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Tunneling chirality Hall effect in type-I Weyl semimetals
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We propose a tilt-assisted tunneling chirality Hall effect in the normal metal-superconductor (NS) junctions
based on the time-reversal-broken type-I Weyl semimetals. It is found that the chirality-dependent skew reflection
occurs at the NS interface due to the tilt of the Weyl cones, which is responsible for the nonzero transverse
chirality Hall currents. Distinct from the Hall effect induced by the Berry curvature, we further illustrate that
the transverse chirality current here is determined by the symmetry of the tilted Weyl Hamiltonian. Specifically,
both the transverse chirality Hall current and the transverse charge Hall current may occur when the tilt of the
Weyl cones break the mirror symmetry (M) of the Weyl Hamiltonian. However, a pure transverse chirality
Hall current with zero net charge is present when the tilt breaks M symmetry but preserves the combined MC
symmetry, where C represents the Z2 exchange symmetry.
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I. INTRODUCTION

Weyl semimetals are three-dimensional topological mate-
rials with the conduction and valence bands touching at two or
more crossing points in the bulk, which are known as the Weyl
nodes [1–3]. The emergence of the nontrivial and stable Weyl
nodes requires the breaking of either time-reversal symmetry
(T ) or spatial inversion symmetry (I). As a consequence of
the Nielsen-Ninomiya theorem [4], the minimal model of the
T symmetry-broken Weyl semimetal contains a single pair
of Weyl nodes, whereas the I symmetry-broken one contains
four Weyl nodes [5,6]. Each of the paired Weyl nodes acts
like a topological charge with the charge sign corresponding
to its chirality [7,8]. The manipulation of the chirality is one
of the hot topics in Weyl physics. Up to now, several works
have been devoted to such chirality-dependent physics of
Weyl semimetals, such as the chiral anomaly [9–11], chirality-
dependent Hall effect [12–14], and chirality Josephson effect
[15,16].

A finite tilt of the Weyl cones can be generated because the
Lorentz symmetry is not necessarily the symmetry group in
condensed matter systems [17]. Distinct from the graphene-
like materials where the tilting is usually weak [18–20],
the tilting can be strong in Weyl semimetals. Depending on
whether the Weyl cone is overtilted or not, Weyl semimetals
can be classified into two subgroups, i.e., type-I and type-
II Weyl semimetals [21–24]. The type-I Weyl semimetals
possess a closed Fermi surface enclosing either an electron
or a hole pocket, with a vanishing density of states at the
Weyl nodes. The type-II Weyl semimetals host overtilted Weyl
cones and the Fermi surface near the Weyl nodes is hyper-
boloidal with a large density of states, leading to the electron
and hole pockets near the Weyl nodes [25,26]. Many tilt-
induced intriguing transport properties have been reported in
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Weyl semimetals, such as the anomalous Nernst and thermal
Hall effects [27], double Andreev reflection [28], tilt-assisted
π -phase Josephson current [29], and linear magnetochiral
transport [30].

A very recent interesting work [31] reported that the
tilt mechanism can lead to the tunneling valley Hall effect
in Dirac systems, where a strong tilt-dependent transverse
valley Hall current can be generated by the momentum fil-
tering of the tunneling Dirac fermions. Subsequently, the
nonlinear valley Hall effect in tilted massless Dirac fermions
in strained graphene and organic semiconductors was pre-
dicted [32]. Inspired by this, here we propose a tilt-induced
tunneling chirality Hall effect in Weyl semimetals. We the-
oretically investigate the transverse charge and chirality
transport in the normal metal-superconductor (NS) junctions
based on the type-I Weyl semimetals, which breaks the time-
reversal symmetry but preserves the inversion symmetry. It
is found that the scattering at the NS interface is chiral-
ity dependent. For the electrons with a given chirality, the
incident-angle-resolved reflection probability is asymmetric,
which is responsible for the transverse chirality Hall current.
The chirality Hall conductance arising from the skew scatter-
ing can be obtained within the Landauer formalism [33]. We
further demonstrate that the transverse chirality Hall current
here is related to the symmetry of the tilted Weyl Hamiltonian,
and determined by the intersection angle between the line con-
necting the two opposite chiral Weyl nodes and the normal of
the NS interface. Specifically, for the tilt breaking the mirror
symmetry M, both the transverse chirality Hall current and
charge Hall current may occur. However, for the tilt breaking
the M symmetry but preserving the combined MC symmetry
with C being the Z2 exchange symmetry, a pure transverse
chirality Hall current with zero net charge appears.

The remainder of the paper is organized as follows. The
model Hamiltonian and the scattering approach are explained
in detail in Sec. II. The numerical results and discussions are
presented in Sec. III. Finally, we conclude in Sec. IV.
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FIG. 1. (Left) Sketch of the NS junction under consideration,
where the normal of the NS interface is along the z axis. (Right)
Schematic of the momentum space with two Weyl nodes at momenta
±K0. The angle between the line connecting two Weyl nodes and the
qz axis is denoted by α.

II. MODEL

We consider the type-I Weyl semimetals-based NS junc-
tion along the z axis, where the normal and superconducting
regions are located at z < 0 and z > 0, respectively, as shown
in Fig. 1. Two opposite chiral Weyl nodes are situated at ±K0

in the qx-qz plane, and the line connecting ±K0 can make
an angle of α with qz axis. In the crystal coordinates, the
minimal model for the type-I Weyl semimetal is described by
the effective two-band Hamiltonian [34,35]

H =
∑
χ,q

�†
χ,qHχ (q)�χ,q, (1)

where �χ,q = (ψχ,q↑, ψχ,q↓)T is the spinor basis with χ = ±
being the chirality of the Weyl nodes and q = (q1, q2, q3) is
the momentum measured from χK0. Around the Weyl nodes,
the low-energy Hamiltonian reads [29,36]

Hχ (q) = h̄vχq1σ0 + h̄vF (q1σ1 + q2σ2 − χq3σ3), (2)

where vF is the Fermi velocity, σ0 is the identity matrix, and
σi (i = 1, 2, 3) are Pauli matrices acting on the spin space.
The tilt of the Weyl cones is along the q1 direction with the
parameter vχ . Here we focus on the tilting effect in the type-I
Weyl semimetals, i.e., |vχ | < vF . The inversion symmetry of
the Hamiltonian in Eq. (2) requires σ3H+(q)σ3 = H−(−q),
leading to v+ = −v−, which implies that the opposite chiral
Weyl cones have tilts in opposite directions. It is convenient
to work with the junction coordinates, where the transport
direction is assumed to be along the z axis, as shown in
Fig. 1. The two different coordinate systems are related by
the rotation transformation

q1 = qx cos α − qz sin α, q2 = qy,

q3 = qz cos α + qx sin α, (3)

where α is the angle between the line connecting two Weyl
nodes and the qz axis. Similarly, the spin-1/2 Pauli matrices
in the crystal coordinate system and the junction coordinate
system, denoted by σ1,2,3 and σx,y,z, respectively, are related
by the same rotation transformation

σ1 = σx cos α − σz sin α, σ2 = σy,

σ3 = σz cos α + σx sin α. (4)

In the superconducting region, the zero-momentum BCS
pairing is preferred for inversion-symmetric Weyl semimetals
[37], for which the paired electrons are from two Weyl nodes
with opposite chirality. This BCS superconductivity can be
induced by the conventional superconductor via the proxim-
ity effect in the Weyl semimetal-based junction [34,38]. The
pairing Hamiltonian reads

H� =
∑
χ,s

∫
dr �ψ†

χ,s(r)ψ†
−χ,−s(r) + H.c., (5)

where s = {↑,↓} is the spin index and � is the pairing po-
tential. In the Nambu basis (ψχ↑, ψχ↓, ψ

†
−χ↓,−ψ

†
−χ↑)T , the

NS junction is described by the Bogoliubov–de Gennes (BdG)
Hamiltonian [39–41]

HBdG =
(
Hχ (−i∇ − χK0) − μ(z) �(z)

�∗(z) μ(z) − σyH∗
−χ (−i∇ + χK0)σy

)
, (6)

where the chemical potential μ(z) = μ for z < 0 and μ(z) = μs for z > 0, the pairing term �(z) = 0 for z < 0, and �(z) = �0

for z > 0. We first perform the gauge transformation D = exp (iχK0 · r) which removes the large momentum K0 in the BdG
Hamiltonian Eq. (6). Then we perform an extra unitary transformation U = σx exp(iασy) to remove the angle α from the hole
part of the BdG Hamiltonian [15,29]. After performing U , the BdG Hamiltonian reads

HBdG =
(

h̄vF (χcqtσ0 + (qxσx − χqyσy + qzσz )) − μ(z) �B(z)
�B(z) h̄vF (−χcqtσ0 − (qxσx + χqyσy + qzσz )) + μ(z)

)
, (7)

where c = |vχ/vF | is a dimensionless parameter employed here to characterize the tilt (0 < c < 1), qt = qx cos α − qz sin α, and
�B(z) = −�(z) sin ασz + �(z) cos ασx.

In the normal segment of the junction (z < 0), the scattering states propagating along the +z axis are given by

|ϕ>
e 〉 =

⎛
⎜⎜⎝


>
e

|q‖|e−iφ

0
0

⎞
⎟⎟⎠eiq>

e z, |ϕ>
h 〉 =

⎛
⎜⎜⎝

0
0


>
h|q‖|eiφ

⎞
⎟⎟⎠eiq>

h z, (8)
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where the subscripts “e/h” of the wave functions de-
note the electron/hole states, respectively, q‖ = (qx, qy) is
the conserved transverse-wave vector, φ = arctan(χqy/qx ),
and 
>

e(h) = (1 + χc sin α)q>
e(h) + (−)pe(h) with pe(h) = (E +

(−)μ)/h̄vF − (+)χqxc cos α. We note that the factor eiq‖·r‖

with r‖ = (x, y) is omitted in Eq. (8) for simplicity. The lon-
gitudinal wave vectors are given by

q>
e(h) =

+(−)χ pe(h)c sin α + ζe(h)

√
p2

e(h) − κ|q‖|2
κ

, (9)

where

ζe(h) = sgn(pe(h) + √
κ|q‖|), (10)

with κ = 1 − (c sin α)2. Similarly, the scattering states prop-
agating along the −z axis, i.e., |ϕ<〉, can be obtained by the
replacement ζe(h) → −ζe(h) in Eqs. (8)–(10).

The requirement for the mean-field treatment of super-
conductivity is justified in our model as we have taken
the heavy-doping limit |μs| 	 |μ| [42,43] throughout our
calculation. In the heavy-doping limit, only the excitations
quasiperpendicular transmitting to the superconducting region
need to be considered, resulting in the effective excitation
gap �B = �0| sin α| [35,36]. The transmitted states in the
superconducting region are given by

|ϕ>
s,e〉 =

⎛
⎜⎜⎝

P
0

−�B

0

⎞
⎟⎟⎠eiq>

s,ez, |ϕ>
s,h〉 =

⎛
⎜⎜⎝

0
�B

0
P

⎞
⎟⎟⎠eiq>

s,hz, (11)

where P = √
E2 − �2

B + E and the subscripts “e/h” denote
the electronlike/holelike quasiparticle states, respectively.
The longitudinal wave vectors in the superconducting region
are given by

q>
s,e(h) = (h̄vF )−1

+(−)μs +
√

E2 − �2
B

1 − (+)χc sin α
. (12)

The total wave function describing the scattering process
reads

ψ (z) =
{

|ϕ>
e 〉 + r|ϕ<

e 〉 + rA|ϕ<
h 〉, z < 0,

te|ϕ>
s,e〉 + th|ϕ>

s,h〉, z > 0.
(13)

Here, te(h), r and rA are the transmission amplitude for the
electronlike (holelike) state, normal reflection amplitude, and
Andreev reflection amplitude, respectively, which can be ob-
tained by matching the wave function at z = 0.

The longitudinal conductance for the χ chirality Weyl node
is given by the Blonder-Tinkham-Klapwijk approach [44]

σχ
z,z = e2

h

∑
q‖

(1 + RA − R), (14)

where

RA =
∣∣∣∣∣v

<
h,z

v>
e,z

∣∣∣∣∣|rA|2, R =
∣∣∣∣∣v

<
e,z

v>
e,z

∣∣∣∣∣|r|2 (15)

are the Andreev reflection probability and normal reflection
probability, respectively. We note that both r and rA are the

function of χ . v
�

ς,l (ς = e, h, � =>,< and l = x, y, z) in
Eq. (15) is the group velocity along the l axis for the excitation
state |ϕ�

ς 〉, which can be obtained by the Hellmann-Feynman
theorem [45]:

v
�

ς,l = ∂Eς

h̄∂q�

l

= ∂

h̄∂ql

〈
ϕ�

ς

∣∣HBdG

∣∣ϕ�
ς

〉

= h̄−1
〈
ϕ�

ς

∣∣ ∂

∂ql
HBdG

∣∣ϕ�
ς

〉
= h̄−1

〈
ϕ�

ς

∣∣ jl
∣∣ϕ�

ς

〉
, (16)

with jx = τz(σx + χc cos α), jy = −χτzσy, and jz = τz(σz −
χc sin α).

The transverse conductance can be calculated within the
Landauer formalism [33,46,47] (see Appendix for details)

σχ
η,z = e2

h

∑
q‖

(
v>

e,η

v>
e,z

− v<
e,η

v>
e,z

|r|2 + v<
h,η

v>
e,z

|rA|2
)

, (17)

where η = {x, y}. The charge Hall angle (ϑ) and the chirality
Hall angle (ϑchi) are given by

tan(ϑ ) =
∑

χ σχ
η,z∑

χ σ
χ
z,z

, tan(ϑchi ) =
∑

χ χσχ
η,z∑

χ σ
χ
z,z

. (18)

III. RESULTS

A. Skew reflection and transverse chirality and charge currents

We first consider the situation where the effective super-
conducting gap �B = �0| sin α| is nonzero, i.e., α 
= 0, π . It
is sufficient to consider the normal reflection probability R in
the subgap regime (|E | < �0| sin α|) on account of R + RA =
1. In the following calculations, we set �0 = 1 meV as the
typical experimental value. We focus on the subgap energy
regime |E | < 1 meV, in which both the normal reflection
electrons and the Andreev reflection holes contribute to the
transverse chirality Hall current.

The normal reflection probability R versus the incident
angle θi is shown in Fig. 2(a) for α = π/3, where the effective
superconducting gap is �B = 0.86�0. Due to the Weyl cones
tilt in the qx-qz plane in our model, we focus on the reflection
in the x-z plane, where the incident angle is given by

θi = arctan

(
v>

e,x

v>
e,z

)
. (19)

It is shown that the electrons from the χ = +1 chiral node
have large reflection probabilities for −90◦ < θi < 0◦ [gray
line in Fig. 2(a)], which is responsible for the nonzero trans-
verse chirality Hall current. For the electrons from the χ =
−1 chiral node, the skew reflection also exists [green line
in Fig. 2(a)]. However, the scattering is asymmetric for the
electrons from different chiral nodes, i.e., Rχ,α=π/3(θi ) 
=
R−χ,α=π/3(−θi ), indicating the presence of a nonzero trans-
verse charge Hall current.

The other two scenarios with α = −π/3 and α = 2π/3
are also considered, where the effective superconducting gaps
are both 0.86�0 as well. The reflection probabilities for α =
−π/3 and α = 2π/3 are shown in Figs. 2(b) and 2(c), re-
spectively. The chirality-dependent reflection remains present.
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FIG. 2. The reflection probability R versus the incident angle θi

for χ = +1 (gray) and χ = −1 (green) chiral nodes. Panels (a)-
(d) correspond to α = π/3, α = −π/3, α = 2π/3, and α = π/2,
respectively. The other parameters are c = 0.6, E = 0.3�0, and
μ = 1.2�0.

However, compared with the α = π/3 case, the electrons with
the opposite (same) chirality are skew reflected to the opposite
direction for α = −π/3 (2π/3). Consequently, the scattering
patterns in Figs. 2(a) and 2(b) are symmetric for different
chiralities whereas the scattering patterns in Figs. 2(a) and
2(c) are symmetric for the same chirality.

We note that the Hamiltonian for the tilted Weyl semimet-
als Hχ = h̄vF (χcqtσ0 + qxσx + qzσz ) preserves the following
symmetries

MHχ (−α,−qx, qz )M−1 = H−χ (α, qx, qz ), (20)

Hχ (π + α,−qx,−qz ) = −H−χ (α, qx, qz ), (21)

where M = σz is the mirror reflection operators about the y-z
plane. Equation (20) indicates that under the mirror-reflection
symmetry, the Hamiltonian remains unchanged by the sub-
stitution α → −α and χ → −χ . In the tunneling process,
the mirror-reflection symmetry M reverses the sign of the
incident angle, i.e., θi → −θi. Consequently, the reflection
probability holds the relation

Rχ,α (θi ) = R−χ,−α (−θi ). (22)

Similarly, Eq. (21) indicates that the reversal of qx and qz re-
sults in the reversal of Hχ by the substitution α → α + π and
χ → −χ . The incident angle remains unchanged in this case.
Consequently, the reflection probability holds the relation

R−χ,−α (−θi ) = Rχ,π−α (−θi ) = Rχ,α (θi ). (23)

FIG. 3. (a), (b) Charge and chirality Hall angle as a function of
the incident energy E for α = π/3 (red), α = −π/3 (gray), α =
2π/3 (green), and α = π/2 (blue dashed). The other parameters are
c = 0.6 and μ = 1.2�0. (c), (d) Charge and chirality Hall angle as a
function of α for μ = 1.2�0 (gray) and μ = 0.2�0 (red).

For the Andreev reflection probability RA, the similar identi-
ties can be obtained by using the current conservation relation
RA = 1 − R.

Consequently, for α = π/3, the above symmetric relations
can be expressed as

Rχ,α= π
3
(θi ) = R−χ,α=− π

3
(−θi ), (24)

Rχ,α= π
3
(θi ) = Rχ,α= 2π

3
(−θi ). (25)

For α = π/2, the skew reflection is absent, and the scattering
pattern for χ = +1 and χ = −1 are identical to each other, as
shown in Fig. 2(d).

This chirality-dependent skew reflection mentioned above
may result in a transverse chirality Hall current as well as a
transverse charge Hall current, which can be characterized by
the Hall angle. The charge and chirality Hall angles versus
the incident energy E at different α are shown in Figs. 3(a)
and 3(b), respectively. For α = π/3, the charge Hall angle
ϑ is positive and increases with the increasing of E in the
subgap energy regime (|E | < 0.86�0), as shown in Fig. 3(a)
(red solid line). However, the chirality Hall angle is not mono-
tonically dependent on E in the subgap regime, as shown in
Fig. 3(b) (red solid line). For α = −π/3 and 2π/3, the charge
Hall angles are equal to each other but negative, as the gray
and green lines shown in Fig. 3(a), respectively. The chirality
Hall angle remains unchanged for α = −π/3 [gray line in
Fig. 3(b)], but reverses its sign for α = 2π/3 [green line in
Fig. 3(b)]. For α = π/2, both the charge and chirality Hall
angle are zero due to the absence of the skew reflection, as
shown in Figs. 3(a) and 3(b) (blue dashed lines).
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The α dependence of the Hall angle is shown in Figs. 3(c)
and 3(d). The charge Hall angle ϑ (α) is odd parity, as shown
in Fig. 3(c), whereas the chirality Hall angle ϑchi(α) is even
parity, as shown in Fig. 3(d). It is shown that both ϑ and ϑchi

are absent at α = ±π/2. However, for α = 0 and π, ϑchi is
finite but ϑ = 0.

With the help of Eqs. (17), (18), and (23), the α-dependent
charge and chirality Hall angles can be expressed in terms of
R, which are given by

ϑ (α) = Q
∑

χ

∫ π
2

− π
2

dθi sin θiRχ (θi, α), (26)

ϑchi(α) = Q
∑

χ

∫ π
2

− π
2

dθiχ sin θiRχ (θi, α), (27)

with Q being a parameter independent of θi and Q(α) =
Q(−α). By substituting Eq. (23) into Eqs. (26) and (27) and
changing the integration variable θi → −θi, one finds

ϑ (α) = −ϑ (−α) = −ϑ (π − α), (28)

ϑchi(α) = ϑchi(−α) = −ϑchi(π − α), (29)

which indicates that the odd-parity charge Hall angle ϑ (α)
disappears at α = {π/2,−π/2, 0, π} and the even-parity chi-
rality Hall angle ϑchi(α) disappears at α = {π/2,−π/2}.

B. Pure transverse chirality currents

It is noted that the charge Hall angle ϑ vanishes whereas
the chirality Hall angle ϑchi remains finite at α = {0, π} [see
Figs. 3(c) and 3(d)], implying a pure chirality current.

In this scenario the effective pairing potential is zero.
Under the heavy-doping condition, the incident electron is
local reflected with probability R in the normal region and
quasiperpendicular transmitted (q‖ = 0) as an electronlike
quasiparticle with probability Te = |v>

se,z/v
>
e,z||te|2 in the su-

perconducting region. The current conservation requires R +
Te = 1. In the heavy-doping limit |μs| 	 |μ|, the normal re-
flection probability is only determined by the tilting parameter
c. For α = 0, the normal reflection probability is obtained
analytically as

R =
∣∣∣∣∣
√

sec2 θi − c2 − 1

tan θi − χc

∣∣∣∣∣
2

, (30)

where θi = arctan(v>
e,x/v

>
e,z ) is the incident angle. For the

Weyl node with a given chirality χ , the θi-resolved reflection
is asymmetric, as shown in Fig. 4(a). The electrons with
positive chirality (χ = +1) have large reflection probabilities
for 0◦ < θi < 90◦ (gray lines), whereas the electrons with
negative chirality (χ = −1) have large reflection probabilities
for −90◦ < θi < 0◦ (green lines). The carries with opposite
chiralities turn into different transverse directions, leading to
a transverse chirality current. With the help of Eqs. (17) and
(18), the chirality Hall angle at α = 0 is obtained by

tan(ϑchi ) = 2 sin � × p cos 2� + cos �(π sin � − 2)

π cos 2� − 2p sin 2� + 4 sin �
, (31)

where p = arctanh(cos �) with � = arccos(c). The chirality
Hall angle is only determined by the tilting parameter c and

FIG. 4. (a), (b) The reflection probability R versus the incident
angle θi for χ = +1 (gray) and χ = −1 (green) chiral nodes. (c) Hall
angle as a function of the tilting parameter c.

approaches its maximum value at c � 0.82 with ϑchi � 0.22,
as shown in Fig. 4(c) (black solid line). For the nontilting
energy dispersion (c = 0), the transverse chirality current is
absent.

Furthermore, it is found that the scattering pattern is mirror
symmetric between two different chiral nodes, i.e.,

Rχ,α=0(θi ) = R−χ,α=0(−θi ), (32)

as shown in Fig. 4(a), leading to a zero net-transverse charge
current with

tan(ϑ ) = 0. (33)

Consequently, the pure chirality current with zero net charge
is predicted for α = 0.

For α = π , the line connecting two opposite chiral Weyl
nodes makes a 180◦ rotation, implying the interchange of the
chiralities between the nodes, which leads to the θi-resolved
Rα=π being a copy of Rα=0 with the substitution χ → −χ , as
shown in Fig. 4(b). Consequently, the pure transverse chiral-
ity Hall current is reversed, while its absolute value remains
unchanged, as shown in Fig. 4(c) (black dashed line).

C. Symmetry analysis

Distinct from the Berry curvature-induced Hall effect
[48–50], the physical origin of the transverse Hall current in
our model is attributed to the symmetry breaking caused by
the tilt. The low-energy Hamiltonian for the opposite chiral
Weyl nodes at ±K0 is given by H± = h̄vF (±cqtσ0 + qxσx ∓
qyσy + qzσz ). For the Weyl cones tilted in qx-qz plane, the
transverse Hall chirality current and charge current may occur
when the angle-resolved reflection is asymmetric for a given
chiral node, which requires the tilt breaking the mirror sym-
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metry in the qy = 0 plane, i.e.,

MH±(qx, qz )M−1 
= H±(−qx, qz ), (34)

where M = σz is the mirror-reflection operator about the y-z
plane. For qt = qx cos α − qz sin α, Eq. (34) leads to cos α 
=
0, i.e., α 
= ±π/2, which is in agreement with Eqs. (28) and
(29).

Furthermore, in order to generate a pure transverse chiral-
ity Hall current, the reflection between two different chiral
nodes should be symmetric to cancel out the net transverse
charge current. This requires an additional Z2 exchange
symmetry C [16], which swaps the opposite chiral sector:
CH+(qx, qz )C−1 = H−(qx, qz ). Consequently, the transverse
charge Hall current vanishes when the tilt preserves the com-
bined MC symmetry

(MC)H+(qx, qz )(MC)−1 = H−(−qx, qz ), (35)

which results in α = 0, π .

IV. CONCLUSIONS

To conclude, we study the transverse transport in the NS
junctions based on the time-reversal symmetry-broken type-I
Weyl semimetals. We focus on the inversion-symmetric tilt,
where the two Weyl cones with opposite chiralities have
tilts in opposite directions. Our investigation reveals that a
chirality-dependent skew reflection occurs at the NS inter-
face due to the tilt of the Weyl cones, resulting in nonzero
transverse chirality Hall currents. We further illustrate that the
transverse chirality current here is determined by the sym-
metry of the tilted Weyl Hamiltonian. Specifically, both the
transverse chirality Hall current and the transverse charge Hall
current may occur when the tilt of the Weyl cones break the
mirror symmetry (M) of the Weyl Hamiltonian. However,
a pure transverse chirality Hall current with zero net charge
is present when the tilt breaks M symmetry but preserves
the combined MC symmetry, where C represents the Z2

exchange symmetry. Because the transverse chirality Hall cur-
rent here is determined by the symmetry of the tilted Weyl
Hamiltonian, the results can be generalized to the np junction
where the right side of the junction is normal metal and the
Andreev reflection is absent. The chirality-dependent skew
tunneling still occurs, which is responsible for the transverse
chirality currents.

The time-reversal symmetry-broken Weyl semimetals have
been proposed theoretically and confirmed experimentally in
many realistic systems [51–53]. The proximity-induced su-
perconductivity in Weyl semimetals has been reported both
theoretically and experimentally [54–56]. Bachmann et al.
[57] studied a related Weyl semimetal, niobium arsenide
(NbAs), where the electron transport measurements showed
superconductivity in the surface layer and provided clear
indications of its penetration into the nearby bulk NbAs.
The recent experimental paper [58] directly demonstrates the
possibility of inducing superconductivity in a type-I Weyl
semimetal by coupling niobium phosphide (NbP) surface to
a superconductor (Pb, Nb, In).

In addition, the experimental research on the normal metal-
superconductor structures performed so far has been done for
the tilted Weyl semimetals. The charge transport through the
interface between a niobium superconductor and WTe2, which

is a typical tilted Weyl semimetal, has been reported [59]. Sub-
sequently, the experimental study on the conductance spectra
of (Nb, Pb, In)/NbP superconductor/Weyl semimetal junc-
tions has been reported [58].

The chirality Hall effect leads to the separation and accu-
mulation of left and right chiral fermions on opposite surfaces
of the Weyl semimetal-based junction. This chirality polar-
ization results in the unequal optical activity on the opposite
surfaces. This manifests as a difference in the absorption of
left- and right-handed circularly polarized light at these sur-
faces. Consequently, the optical activity can be detected via
a circular dichroism experiment for the transverse chirality
Hall current [13,60]. However, this optical activity is absent
for the transverse charge Hall current, which allows it to be
distinguished from the chirality Hall current in experiments.

APPENDIX

In this Appendix, we provide the details of the derivation
of the transverse conductance and the Hall angle in Eqs. (17)
and (18) of the main text.

The transverse current for the given chirality χ along the
η axis (η = x, y) is given by Iχ,η = I>

χ,η + I<
χ,η with I>

χ,η (I<
χ,η)

being the net current flowing from left to right (right to left)
[33,44]. In order to get a balanced current in the barrier region,
the state propagating towards (outwards) the barrier has a
positive (negative) contribution to the transverse current. I>

χ,η

is carried by the state |ϕ>〉 = |ϕ>
e 〉 + r|ϕ<

e 〉 + rA|ϕ<
h 〉 with

energy E and transverse wave vector q‖, which is given by

I>
χ,η = e

L

∑
q‖,qz

(v>
e,η − v<

e,η|r|2) f (E − eV )[1 − f (E )]

−
(

− e

L

) ∑
q‖,qz

v<
h,η|rA|2[1 − f (E + eV )] f (E )

= e
∑

q‖

∫
dqz

2π
[(v>

e,η − v<
e,η|r|2) f (E − eV )[1 − f (E )]

+ v<
h,η|rA|2[1 − f (E + eV )] f (E )]

= e

h

∑
q‖

dE

[(
v>

e,η

v>
e,z

− v<
e,η

v>
e,z

|r|2
)

f (E − eV )[1 − f (E )]

+ v<
h,η

v>
e,z

|rA|2[1 − f (E + eV )] f (E )

]
. (A1)

Here V is the longitudinal voltage drop along the junction and
f (E ) = 1/(exp(E/kBT ) + 1) is the Fermi-Dirac distribution
function with kB and T being the Boltzmann constant and
temperature, respectively. We note that r, rA and v in Eq. (A1)
are functions of χ , the chirality index χ is omitted here for
simplicity.

The net current from right to left (I<
χ,η) can be obtained by

considering the incoming states in the right superconducting
region. Instead of dealing with quasiparticles in the super-
conducting region, it is equivalent to suppose the incident
hole state with energy −E and transverse wave vector −q‖ in
the left normal region, i.e., |ψ<〉 = |ψ>

h 〉 + r̄|ψ<
h 〉 + r̄A|ψ<

e 〉,
where r̄ (r̄A) is the normal (Andreev) reflection amplitude for
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the hole state. Consequently, the net current carried by |ψ<〉
reads

I<
χ,η = − e

L

∑
q‖,qz

(
v>

h,η − v<
e,η|r̄|2

)
f (−E + eV )[1 − f (−E )]

− e

L

∑
q‖,qz

v<
e,η|r̄A|2[1 − f (−E − eV )] f (−E )

= − e

h

∑
q‖

∫
dE

[(
v>

h,η

v>
h,z

− v<
h,η

v>
h,z

|r̄|2
)

× f (−E + eV )[1 − f (−E )]

+ v<
e,η

v>
h,z

|r̄A|2[1 − f (−E − eV )] f (−E )

]
. (A2)

The particle-hole symmetry leads to the following identities

v>
e,η

v>
e,z

= v>
h,η

v>
h,z

,
v<

e,η

v>
e,z

|r|2 = v<
h,η

v>
h,z

|r̄|2, v<
h,η

v>
e,z

|rA|2 = v<
e,η

v>
h,z

|r̄A|2,
(A3)

which simplify the expression for the total current

Iχ,η = I>
χ,η + I<

χ,η

= e

h

∑
q‖

∫ ∞

−∞
dE

([
v>

e,η

v>
e,z

− v<
e,η

v>
e,z

|r|2
]

[ f (E − eV ) − f (E )] + v<
h,η

v>
e,z

|rA|2[ f (E ) − f (E + eV )

)

= e

h

∑
q‖

∫ ∞

−∞
dE

([
v>

e,η

v>
e,z

− v<
e,η

v>
e,z

|r|2
]

(E )

+
[

v<
h,η

v>
e,z

|rA|2
]

(−E )

)
[ f (E − eV ) − f (E )]. (A4)

Consequently, the transverse conductance is given by

σχ
η,z = ∂Iχ,η

∂V

= e2

h

∑
q‖

∫ ∞

−∞
dE

([
v>

e,η

v>
e,z

− v<
e,η

v>
e,z

|r|2
]

(E )

+
[

v<
h,η

v>
e,z

|rA|2
]

(−E )

)[
− ∂ ( f (E − eV ) − f (E ))

∂ (E − eV )

]

= e2

h

∑
q‖

∫ ∞

−∞
dE

([
v>

e,η

v>
e,z

− v<
e,η

v>
e,z

|r|2
]

(E )

+
[

v<
h,η

v>
e,z

|rA|2
]

(−E )

)
δ(E − eV )

= e2

h

∑
q‖

([
v>

e,η

v>
e,z

− v<
e,η

v>
e,z

|r|2
]

(eV )

+
[

v<
h,η

v>
e,z

|rA|2
]

(−eV )

)
. (A5)

The longitudinal current can be calculated by the similar method, which reads

Iχ,z = I>
χ,z + I<

χ,z

= e

h

∑
q‖

∫ ∞

−∞
dE

([
1 + v<

e,z

v>
e,z

|r|2
]

[ f (E − eV ) − f (E )] − v<
h,z

v>
e,z

|rA|2[ f (E ) − f (E + eV )]

)

= e

h

∑
q‖

∫ ∞

−∞
dE

([
1 + v<

e,z

v>
e,z

|r|2
]

(E )

[ f (E − eV ) − f (E )] −
[

v<
h,z

v>
e,z

|rA|2
]

(−E )

[ f (E − eV ) − f (E )]

)
. (A6)

Consequently, the longitudinal conductance is given by

σχ
z,z = ∂Iχ,z

∂V

= e2

h

∑
q‖

∫ ∞

−∞
dE

([
1 + v<

e,z

v>
e,z

|r|2
]

(E )

−
[

v<
h,z

v>
e,z

|rA|2
]

(−E )

)[
− ∂ ( f (E − eV ) − f (E ))

∂ (E − eV )

]

= e2

h

∑
q‖

∫ ∞

−∞
dE

([
1 + v<

e,z

v>
e,z

|r|2
]

(E )

−
[

v<
h,z

v>
e,z

|rA|2
]

(−E )

)
δ(E − eV )

= e2

h

∑
q‖

(
1 +

[
v<

e,z

v>
e,z

|r|2
]

(eV )

−
[

v<
h,z

v>
e,z

|rA|2
]

(−eV )

)
. (A7)
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It is noted that, for the incident (reflected) states, the lon-
gitudinal group velocities are always positive (negative), i.e.,
v>

e,z < 0 and v<
e/h,z < 0. However, the sign of the transverse

group velocity is uncertain. Consequently, for the longitudinal
conductance, the reflection coefficients can be written as

v<
e,z

v>
e,z

|r|2 = −
∣∣∣∣∣v

<
e,z

v>
e,z

∣∣∣∣∣|r|2 = −R, (A8)

v<
h,z

v>
e,z

|rA|2 = −
∣∣∣∣∣v

<
h,z

v>
e,z

∣∣∣∣∣|rA|2 = −RA, (A9)

where RA (R) is positive and denotes the reflection probability
for the Andreev reflection (normal reflection). In the subgap

regime, A + B = 1 due to the current conservation. The lon-
gitudinal conductance [Eq. (A7)] can be expressed in terms of
R and RA:

σχ
z,z = e2

h

∑
q‖

(1 − R + RA), (A10)

which is the Blonder-Tinkham-Klapwijk formalism. The
charge Hall angle (ϑ) and the chirality Hall angle (ϑchi) are
given by

tan(ϑ ) =
∑

χ σχ
η,z∑

χ σ
χ
z,z

, tan(ϑchi ) =
∑

χ χσχ
η,z∑

χ σ
χ
z,z

. (A11)
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