsV3Sb5 at 10 K. These conductivities are
extracted from the experimentally measured diagonal and Hall
resistivities, as discussed in more detail below, in Sec. X. The
standard quadratic field dependence of σxx for the magnetic
field H applied along the c axis is limited to very small fields,
below 0.1 T, as illustrated in the lower-left inset of Fig. 1.
At higher fields up to ∼1 T, the magnetoconductivity has
linear field dependence followed by upward curvature and a
crossover in the range 1.5–3 T to a second region of quasi-
linear variation. The behavior of the Hall conductivity σxy is
more complicated. In low fields σxy is negative. However, at
fields <0.3 tesla, it displays a nonmonotonic dependence and
changes sign. At even higher field σxy passes through a smooth
maximum.

The unusual small-field behavior of σxy has been attributed
to the so-called anomalous Hall effect [50,51,53,62], i.e.,
by the manifestation of the spontaneous Hall effect, which
may arise without magnetic field in parity-breaking states,
such as chiral CDW, or time-reversal symmetry breaking such
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FIG. 1. The diagonal and Hall conductivities of CsV3Sb5 at 10 K.
The upper-right inset shows the anomalous behavior of σxy(H ) in
the expanded vertical scale and the lower-left inset zooms into the
low-field behavior of σxx (H ) illustrating the crossover between the
quadratic and linear regimes near 0.1 T. The dashed green line shows
linear fit within the range 0.15–0.5 T.

as loop-current order [54]. In this interpretation, the region
near the inflection point around 1 tesla is treated as a linear
background. After subtraction of this background, the curve
σxy(H ) acquires a plateaulike region in the range 0.5–1.5 tesla,
which is interpreted as the anomalous Hall contribution. This
interpretation, however, is not straightforward. Strictly speak-
ing, in the case of a single chiral domain, a Hall conductivity
should be finite even in zero magnetic field. In the scenario
where the zero-field Hall conductivity averages to zero due
to multiple domains with opposite chiralities, and the plateau
appears because the magnetic field selects a definite chirality,
one would expect a hysteretic behavior, which was not ob-
served. Despite of these rather obvious issues, the “anomalous
Hall effect” interpretation is widely cited in the literature as
one of experimental indications for the realization of a chiral
CDW state in the kagome family AV3Sb5.

We demonstrate that the overall behavior of the conductiv-
ity components, especially the Hall conductivity, can be more
naturally and straightforwardly explained as arising from the
fermionic properties of the large hexagon pocket. In the next
section, we present a simple model for this pocket which we
employ in our analytic calculations of magnetoconductivity.

III. MODEL FOR THE LARGE CONCAVE
HEXAGON POCKET

In this section, we introduce a model for the large con-
cave hexagon pocket in the unreconstructed original Brillouin
zone, which we will use to evaluate the components of con-
ductivity in magnetic field. As illustrated in Fig. 2(a), this
pocket is mostly determined by the van Hove points which
are located near the six wave vectors K j with

Kj,x = K cos
(
−π

6
+ π

3
j
)
, (1a)

Kj,y = K sin
(
−π

6
+ π

3
j
)
, (1b)

FIG. 2. (a) The large concave hexagon Fermi pocket approxi-
mated by the hyperbolic segments. (b) Saddle-point spectrum near
the van Hove point. (c) The velocity contour corresponding to this
Fermi surface, which determines the linear Hall term [63], Eq. (33).
The central small hexagon corresponds to locations near the van
Hove points and gives the hole contribution to the Hall conductivity,
while the six outside “petals” give electronic contribution.

where j = 1, 2, . . . , 6, K = 2π/(
√

3a) is half of the basic
reciprocal-lattice vector for the unfolded BZ, and a is the
lattice parameter (5.45 Å for CsV3Sb5 [34]). Note that, due
to BZ periodicity, the vectors K j and K j+3 = −K j point to
the same van Hove point meaning that there are only three
nonequivalent van Hove points. In the vicinity of these wave
vectors, |p − K j | � K , we can expand momentum p using the
local basis, p = K j + puel + pvet , where el and et are the unit
vectors along and perpendicular to K j . The local momenta
(pv, pu) are connected with the global momenta (px, py) as

pv = (px − Kj,x ) cos θ j + (py − Kj,y ) sin θ j, (2a)

pu = −(px − Kj,x ) sin θ j + (py − Kj,y ) cos θ j, (2b)

where θ j = (π/3)( j − 2) is the rotation angle of the local
frame, see Fig. 2(a). In the local coordinates, the electronic
spectrum has a saddle-point shape illustrated in Fig. 2(b),

ε j (p) = p2
u

2mu
− p2

v

2mv

, (3)

where mu and mv are the effective masses. The shape of the
Fermi surface near K j is determined by the equation ε j (p) =
εvH, where εvH is the Fermi energy measured with respect to
the van Hove point. In a 3D layered metal, it depends on the
c-axis momentum pz. At εvH = 0, the Fermi surfaces are given
by straight van Hove lines, pu = ±pv/

√
rm = ± tan θvH pv ,

where the mass ratio rm = mv/mu determines the van Hove
angle as tan θvH = 1/

√
rm. For reference, the mass ratio rm

and other key parameters used in the paper are listed in Table I.
At a finite separation between the van Hove point and Fermi
level εvH, the Fermi surfaces are given by hyperbola branches
located near every vector K j ,

pF,u(pv ) = −
√

p2
u0 + p2

v

/
rm = −

√
p2

v0 + p2
v

/√
rm (4)
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TABLE I. Definitions of the key parameters used throughout the
paper.

Quantity Notation and definition

Mass ratio for saddle-point spectrum rm = mv/mu

Reduced magnetic field ωh = |e|Hτ/(c
√

mumv )

Lower magnetic field scale H0 = c
√

mumv/(|e|τ )

Upper magnetic field scale Hb = 2tbH0

Conductivity slice scale S0 = 3τ p2
u0/

√
mumv

Ratio of reciprocal-lattice vector and
separation from van Hove point

κ = K/pu0

Boundary hyperbolic parameter sinh tb =
√

3rmκ−
√

κ2+3rm−1
3rm−1

Crossing-point hyperbolic parameter tanh tc = 1/
√

3rm

with pu0 = √
2muεvH being the distance between the hexagon

corner and van Hove point, see Fig. 2(a), and pv0 =√
2mvεvH = √

rm pu0. The minus sign in Eq. (4) corresponds
to the hexagon inside the first BZ. Due to the BZ periodic-
ity, the branches located near opposite wave vectors K j and
−K j are, in fact, two branches of the same hyperbola. The
hexagon is concave if θvH > 30◦ corresponding to rm < 3.
From the ARPES and DFT data for CsV3Sb5 [16,27], we
estimate θvH ≈ 39◦ giving

√
rm ≈ 1.23 and rm ≈ 1.51. We

will use rm = 1.5 in the illustrative plots. The Fermi velocity
components can be represented as

vu = pu

mu
= −

√
p2

v0 + p2
v√

mumv

, (5a)

vv = − pv

mv

, (5b)

giving the total in-plane velocity at the Fermi surface

v =
√

p2
u

m2
u

+ p2
v

m2
v

=
√

v2
u0 + p2

v

m2
v

(1 + rm). (6)

The key feature that strongly influences the magnetotransport
behavior is that the velocity drops linearly on approaching
the van Hove point, v � pv

√
1 + rm/mv . The minimum value

vu0 = pu0/mu is realized at the hexagon corner. Exactly at the
van Hove point for εvH = 0, the velocity vanishes.

To reveal the qualitative behavior, we will use a simple
approximate model for the electronic spectrum in the form
of a piecewise function composed of hyperbolic segments

ε(px, py) = εl (p), for
π

3
(l − 1) < θ <

π

3
l, (7)

where θ is the polar angle of the momentum px = p cos θ ,
py = p sin θ . This approximation means that the Fermi sur-
face is composed of hyperbola branches located between the
momenta pl and pl+1, see Fig. 2(a). We only need this approx-
imation in the vicinity of the Fermi surface. The piecewise
hyperbolic approximation allows for a full analytical evalu-
ation of the conductivity components in arbitrary magnetic
fields. The price paid for the model simplicity is the jumps
of the Fermi velocities at the boundaries between the regions.
Nevertheless, in spite of its simplicity, the model captures
the essential anomalous features of magnetoconductivity. As

suggested by the shape of Fermi surface in Eq. (4), calcu-
lations can be conveniently carried out using the hyperbolic
parametrization,

pv = −pv0 sinh t, pu = −pu0 cosh t, (8)

which automatically places the momentum at the Fermi sur-
face within every segment. Here the hyperbolic parameter
t is located within the interval −tb < t < tb. At the bound-
aries between the segments, we have the geometric relation√

3|pv| + |pu| = K yielding the equation for the limiting hy-
perbolic parameter tb,√

3rm sinh tb + cosh tb = κ, (9)

with κ = K/pu0 � 1, which has the following exact solution:

sinh tb =
√

3rmκ −
√

κ2 + 3rm − 1

3rm − 1
. (10)

In the limit of very large κ this gives a simpler approximate
relation exp(tb) ≈ 2κ/(

√
3rm + 1), i.e., the parameter tb di-

verges logarithmically on approaching the van Hove point,
tb ∝ ln(K/pu0) for pu0 → 0.

IV. CDW RECONSTRUCTION OF THE LARGE HEXAGON
IN THE FOLDED BRILLOUIN ZONE

The 3Q CDW order leads to the folding of the Brillouin
zone. The folded BZ is given by a hexagon with four times
smaller area, as shown in Fig. 3(a). During this folding, all
three van Hove points are displaced to the BZ center and
the segments of the large hexagon Fermi surface shown in
Fig. 2(a) are shifted to the center, p → p − K j , and recon-
structed at the crossings [39]. Three crossing hyperbolas form
the electronic hyperbolic-hexagon (HH) pocket at the center,
as illustrated in Figs. 3(a) and 3(b). The outside branches
form two holelike triangular pockets in the extended BZ, see
Fig. 3(c). This reconstruction affects magnetotransport mostly
by modifying the pattern of quasiparticle orbital motion in
the magnetic field. On the one hand, the formation of sharp
corners and their rounding due to the opening of CDW gaps
affects the magnetoconductivity at small magnetic fields. On
the other hand, modification of pocket areas affects magneto-
transport at high magnetic fields.

Let us consider first the structure of the small hyperbolic-
hexagon pocket. The HH pocket is composed of three crossing
hyperbolas rotated 60◦ with respect to each other. This cor-
responds to six crossing segments. Near the crossing points,
the spectra are reconstructed due to the CDW order. We
will maintain the same segment numbering for the original
and displaced branches, see Fig. 3(a). For every segment,
one can again introduce a local rotated coordinate system
(pv, pu). Since hyperbolas are now located near the center, in
the relation between the local and global momenta, Eqs. (2a)
and (2b), we have to remove the shifts by the vectors K j . In
these local coordinates, the saddle-point hyperbolic spectrum
is again given by Eq. (3). At a finite positive shift of the
Fermi level from the van Hove point, εvH > 0, the hyperbolic
Fermi-surface branches are given by the Eq. (4). The param-
eter pu0 = √

2muεvH becomes the minimal distance between
the hyperbola and origin, see Fig. 3(b). Contrary to the large
hexagon, the Fermi surface of the small hexagon is very
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FIG. 3. (a) The large concave hexagon in the original Brillouin zone has vertices close to the three van Hove points. The segments
corresponding to the hyperbola branches are color coded. The 3Q CDW reconstruction leads to the formation of a small “hyperbolic hexagon”
Fermi pocket in the folded Brillouin zone and outside branches which form two large triangles in the extended Brillouin zone, as illustrated
in (c). The dashed arrows in (a) show the CDW wave vectors transferring the colored segments of the original large hexagon into the folded
Fermi surface. The van Hove points are transferred to the center. The sharpness of the “hyperbolic hexagon” and of the triangles corners is
due to the small value of CDW gap. (b) Zoom into the “hyperbolic hexagon” Fermi pocket which appears due to CDW reconstruction at the
crossing points. The definitions of the local coordinates (pv, pu) for the first segment as well as the two key geometrical parameters pu0 and
pvc are also illustrated. (c) Triangular pockets formed in the extended Brillouin zone. The orange arrow shows the reciprocal lattice vector
connecting identical branches. Coloring emphasizes that Fermi surfaces of these pockets are composed from the pieces belonging to different
hyperbolic branches.

accurately described by the hyperbolic branches due to its
immediate proximity to the van Hove points. That is why we
use the name “hyperbolic hexagon” for this pocket. For our
calculations, the Fermi surface shape in Eq. (4) can be again
conveniently parametrized in terms of hyperbolic functions,
Eq. (8).

Neglecting the reconstruction due to opening of CDW gap,
a hyperbolic branch crosses with the neighboring branch at
the angle of 30◦ with respect to the pu axis. This corresponds
to the condition |pu| = √

3|pv| and gives the relation between
the pv coordinate of the crossing point and pu0,

pvc = pu0√
3 − 1/rm

. (11)

In the hyperbolic parametrization defined by Eq. (8), the
crossing takes place at t = tc with tanh tc = 1/

√
3rm, yielding

tc = 1

2
ln

√
3rm + 1√
3rm − 1

. (12)

We will present the final results for the conductivity compo-
nents of the reconstructed Fermi surface using this parameter
together with the parameter tb in Eq. (10). For a finite CDW
gap, sharp corners at the crossings become rounded, see
Fig. 3(b).

In Appendix A 1, we evaluate the HH area AHH and
effective mass mHH, which can be probed by magnetic oscil-
lations [34–39]

AHH = 6
√

rmtc p2
u0, (13a)

mHH = 1

2π

dAHH

dεF
= 6

π
tc
√

mumv. (13b)

Clearly, the HH area is always somewhat larger than the area
of an ideal hexagon with the same pu0, Ahex = 2

√
3p2

u0 ≈
3.464p2

u0, corresponding to the inequality
√

3rm ln
√

3rm+1√
3rm−1

> 2.

The relations in Eqs. (13a) and (13b) allow for the estimation
of the key parameters pu0 and mu from the experimental data.
If we take the oscillation frequency Fγ = 226 T attributed
to hexagon pocket cross section at the top of the Brillouin
zone [39], we estimate for the extremal cross section AHH =
0.0216 Å−2 and pu0 = 0.076 Å−1, which is ∼6% of the size of
the original unfolded Brillouin zone, kBZ = 4π√

3a
= 1.33 Å−1.

With experimental value mHH = 0.71me and rm = 1.51, we
estimate from Eq. (13b) mu = 0.59me and mv = 0.9me.

Let us consider now the configuration of the outside tri-
angular pockets. In our model, each triangular pocket is
composed of six hyperbola branches with different centers and
rotations, see Figs. 3(c) and 4. Each side of the triangle con-
tains two segments belonging to different hyperbolas. We will
call these branches as “outgoing” and “incoming”, referring
to the direction of orbital motion with respect to the hyper-
bolic hexagon pocket, see Fig. 4. The momentum located at
one of the branches of the triangular Fermi surface can be
presented as

px = Km,x + pv cos θ j − pu sin θ j, (14a)

py = Km,y + pv sin θ j + pu cos θ j, (14b)

where θ j = (π/3)( j − 2), the components of the vectors Km

are defined in Eqs. (1a) and (1b), and we also added zero
vector K0,x = K0,y = 0. For example, the lower triangle is
located between the vectors K0, K1, and K6, see Fig. 4 and
its corresponding indices m, j are summarized in Table II. We
will use the same parametrization for hyperbolic coordinates
pv and pu as for the large hexagon in Eq. (8). The difference
is that for the outgoing branches the hyperbolic parameter t
varies in the limits tc < t < tb and for the incoming branches
it varies in the limit −tb < t < −tc.
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FIG. 4. Geometry of the triangular pockets for the reconstructed
Fermi surface. Every side of the triangle is composed of the incom-
ing and outgoing segments belonging to different hyperbolas which
can be indexed by the location of its center Km and rotation angle
θ j . Three axes sets used in the paper are shown: laboratory frame
(px, py ), hyperbolic basis (pu, pv ), and transverse and longitudinal
directions (pt , pl ) for selected side segment.

The area of the triangular pocket is evaluated in Ap-
pendix A 2 as

AT = p2
u0

[√
3

2
(3rm sinh2 tb − cosh2 tb) − 3

√
rm(tb − tc)

]

�
√

3

2
K2

√
3rm − 1√
3rm + 1

. (15)

This area mostly determines the high-field asymptotics of the
Hall conductivity, as will be discussed below. Note that the
total area of two triangular pockets is more than two times
smaller than the area of the large hexagon. We approximately
evaluate the effective mass of the triangular pocket as

mT ≈ 3

π
(tb − tc)

√
mumv. (16)

It is larger than the effective mass of the hyperbolic hexagon
in Eq. (13b) due to the presence of the large factor tb.

V. MAGNETOCONDUCTIVITY VIA ORBIT INTEGRALS

Transverse magnetoconductivity of most metallic materials
originates from classical orbital mechanism, which arises due
to the bending of quasiparticle trajectories by the magnetic
field [58,64]. We assume that the system can be described by
the quasiclassical Boltzmann equation within the relaxation-

TABLE II. The indices m, j in Eqs. (14a) and (14b) defining
central vectors Km and rotation angles θ j for for six branches in the
lower triangular pocket, see Fig. 4.

m, j 1 2 3

out 0,4 6,6 1,2
in 6,5 1,1 0,3

time approximation. In this case, the conductivity tensor
for the magnetic field along the z axis can be represented
as [60,65]

σαβ = 2e2
∑

pockets

ˆ
d pz

(2π )3
Sαβ (pz ), (17)

where Sαβ (pz ) describes the contribution from a single orbit
at a single pz slice, which for closed orbits can be written as

Sαβ = ςαβ

c

|e|H
[

1 − exp

(
−HO

H

)]−1

×
ffi

d p

v
vβ

ffi
p

d p′

v′ v′
α exp

(
−
ˆ p′

p

d p′′

v′′
c

|e|Hτ

)
, (18)

where v and τ are the Fermi velocity and the isotropic scat-
tering time, respectively, ςαα = 1, ςxy = −ςyx = 1(−1) for an
electron (hole) pocket,

HO = c

|e|
ffi

d p

v

1

τ

is the field at which the time required to complete the full orbit
is equal to the scattering time. For brevity, we will call the
quantity Sαβ a conductivity slice. All integrals are performed
along fixed-pz orbits along the Fermi surface and

fl
notates

the counterclockwise integration over the whole orbit [66].
This “tube-integral” presentation provides a convenient basis
for the analysis of the conductivity when the Fermi velocity
v has sharp features leading to complicated magnetic field
dependences. A similar orbital approach has been used for
modeling of anisotropic magnetotransport of cuprate super-
conductors [67–69].

In the case of a Fermi surface with m-fold symmetry, which
can be split into m equivalent segments each having mirror
symmetry, we derive in Appendix B a convenient presenta-
tion for the conductivity slices containing only integrals for a
single segment,

S(m)
xx = m

2

c

|e|H

{
Gtt + Gll − Re

[
(Rt + ıRl )

2

exp
(−ı 2π

m

)− η

]}
, (19a)

S(m)
xy = ςxy

m

2

c

|e|H

{
Glt − Gt l + Im

[
(Rt + ıRl )

2

exp
(−ı 2π

m

)− η

]}
,

(19b)

where the indices t and l refer to transverse and longitudinal
projections of Fermi velocities inside the segments and the
quantities η, Rs, and Gsr are defined in terms of segment
integrals as

η = exp

(
−
ˆ pf

pi

d p′

v′
c

|e|Hτ

)
, (20a)

Rs =
ˆ pf

pi

d p′

v′ v′
s exp

(
−
ˆ p′

pi

d p′′

v′′
c

|e|Hτ

)
, (20b)

Gsr =
ˆ pf

pi

d p

v
vs

ˆ pf

p

d p′

v′ v′
r exp

(
−
ˆ p′

pi

d p′′

v′′
c

|e|Hτ

)

(20c)
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with s, r = l, t . Here the momenta pi and pf define segment
limits. The terms with the functions Gsr and Rs represent the
contributions from the integration over p and p′ in Eq. (18)
belonging to the same and different segments of the Fermi
surface, respectively.

Generally, the calculation of the conductivity using the
above orbital-integral method requires knowledge of the elec-
tronic spectrum and local scattering time. Although electronic
spectra can be obtained through ab initio DFT calculations,
detailed microscopic information about scattering times is
typically unavailable requiring some simplifying assumptions.
Moreover, calculations with a fully realistic electronic spec-
trum can only be performed numerically. In our case, however,
using the simple minimum model of the large hexagon pocket
outlined in Sec. III and its subsequent reconstruction dis-
cussed in Sec. IV, we can analytically evaluate all orbital
integrals and derive closed analytical results for the conduc-
tivity slices in Eqs. (19a) and (19b) for both original and
reconstructed Fermi sheets. This will allow us to perform a
qualitative analysis of the conductivity behavior in a magnetic
field.

VI. MAGNETOCONDUCTIVITY FROM LARGE CONCAVE
HEXAGON IN UNFOLDED BRILLOUIN ZONE

The anomalous behavior of magnetotransport in kagome
superconductors is observed at low temperatures, when
the Fermi surface is reconstructed by the CDW or-
der [50,51,53,62]. Nevertheless, we consider first the magne-
toconductivity for the large concave hexagon in the unfolded
Brillouin zone, because it provides a convenient point of
reference and already has a nonstandard behavior due to the
proximity to the van Hove singularities. In particular, we will
see that the Hall conductivity actually has a shape similar
to the experimental one in Fig. 1 pointing to its van Hove
origin. Also, the behavior of the Hall conductivity in this case
is of general interest, since it represents an almost textbook
example of a hole-type Fermi surface with negative sign of
σxy at small fields.

We use the general results derived in Appendix B for con-
ductivity slices Sxβ of an arbitrary Fermi pocket with m-fold
symmetry, as summarized in Eqs. (19a) and (19b). For the
hexagon hole Fermi pocket (m = 6), these results become

SLH
xx = 3c

|e|H

{
GLH

vv + GLH
uu −

(
1
2 − ηLH

)[(
RLH

v

)2 − (RLH
u

)2]− √
3RLH

v RLH
u

1 − ηLH + η2
LH

}
, (21a)

SLH
xy = − 3c

|e|H

{
−2GLH

vu +
√

3
2

[(
RLH

v

)2 − (RLH
u

)2]+ ( 1
2 − ηLH

)
2RLH

v RLH
u

1 − ηLH + η2
LH

}
. (21b)

Here, the parameter ηLH and segment integrals RLH
k and GLH

km are defined by Eqs. (20a)–(20c). The indices k = v, u and m = v, u
correspond to the velocity projections to the directions of the local rotated hyperbolic coordinates, which in this case correspond
to the transverse and longitudinal directions of the segments. Therefore the p and p′ integration over the hyperbolic segments
in Eqs. (20a)–(20c) can be analytically carried out expanding the velocity over the local rotated basis and using the hyperbolic
parametrization defined in Eq. (8), as described in Appendix C. For the parameter ηLH in Eq. (20a), we obtain

ηLH = exp (−2tb/ωh), (22)

where tb is defined in Eq. (10) and

ωh ≡ ωcτ = H/H0 = |e|Hτ/(c
√

mumv ) (23)

is the reduced magnetic field with the field scale H0 = c
√

mumv/(|e|τ ). The ratio in the exponent 2tb/ωh is the ratio of the
time to pass one hexagon segment tsegm = 2ctb

√
mumv/(|e|H ) to the scattering time τ . This ratio defines the second field scale,

Hb = 2tbH0 � 2 ln 2K/pu0√
3rm+1

H0, which is much larger than H0 and diverges on approaching the van Hove singularity for pu0 → 0.

The integrals RLH
k in Eq. (20b) are evaluated as RLH

v = pu0Gbv , RLH
u = −pv0Gbu, with the reduced functions

Gbv = 1

1 − ω−2
h

[
− cosh tb + 1

ωh
sinh tb +

(
cosh tb + 1

ωh
sinh tb

)
ηLH

]
, (24a)

Gbu = 1

1 − ω−2
h

[
sinh tb − 1

ωh
cosh tb +

(
sinh tb + 1

ωh
cosh tb

)
ηLH

]
. (24b)

In turn, the same-segment integrals GLH
km defined in Eq. (20c) are evaluated as GLH

vv = p2
u0Kbvv , GLH

uu = p2
v0Kbuu, and GLH

vu =
−pu0 pv0Kbvu with

Kbvv = 1

1 − ω−2
h

[
−
(

cosh tb + 1

ωh
sinh tb

)
Gbv − sinh (2tb) − 2tb

2ωh

]
, (25a)

Kbuu = 1

1 − ω−2
h

[(
sinh tb + 1

ωh
cosh tb

)
Gbu − sinh (2tb) + 2tb

2ωh

]
, (25b)

Kbvu = 1

1 − ω−2
h

[
1
ωh

− ηLH
(
sinh tb + 1

ωh
cosh tb

)(
cosh tb + 1

ωh
sinh tb

)
1 − ω−2

h

+ tb

]
. (25c)
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Note that, in spite of the denominators 1 − ω−2
h in the above formulas, all functions have regular behavior for ωh → 1.

For numerical evaluations, we rewrite the results in Eqs. (21a) and (21b) in the dimensionless form as

SLH
αβ = S0F LH

αβ , (26a)

F LH
xx = 1

ωh

[
Kbvv + rmKbuu −

(
1
2 − ηLH

)(
G2

bv − rmG2
bu

)+ √
3rmGbvGbu

1 − ηLH + η2
LH

]
, (26b)

F LH
xy = − 1

ωh

[
−2

√
rmKbuv +

√
3

2

(
G2

bv − rmG2
bu

)− ( 1
2 − ηLH

)
2
√

rmGbvGbu

1 − ηLH + η2
LH

]
. (26c)

Here

S0 = 3τ p2
u0/

√
mumv (27)

the overall scale for Sαβ , which we will use throughout the
paper. The dimensionless functions F LH

αβ of the reduced mag-
netic field ωh also depend on two parameters, the mass ratio
rm and the limiting hyperbolic parameter tb which in turn is
determined by rm and the ratio κ = K/pu0 in Eq. (10). The lat-
ter parameter diverges on approaching the van Hove point for
εvH → 0. At large tb, the functions F LH

αβ scale as exp(2tb) ∝ κ2

meaning that the main scale of SLH
αβ is S0κ

2 = 3τK2/
√

mumv ,
which does not depend on pu0. As a consequence, the slices
SLH

αβ only weakly depend on the distance to the van Hove point
εvH. We can also note that the product S0H0 = 3p2

u0c/|e| does
not depend on the scattering rate and effective masses and
is only determined by the distance between the LH corner
and the van Hove point pu0. As follows from Eq. (17), the
total contribution of the large hexagon to the conductivity
components are obtained by the integration of the slices SLH

αβ

over the c-axis momentum pz. Most importantly, the distance
to the van Hove point pu0 depends on pz and this distance
determines both S0 and tb.

The key feature determining the behavior of the magne-
totransport is the slowing down of the orbital motion near the
van Hove points, see Eq. (6). To understand the behavior of the
large-hexagon magnetoconductivity at the qualitative level,
we will study the dependences F LH

αβ (ωh) at the different values
of pu0 (or, equivalently, the parameter κ = K/pu0). A quick
inspection of the above results suggests that for κ � 1, these
dependences are characterized by two scales of the magnetic
field corresponding to ωh ∼ 1 and ωh ∼ 2tb � 1, where the
second scale logarithmically diverges when the Fermi energy
approaches the van Hove point.

Consider first the behavior of the diagonal function F LH
xx .

Using the low-field expansions of the reduced functions Gbk

and Kbkk listed in Appendix C, in Eqs. (C11a), (C11b), (C15),
and (C16), we obtain the small-field asymptotics of F LH

xx ,

F LH
xx � rm + 1

2
sinh (2tb) + (rm − 1)tb

− ωh

2
(
√

3 sinh tb − √
rm cosh tb)2. (28)

The finite linear term here is an artifact of the approximate
model, it appears due to velocity jumps at the boundaries
between the segments. Numerically, this term is rather small.
At higher magnetic fields ωh � 1, using asymptotics in

Eqs. (C19a) and (C19b) also listed in Appendix C, we obtain
a simple approximate result

F LH
xx � κ2

2ωh

1 − η2
LH

1 − ηLH + η2
LH

. (29)

As follows from the definition of ηLH in Eq. (22), nominally,
this function describes a crossover between 1/ωh behavior for
1 � ωh � 2tb and 1/ω2

h for ωh � 2tb. However, since tb ∼
ln κ and the logarithm is a slowly growing function, the first
asymptotics is only pronounced for extremely large κ . The
highest-field asymptotics of F LH

xx is F LH
xx � 2κ2tb/ω2

h.
The full field dependence at the van Hove point, κ → ∞,

is

F LH
xx /κ2 → 1

(
√

3rm + 1)2

{[
1 − ω2

h

(1 + ωh)2

]
(1 + rm)

− ωh/2

(1 + ωh)2
(
√

3 − √
rm)2

}
. (30)

In this case, the high-field decay remains ∝ 1/ωh in the whole
field range ωh � 1 without crossover to 1/ω2

h limit. Therefore
the intermediate 1/ωh asymptotics is the distinct qualitative
feature induced by van Hove singularities. Plots of F LH

xx (ωh)
for rm = 1.5 and different values of κ are shown in the lower
panel of Fig. 5.

The behavior of the Hall component F LH
xy in Eq. (26c) is

more peculiar. The linear Hall term in small magnetic fields,
following from the low-field limits of the functions Gbs and
Kbuv [see Eqs. (C11a), (C11b), and (C18) in Appendix C],
can be evaluated as

F LH
xy � −ωh

[
1

2
(
√

3 sinh tb − √
rm cosh tb)

× (sinh tb +
√

3rm cosh tb) − 2
√

rmtb

]

≈ −κ2ωh

2

√
3 − √

rm

1 + √
3rm

. (31)

The linear Hall component is negative, in spite of the hole na-
ture of the large hexagon pocket (its Fermi surface surrounds
empty states). It is straightforward to understand the origin
of this unusual feature. Due to its concave shape, the Fermi
surface is composed of pieces with both curvatures. Since the
regions with positive curvature are located near the van Hove
points where the Fermi velocity is small, their contribution
is suppressed resulting in the dominating electron-like (neg-
ative) contribution of the sections with negative curvature.
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FIG. 5. The dependences of the functions F LH
αβ on the reduced

magnetic field ωh. These functions determine the slice contributions
to the diagonal and Hall conductivities and are defined in Eqs. (26b)
and (26c). The plots are made for for rm = 1.5 and different values of
the parameter κ = K/pu0, characterizing proximity to the van Hove
point. The vertical bars in the upper plot mark the crossover fields
ωh = 2tb ∝ ln κ .

A simple general geometric interpretation of the linear Hall
magnetoconductivity has been suggested by Ong [63], who
demonstrated that in the two-dimensional case σxy is pro-
portional by the area Al swept by the vector mean-free path
l = τυ during a full orbital cycle, Al = 1

2

¸
(lydlx − lxdly).

For constant scattering time Al is proportional to the area Av

swept by the velocity, Al = τ 2Av with

Av = 1

2

˛
(vydvx − vxdvy) (32)

and in our case, we have

Sxy = |e|Hτ 2

c
Av (33)

in the small-field limit. Note that areas swept clockwise and
counterclockwise contribute to Av with opposite signs. Fig-
ure 2(c) illustrates the velocity contour corresponding to the
large concave hexagon Fermi surface shown in Fig. 2(a). It is
composed of the central small hexagon corresponding to the
regions near the van Hove points and six outside “petals.” The
area inside the small hexagon is swept clockwise correspond-
ing to holelike contribution, while total area inside the petals
which are swept counterclockwise gives electron contribution
to Av and Sxy. As the Fermi energy approaches the van Hove
point, the central hexagon shrinks and contribution from the

“petals” dominates yielding the total negative sign of the Hall
term.

The field range for the linear behavior, however, is rather
narrow. The regions near the van Hove points also induce
strong field dependence of F LH

xy . At higher magnetic fields
ωh � 1, using approximate limits for the functions Gbs and
Kbuv listed in Eqs. (C19a) and (C19c), we obtain a simple
approximate result,

F LH
xy � − κ2

2ωh

[√
3 − √

rm

1 + √
3rm

−
√

3ηLH

1 − ηLH + η2
LH

]
. (34)

This function describes the crossover between the two 1/ωh

dependences with opposite signs,

F LH
xy � κ2

2(1 + √
3rm)ωh

×
{

−(
√

3 − √
rm), for 1 � ωh � 2tb

4
√

rm, for ωh � 2tb
. (35)

This means that F LH
xy changes sign. It is known that the

highest-field asymptotics of the Hall conductivity does not
depend on the shape of the Fermi surface and is determined
only by the type and density of the carriers [64]. In our case,
this corresponds to the relation

SLH
xy � ALH

|e|H/c
, (36)

where ALH is the area of the large-hexagon pocket, which can

be evaluated as ALH ≈ 6
√

rmK2

1+√
3rm

for the Fermi energy at the van
Hove point. The high-field asymptotics in Eq. (35) reproduces
this result. On the other hand, the intermediate-filed asymp-
totics in Eq. (35) corresponds to

SLH
xy � ALH − Ahex

|e|H/c
, (37)

where Ahex ≈ 3
√

3
2 K2 is the area inside the ideal hexagon

composed of straight lines connecting the van Hove points. In
Fig. 5, we also present plots of F LH

xy (ωh) for different values
of κ . We see that the field dependences are nonmonotonic
and F LH

xy changes sign at the magnetic field progressively in-
creasing with κ . At higher fields F LH

xy has a smooth maximum.
We immediately notice that these shapes resemble the shape
of experimental curve σxy(H ) for CsV3Sb5 shown in Fig. 1
strongly suggesting that the unusual behavior of the Hall con-
ductivity in this material has van Hove origin. The absence of
anomalous behavior above the CDW transition is most likely
related by high scattering rates leading to large magnetic-field
scales. In addition, it is clear that the magnetotransport in this
material at low temperatures is also affected by the Fermi
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surface reconstruction by CDW, which we analyze in the next
section.

VII. MAGNETOCONDUCTIVITY FROM
RECONSTRUCTED POCKETS

A. Hyperbolic hexagon pocket

As discussed in Sec. IV, reconstruction of the large
hexagon pocket by the 3Q CDW order leads to formation
of small hyperbolic hexagon sheet near the BZ center and
two large triangular sheets, see Fig. 3. In this section, we
consider the contribution of the hyperbolic hexagon to the di-
agonal conductivity neglecting the CDW gaps near the branch
crossings. In this case, the interruption of the smooth motion
along the orbit at the sharp corners leads to linear magne-
toconductivity [58–60]. The general result for the diagonal
and Hall conductivity slices is given by Eqs. (21a) and (21b),
where the large-hexagon label LH has to be replaced by the
hyperbolic-hexagon label HH. The only differences are in the
values of parameter ηHH and the segment integrals RHH

s and
GHH

sr . In calculations, we will employ the same hyperbolic
parametrization as for the large hexagon, Eq. (8). Two dif-
ferences with respect to the large hexagon are (i)the crossing
of hyperbolas is determined by the parameter tc in Eq. (12),
which is much smaller than the parameter tb in Eq. (10) and
(ii) the counterclockwise direction of motion along HH Fermi
surface corresponds to change of the hyperbolic parameter
from tc to −tc.

The p and p′ integration over hyperbolic segments in
Eq. (18) for Sxx and Sxy can be analytically carried out for
every segment [p j, p j+1] expanding the velocity over the lo-
cal rotated basis and using hyperbolic parametrization. The
calculation of segment integrals is virtually identical to the
large-hexagon case, as described in Appendix C. The only
differences are the range of the hyperbolic parameter, −tc <

t < tc and the opposite direction of integration with respect
to parameter t leading to the opposite signs of the integrals
RHH

v and GHH
vu in comparison with RLH

u and GLH
vu . Therefore

the parameter ηHH = exp(− ´ p2

p1

d p′′
v′′

c
|e|Hτ

) is evaluated as

ηHH = exp (−2tc/ωh) (38)

with tc being defined in Eq. (12). The parameter in the ex-
ponent 2tc/ωh is the ratio of the time to pass one hexagon
segment tsegm = 2ctc

√
mumv/|e|H to the scattering time τ .

Contrary to the case of the large hexagon considered in the
Sec. VI, this ratio does not define an additional field scale,
since tc ∼ 1. The integrals RHH

k are evaluated as RHH
v =

−pu0Gcv , RHH
u = −pv0Gcu, where the functions Gcs are ob-

tained from the functions Gbs in Eqs. (24a) and (24b) by
replacements tb → tc and ηLH → ηHH. Correspondingly, the
same-segment integrals GHH

sr are evaluated as GHH
vv = p2

u0Kcvv ,
GHH

uu = p2
v0Kcuu, and GHH

vu = pu0 pv0Kcvu and the functions Kcsr

are obtained from the functions Kbsr in Eqs. (25a), (25b),
and (25c) using the same substitutions tb → tc and ηLH →
ηHH. These results yield the following reduced presentation
for the HH conductivity slices

SHH
αβ = S0F HH

αβ , (39a)

F HH
xx = 1

ωh

[
Kcvv + rmKcuu −

(
1
2 − ηHH

)(
G2

cv − rmG2
cu

)− √
3rmGcvGcu

1 − ηHH + η2
HH

]
, (39b)

F HH
xy = 1

ωh

[
−2

√
rmKcvu +

√
3

2

(
G2

cv − G2
cu

)+ 2
[

1
2 − ηHH

]
GcvGcu

1 − ηHH + η2
HH

]
. (39c)

Here, the reduced magnetic field ωh and the scale S0 are
defined in Eqs. (23) and (27), respectively, and, also, listed
in Table I.

We observe that the shape of the HH magnetoconductivity
is entirely determined by the mass ratio rm, since neither
the magnetic-field scale nor the reduced function F HH

αβ in
Eqs. (39b) and (39c) depend on the shift of the Fermi energy
with respect the van Hove point εvH. This means that only the
scale of the HH conductivity S0 depends on the Fermi energy.
As a consequence, the pz integration in Eq. (17) does not
change the shape of the HH contribution to the total conduc-
tivity. This means that the HH contribution to the conductivity
in Eq. (17) has the form similar to Eq. (39a),

σ HH
xx = σ HH

0 F HH
xx (ωh, rm) (40)

with

σ HH
0 = 2e2

ˆ
d pz

(2π )3
S0(pz ) = 3e2τ

4π3h̄2√mumv

ˆ
dkz p2

u0.

(41)

The last formula is written in real units and, in order to make
the units more obvious, we assumed that pu0 has the dimen-
sion of momentum and kz = pz/h̄ has the dimension of wave
vector. The kz integration in the last formula is performed over
the c-axis extend of the HH pocket. The maximum possible
range is determined by the size of the Brillouin zone 2π/c set
by the c-axis lattice parameter c. For the product σ HH

0 H0, we
obtain

σ HH
0 H0 = 3e2

4π3h̄2

c

|e|
ˆ

dkz p2
u0. (42)

Since the pocket area AHH is proportional to p2
u0, (13a), and the

pocket volume VHH = ´
dkzAHH determines the total carrier

density in the pocket nHH = 2VHH/(2π )3, the product σ HH
0 H0

is proportional to nHH,

σ HH
0 H0 = 1

2π
√

rmtc

e2

h̄
�0nHH.
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We can also note that the ratio of the product σ HH
0 H0 to the

MO frequency FHH = ch̄
2π |e|AHH,

σ HH
0 H0

FHH
= 3e2

2π2h̄

´
dkzk2

u0

AHH
(43)

gives the possibility to evaluate the c axis extend of the HH
pocket from experimental data and provides a consistency
check.

Let us consider the asymptotic behavior of F HH
xx (ωh). The

asymptotic expansions of the reduced functions Gcs, Kcss are
the same as for Gbs, Kbss in Eqs. (C11a), (C11b), (C15),
and (C16) with the substitution tb → tc. Using these expan-
sions, in the low-field limit ωh � 1, we derive

F HH
xx (ωh) � (rm − 1)tc + rm + 1

2
sinh 2tc

− ωh

2
(
√

3 sinh tc + √
rm cosh tc)2. (44)

In particular, the zero-field value can be directly related with
the mass ratio as

F HH
xx (0) =

√
3rm(1 + rm)

3rm − 1
+ (rm − 1) tanh−1

(
1√
3rm

)

giving the zero-field HH partial conductivity

σ HH
xx (0) = 3e2τF HH

xx (0)

4π3h̄2√mumv

ˆ
dkz p2

u0.

As expected, at low fields the conductivity has linear
magnetic-field dependence caused by sharp corners. When
CDW gaps are taken into account, the behavior at very small
magnetic fields becomes quadratic and then crosses over to a
linear dependence at the field scale set by the CDW gap [60].
Deviation from linearity starts at the field ωh ∼ 2tc or H ∼
2c

√
mumvtc/eτ , at which the time to pass one HH segment

becomes comparable with the scattering time.
In the high-field limit ωh � 1, we obtain

F HH
xx (ωh) � 1

ω2
h

[
−(rm − 1)tc + rm + 1

2
sinh 2tc

]
, (45)

meaning that the HH contribution decays ∝ H−2 at high
fields. The full shape of the field dependence of F HH

xx is il-
lustrated in Fig. 6 for rm = 1.5. We see that the initial linear
dependence breaks down at field ωh ∼ 0.3 and is followed by
the second region of close-to-linear dependence with smaller
slope in the range 0.4 � ωh � 1. At higher fields, the function
F HH

xx (ωh) approaches the asymptotics in Eq. (45).
The HH contribution to the Hall conductivity is given

by σ HH
xy = σ HH

0 F HH
xy (ωh), where the scale σ HH

0 is defined in
Eq. (41). In the low-field limit, using the asymptotics Kcvu �
−ω2

h(tc − ωh), for ωh → 0, we obtain

F HH
xy � ωh

[
2
√

rmtc −
√

3

2
(rm + 1)

]
. (46)

The linear Hall coefficient is negative corresponding to
electron pocket. The slice contribution to the linear Hall

FIG. 6. The field dependences of reduced functions, F HH
xx and

F HH
xy , following from Eqs. (39b) and (39c) computed using rm = 1.5.

These functions determine shapes of the HH contributions to the di-
agonal and Hall conductivities. The orange dashed and green dotted
lines mark initial linear drop and further quasilinear decrease of F HH

xx .

conductivity is given by

SHH
xy = 6

|e|H
c

τ 2vu0vv0

[
tc −

√
3

4

rm + 1√
rm

]
. (47)

The velocity contour determining the sign and magnitude of
the linear Hall term in Eq. (33) is shown in the inset of
Fig. 7(a). We can see that the HH velocity contour is com-
posed of small and smooth hyperbolic branches connected
by relatively long straight lines corresponding to velocity
jumps at the corners. An interesting observation is that the
presence of velocity discontinuities on the Fermi surface does
not invalidate the construction and Eq. (33) remains valid.
The dominating contribution to the velocity area Av is coming
from the regular electronic hexagon in the center.

FIG. 7. The velocity contours for the reconstructed Fermi pock-
ets for rm = 1.5 and κ = 20: (a) hyperbolic hexagon and (b) one of
the triangular pockets. These contours define velocity areas Av which
determines the linear Hall term at small magnetic fields according to
Eq. (33). The main plot in (a) shows the HH velocity contour with
respect to the large hexagon while the inset shows this contour in
larger scale.
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In the high-field limit, using the asymptotics Kcvu �
−(1/2)[sinh(2tc) − 2tc], for ωh � 1, we find

F HH
xy � −2

√
rm

ωh
tc (48)

This corresponds to universal relation between the conduc-
tivity slice and cross section area AHH in Eq. (13a), SHH

xy =
−AHH/(|e|H/c), which is similar to Eq. (36). Correspond-
ingly, σ HH

xy is connected with quasiparticle density inside the
pocket by a simple relation [64]

σ HH
xy = − e2

π h̄

�0nHH

H
. (49)

The full field dependence of F HH
xy is illustrated in Fig. 6 for

rm = 1.5. This function remains negative for the whole field
range, corresponding to an electron pocket. Its absolute value
reaches maximum |F HH

xy | ≈ 0.64 at ωh ≈ 1 and it exceeds
F HH

xx roughly at the same field.

B. Triangular pockets

In this section, we evaluate conductivity slices for the trian-
gular pockets described in Sec. IV and illustrated in Figs. 3(c)
and 4. Using the general results for m-fold symmetric 2D
slices in Eqs. (19a) and (19b), we can write the conductivity
slices for a triangular pocket, m = 3, as

ST
xx = 3

2

c

|e|H

{
GT

tt + GT
ll − Re

[ (
RT

t + ıRT
l

)2
exp
(−ı 2π

3

)− ηT

]}
, (50a)

ST
xy = −3

2

c

|e|H

{
GT

lt − GT
t l + Im

[ (
RT

t + ıRT
l

)2
exp
(−ı 2π

3

)− ηT

]}
,

(50b)

where the parameter ηT = exp(−QT) and segment integrals
RT

s and GT
sr are defined similar to Eqs. (20a)–(20c). Contrary

to the hexagon pockets, the indices s, r = l, t corresponding
to the longitudinal and transverse components of velocity do
not coincide with the hyperbolic indices u and v, see Fig. 4.
The calculations described in Appendix D lead to the follow-
ing presentation for the conductivity slices for one triangular
pocket,

ST
αβ = S0

2
F T

αβ, (51a)

F T
xx = 1

ωh

{
2Kvv (tb, tc) + 2rmKuu(tb, tc)

− Re

[
exp
(−ı π

3

)(
G2

bc + G2
cb

)+ 2
√

ηTGbcGcb

exp
(−ı 2π

3

)− ηT

]}
,

(51b)

F T
xy = − 1

ωh

{
2
√

rm[Kvu(tb, tc) + Kvu(−tc,−tb)]

+ Im

[
exp
(−ı π

3

)(
G2

bc + G2
cb

)+ 2
√

ηTGbcGcb

exp
(−ı 2π

3

)− ηT

]}
.

(51c)
Here the hyperbolic limits tb and tc are defined in Eqs. (10)
and (12), respectively, see also Table I,

ηT = exp

[
−2(tb − tc)

ωh

]
, (52)

Gbc and Gcb are the complex functions defined as

Gbc = Gbcv − ı
√

rmGbcu, Gcb = Gcbv − ı
√

rmGcbu, (53)

where the functions Gbck and Gcbk with k = u, v are given by

Gbck = Gk (tb, tc), Gcbk = Gk (−tc,−tb), (54)

with

Gv (t2, t1) =
(
cosh t2 + 1

ωh
sinh t2

)
exp
(− t2−t1

ωh

)− (cosh t1 + 1
ωh

sinh t1
)

1 − ω−2
h

, (55a)

Gu(t2, t1) =
(
sinh t2 + 1

ωh
cosh t2

)
exp
(− t2−t1

ωh

)− (sinh t1 + 1
ωh

cosh t1
)

1 − ω−2
h

, (55b)

see Appendix C for details. The functions Kss(tb, tc) in the first line of Eq. (51b) determining the same-segment contributions to
ST

xx are evaluated in Appendix D as

Kvv (tb, tc) = 1

1 − ω−2
h

[
−
(

cosh tb + 1

ωh
sinh tb

)
Gcbv − cosh (2tb) − cosh (2tc)

4
− sinh (2tb) − sinh (2tc) − 2(tb − tc)

4ωh

]
, (56a)

Kuu(tb, tc) = 1

1 − ω−2
h

[(
sinh tb + 1

ωh
cosh tb

)
Gcbu − cosh (2tb) − cosh (2tc)

4
− sinh (2tb) − sinh (2tc) + 2(tb − tc)

4ωh

]
,

(56b)
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and the off-diagonal function Kvu(tb, tc) in the first line of the Hall term in Eq. (51c) is given by

Kvu(tb, tc) = 1

1 − ω−2
h

[
1
ωh

− exp
(− tb−tc

ωh

)(
sinh tb + 1

ωh
cosh tb

)(
cosh tc − 1

ωh
sinh tc

)
1 − ω−2

h

+ sinh (2tb) + sinh (2tc)

4
+ tb − tc

2
− cosh (2tb) − cosh (2tc)

4ωh

]
. (57)

Two features strongly influence the shape of magnetoconduc-
tivity components. The first feature are sharp corners related to
FS reconstruction. The second feature is related to proximity
of these corners to van Hove singularities. As a consequence,
the Fermi velocity reduces on approaching the corners. In fact,
the velocity at the corner is only slightly larger than the mini-
mum velocity of the HH pocket vu0. The consequences of this
velocity reduction are similar to those for the large hexagon,
discussed in Sec. VI. For example, the Hall conductivity for
the triangular pocket is negative at small magnetic fields in
spite of its hole nature but it has strong field dependence and
changes sign.

Let us discuss now the asymptotic behavior of the con-
ductivity components for the triangular pockets. We start
with the diagonal component. For small fields, ωh � 1, using
asymptotics of the functions Gbck , Gcbk , Kkk (tb, tc) listed in
Appendix D, Eqs. (D6), (D7),(D13), and (D14), we obtain the
zero-field result

F T
xx(0) = 1

2 {(rm + 1)[sinh (2tb) − sinh (2tc)]

+ 2(rm − 1)(tb − tc)} (58)

and the linear term

F T
xx(ωh) − F T

xx(0) � −ωh

2
[(

√
3 sinh tc + √

rm cosh tc)2

+ (
√

3 sinh tb − √
rm cosh tb)2]. (59)

Here the first term is caused by the sharp corners of triangles.
It is identical with the linear term for the hyperbolic hexagon
in Eq. (44). The second term appears due to velocity jumps at
the matching point between incoming and outgoing branches
and is artifact of the model approximations.

As in the case of the large hexagon, the field dependence of
the triangular pockets is characterized by the two field scales
corresponding to ωh ∼ 1 and ωh ∼ tb − tc. The upper scale is
somewhat smaller than the one for the large hexagon. In the
limit ωh � 1, using high-field limits in Eqs. (D8),(D9), (D16),
and (D17), we obtain a remarkably simple approximate result

for the diagonal term, similar to Eq. (29),

F T
xx � κ2

2ωh

1 − η2
T

1 + ηT + η2
T

, (60)

which also describes crossover between 1/H and 1/H2 decays
of diagonal conductivity at ωh ∼ 2(tb − tc). At highest fields,
for ωh � 2(tb − tc), we have F T

xx � 2κ2(tb − tc)/(3ω2
h ). This

is roughly three times smaller than the corresponding asymp-
totic limit for the large hexagon.

Let us consider the asymptotic limits of the Hall com-
ponent F T

xy in Eq. (51c). Using asymptotic limits of the
functions Gbck , Gcbk , Kuv (tb, tc) for ωh � 1 presented in
Eqs. (D6), (D7), and (D15), we obtain the linear term at small
fields

F T
xy = −ωh

[
1

2
(
√

3 sinh tb − √
rm cosh tb)

× (sinh tb +
√

3rm cosh tb) − 2
√

rm(tb − tc)

−
√

3

2
(rm + 1)

]
. (61)

As in the case of the large hexagon pocket, Eq. (31), the sign
of this term is negative even though the triangles are nominally
hole-type pockets. The reason for this behavior is also very
similar to the case of large hexagon. The triangular pockets
have regions with both positive and negative curvature. In this
context, the sharp corners should be considered as the regions
with extreme positive curvature. However, these corners are
located very close to van Hove points where velocities are
small and, as a consequence, they give small contribution
to the Hall term. The dominating negative contribution is
coming from far away regions with negative curvature. This is
illustrated by the velocity contour shown in Fig. 7(b). Velocity
jumps at the corners from the small triangle at the center. The
area of this triangle contributes to the total velocity area Av in
Eq. (32) with positive sign. The larger areas of three outside
“blades” contribute to Av with negative sign yielding the net
negative velocity contour area.

At higher field, ωh � 1, using Eqs. (D8), (D9), and (D18),
we derive the following approximate result

F T
xy � − 1

ωh

[
κ

2

(√
3 cosh tb − √

rm sinh tb −
√

3ηT κ

1 + ηT + η2
T

)
+ 2

√
rm(tb − tc)

]
� − κ2

2ωh

(√
3 − √

rm

1 + √
3rm

−
√

3ηT

1 + ηT + η2
T

)
. (62)

It describes the crossover between the two 1/ωh dependences

F T
xy � κ2

2(
√

3rm + 1)ωh
×
{

−(
√

3 − √
rm), for 1 � ωh � 2(tb − tc)

2
√

3
3 (

√
3rm − 1), for ωh � 2(tb − tc)

, (63)
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which have opposite signs, similar to the large-hexagon
pocket in Eq. (35). The large-field asymptotic reproduces a
universal relation between the Hall conductivity slice and the
triangle area AT in Eq. (15), ST

xy = AT
|e|H/c . Since the total area

of two triangles is more than two times smaller than the area
of the large hexagon, the Hall conductivity at high fields is
also smaller by the same factor.

VIII. MODIFICATION OF MAGNETOCONDUCTIVITY
BY FERMI-SURFACE RECONSTRUCTION

DUE TO CDW ORDER

As we have now the full analytical results for the conduc-
tivity slices for all pockets in the reconstructed Fermi surface,
we can analyze them and compare with the behavior of the
original large-hexagon pocket. The total magnetoconductivity
slice of the reconstructed Fermi surface composed of hyper-
bolic hexagon and two triangular pockets is given by

SR
αβ (ωh) = SHH

αβ (ωh) + 2ST
αβ (ωh) = S0F R

αβ (ωh), (64a)

F R
αβ (ωh) = F HH

αβ (ωh) + F T
αβ (ωh). (64b)

Since we neglected corner rounding by the CDW order, the
total zero-field conductivity for the reconstructed FS,

F R
xx (0) = F HH

xx (0) + F T
xx(0) = rm + 1

2
sinh (2tb) + (rm − 1)tb

(65)
coincides with zero-field conductivity for the large hexagon
pocket, see Eq. (28). In reality, there is a small correction
caused by the Fermi-surface reconstruction by finite CDW
gap. The total linear term in the conductivity slice is given
by

F R
xx (ωh) − F R

xx (0) � −ωh

[
(
√

3 sinh tc + √
rm cosh tc)2

+ 1

2
(
√

3 sinh tb − √
rm cosh tb)2

]
. (66)

Here the first term in the square brackets is caused by the sharp
corners of the reconstructed FS pockets. The HH pocket and
the two triangles give equal contributions to this term in spite
of the overall small contribution of the HH pocket. Note that
this term only depends on the mass ratio rm and, using the
definition of tc in Eq. (12), can be computed as (

√
3 sinh tc +√

rm cosh tc)2 = 3(1 + rm)2/(3rm − 1). The second term is
identical to the large-hexagon pocket in Eq. (28) and appears
due to the small velocity jumps at the matching points be-
tween the hyperbolic branches.

The full field dependence of the function F R
xx (ωh) is

compared with the corresponding function F LH
xx (ωh) for repre-

sentative parameters rm = 1.5 and κ = 10 in the lower panel
of Fig. 8. We can see that F R

xx (ωh) has a sharper drop than
F LH

xx (ωh) with pronounced linear dependence at small fields.
This means that the reconstruction of the Fermi surface by the
3Q CDW order significantly enhances small-field magneto-
conductivity, in agreement with experiment.

Let us compare now the behavior of the Hall component
for original and reconstructed Fermi surfaces. The total linear

FIG. 8. The shapes of the field dependences of the reduced func-
tions Fαβ determining the conductivity components for the large
hexagon and reconstructed pockets. The functions are computed for
the representative parameters rm = 1.5 and κ = 10. The inset in the
upper panel zooms into the nonmonotonic low-field behavior of Fxy.

term at small fields

F R
xy = − ωh

[
1

2
(
√

3 sinh tb − √
rm cosh tb)

× (sinh tb +
√

3rm cosh tb) − 2
√

rmtb

]
(67)

is negative and coincides with the linear term for the large
hexagon pocket in Eq. (31). On the other hand, at high mag-
netic fields, ωh � 2(tb − tc), the dominating contribution to
total Hall conductivity is coming from the triangular pockets,
Eq. (63). It is positive, decays as 1/ωh, and is more than two
times smaller than the Hall conductivity for large hexagon
pocket in Eq. (35).

The full field dependences of the Hall components for
original and reconstructed Fermi surfaces are illustrated in
the upper panel of Fig. 8. We see that the shape of the
field dependence remains anomalous after the FS reconstruc-
tion. Namely, the function F R

xy (ωh) is still nonmonotonic and
changes sign. In fact, the reconstruction has a very weak influ-
ence on the low-field behavior. The most essential difference
is that the conductivity values at the maximum and above
become significantly smaller. We also note that even though
the hyperbolic hexagon has an overall small contribution, it
strongly affects the linear slope at small fields, see the inset in
the upper panel of Fig. 8.

To avoid a possible confusion, we note that Fig. 8 com-
pares the behavior of the conductivity slices for original and
reconstructed Fermi surfaces in the reduced form. In reality,
these Fermi surfaces are realized in different temperature
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ranges, above and below the CDW transition temperature. In
particular, strong difference in scattering rates leads to strong
difference between the scales S0 and H0 in these temperature
ranges.

IX. ROLE OF CORNER ROUNDING BY FINITE CDW GAP
IN LOW-MAGNETIC-FIELD BEHAVIOR

So far, we considered the approximation of sharp corners at
the branch crossing. A finite CDW gap rounds these corners. If
the CDW gap is small in comparison with other energy scales,
these roundings only modify the behavior of the magnetocon-
ductivity at low magnetic fields. The corners emerge because
band folding by the CDW wave vectors generates crossing
quasiparticle branches. The CDW hybridization transforms
the quasiparticle spectrum for two crossing branches ξ1(p)
and ξ2(p) as

Ep,± = ξ+
2

±
√

ξ 2−
4

+ �2
CDW, (68)

where ξ± = ξ1(p) ± ξ2,(p) and �CDW is the CDW gap pa-
rameter. Here we assume that the branches cross at p = pc,
ξ1(pc) = ξ2(pc). At this point, the gap in the quasiparticle
spectrum opens equal to �CDW. The spectral gap, however, is
only finite in a small region of the Fermi surface near pc. The
band splitting by CDW order has been directly observed by
ARPES [26,32,33]. The CDW hybridization rounds the cor-
ners at the crossing converting them to high-curvature turning
points.

With the rounded corners, the asymptotics of magnetocon-
ductivity for H → 0 is quadratic σxx(H ) − σxx(0) ∝ H2 and
crosses over to a linear dependence at the magnetic field scale
proportional to �CDW. The quantitative theoretical description
of this crossover has been elaborated in Ref. [60]. The correc-
tion to the conductivity slice due to the reconstructed crossing
points can be represented as

S(cr)
xx (H ) − Sxx(0) = 2ncr

〈
v2

−,x

〉
τ�CDW

[v1 × v2]z
G(H/H�), (69)

where ncr is the total number of crossing points (6 in our case),
v1 and v2 are the velocities of the two branches at the cross-
ing, v−,x = v2,x − v1,x is the jump of the x component of the
velocity at the corner for �CDW = 0, 〈. . .〉 means averaging
over crossings, and

H� = 2c�CDW

eτ [v1 × v2]z
(70)

is the magnetic field scale set by the CDW gap �CDW. The
reduced function G(h) is defined by the integral

G(h) =
ˆ ∞

0
dx

ˆ ∞

0
dy exp (−y)

×

⎛
⎜⎝ x2 − h2y2/4√(

x + h y
2

)2 + 1
√(

x − h y
2

)2 + 1
− x2

x2 + 1

⎞
⎟⎠
(71)

and has the following asymptotics:

G(h) =
{

− 3π
16 h2 for h � 1

π
2 − h for h � 1

. (72)

We find an accurate approximation for this function in the
form of superposition of two hyperbolas

G(h) ≈ π

2
− f

√
a2

1 + h2 − (1 − f )
√

a2
2 + h2 (73)

with f = 0.8035, a1 = 0.705, and a2 = 5.112. This form is
more convenient for modeling of the data than the exact inte-
gral presentation in Eq. (71).

In the region H � H�, Eqs. (69) and (71) give linear
magnetoconductivity

S(cr)
xx (H ) − Sxx(0) ≈ −ncr

〈
v2

−,x

〉eHτ 2

c
. (74)

For the spectrum considered in this paper, we evaluate

〈
v2

−,x

〉 = v2
v0

2
(
√

3 sinh tc + √
rm cosh tc)2. (75)

With this result, we can demonstrate that Eq. (74) reproduces
Eq. (64a) when we substitute the first term in Eq. (66) de-
scribing the contribution from the sharp corners. Also, the z
component of the velocity cross product in Eqs. (69) and (70)
in our case can be evaluated as

[v1 × v2]z =
√

3

2
v2

v0
3r2

m + 1

3rm − 1
. (76)

It is instructive to compare the CDW field scale H� in Eq. (70)
with the field scale H0 listed in the Table I. Using Eq. (76), we
obtain for the ratio of these two scales

H�

H0
= 2�CDW√

mumv[v1 × v2]l
= Cm

�CDW

εvH
(77)

with Cm = 2
√

rm/3(3rm − 1)/(3r2
m + 1). We see that, up to a

numerical factor, this ratio is given by the ratio of the CDW
gap and the distance between the van Hove energy and the
Fermi level εvH.

X. EXPERIMENTAL DATA AND
QUALITATIVE MODELING

Single crystals of CsV3Sb5 were grown using the flux
method as described in our earlier works [35,39]. Our crys-
tals have been extensively characterized by x-ray diffraction,
energy dispersive spectroscopy, bulk magnetization, magnetic
torque, and tunnel diode oscillator techniques [35,39]. In this
work, we focus on electrical transport. The electrical resis-
tivity and magnetotransport measurements were performed
using a dc technique in a Physical Properties Measurement
System (DynaCool-PPMS, Quantum Design) following a
standard four-probe method with current applied along the ab
plane and field along the c-axis. For the transverse magnetore-
sistance (MR) and Hall resistivity, measurements were carried
out for both positive and negative field directions to correct
for misalignment of electrical contacts. A typical tempera-
ture dependence of the in-plane electrical resistivity ρxx(T )
of CsV3Sb5 single crystal is shown in Fig. 9. The ρxx(T )
exhibits a metallic behavior and displays two anomalies, one
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FIG. 9. Temperature dependence of the longitudinal electrical re-
sistivity ρxx (T ) of CsV3Sb5 displaying the CDW transition at TCDW ≈
94 K and the superconducting transition at Tc ≈ 3.5 K (defined as
the midpoint of the transition, see the lower right inset). Red curve
is for H = 0 T and blue curve is for H = 9 T. (Upper left inset) The
difference between zero-field data and data at 9 T presented in main
frame.

at TCDW ∼ 94 K arising due to charge density wave ordering
and another transition at Tc ∼ 3.5 K corresponding to super-
conductivity, as presented in the lower right inset of Fig. 9 (red
curve). The CDW transition is seen as a kink in the ρxx(T )
curve and below the transition the resistivity is reduced. This
most likely indicates the reduction of the scattering rate in the
ordered state. These observations are consistent with previ-
ous reports [34,37,51]. The samples display a low residual
resistivity ∼1.2 µ� cm at ∼4 K before entering the super-
conducting state, reflecting their high quality.

Below ∼94 K, there is a considerable MR, as shown in
Fig. 9 (9 T, blue curve). In the upper left inset of Fig. 9,
we plot the difference between zero field data and the data at
9 T. Interestingly, the MR is sharply enhanced below the CDW
transition at 94 K. This enhancement can be mostly attributed
to the formation of the sharp corners in the reconstructed FS,
as discussed in Sec. VIII. Also, MR is enhanced due to the
reduction of the scattering rate in the ordered state.

Figures 10(a) and 10(b) show the magnetoresistance
and Hall resistivity of CsV3Sb5 at various temperatures,
respectively. The magnitude and shape of magnetoresis-
tance [ρxx(H )] and Hall resistivity [ρyx(H )] observed in
our single crystals are similar to that reported in previous
studies [16,34,37,51]. In addition to large magnetoresis-
tance MRxx = [ρxx(H ) − ρxx(0)]/ρxx(0), we observed clear
Shubnikov-de Haas quantum oscillations (QOs) at low tem-
peratures. Figure 10(c) displays MRxx at 10 K, where the
QOs are apparent above 5 T as seen more clearly in the
background-subtracted data in the inset. The observation of
QOs at low temperatures indicates a small scattering rate due
to impurities in our samples which is also a prerequisite for the
emergence of the anomalous features in the magnetotransport
we are aiming to understand.

As established by the DFT calculations [16,27,34,40,43],
ARPES measurements [25–33], and magnetic oscillations
data [16,34–39], kagome superconductors AV3Sb5 are
multiple-band materials with Fermi surfaces composed of
multiple sheets. We can hardly expect to quantitatively de-
scribe the magnetotransport of a material with such complex
band structure by taking into account contribution from only
one pocket, even if it has distinct anomalous behavior. In
addition, we evaluated the contribution from one kz slice, and
the total conductivity is obtained by integration over kz ac-
counting for the kz dependence of the band parameters. A full
microscopic calculation of the magnetoconductivity does not
appear feasible. Therefore we aim at a qualitative modeling of
the experimental data assuming that (i) all bands except the
ones originating from the large hexagon pocket give a smooth
background contribution and (ii) averaging over kz can be

FIG. 10. Magnetic-field dependences of the diagonal (a) and Hall resistivity (b) of CsV3Sb5 at indicated temperatures. These data are used
to evaluate the diagonal and Hall conductivities presented in Figs. 1 and 11. (c) shows the diagonal magnetoresistance MRxx at 10 K (blue dots).
Red curve shows the third-order polynomial fit for the smooth background. (Inset) Magnetoresistance above 5 T after background subtraction
(�MRxx). In addition to the anomalous magnetoresistance (described in the text), there are clear Shubnikov-de Haas quantum oscillations
above 5 T in the background-subtracted data affirming the high quality of the sample.
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FIG. 11. (Left) Experimental field dependences of the diagonal and Hall conductivities for CsV3Sb5 at five different temperatures.
Modeling of these data using Eqs. (79), (80), (81a), and (81b) with two sets of band parameters in Eq. (80), rm = 1.5 and κ = 30 (middle) and
rm = 2.5 and κ = 310 (right). The second set looks less reasonable but gives better fits. The dashed lines show fitted background contributions.

approximately replaced by taking parameters from a typical
kz slice, i.e., we approximate Eq. (17) for the anomalous part
dominated by van Hove singularities as

σ vH
αβ ≈ 2e2 pz0

(2π )3
S̄αβ, (78)

where pz0 is the size of the large hexagon in the c-axis
direction. and S̄αβ = S0F R

αβ (H/H0, κ̄, rm) is the typical slice
contribution with the parameter κ̄ being the typical value of
the ratio K/pu0, see Eq. (64a). The maximum value of pz0 is
obviously given by the size of the Brillouin zone Kz = 2π/c.
Therefore we try to model the experimental magnetoconduc-
tivity data with the following ansatz

σαβ (H ) = σ vH
αβ (H ) + σ

bg
αβ (H ), (79)

where σ vH
αβ (H ) is the anomalous magnetoconductivity due to

reconstructed FSs computed in the previous sections, which
we approximate as

σ vH
αβ (H ) = σ vH

0 κ−2F R
αβ (H/H0, κ, rm) (80)

and σ
bg
αβ (H ) is the background contribution from all other

bands for which we assume simple Drude shapes

σ bg
xx (H ) = σ

bg
0xx

1 + (H/Hbg)2
, (81a)

σ bg
xy (H ) = σ

bg
0xyH/Hbg

1 + (H/Hbg)2
. (81b)

As follows from Eqs. (78), the scale for the anomalous part
can be estimated as

σ vH
0 � 2e2 pz0

(2π )3

3τK2

√
mumv

,

while the definition of the field scale H0 is in Table I. We
observe that the product of conductivity and field scales does
not depend on scattering rate and effective masses

σ vH
0 H0 � 2

e2

h̄

�0

π

3K2 pz0

(2π )3
. (82)
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FIG. 12. Temperature dependences of the fitted conductivity and field scales for two sets of the anomalous band parameters.

Using e2

h̄ = 2.433 × 10−4 �−1, Kz = 2π/c with c = 0.94
nm [34], K = 2π/(

√
3a) with a = 0.55 nm, we estimate

σ vH
0 H0 ≈ 11.3

pz0

Kz

T

μ� cm
. (83)

For modeling, we use only data below 30K which dis-
play distinctly anomalous behavior of the Hall resistivity
in Fig. 10(b). The experimental field dependences of the
diagonal and Hall conductivities for CsV3Sb5 we are try-
ing to model are shown in the left column of Fig. 11.
They are obtained by inverting the resistivity matrix us-
ing experimental data presented in Figs. 10(a) and 10(b),
σxx = ρxx/(ρ2

xx + ρ2
yx ) and σxy = ρyx/(ρ2

xx + ρ2
yx ). We fixed

the temperature-independent band parameters rm and k and
fitted simultaneously two experimental curves σxx(H ) and
σxy(H ) at a given temperature using five fitting parameters for
the conductivity and field scales, σ vH

0 , σ
bg
0xx, σ

bg
0xy, H0, and Hbg,

which vary with temperature. Presumably, this temperature
dependence mostly originates from the scattering rate. We
also modified the parameters rm and k to find the set giving
the best modeling of the data for all temperatures. We found
that for “naively reasonable” parameter sets within the ranges
rm = 1.2 − 1.8, k = 15 − 50, one can obtain qualitative de-
scription of the data with some deviations, see, for example,
series of the simulated σαβ (H ) curves in the middle column
of Fig. 11 for rm = 1.5 and k = 30. Much better fits, however,
may be achieved assuming larger mass ratio rm = 2.5 and very
large k = 310 corresponding to very close proximity to the
van Hove point. The modeled curves with these parameters
are shown in the right column of Fig. 11.

Figure 12 shows temperature dependences of the fitted
conductivity and field scales for the two sets of the anoma-
lous band parameters used in Fig. 11. We can see that all

parameters display regular temperature dependences. The
conductivity and field scales for two parameter sets are very
close with somewhat smaller field scales for the second set.
The anomalous and background diagonal conductivities have
similar sizes. Note that the zero-field anomalous conductivity
is given by σ vH

αβ (0) = 0.26σ vH
0 and 0.25σ vH

0 for the first and
second set, respectively. The scale for the anomalous conduc-
tivity is characterized by a stronger temperature dependence.
The magnetic field scale for the anomalous part decreases with
temperature from 1.45 to 0.8 teslas for the first set and from 1
to 0.5 teslas for the second set. The field scale for the regular
contribution is 15–25 times larger. Nevertheless, both scales
have very similar temperature dependences described by the
law a + bT 3. The value of H0 = 1 T together with the esti-
mated values of the masses mu and mv gives an estimate for the
scattering time τ ≈ 4.2 × 10−12 s. We also observe that the
background Hall conductivity changes sign with increasing
temperature.

Figure 13 shows temperature dependences of the product
σ vH

0 H0 for two sets of the anomalous band parameters. Even
though Eq. (82) suggests that this product depends only on
band parameters, it does have a weak temperature depen-
dence. A comparison of the absolute value of this product with
the estimate in Eq. (83) suggests that the large hexagon occu-
pies only small fraction of the Brillouin zone pz0/Kz ∼ 0.1.

We consider now the behavior at low magnetic fields �
0.5 T. The linear magnetic-field dependence of the diagonal
conductivity crosses over to the quadratic one for H → 0.
This is an expected behavior because the corners at the branch
crossing are not infinitely sharp but rounded due opening
of the CDW gap, as described in Sec. IX. We model the
low-field behavior of the experimental magnetoconductivity
using theoretical results from Ref. [60] presented in Sec. IX.
Figure 14 shows the representative field dependences of
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FIG. 13. Temperature dependences of the product σ vH
0 H0 for two

sets of the anomalous band parameters.

diagonal conductivity at low magnetic fields for three temper-
atures, 10, 20, and 30 K. We can see that these dependences
indeed display a clear crossover between quadratic and lin-
ear behaviors around 0.1–0.2 T. The solid lines show fits
using Eqs. (69) and (73). We see that the crossover is very
accurately described by the theory based on the CDW FS
reconstruction. The extracted CDW field scale H� defined in
Eq. (70) increases from 0.095 T at 10 K to 0.23 T at 30 K.
This increase is mostly caused by the temperature dependence
of the scattering time. The ratio H�/H0 is approximately
0.125-0.15 for the parameter set in the left column of Fig. 11.
According to Eq. (77), this ratio is determined by the ratio
of the CDW gap �CDW and the shift of the Fermi level with
respect to the van Hove energy εvH. For rm = 1.5, we estimate
the numerical constant in Eq. (77) as Cm ≈ 0.64. This means
that our consideration suggests that �CDW is 4–5 times smaller
than εvH.

The ARPES data reported in Refs. [27,28] suggest that the
van Hove energy relevant for the large hexagon is located
at 100–200 meV below the Fermi level. Also, the feature
at −200 meV in the tunneling spectrum of CsV3Sb5 has

FIG. 14. The field dependences of the diagonal conductivity at
low magnetic fields for three temperatures displaying crossover be-
tween quadratic and linear behaviors. The solid lines show fits using
Eqs. (69) and (73).

been attributed to the van Hove singularity in Ref. [70]. On
the other hand, the CDW gap at the large-hexagon branch
crossing estimated from ARPES [18,26,32] and STM [17,70]
is ∼20 meV. This means that the relation between �CDW

and εvH following from our qualitative analysis is reasonably
consistent with the experimental data.

XI. SUMMARY AND DISCUSSION

In summary, we have introduced a minimal model of the
large hexagon pocket in the Fermi surface of kagome metals
that provides a natural interpretation for the experimentally
observed anomalous magnetotransport in the CDW state of
the compounds AV3Sb5. The shapes of magnetoconductivity
components in our model are determined by two dimension-
less parameters: the mass ratio of the saddle-point spectrum
and the ratio of the reciprocal-lattice vector to the minimum
separation of the large-hexagon vertices from the van Hove
point.

We evaluated magnetoconductivity components for both
large hexagon pocket in the pristine BZ and Fermi-surface
sheets emerging from its reconstruction by the CDW order
in the folded BZ, small hexagon and two large triangles.
Two features account for the anomalous magnetotransport in
AV3Sb5: proximity of the vertices of a large hexagonal pocket
to the van Hove points and the presence of very sharp corners
in the reconstructed FS sheets. The magnetoconductivity com-
ponents of the large hexagon are characterized by the two van
Hove magnetic field scales: the lower scale H0 is determined
by the two effective masses of the saddle-point electronic
spectrum and the upper scale Hb contains an additional large
logarithmic factor diverging as the Fermi energy approaches
the van Hove energy. While these two scales are still present
for the partial conductivities of the triangular pockets in the
reconstructed FS, the third magnetic-field scale H� emerges
due to the sharp corners. It is proportional to the CDW gap
and is the lowest scale in the problem. For CsV3Sb5, our
analysis yields the following hierarchy of the field scales at
low temperatures: H� ≈ 0.1 T, H0 ≈ 1 T, and Hb ≈ 7 T.

The sign of the linear Hall conductivity for the large
hexagon and triangles is negative, in spite of the hole na-
ture of these Fermi sheets. The reason for this anomalous
feature is the proximity of the regions with large posi-
tive curvature to the van Hove points in combination with
overall concave shape of these pockets. The same fea-
ture causes strong nonmonotonic field dependence and sign
change of the Hall conductivity. Therefore our model natu-
rally accounts for the anomalous magnetotransport behavior
of the kagome family AV3Sb5. Furthermore, it allows for a
semi-quantitative description of the experimental magneto-
conductivity in CsV3Sb5 with reasonable fitting parameters.
Following the Occam’s razor principle, the proposed mech-
anism provides a more likely explanation for a peculiar
behavior of the Hall resistivity than the previously employed
interpretation based on spontaneous Hall effect due to chiral
CDW. We would like to point, however, that our interpretation
by itself does not rule out possibility of a chiral CDW state in
these materials considering that the anomalous Hall effect is
not the only experimental indication for such a state. One can
naturally expect that if a chiral CDW is realized, a random
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array of domains with opposite chiralities would form in a
bulk sample. In such multidomain state a small spontaneous
Hall effect will be hidden due to the averaging between the
domains. This cancellation may persist in a finite magnetic
field if it does not generate a single-domain state, which is not
obvious a priori.

In conclusion, our work reveals the crucial role of van Hove
singularities and CDW Fermi-surface reconstruction on the
transport phenomena in the kagome superconductors AV3Sb5.
Since van Hove points are ubiquitous in kagome metals, they
very likely influence magnetotransport in other systems in-
cluding recently discovered kagome families AV6Sn6 (A=Y,
Gd, Ho, Sc, Sm) [71–75] and ATi3Bi5 (A=Cs, Rb) [76–78].
For example, it is highly probable that the mechanism dis-
cussed here is responsible for a nonmonotonic, sign-changing
magnetic-field dependence of Hall resistivity recently re-
ported for ScV6Sn6 [79]. Furthermore, our approach can be
extended to a large family of metallic systems hosting singular
features in their electronic spectrum.
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APPENDIX A: CALCULATION OF HYPERBOLIC
HEXAGON AREA AND EFFECTIVE MASS

1. Hyperbolic hexagon

With the Fermi-surface hyperbolic equation

pF,u(pv ) =
√

p2
v0 + p2

v

/√
rm,

the hexagon area can be written as

AHH = 12
ˆ pvc

0
(pF,u(pv ) −

√
3pv )d pv.

Using hyperbolic parametrization, we can evaluate this inte-
gral as

AHH = 12p2
v0√

rm

ˆ tc

0
cosh2 tdt − 6

√
3p2

vc

= 6p2
v0√
rm

(
tc + sinh 2tc

2

)
− 6

√
3p2

v0 sinh2 tc

= 6p2
u0

√
rmtc.

Using the relation tanh tc = 1√
3rm

, we finally obtain

AHH = 3p2
u0

√
rm ln

√
3rm + 1√
3rm − 1

. (A1)

For comparison, the area of an ideal hexagon is Ahex =
2
√

3p2
u0 ≈ 3.464p2

u0 (clearly, AHH < Ahex corresponding to√
3rm ln

√
3rm+1√
3rm−1

< 2).
The effective mass probed by magnetic oscillations is de-

fined as

mHH = 1

2π

dAHH

dεF

FIG. 15. Triangular pocket composed of the highlighted small
triangles with areas AT 1 and AT 2 computed in the text.

and from Eq. (A1) we immediately obtain

mHH = 3

π

√
mumv ln

√
3rm + 1√
3rm − 1

= 3

π
mu

√
rm ln

√
3rm + 1√
3rm − 1

.

(A2)

2. Triangular pocket

The triangular pocket is composed of six triangular pieces.
Each piece, in turn can be split into two smaller triangles
highlighted in Fig. 15. We compute the areas of these two
pieces notated as AT 1 and AT 2. The area of the triangle located
between the horizontal point pcx and pbx shown in Fig. 15, can
be evaluated as

AT 1 =
ˆ pbx

pcx

py(px )d px.

Using hyperbolic parametrization

px = pu0

(
1

2

√
rm sinh t +

√
3

2
cosh t

)
,

py = pu0

(√
3

2

√
rm sinh t − 1

2
cosh t

)
,

we compute

AT 1 = p2
u0

4

ˆ tb

tc

(
√

3rm sinh t − cosh t )

× (
√

rm cosh t +
√

3 sinh t )dt

= p2
u0

8
[(
√

3rm sinh tb − cosh tb)

× (
√

rm sinh tb +
√

3 cosh tb)

− 4
√

rm(tb − tc)]. (A3)
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The area of the second small triangle can be straightforwardly
evaluated as

AT 2 = 1

2
pby

(
K√

3
− pxb

)
= p2

u0

8
√

3
(
√

3rm sinh tb − cosh tb)2.

(A4)

Therefore the full area of the triangular pocket is given by

AT = 6(AT 1 + AT 2)

= p2
u0

[√
3

2
(3rm sinh2 tb − cosh2 tb) − 3

√
rm(tb − tc)

]

(A5)

Using definition of the parameter tb in Eq. (10), we can also
transform this result to a more transparent form

AT =
√

3

2

√
3rm − 1√
3rm + 1

K2

− 3
√

rm p2
u0

(
tb − tc + κ√

κ2 + 3rm − 1 + κ

)
. (A6)

Using this result and dependencies of pu0 and tb on the Fermi
energy, we can also derive the following result for the effective
mass of the triangular pocket

mT = 1

2π

dAT

dεF
≈ − 3

π
(tb − tc)

√
mumv. (A7)

Due to proximity to the van Hove point, the effective mass has
additional large factor ∼tb.

APPENDIX B: CONDUCTIVITY SLICE Sxβ

FOR ARBITRARY POCKET WITH M-FOLD SYMMETRY

Consider a 2D slice of a Fermi surface having m-fold sym-
metry. We split it into m equivalent segments separated by the
momenta pk with k = 1, . . . , m, located at the Fermi contour.
Each segment is assumed to have mirror symmetry. Figure
2(a) illustrates such a split for m = 6. We select the local
coordinate system for each segment along and perpendicular
to the mirror plane. The local axes for the segment with index
k are rotated at an angle θk = 2(k − 1)π/m + α with respect
to the laboratory frame. We can split the Fermi velocity into
the longitudinal and transverse components, vl and vt , which
are symmetric and antisymmetric, respectively, with respect
to the mirror plane.

To proceed, we rewrite the slice Sxβ in Eq. (18) as

Sxβ = ςxβ
c

|e|H
[

1 − exp

(
−
ffi

d p

v

c

|e|Hτ

)]−1

×
ffi

d p

v
vβIx(p), (B1)

where

Ix(p) =
ffi

p

d p′

v′ v′
x exp

(−Jp′
p

)
represents the p′ integral over the whole orbit for fixed initial
momentum p and

Jp′
p ≡

ˆ p′

p

d p′′

v′′
c

|e|Hτ
(B2)

is the orbit integral between point p and p′, which has an
obvious property J

p′
p = J

p0
p + J

p′
p0 for an arbitrary intermediate

point p0 at the orbit. For p located inside the segment [p1, p2],
the full integral over p′ can be split into the segments as

Ix(p) =
ˆ p2

p

d p′

v′ v′
x exp

(−Jp′
p

)

+
m∑

k=2

exp

⎛
⎝−Jp2

p −
k−1∑
j=2

J
p j+1
p j

⎞
⎠

×
ˆ pk+1

pk

d p′

v′ v′
x exp

(−Jp′
pk

)

+ exp

⎛
⎝−Jp2

p −
m∑

j=2

ˆ p j+1

p j

J
p j+1
p j

⎞
⎠

×
ˆ p

p1

d p′

v′ v′
x exp

(−Jp′
p1

)
.

For the momentum p′ located inside the k’s segment
[pk, pk+1], we can expand the velocity over the lo-
cal longitudinal and transverse components, v′

x = ckv
′
t −

skv
′
l with ck = cos[2(k − 1)π/m + α] and sk = sin[2(k −

1)π/m + α]. Since the segments are equivalent, the integrals

Q = Jpk+1
pk

, (B3a)

Rs =
ˆ pk+1

pk

d p′

v′ v′
s exp

(−Jp′
pk

)
(B3b)

with s = l, t do not depend on the segment index k. This
allows us to represent the p′ integral as

Ix(p) =
ˆ p2

p

d p′

v′ (c1v
′
t − s1v

′
l ) exp

(−Jp′
p

)

+ exp
(−Jp2

p

) m∑
k=2

exp [−(k − 2)Q](ckRt − skRl )

+ exp
(−Jp2

p − (m − 1)Q
) ˆ p

p1

d p′

v′ (c1v
′
t − s1v

′
l )

× exp
(−Jp′

p1

)
.

Further, the last term can be transformed as

exp
(−Jp2

p − (m − 1)Q
) ˆ p

p1

d p′

v′ (c1v
′
t − s1v

′
l ) exp

(−Jp′
p1

)
= exp

(−Jp2
p − (m − 1)Q

)
(c1Rt − s1Rl )

− exp (−mQ)
ˆ p2

p

d p′

v′ (c1v
′
t − s1v

′
l ) exp

(−Jp′
p

)
,

allowing us to combine it with the first two terms and obtain
the convenient presentation for Ix(p),

Ix(p) = [1 − exp (−mQ)]
ˆ pr+1

p

d p′

v′ (crv
′
t − srv

′
l ) exp

(−Jp′
pr

)

+ exp
(−Jpr+1

p

) r+m∑
k=r+1

exp [−(k − r − 1)Q]

× (ckRt − skRl ), (B4)
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where we generalized the result for p located inside an arbi-
trary segment [pr, pr+1] and used the periodicity ck+m = ck ,

sk+m = sk . We will use this result for calculation of slices Sxx

and Sxy from Eq. (B1).

1. Diagonal conductivity

We proceed with calculation of the diagonal part of the slice conductivity, Sxx from Eq. (B1). The part of the integral in Sxx

for the momentum p inside the segment [pr, pr+1] using the result for Ix(p) in Eq. (B4) can now be written as

c

|e|H
ˆ pr+1

pr

d p

v
vxIx(p) = c

|e|H [1 − exp (−mQ)]
ˆ pr+1

pr

d p

v
(crvt − srvl )

ˆ pr+1

p

d p′

v′ (crv
′
t − srv

′
l ) exp

(−Jp′
p

)

+ c

|e|H
ˆ pr+1

pr

d p

v
(crvt − srvl ) exp

(−Jpr+1
p

) m+r∑
k=r+1

exp [−(k − r − 1)Q](ckRt − skRl ).

Using the symmetry properties of vt and vl , the integrals in the second line can be related to the segment integrals in Eq. (B3b)
as

ˆ pr+1

pr

d p

v
vt exp

(−Jpr+1
p

) = −Rt , (B5a)

ˆ pr+1

pr

d p

v
vl exp

(−Jpr+1
p

) = Rl . (B5b)

We also introduce the following notations:

Gsq =
ˆ pr+1

pr

d p

v
vs

ˆ pr+1

p

d p′

v′ v′
q exp

(−Jp′
p

)
, (B6)

with s, r = l, t for the same-segment integrals in the second line. They also are identical for all segments. This gives the following
result for the p integral over the segment [pr, pr+1]

c

|e|H
ˆ pr+1

pr

d p

v
vxIx(p) = c

|e|H [1 − exp (−mQ)]
(
c2

rGtt + s2
rGll − crsr (Gt l + Glt )

)

− c

|e|H (crRt + srRl )
r+m∑

k=r+1

exp [−(k − r − 1)Q](ckRt − skRl ). (B7)

Adding all p segments and using the identities
∑m

r=1 c2
r =∑m

r=1 s2
r = m/2 and

∑m
r=1 crsr = 0, we can write the full result as

Sxx = c

|e|H

⎧⎨
⎩m

2
(Gtt + Gll ) − [1 − exp (−mQ)]−1

m∑
r=1

(crRt + srRl )
r+m∑

k=r+1

exp [−(k − r − 1)Q](ckRt − skRl )

⎫⎬
⎭. (B8)

As ck = cos[2(k − 1)π/m + α] and sk = sin[2(k − 1)π/m + α], calculation of the trigonometric sums is facilitated by the
complex presentations

ckRt − skRl = Re

[
exp

(
ı
2π

m
(k − 1) + iα

)
(Rt + ıRl )

]
(B9)

and crRt + srRl = Re[exp(ı 2π
m (r − 1) + ıα)(Rt − ıRl )] = 1

2

∑
δ=±1 exp(ı 2π

m δ(r − 1) + ıδα)(Rt − ıδRl ). Using these pre-
sentations, we compute the sum over the index k as,

r+m∑
k=r+1

exp

[
−(k − r − 1)Q + ı

2π

m
(k − 1) + iα

]
= exp

(
iα + ır

2π

m

)
1 − exp (−mQ)

1 − exp
(−Q + ı 2π

m

) (B10)

and obtain

Sxx = c

|e|H

⎧⎨
⎩m

2
(Gtt + Gll ) − 1

2
Re

⎡
⎣∑

δ=±1

(Rt − ıδRl )
m∑

r=1

exp

[
ı
2π

m
δ(r − 1) + ır

2π

m
+ ı(δ + 1)α

] Rt + ıRl

1 − exp
(−Q + ı 2π

m

)
⎤
⎦
⎫⎬
⎭.

(B11)
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As the sum over index r vanishes for δ = 1 and the terms are r independent for δ = −1, we arrive at the final result

S(m)
xx = m

2

c

|e|H

{
Gtt + Gll − Re

[
(Rt + ıRl )

2

exp
(−ı 2π

m

)− exp (−Q)

]}

= m

2

c

|e|H

{
Gtt + Gll −

(
R2

t − R2
l

)[
cos
(

2π
m

)− exp (−Q)
]− 2RtRl sin

(
2π
m

)
1 − 2 cos

(
2π
m

)
exp (−Q) + exp (−2Q)

}
, (B12)

which expresses the diagonal conductivity slice in terms of segment integrals defined in Eqs. (B3a), (B3b), and (B6).

2. Hall conductivity

The calculation of the Hall component Sxy is again based on the presentation in Eq. (B1) in combination with Ix(p) in
Eq. (B4). Using the expansion vy = srvt + crvl , the p integral for segment [pr, pr+1] in Sxy can be represented as

c

|e|H
ˆ pr+1

pr

d p

v
vyIx(p) = c

|e|H [1 − exp (−mQ)]
ˆ pr+1

pr

d p

v
(srvt + crvl )

ˆ pr+1

p

d p′

v′ (crv
′
t − srv

′
l ) exp

(−Jp′
p

)

+ c

|e|H
ˆ pr+1

pr

d p

v
(srvt + crvl ) exp

(−Jpr+1
p

) m+r∑
k=r+1

exp [−(k − r − 1)Q](ckRt − skRl )

= c

|e|H [1 − exp (−mQ)]
(
c2

rGlt − s2
rGt l + crsr (Gtt − Gll )

)

+ c

|e|H (−srRt + crRl )
m+r∑

k=r+1

exp [−(k − r − 1)Q](ckRt − skRl ).

Therefore, for the full Hall conductivity slice, we obtain

Sxy = ςxy
c

|e|H

{
m

2
(Glt − Gt l ) + [1 − exp (−mQ)]−1

m∑
r=1

(−srRt + crRl )
r+m∑

k=r+1

exp [−(k − r − 1)Q](ckRt − skRl )

}
. (B13)

Using the complex presentation in Eq. (B9) and −srRt + crRl = 1
2

∑
δ=±1 exp(ıδ 2π

m (r − 1) + iδα)(ıδRt + Rl ), as well as
Eq. (B10) for the sum in the second line, we derive

Sxy = ςxy
c

|e|H

{
m

2
(Glt − Gt l ) + 1

2
Re

⎡
⎣∑

δ=±1

m∑
r=1

exp

(
ıδ

2π

m
(r − 1) + ır

2π

m
+ i(δ + 1)α

)
(ıδRt + Rl )(Rt + ıRl )

1 − exp
[−Q + ı 2π

m

]
⎤
⎦
⎫⎬
⎭.

Again, only the term with δ = −1 is finite yielding the final result

S(m)
xy = ςxy

m

2

c

|e|H

[
Glt − Gt l + Im

[
(Rt + ıRl )

2

exp
(−ı 2π

m

)− exp (−Q)

]]

= ςxy
m

2

c

|e|H

{
Glt − Gt l + sin

(
2π
m

)(
R2

t − R2
l

)+ 2
[
cos
(

2π
m

)− exp (−Q)
]
RlRt

1 − 2 exp (−Q) cos
(

2π
m

)+ exp (−2Q)

}
, (B14)

which have a form similar to the diagonal slice in Eq. (19a).

APPENDIX C: INTEGRATIONS ALONG HYPERBOLIC FERMI SURFACE NEAR VAN
HOVE POINT FOR LARGE HEXAGON

In this Appendix, we analytically calculate the segment integrals RLH
k and GLH

km in Eqs. (20b) and (20c) determining the
single-slice contribution to conductivity in Eq. (18). The Fermi pocket of the large concave hexagon is approximated by segments
of hyperbola, Eq. (7), see Fig. 2. The momenta tracing the Fermi surface can be presented in the local coordinates as

px = Kj,x + pvc j − pus j, (C1a)

py = Kj,y + pvs j + puc j . (C1b)

for π
3 ( j − 1) < θ < π

3 j, where px = p cos θ , py = p sin θ , θ j = (π/3)( j − 2), with j = (1, 2, . . . , 6), c j ≡ cos θ j , and s j ≡
sin θ j . For the integrations along the Fermi surface in Eqs. (20b) and (20c), it is convenient to use the hyperbolic parametrization
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defined in Eq. (8). Correspondingly, the velocity components in real space are expanded as

vx = vvc j − vus j, (C2a)

vy = vvs j + vuc j, (C2b)

where vv = − pv

mv
and vu = pu

mu
are velocity components in hyperbolic basis, which can be parametrized as

vv = vv0 sinh t, vu = −vu0 cosh t, (C3)

with

vu0 = pu0

mu
, vv0 = pv0

mv

, (C4)

so that vv0/vu0 = pu0/pv0 = 1/
√

rm. Therefore, for the total in-plane velocity, we obtain

v =
√

v2
u0 cosh2 t + v2

v0 sinh2 t .

For the integrations in the exponent of Eq. (18), we obtain the relation

d p

v
=
√

(d pv/dt )2 + (d pu/dt )2√
v2

u0 cosh2 t + v2
v0 sinh2 t

dt = pu0

vv0
dt = √

mumvdt (C5)

yielding
ˆ p′

p

d p′′

v′′
c

|e|Hτ
= t ′ − t

ωh
= −arcsinh(p′

v/pv0) − arcsinh(pv/pv0)

ωh
. (C6)

In particular, for the whole-orbit integral in Eq. (18), we haveffi
d p

v

c

|e|Hτ
= 12tb

ωh
= 6QLH,

where the limiting hyperbolic parameter tb is defined in Eq. (10).
Both RLH

k and GLH
km in Eqs. (20b) and (20c) are determined by the integrals

Jk (p) =
ˆ p2

p

d p′

v′ v′
k exp

(
−
ˆ p′

p

d p′′

v′′
c

|e|Hτ

)
(C7)

with k = v, u. Using the hyperbolic parametrization for the point at the Fermi surface, p(t ), and for the Fermi velocities, Eqs. (8)
and (C3), these integrals can be evaluated analytically

Jv (t ) = pu0Gv (tb, t ), (C8a)

Ju(t ) = −pv0Gu(tb, t ), (C8b)

where the functions Gv (t2, t1) and Gu(t2, t1) are defined and evaluated as

Gv (t2, t1) ≡
ˆ t2

t1

dt ′ sinh t ′ exp

(
− t ′ − t1

ωh

)
=
(
cosh t2 + 1

ωh
sinh t2

)
exp
(− t2−t1

ωh

)− (cosh t1 + 1
ωh

sinh t1
)

1 − ω−2
h

, (C9a)

Gu(t2, t1) ≡
ˆ t2

t1

dt ′ cosh t ′ exp

(
− t ′ − t1

ωh

)
=
(
sinh t2 + 1

ωh
cosh t2

)
exp
(− t2−t1

ωh

)− (sinh t1 + 1
ωh

cosh t1
)

1 − ω−2
h

, (C9b)

and we also used the relations
√

mumvvv0 = pu0,
√

mumvvu0 = pv0.
The integrals over the whole segment [p1, p2] defined in Eq. (20b) are given by RLH

s = Js(−tb) with s = u, v. Introducing
shortened notations Gbs ≡ Gs(tb,−tb), we can present RLH

v = pu0Gbv and RLH
u = −pv0Gbu. The explicit presentations for the

functions Gbv and Gbu directly following from Eqs. (C9a) and (C9b) are given in Eqs. (24a) and (24b). One can also derive
alternative presentations

Gbv = −2 exp

(
− tb

ωh

)cosh tb sinh (tb/ωh) − 1
ωh

sinh tb cosh (tb/ωh)

1 − ω−2
h

, (C10a)

Gbu = 2 exp

(
− tb

ωh

) sinh tb cosh (tb/ωh) − 1
ωh

cosh tb sinh (tb/ωh)

1 − ω−2
h

. (C10b)
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These functions have the following asymptotics:

Gbv �
{−ωh(sinh tb − ωh cosh tb), for ωh � 1

− 2
ωh

(tb cosh tb − sinh tb), for ωh � 2tb
, (C11a)

Gbu �
⎧⎨
⎩

ωh(cosh tb − ωh sinh tb), for ωh � 1

2 sinh tb
(

1 − tb
ωh

)
, for ωh � 2tb

. (C11b)

In calculations, we will also need the supplemental integrals over p defined as

R̄LH
v =

ˆ p2

p1

d p

v
vv exp

(
−
ˆ p2

p

d p′′

v′′
c

|e|Hτ

)
= −RLH

v , (C12a)

R̄LH
u =

ˆ p2

p1

d p

v
vu exp

(
−
ˆ p2

p

d p′′

v′′
c

|e|Hτ

)
= RLH

u . (C12b)

We now evaluate the same-segment integrals GLH
km in Eq. (20c). The term GLH

vv is connected with the integral Jv (p) defined in
Eq. (C7) as

GLH
vv =

ˆ p2

p1

d p

v
vvJv (p).

Using again the hyperbolic parametrization for for p and vv together with the result for Jv (p) in Eqs. (C8a) and (C9a), we
compute

GLH
vv = p2

u0Kbvv,

Kbvv =
ˆ tb

−tb

dt sinh tGv (tb, t )

= 1

1 − ω−2
h

[(
cosh tb + 1

ωh
sinh tb

)cosh tb − ω−2
h sinh tb − exp

(− 2
ωh

tb
)(

cosh tb + 1
ωh

sinh tb
)

1 − ω−2
h

− 1

2ωh
(sinh 2tb − 2tb)

]

= 1

1 − ω−2
h

⎡
⎣sinh2 tb + 1 − exp

(− 2
ωh

tb
)(

cosh tb + 1
ωh

sinh tb
)2

1 − ω−2
h

− 1

2ωh
(sinh 2tb − 2tb)

⎤
⎦. (C13)

Even though this result contains 1 − ω−2
h denominators, one can check that it does not diverge and approaches a finite limit for

ωh → 1,

Kbvv → 1

2

{
sinh (2tb)

2

(
1 + exp (−2tb)

2

)
− exp (−2tb)tb − tb(1 + 2tb)

2

}
.

In a similar way, one can evaluate the term

GLH
uu =

ˆ p2

p1

d p

v
vuJu(p)

using the result for Ju(p) in Eqs. (C8b) and (C9b). Explicit calculation gives

GLH
uu = p2

v0Kbuu,

Kbuu =
ˆ tb

−tb

dt cosh tGu(tb, t )

= 1

1 − ω−2
h

⎡
⎣(sinh tb + 1

ωh
cosh tb

) sinh tb − 1
ω2

h
cosh tb + exp

(− 2
ωh

tb
)(

sinh tb + 1
ωh

cosh tb
)

1 − ω−2
h

− 1

ωh

(
sinh 2tb

2
+ tb

)⎤⎦

= 1

1 − ω−2
h

⎡
⎣cosh2 tb − 1 − exp

(− 2
ωh

tb
)(

sinh tb + 1
ωh

cosh tb
)2

1 − ω−2
h

− 1

ωh

(
sinh 2tb

2
+ tb

)⎤⎦. (C14)
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The functions Kbss have the following asymptotics.

Kbvv �
{

ωh
[( sinh 2tb

2 − tb
)− ωh sinh2 tb

]
, for ωh � 1

1
ωh

[
tb(cosh 2tb + 2) − 3 sinh 2tb

2

]
, for ωh � 2tb

, (C15)

Kbuu �
{

ωh
[( sinh 2tb

2 + tb
)− ωh cosh2 tb

]
, for ωh � 1

2 sinh2 tb + 1
ωh

( sinh 2tb
2 − tb(2 sinh2 tb + 1)

)
, for ωh � 2tb

. (C16)

The Hall component also contains the off-diagonal function,

GLH
uv =

ˆ p2

p1

d p

v
vuJv (p),

which we evaluate as

GLH
uv = −pu0 pv0Kbuv,

Kbuv =
ˆ tb

−tb

dt cosh tGv (tb,, t )

= 1

1 − ω−2
h

[(
cosh tb + 1

ωh
sinh tb

)(sinh tb − 1
ωh

cosh tb
)+ (sinh tb + 1

ωh
cosh tb

)
exp
(− 2

ωh
tb
)

1 − ω−2
h

− sinh 2tb
2

− tb

]

= 1

1 − ω−2
h

[− 1
ωh

+ [(1 + ω−2
h

)
sinh (2tb)/2 + 1

ωh
cosh (2tb)

]
exp
(− 2

ωh
tb
)

1 − ω−2
h

− tb

]
. (C17)

This function has the following asymptotics:

Kbuv �
{

ω2
h(tb − ωh), for ωh � 1

1
2 sinh (2tb) − tb − 1

ωh
[1 + tb sinh (2tb) − cosh (2tb)], for ωh � 2tb

. (C18)

One can demonstrate antisymmetry with respect to the index switching, GLH
vu = −GLH

uv .
In addition to the asymptotic limit ωh � 2tb, the functions Gbs and Kbst are also characterized by more general asymptotic

limits valid in the whole range ωh � 1 :

Gbv � − cosh tb(1 − ηLH), Gbu � sinh tb(1 + ηLH), (C19a)

Kbvv � cosh2 tb(1 − ηLH), Kbuu � sinh2 tb(1 + ηLH), (C19b)

Kbuv � −tb + ηLH sinh tb cosh tb (C19c)

with ηLH ≡ exp(−2tb/ωh). These asymptotics also describe behavior in the intermediate field range 1 � ωh � 2tb.

APPENDIX D: MAGNETOCONDUCTIVITY CONTRIBUTION FOR TRIANGULAR POCKETS

In this Appendix we evaluate the conductivity slices for the triangular pocket illustrated in Figs. 3(c) and 4 based on the
general presentations in Eqs. (50a) and (50b). For this, we need to evaluate the segment integrals in Eqs. (20a), (20b), and (20c).
In our model, the segment is the triangle side, which is composed of “outgoing” and “incoming” hyperbola branches.

We will again use the local hyperbolic coordinates pv and pu for every branch. However, contrary to the hexagon pockets, the
transverse and longitudinal directions do not coincide with these coordinates. This means that we need to expand the transverse
and longitudinal velocity components vt and vl over the hyperbolic components vv and vu for every hyperbola branch. We write
these expansions in a unified way as

vs = αa,svu + βa,svv, (D1)

where s = t, l , the index a = o, i corresponds to the outgoing and incoming branches, and the coefficients are given by

αo,l = αi,l = βo,t = βi,t =
√

3

2
, αo,t = −αi,t = −βo,l = βi,l = 1

2
.

The presentations in Eq. (D1) can be also rewritten in a compact complex way as vt + ıvl = exp(−ıδ π
6 )(vv + ıvu) with δ =

1(−1) for the outgoing (incoming) branch. We will use the hyperbolic parametrization defined in Eq. (8), in which the hyperbolic
parameter t varies in the range tc < t < tb for the outgoing branch and −tb < t < −tc for the incoming branch. The hyperbolic
velocity components vv and vu are parametrized identically with the large hexagon in Eq. (C3). Note that vl is continuous and vt

has a jump at the matching point between outgoing and incoming branches.
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Relations in Eqs. (C5) and (C6) allow us straightforwardly evaluate the parameter QT = ´ pk+1

pk

d p′
v′

c
|e|Hτ

yielding the result in

Eq. (52). We evaluate the integrals RT
s in Eq. (50a) for the segment between pk and pk+1 as

RT
s =

ˆ pb

pk

d p′

v′ (αo,sv
′
u + βo,sv

′
v ) exp

(−Jp′
pk

)+ exp
(−Jpb

pk

)ˆ pk+1

pb

d p′

v′ (αi,sv
′
u + βi,sv

′
v ) exp

(−Jp′
pb

)
, (D2)

where pb is the momentum at the matching point between outgoing and incoming branches and we again employ the notation
J

p′
p for the orbit integral between the points p and p′ as defined in Eq. (B2). Introducing the contributions from the outgoing and

incoming branches

RT
o,s =

ˆ pb

pk

d p′

v′ v′
s exp

(−Jp′
pk

)
, (D3a)

RT
i,s =

ˆ pk+1

pb

d p′

v′ v′
s exp

(−Jp′
pb

)
, (D3b)

we rewrite the presentation in Eq. (D2) as

RT
s = RT

o,s + √
ηTRT

i,s (D4)

with ηT ≡ exp(−QT). Substituting the hyperbolic parametrization, we obtain

RT
o,s =

ˆ tb

tc

dt ′(−αo,s pv0 cosh t ′ + βo,s pu0 sinh t ′) exp

(
− t ′ − tc

ωh

)
= −αo,s pv0Gbcu + βo,s pu0Gbcv, (D5a)

RT
i,s =

ˆ −tc

−tb

dt ′(−αi,s pv0 cosh t ′ + βi,s pu0 sinh t ′) exp

(
− t ′ + tb

ωh

)
= −αi,s pv0Gcbu + βi,s pu0Gcbv, (D5b)

where we introduced notations

Gbck = Gk (tb, tc), Gcbk = Gk (−tc,−tb)

with k = u, v and the functions Gk (t2, t1) with k = v, u defined as

Gv (t2, t1) =
ˆ t2

t1

dt ′ sinh t ′ exp

(
− t ′ − t1

ωh

)
, Gu(t2, t1) =

ˆ t2

t1

dt ′ cosh t ′ exp

(
− t ′ − t1

ωh

)

are evaluated in Eqs. (55a) and (55b). The functions Gbck and Gcbk have the following asymptotic limits

Gbcv � ωh sinh tc, Gbcu � ωh cosh tc, (D6)

Gcbv � −ωh sinh tb, Gcbu � ωh cosh tb (D7)

for ωh � 1 and

Gbcv � cosh tb
√

ηT − cosh tc, Gbcu � sinh tb
√

ηT − sinh tc, (D8)

Gcbv � cosh tc
√

ηT − cosh tb, Gcbu � − sinh tc
√

ηT + sinh tb (D9)

for ωh � 1.
Using complex presentation for the trigonometric coefficients

αo,t + ıαo,l = ı exp
(
−ı

π

6

)
, αi,t + ıαi,l = ı exp

(
ı
π

6

)
, βo,t + ıβo,l = exp

(
−ı

π

6

)
, βi,t + ıβi,l = exp

(
ı
π

6

)
,

and introducing two complex functions Gbc and Gcb in Eq. (53), we obtain complex combination which determines the
conductivity slices in Eqs. (50a) and (50b).

RT
t + ıRT

l = pu0 exp
(
−ı

π

6

)[
Gbc + exp

(
−QT

2
+ ı

π

3

)
Gcb

]
. (D10)

For the combination in Eqs. (50a) and (50b), we find(
RT

t + ıRT
l

)2
exp
(−ı 2π

3

)− exp (−QT)
= p2

u0

exp
(−ı π

3

)
G2

bc + 2 exp
(−QT

2

)
GbcGcb + exp

(−QT + ı π
3

)
G2

cb

exp
(−ı 2π

3

)− exp (−QT)
. (D11)
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The same-segment integrals GT
sr defined in Eq. (20c), we also split into contributions from incoming and outgoing segments,

GT
sr =

ˆ pb

pk

d p

v
vs

ˆ pb

p

d p′

v′ v′
r exp

(−Jp′
p

)+
ˆ pb

pk

d p

v
vs exp

(−Jpb
p

)ˆ pk+1

pb

d p′

v′ v′
r exp

(−Jp′
pb

)

+
ˆ pk+1

pb

d p

v
vs

ˆ pk+1

p

d p′

v′ v′
r exp

(−Jp′
p

)
.

The middle term here can be transformed asˆ pb

pk

d p

v
vs exp

(−Jpb
p

) ˆ pk+1

pb

d p′

v′ v′
r exp

(−Jp′
pb

) = δsRT
i,sRT

i,r

with δl = 1, δt = −1, where the integrals RT
i,s are defined in Eq. (D3b) and evaluated in Eq. (D5b). Here we used an alterna-

tive presentation for RT
i,s, RT

i,s = δs
´ pb

pk

d p
v

vs exp(−J
pb
p ) following from the symmetry properties of the velocity components.

Substituting hyperbolic parametrization, we obtain

GT
sr =

ˆ tb

tc

dt (αo,s pv0 cosh t − βo,s pu0 sinh t )(αo,r pv0Gu(tb, t ) − βo,r pu0Gv (tb, t )) + δsRT
i,sRT

i,r

+
ˆ −tc

−tb

dt (αi,s pv0 cosh t − βi,s pu0 sinh t )(αi,r pv0Gu(−tc, t ) − βi,r pu0Gv (−tc, t )),

where we used identitiesˆ tb

tc

dt sinh t exp

(
− tb − t

ωh

)
= −Gv (−tc,−tb),

ˆ tb

tc

dt cosh t exp

(
− tb − t

ωh

)
= Gu(−tc,−tb).

Introducing the integrals Kαβ (t2, t1) as

Kvv (t2, t1) =
ˆ t2

t1

dt sinh t Gv (t2, t ), Kuu(t2, t1) =
ˆ t2

t1

dt cosh t Gu(t2, t ),

Kvu(t2, t1) =
ˆ t2

t1

dt sinh t Gu(t2, t ), Kuv (t2, t1) =
ˆ t2

t1

dt cosh t Gv (t2, t ),

we arrive at the finite presentation for the same-segment integrals,

GT
sr = (αo,sαo,r + αi,sαi,r )p2

v0Kuu(tb, tc) + (βo,sβo,r + βi,sβi,r )p2
u0Kvv (tb, tc)

− pv0 pu0[(αo,sβo,r − βi,sαi,r )Kuv (tb, tc) + (βo,sαo,r − αi,sβi,r )Kvu(tb, tc)] + δsRT
i,sRT

i,r . (D12)

The functions Kαβ (t2, t1) can be analytically evaluated as

Kvv (t2, t1) = 1

1 − ω−2
h

{(
cosh t2 + 1

ωh
sinh t2

)cosh t2 − 1
ωh

sinh t2 − exp
(− 1

ωh
(t2 − t1)

)(
cosh t1 − 1

ωh
sinh t1

)
1 − ω−2

h

− cosh (2t2) − cosh (2t1)

4
− 1

2ωh

[
sinh (2t2) − sinh (2t1)

2
− t2 + t1

]}
,

Kuu(t2, t1) = 1/2

1 − 1
ω2

h

{
2

(
sinh t2 + 1

ωh
cosh t2

) sinh t2 − 1
ωh

cosh t2 − exp
[− 1

ωh
(t2 − t1)

](
sinh t1 − 1

ωh
cosh t1

)
1 − ω−2

h

− cosh (2t2) − cosh (2t1)

2
− 1

ωh

(
sinh (2t2) − sinh (2t1)

2
+ t2 − t1

)}
,

Kvu(t2, t1) = 1

1 − ω−2
h

{
1
ωh

− exp
(− t2−t1

ωh

)(
sinh t2 + 1

ωh
cosh t2

)(
cosh t1 − 1

ωh
sinh t1

)
1 − 1

ω2
h

+ sinh (2t2) + sinh (2t1)

4
+ t2 − t1

2
− 1

ωh

cosh (2t2) − cosh (2t1)

4

}
,
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Kuv (t2, t1) = 1

1 − 1
ω2

h

{
−

1
ωh

+ exp
(− t2−t1

ωh

)(
cosh t2 + 1

ωh
sinh t2

)(
sinh t1 − 1

ωh
cosh t1

)
1 − 1

ω2
h

+ sinh (2t2) + sinh (2t1)

4
− t2 − t1

2
− 1

ωh

cosh (2t2) − cosh (2t1)

4

}
.

These functions have the symmetry properties

Kss(−t1,−t2) = Kss(t2, t1), Kvu(−t1,−t2) = −Kuv (t2, t1),

which we have already used to simplify Eq. (D12). The functions Kαβ (tb, tc) have the following behavior in different limits:

Kvv (tb, tc) � ωh

2

(
sinh (2tb) − sinh (2tc)

2
− tb + tc

)
− ω2

h

2

(
cosh (2tb) + cosh (2tc)

2
− 1

)
, (D13)

Kuu(tb, tc) � ωh

2

(
sinh (2tb) − sinh (2tc)

2
+ tb − tc

)
− ω2

h

2

(
cosh (2tb) + cosh (2tc)

2
+ 1

)
, (D14)

Kvu(tb, tc) = ωh

4
(cosh (2tb) − cosh (2tc)) − ω2

h

4
(sinh (2tb) + sinh (2tc) + 2(tb − tc)) (D15)

for ωh � 1 and

Kvv (tb, tc) � cosh2 tb + cosh2 tc
2

− cosh tb cosh tc
√

ηT , (D16)

Kuu(tb, tc) � sinh2 tb + sinh2 tc
2

− sinh tb sinh tc
√

ηT , (D17)

Kvu(tb, tc) � sinh (2tb) + sinh (2tc)

4
+ tb − tc

2
− √

ηT sinh tb cosh tc (D18)

for ωh � 1.
We proceed with evaluation of the diagonal conductivity slice ST

xx based on the complex presentation in Eq. (50a). For
combination in the first line of Eq. (50a), we obtain from Eq. (D12)

GT
tt + GT

ll = 2p2
v0Kuu(tb, tc) + 2p2

u0Kvv (tb, tc) + 1
2 p2

v0G2
cbu −

√
3pv0 pu0GcbuGcbv − 1

2 p2
u0G2

cbv. (D19)

Using the complex function Gcb introduced in Eq. (53), we can combine the three last terms in this equation as

1

2
p2

v0G2
cbu −

√
3pv0 pu0GcbuGcbv − 1

2
p2

u0G2
cbv = −p2

u0Re
[
exp
(
ı
π

3

)
G2

cb

]
.

Substituting the above results and Eq. (D11) into Eq. (50a), we obtain

ST
xx = 3

2

c

|e|H p2
u0{2Kvv (tb, tc) + 2rmKuu(tb, tc)

− Re

[
exp
(
ı
π

3

)
G2

cb + exp
(−ı π

3

)
G2

bc + 2Gbc exp
(−QT

2

)
Gcb + exp

(−QT + ı π
3

)
G2

cb

exp
(−ı 2π

3

)− exp (−QT)

]}
,

which is identical to the result in Eq. (51b) of the main text.
For the Hall conductivity slice in Eq. (50b), we need the function GT

lt , which we evaluate from the general presentation in
Eq. (D12) as

GT
lt = −pv0 pu0[Kuv (tb, tc) − Kvu(tb, tc)] −

√
3

4

(
p2

v0G2
cbu − p2

u0G2
cbv

)− 1

2
pv0 pu0GcbvGcbu. (D20)

Using the complex function Gcb in Eq. (53), the last terms in this equation can be presented as

−
√

3

4

(
p2

v0G2
cbu − p2

u0G2
cbv

)− 1

2
pv0 pu0GcbvGcbu = p2

u0

2
Im
[
exp
(
ı
π

3

)
G2

cb

]
.
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As GT
t l = −GT

lt , substituting the above results and Eq. (D11) into Eq. (50b) yields

ST
xy = −3

2

c

|e|H p2
u0

{
2
√

rm[Kvu(tb, tc) − Kuv (tb, tc)]

+ Im

[
exp
(
ı
π

3

)
G2

cb + exp
(−ı π

3

)
G2

bc + 2Gbc exp
(−QT

2

)
Gcb + exp

(−QT + ı π
3

)
G2

cb

exp
(−ı 2π

3

)− exp (−QT)

]}
.

This result is equivalent to Eq. (51c) of the main text. Note that the difference Kvu(tb, tc) − Kuv (tb, tc) in the first line can be
represented in alternative form:

Kvu(tb, tc) − Kuv (tb, tc) = −exp
[(

1 − 1
ωh

)
(tb − tc)

]− 1

2
(
1 − 1

ωh

)2 + exp
[−(1 + 1

ωh

)
(tb − tc)

]− 1

2
(
1 + 1

ωh

)2 + tb − tc
1 − 1

ω2
h

,

which is somewhat more convenient for numerical evaluation.
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