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In the pursuit of higher critical temperature of superconductivity, quasiflat electronic bands and Van Hove
singularities in two dimensions (2D) have emerged as a potential approach to enhance Cooper pairing on the
basis of mean-field expectations. However, these special electronic features suppress the superfluid stiffness
and, hence, the Berezinskii-Kosterlitz-Thouless (BKT) transition in 2D superconducting systems, leading to the
emergence of a significant pseudogap regime due to superconducting fluctuations. In the strong-coupling regime,
one finds that superfluid stiffness is inversely proportional to the superconducting gap, which is the predominant
factor contributing to the strong suppression of superfluid stiffness. Here we reveal that the aforementioned
limitation is avoided in a 2D superconducting electronic system with a quasiflat electronic band with a strong
pairing strength coupled to a deep band with weak electronic pairing strength. Owing to the multiband effects, we
demonstrate a screening-like mechanism that circumvents the suppression of the superfluid stiffness. We report
the optimal conditions for achieving a large enhancement of the BKT transition temperature and a substantial
shrinking of the pseudogap regime by tuning the intraband couplings and the pair-exchange coupling between
the two band-condensates.
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I. INTRODUCTION

In 2D superconductors, the Berezinskii-Kosterlitz-
Thouless (BKT) transition temperature TBKT [1,2] determines
the phase transition from a normal state to a superconducting
state with a quasilong range order. Below TBKT, the system
exhibits superconducting behavior, whereas above TBKT,
superconductivity is lost because of dissipation induced
by vortex-antivortex unbindings [3]. The BKT transition
temperature can be evaluated from the superfluid stiffness
(ρs) [4]. The superfluid stiffness of conventional 2D
superconductors with a single electronic band has an
inverse relationship with the effective mass m∗ of the
band [5]. This suggests that the superfluid stiffness is very
small when the band is quasiflat, highlighting the crucial
role of band geometry in determining the BKT transition
temperature of 2D superconducting systems. In this work,
our focus will be on circumventing this problem within
the framework of multiband superconductivity. Multiband
superconductors often possess novel properties that are
not present in their single-band counterparts [6–8]. The
concept of superfluid stiffness in multiband superconductors
can become more complex, as different bands may have
different energy gaps, effective masses, and presence of
saddle points in the electronic dispersion, exhibiting different
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levels of superfluid stiffness. The pair-exchange couplings
of the band condensates can also affect the total superfluid
stiffness. As a result, understanding the superfluid stiffness
in multiband superconductors is important for characterizing
their properties and predicting their behavior to optimize
configurations for high-temperature 2D superconductivity. In
multiband superconductors comprising two distinct electronic
bands, there is potential for a significant enhancement
of the superconducting energy gaps and a higher critical
temperature (Tc) at a mean-field level [9–13]. It has been
recently shown that the existence of pair-exchange coupling
between distinct bands can minimize the superconducting
fluctuations through multiband screening processes [14–16].
A significant motivation to study the BKT transition in a
two-band system having Van Hove singlularities together
with deeply dispersive bands stems from the superconducting
properties exhibited by monolayer FeSe superconductors.
Monolayer FeSe on strontium-titanate (STO) is considered
one of the most intriguing iron-based superconductors,
primarily due to its remarkably high critical temperature,
exceeding 100 K [17–20]. In contrast, the bulk form of FeSe
demonstrates a significantly lower superconducting critical
temperature of 8 K [21]. Additionally, it is anticipated that
bulk FeSe possesses a Van Hove singularity at the M point
[22,23]. Conversely, monolayer FeSe, characterized as a
two-band superconductor, presents a low-energy electronic
structure featuring both an electronic band crossing the
Fermi level and an incipient band [24,25] that can cooperate
in the pairing process. The growth of FeSe monolayer
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on distinct substrates results in a quasiflat and deep band
formation within the electronic band structure [26–28].
Recently, experimental observation of the BKT transition
has been reported in this system. 1-unit-cell thick FeSe films
exhibit a BKT transition at 23.1 K [29], while the transition
temperature for thin flakes of FeSe was measured to be 2.9 K
for a sample with a thickness of 14 nm and 6.67 K for a
sample with a sizable thickness of 100 nm [30], and the
values of TBKT have been observed for different thicknesses of
the FeSe film [31]. In all of the aforementioned FeSe samples,
the analysis of voltage-current (V (I )) characteristics unveils
a distinct signature of a BKT transition, characterized by a
V ∝ Iα power law dependence. Notably, the exponent α tends
towards 3 at TBKT [32,33].

An additional motivation for this work arises from the
effective two-gap/patch model discussed in Refs. [34,35]
in connection with the phenomenology of cuprate super-
conductors. The effective two-gap/patch model encompasses
two distinct wave-vector regions of the band dispersion
characterized by different intraband and pair exchange in-
teractions. One of the bands demonstrates a large Fermi
velocity and a weak attraction, resulting in the formation
of overlapped Cooper pairs with minimal superconducting
fluctuations. Conversely, the other band showcases a small
Fermi velocity and a strong attraction, leading to formation
of tightly bound pairs with strong fluctuations. Most rele-
vantly for this work, the patches of the Fermi surface around
the M points of the Brillouin zone (BZ) of cuprates con-
tain a branch of the electronic dispersion characterized by a
saddle point, which in 2D is responsible for the Van Hove
singularity in the density of states. In the two-gap/patch ef-
fective model for cuprates, there is a dynamic interplay that
emerges between the anisotropic Fermi surface and the wave
vector-dependent pairing interaction induced by the charge-
density wave (CDW) fluctuations, leading to very different
pairing strengths in different arcs of the Fermi surface. This
is the electronic structure and pairing configuration that we
intend to investigate in this work. The recent investigations
into multigap superconductivity in lithium-intercalated bi-
layer Mo2C, conducted through first-principles calculations,
show that such intercalation, accompanied by a 3% tensile
strain, results in a notable elevation of the critical temperature
(Tc) to 24 K [36]. This enhancement of superconductivity
induced by the strain primarily stems from the downward shift
of an energy band with a flat dispersion to energy levels near
the Fermi level. A pivotal observation is the coexistence of a
flat and a deep dispersive electronic band around the � point
of the Brillouin zone. Furthermore, in multiorbital model of
alkali-doped fullerides (A3C60), the ab initio calculations of
the band structure reveal the coexistence of a quasiflat and a
deep dispersive band in the BZ, as shown in the Supplemental
Material of Ref. [37]. Therefore the aforementioned 2D multi-
band superconductors bear qualitative correspondence with
the model we have adopted in our study.

To incorporate the essential characteristics of the electronic
band structure of a FeSe monolayer into our model, we utilize
a two-band tight-binding approach that effectively represents
the fundamental aspects of the FeSe monolayer’s electronic
structure [38–41]. Specifically, we consider a two-band
electronic 2D system with a quasiflat band and a deep band,

together with multichannel pairing interactions able to induce
strong-coupling multigap superconductivity. Remarkably,
the band features and density of states emerging from
the two-band tight-binding model closely resemble those
of the minimal two-band model discussed in the
Refs. [38–41]. This correspondence suggests that our
adopted two-band tight-binding model is likely to capture
the distinctive characteristics of the FeSe monolayer, which
are key for evaluating the superconducting properties of
the system. In this work, our objective was to propose
a broadly relevant two-band system characterized by the
coexistence of quasiflat and deep bands in the same 2D
superconducting system, in order to produce a condensate
with a mixture of BCS-like and BEC-like partial condensates,
offering the optimal conditions to stabilize BKT transitions
at high critical temperature. Particular emphasis is placed
on the physically relevant configuration involving a quasiflat
band (with intra-band pairing ranging from weak to strong)
coupled with a deep band (with weak intra-band pairing).
We place focus on the effect of the pairing interactions and
the Van Hove singularity of the quasiflat band on the BKT
transition temperature of the two-band 2D superconductors.
Weak coupling strengths in the deep band and even a small
pair-exchange coupling are able to suppress the pseudogap
regime and stabilize high values of the BKT temperature of
the two-band 2D system. In this manner, we demonstrate
a unique screening-like mechanism acting on the BKT
transition. In the framework of the examined two-band
electronic system, we have explicitly accounted for both
intraband couplings, wherein Cooper pairs undergo creation
and annihilation within the same band, and pair-exchange
interband coupling, where Cooper pairs are created in one
band and annihilated in the other. A formal transformation
of the multiorbital BCS mean-field Hamiltonian from an
orbital basis representation to a band basis representation is
undertaken, leading to pair-exchange and cross-pair interband
interactions in the band representation. The same mechanism
is at work when a real-space Hamiltonian with local
interactions is diagonalized in a band representation, with the
emergence of pairing amplitudes in all channels, as intraband
and interband ones. Interband couplings are therefore
commonly present in multicomponent electronic systems,
whatever the microscopic origin, orbital or geometrical. Our
considered multicomponent system incorporates the above
described physics and does not depend on a particular origin
of the pairing interaction.

The manuscript is organized as follows. Section II details
the physical system under study and the mean-field theoretical
approach for evaluating the superconducting properties. In
Sec. III, we report the results and discussion of our analysis
with regard to the superfluid phase stiffness and the BKT
transition temperature. The conclusions of our work are given
in Sec. IV.

II. SYSTEM AND MODEL

Consider a single-band 2D tight-binding model on the
square lattice with energy dispersion,

ε(k) = −2t[cos (kxa) + cos (kya)], (1)
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where a is the lattice constant. The nearest neighbor hopping
parameter t is set to be 0.1 eV and the wave vectors belong
to the first Brillouin zone −π

a � kx,y � π
a . In this paper, we

use the units h̄ = a = kB = 1. In this work, for simplicity,
we do not consider the competition of superconductivity with
charge order close to half filling because a small next-nearest
neighbor hopping will circumvent the competition and, in
general, the charge order due to nesting configurations of the
Fermi surface is not commonly observed [42].

The energy dispersion of the considered 2D quasiflat band
has a bandwidth of 0.8 eV. The chemical potential is posi-
tioned at the center of the band, coinciding with the location
of a pronounced Van Hove singularity in the density of
states (DOS). Here, we intend strong or weak Van Hove
singularities, referring to the values of the DOS close to the
singularities in a comparative manner.

The effective pairing interaction is approximated by a sep-
arable potential V (k, k′) with an energy cutoff ω0 and it is
given by

V (k, k′) = −V0�(ω0 − |ξk|)�(ω0 − |ξk′ |).
V0 > 0 is the strength of the attractive potential. We solve

numerically the self-consistent BCS mean-field gap equa-
tion at a finite temperature Eq. (2) coupled with the density
equation Eq. (3):


(k) = − 1

�

∑
k′

[
V (k, k′)

tanh E (k′ )
2T 
(k′)

2
√

ξ (k′)2 + 
(k′)2

]
, (2)

n = 2

�

∑
k

[
1

2

(
1 − ξ (k)√

ξ (k)2 + 
(k)2

)
f (−E (k))

+ 1

2

(
1 + ξ (k)√

ξ (k)2 + 
(k)2

)
f (E (k))

]
. (3)

The factor 2 in Eq. (3) is due to spin degeneracy. Ek =√
ξ (k)2 + 
(k)2 is the dispersion of single-particle excita-

tions in the superconducting state. � is the area occupied by
the 2D system. ξ (k) = ε(k) − μ is the dispersion relation for
the electronic band with respect to the chemical potential (μ).
In the single-band case, the dimensionless coupling constant
for a pairing of two electrons is defined as λ = N (E0)V0 where
N (E0) is the density of states at the bottom of the band. f (x) =
[1 + exp(x/T )]−1 is the Fermi-Dirac distribution function.
We point out that all the coupling configurations considered
in this work led to solutions of the gap equations in Eq. (2)
which are global minima of the free energy and thus stable
physical solutions for the two-gap superconducting state, as
discussed in Ref. [43]. The BKT transition temperature TBKT

can be evaluated by self-consistently solving the Kosterltiz-
Thouless condition [4]:

TBKT = π

2
ρs(
(TBKT), μ(TBKT), TBKT), (4)

where ρs(T ) is the superfluid stiffness, 
 and μ are temper-
ature dependent and given by the solutions of gap Eq. (2)
and density Eq. (3). The superconducting gap has the same
energy cutoff and the same wave-vector dependence of the
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FIG. 1. Band 1 corresponds to the deep band with a weak Van
Hove singularity at E = 0 and band 2 corresponds to the quasiflat
band having a strong Van Hove singularity at E = Eg,2 = −2t1.

interaction:


(k) = 
�(ω0 − |ξk|). (5)

Superfluid stiffness at BCS mean-field level for a generic band
and at a finite temperature T is [44,45]

ρs(T ) = 1

4

∫
d2k

(2π )2

∂2ε(k)

∂k2
α

[
1 − ξ (k)

Ek
tanh

(
Ek

2T

)]

+ 1

2

∫
d2k

(2π )2

(
∂ε(k)

∂kα

)2
∂ f (Ek)

∂Ek
, (6)

where kα = kx,y. Due to the tetragonal symmetry of the system
ρx,x = ρy,y = ρs.

The two-band 2D systems in which one band is deep and
the other is quasiflat in nature is then considered:

εi(k) = −2ti[cos(kxa) + cos(kya)] + Eg,i.

The index i = 1,2 labels the bands: i = 1 denotes the upper
deep band having the nearest neighbor hopping parameter
t1 = 1.0 eV. i = 2 denotes the lower band which has the
characteristic of quasiflat band with t2= 0.1t1. The quasiflat
band is shifted below the center of the deep band by the energy
Eg,2 = -2t1 and no energy shift for the deep band is considered
Eg,1 = 0. Eg = 1.6t1 is the energy difference between the
bottom of the two bands. The resulting density of states of
the two-band system is reported in Fig. 1.

The effective multichannel pairing interaction is approxi-
mated using a separable potential, which is given by

Vi j (k, k′) = −V 0
i j�(ω0 − |ξi(k)|)�(ω0 − |ξ j (k′)|).

V 0
i, j is the strength of the potential and i, j label the bands. V 0

i j

= V 0
ji . V 0

11 and V 0
22 are the strengths of the intraband pairing

interactions. V 0
12 = V 0

21 are the strength of the pair-exchange
interactions. We consider the same energy cutoff ω0 of
the interaction for the pair-exchange and intraband pairing
terms. The considered energy cutoff spans the entire spectrum
of the quasiflat band, aiming to encompass all available wave-
vector states for pairing. Because of the flatness in energy
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of the quasiflat band, with bandwidths of the order of 10–
100 meV, the typical energy scale for the boson mediators of
the pairing, of phononic or electronic origin, is of the order
of the quasiflat band bandwidth, but it results smaller than the
bandwidth of the deep dispersive band. Consequently, there
exists coexistence between local (BEC-like) pairs forming
from the quasiflat band and more extended Cooper (BCS-
like) pairs emerging from the deep band. The experimental
observation of BCS-BEC crossover in iron-based or other 2D
superconductors [46–49] demonstrates that all the electronic
states of one band collapse in forming the BEC condensate of
local pairs, a strong coupling regime that requires the pairing
energy cutoff to be at least of the order of the bandwidth.
The regime corresponding to small energy cutoffs with re-
spect to the bandwidth is instead typical of BCS regimes of
conventional superconductivity. Another realization of pairing
energy cutoffs, due to phonon exchanges, of the order of the
electronic bandwidths, can be found in intercalated fullerene
superconductors, in which the strong electronic correlations
act in shrinking the bands (enhancing the effective mass) in
the presence of sizable energy of the relevant phononic modes
[50]. It is therefore a quite common configuration to be found
in multiband and/or strongly correlated superconductors. For
concentric or nonconcentric Fermi surfaces, once the effective
pairings are parametrized in terms of intraband and interband
channels, the structure of the multiband self-consistent gap
equations does not depend on the specific relative position in
the BZ of the Fermi surfaces. In the effective model, BCS or
GL, even starting from displaced Fermi surfaces in the BZ,
once effective coupling parameters have been introduced for
the Cooper pairing of multiple types of electrons, the displace-
ment disappears from the self-consistent gap or Tc equations,
with or without fluctuations [34]. In this study, we utilize a
mean-field approach that is based on the two-band extension
of the mean-field BCS theory [51,52] at finite temperature.
The resulting BCS equations for the two superconducting
gaps are coupled with an equation for the total density of the
system. The equations for the superconducting gaps 
1(k)
and 
2(k) read


1(k) = − 1

�

∑
k′

[
V11(k, k′)

tanh E1(k′ )
2T 
1(k′)

2
√

ξ1(k′)2 + 
1(k′)2

+ V12(k, k′)
tanh E2(k′ )

2T 
2(k′)

2
√

ξ2(k′)2 + 
2(k′)2

]
, (7)


2(k) = − 1

�

∑
k′

[
V21(k, k′)

tanh E1(k′ )
2T 
1(k′)

2
√

ξ1(k′)2 + 
1(k′)2

+ V22(k, k′)
tanh E2(k′ )

2T 
2(k′)

2
√

ξ2(k′)2 + 
2(k′)2

]
, (8)

where μ is the chemical potential fixed to be the same for both
bands. ξi(k) = εi(k) − μ is the energy dispersion of the bands
with respect to the chemical potential. The dimensionless
couplings λi, j are defined as λi, j = V 0

i, jN (E0), N (E0) is the
density of states at the bottom of the deep band. The total
density of the two-band system is fixed, and it is given by the
sum of the individual densities of the bands, ntot = n1 + n2.

The fermionic density ni in the ith band is given by

ni = 2

�

∑
k

[
1

2

(
1 − ξi(k)√

ξi(k)2 + 
i(k)2

)
f (−Ei(k))

+ 1

2

(
1 + ξi(k)√

ξi(k)2 + 
i(k)2

)
f (Ei(k))

]
. (9)

The system of equations (7)–(9) with the constraint ntot = n1

+ n2 is solved self-consistently. The resulting values of the
superconducting gaps 
1, 
2, and chemical potential μ are
used to calculate the total superfluid stiffness of the system
[44,53]:

ρ tot
s = ρ

deep
1 + ρ

qf
2 , (10)

where ρ
deep
1 and ρ

qf
2 are the superfluid stiffness of the deep

band and quasiflat band condensates, respectively. In the ab-
sence of the cross-pairing interaction [54] in our two-band
system, it becomes possible to express the total superfluid
stiffness as the sum of the individual stiffness contributions
from each band-condensate [44,53]. In this work, we neglect
only the cross-pair interactions, i.e., the possibility to form
Cooper pairs with one electron in one band and the second
electron in the other band. Generally, incorporating cross-
band pairing results in a complex hybridization of excitation
spectra in the superconducting state. This introduces a com-
petition between the formation of Cooper pairs within the
same band and across different bands, a problem discussed
in detail in Ref. [54]. In presence of significant cross-pairing,
specific spectroscopic features (which are not commonly ob-
served in multiband superconductors) are expected [54]. In the
present work, we limit our analysis to a regime of parameters
with negligible cross-pairing amplitudes, favoring conven-
tional multiband superconductivity with only pair-exchange
effects. Moreover, the superfluid phase stiffness in a two-band
system having sizable cross-pairing is no longer a straightfor-
ward sum of individual band stiffnesses. The BKT transition
temperature TBKT for the coupled two-band 2D superconduct-
ing system can be evaluated by self-consistently solving the
Kosterltiz-Thouless condition [4]:

TBKT = π

2
ρ tot

s (
1(TBKT),
2(TBKT), μ(TBKT), TBKT). (11)

In the next section, we report the results and discussion of
single-band and two-band cases.

III. RESULTS AND DISCUSSION

A. Single-band case

In the single quasiflat band tight-binding model in 2D, at
zero temperature, the chemical potential is fixed around the
strong Van Hove singularity of the quasiflat band. Equation (6)
becomes

ρqf
s (T = 0) = 1

4

∫
d2k

(2π )2

∂2ε(k)

∂k2
α

[
1 − ξ (k)√

ξ (k)2 + 
qf (k)2

]
.

Performing a large gap expansion 
qf/t � 1,

ρqf
s (T = 0) ≈ ρ

qf
0 − ρ

qf
1


qf
+ ρ

qf
2


3
qf

+ . . . , (12)

024507-4



HIGH-TC BEREZINSKII-KOSTERLITZ-THOULESS … PHYSICAL REVIEW B 110, 024507 (2024)

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0 0.5 1 1.5 2 2.5 3
∆ / t1

0

0.002

0.004

0.006

0.008

0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 

λ = 0.15
= 0.25
= 0.75
= 1.25

a2n

vHs

ρ S 
( T

 =
 0

) /
 t 1

  ∆  ≈ 10 meV    ∆  ≈ 30 meV  

ρ S (
 T

 =
 0

) /
 t 1

FIG. 2. The superfluid stiffness (open squares) at zero temper-
ature as a function of the superconducting gap 
/t1 for a given
cutoff ω0 = 4t . In comparison with semi-analytical stiffness (solid
line) of Eq. (12). Inset: The superfluid stiffness at zero temperature
is reported as a function of density for different couplings λ = 0.15
(red), 0.25 (black), 0.75 (blue), 1.25 (green).

where

ρ
qf
0 = 1

4

∫
d2k

(2π )2

∂2ε(k)

∂k2
α

,

ρ
qf
1 = 1

4

∫
d2k

(2π )2

∂2ε(k)

∂k2
α

ξ (k),

ρ
qf
2 = 1

4

∫
d2k

(2π )2

∂2ε(k)

∂k2
α

ξ (k)3

2
.

In general, quasiflat bands are having the characteristic of
higher effective mass m∗ and superconducting gap 
qf , which
is inversely related to the superfluid stiffness by Eq. (12). As
a result, the Berezinskii-Kosterlitz-Thouless transition tem-
perature subsequently dropped. The magnitude of this effect
is expected to increase when a strong Van Hove singularity
(VHs) is approached. The presence of a strong VHs in the
density of states enhances the mean-field critical temperature
Tc [55,56], but, at the same time, it suppresses the superfluid
stiffness ρs and consequently the BKT transition temperature
TBKT, due to a larger superconducting gap. In Fig. 2, the su-
perfluid stiffness at zero temperature is reported as a function
of the superconducting gap 
 in units of t1. The deviation of
the numerical results from the semi-analytical results around
a superconducting gap value of 0.75 is only a 5%. However,
when superconducting gap exceeds the value of 1, the numer-
ical results for superfluid stiffness match very well with the
semianalytical results as provided by the Eq. (12).

At zero temperature, as the system approaches the strong
coupling regime, the superconducting gap increases, resulting
in a further reduction of the superfluid stiffness. Regardless
of the band geometry, the superconducting gap becomes the
dominant factor affecting the superfluid stiffness in the strong
coupling regime. This is due to the fact that the superconduct-
ing gap is directly related to the pairing strength of electrons.
Therefore, in the strong coupling regime, the superconducting
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FIG. 3. TBKT/Tc against the coupling strength λ of the 2D quasi-
flat band for different densities and given energy cutoff ω0 = 4t .

gap is the primary determinant of the superfluid stiffness of
the system. In the inset of Fig. 2, the superfluid stiffness
at zero temperature shows the nonmonotonic behaviors with
respect to the number density and achieves its peak magni-
tude when the pairing strength is higher, particularly around
the quarter filling. However, it undergoes a more substantial
suppression in the vicinity of the Van Hove singularity. At
zero temperature, the superfluid stiffness at the bottom of the
tight-binding band can be approximated by the parabolic band
model, expressed as ρs ≈ n

m∗ . In this regime, the superfluid
stiffness is influenced by the effective mass.

In Fig. 3, we report TBKT/Tc versus the coupling strength
for different values of electronic densities. In the weak cou-
pling region, TBKT/Tc exhibits relatively a high value. In the
BCS weak coupling limit, the superconducting gap 
 is expo-
nentially suppressed for small values of the coupling strength
λ. As the coupling strength increases and approaches the
strong coupling regime, the gap becomes larger, which in turn
suppresses more the superfluid stiffness and TBKT as described
by Eq. (12). In the case of half filling a2n = 1.0, TBKT/Tc is
notably suppressed because of the presence of the Van Hove
singularity [57]. As we increase the density of electrons from
0.15 to 0.25, TBKT initially increases. However, as we further
increase the density, the superconducting gap dominates more,
which leads to a suppression of the TBKT. In order to screen
the suppression and, hence, amplify TBKT, particularly around
the half-filling region, multiband superconductivity can be
efficiently employed, as investigated below. In Fig. 4, TBKT/Tc

is plotted against the electron density for given coupling
strength. At a state of half-filling, the ratio TBKT/Tc undergoes
significant suppression, primarily due to the presence of the
Van Hove singularity. Irrespective of the coupling strength, it
is noteworthy that the TBKT/Tc ratio attains its maximum value
around the density value of 0.3.

B. Two-band case

To address the issue of suppressed superfluid stiffness
in the quasiflat band 2D tight-binding system, we coupled
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FIG. 4. TBKT/Tc, as a function of density for λ = 0.25 (blue), 0.60
(red), and 1.00 (green).

the quasiflat band with the 2D tight-binding deep dispersive
band, which has a weak coupling strength and a broad Van
Hove singularity in the DOS. The coupling strength for the
deep band is fixed to be 0.25 throughout the calculation.
In many different multiband superconductors, the resulting
superconducting gaps are well separated in energy, with dis-
tinct features measured in spectroscopic experiments that can
be attributed to different gaps. When considering pairing
mediated by phonons or by other bosonic fields, the cou-
pling strength between the bosonic mediator and the electrons
forming the Cooper pairs depends strongly on the specific
structure of the wave functions and, hence, of the electronic
bands. Therefore, having different paring strengths in different
bands is a standard situation in multiband systems, while
equal pairings can be associated with quasidegeneracy of the
electronic structure. A prototype example would be MgB2
or several iron-based superconductors. Multiband supercon-
ductors with a coherent mixture of condensates in the BCS
regime (deep band) and in the BEC regime (quasiflat band)
offer a promising route to higher critical temperatures. In
systems with quasiflat bands, the flatness of the bandwidth
can enhance the coupling strength through the large density
of states in the flat regions of the band structure in the BZ,
leading to the emergence of strongly correlated states and
strongly-coupled superconductivity, characterized by the for-
mation of short-sized pairs typical of the BEC regime. Thus,
prioritizing stronger coupling in the quasiflat band over the
deep band is more favorable. Same physics can arise in the
presence of anti-adiabatic effects beyond Migdal, that can
amplify electron-phonon coupling in the case of quasiflat
bands. At zero temperature, it is not possible to perform a
large gap expansion of superfluid stiffness for a deep band,
as the coupling constant (λ11) of the deep band is fixed in the
weak coupling regime. However, for 
deep/t1 < 1, ρ

deep
1 can

be approximated as

ρ
deep
1 (T = 0) ≈ ρdeep(
deep = 0)

+ 1

4
N0(μ)

[

deep − 
2

deep

2ω0

] ∑
k

∂2ε(k)

∂k2
α

,

(13)

where N0(μ) is the density of the states at the chemical po-
tential. Since the superfluid stiffness of the deep band (ρdeep

1 )
is directly related to the superconducting gap of a deep band
which acts as a reservoir to enhance the total superfluid stiff-
ness (ρ tot

s ) of the system given by Eq. (10). The position in
energy of the strong Van Hove singularity originating from
the quasiflat band is not a relevant issue in our model and
approach. Even when shifting the center of the quasiflat band
to the higher energies, the stabilization effect proposed in
our work will not be significantly affected, with the only
condition that the deep band should not be completely filled
or completely empty of electrons, otherwise its contribution to
the superconducting phase stiffness will vanish and such deep
band will not be active for the superconductivity.

In the flat band and quasiflat band systems, the superfluid
stiffness and BKT transition temperature are negligible due to
band geometry. But recent research has indicated that incorpo-
rating quantum geometric effects in multiorbital band models
could result in a finite BKT transition temperature [58–64].
The presence of quantum geometry is crucial for achieving
stable supercurrent and superfluidity in quasi(flat) bands, par-
ticularly if the bands possess nontrivial topological quantum
geometric properties. These properties are determined by the
overlaps between the eigenstates in a band and are described
mathematically by the quantum geometric tensor, with the real
component known as the quantum metric. While the quan-
tum metric has been associated with the superfluid stiffness
in the isolated flat band limit [58–66], our paper considers
a two-band model in which one quasiflat band is located below
the center of the deep band, indicating that we are not in
the isolated flat band limit. Furthermore, we do not consider
any nontrivial topological bands, which ultimately leads us
to conclude that the superfluid stiffness is not influenced by
quantum geometric contributions [59]. Nonetheless, due to
the band geometry, the single-band superconducting system
in the quasiflat band regime exhibits a very small but nonzero
conventional superfluid stiffness.

In our two-band model, the chemical potential is fixed
around the vicinity of the Van Hove singularity of the quasiflat
band. This region is characterized by a high suppression of the
superfluid stiffness and the opening of a pseudogap, which
requires the utmost care in the analysis. The intraband and
pair-exchanging coupling strengths and the chemical potential
primarily determine the mean-field critical temperature in the
two-band case and hence play a crucial role in determin-
ing the Berezinskii-Kosterlitz-Thouless transition temperature
(TBKT). To enhance the BKT transition temperature, the quasi-
flat band is coupled with the deep band, where the latter
practically acts as a passive band. We consider the intraband
coupling strengths of the deep and quasiflat bands, denoted
by λ11 and λ22, respectively. As the deep band acts as a
passive band, its intraband coupling is smaller than that of
the quasiflat band, i.e., λ11 < λ22, while the pair-exchange
coupling strengths are symmetric, i.e., λ12 = λ21. Throughout
the numerical calculation, we fix the deep band in the weak
coupling regime λ11= 0.25 and vary the λ22 ranging from
0.25 (weak coupling) to 1.0 (strong coupling). To determine
the optimal conditions for achieving a higher BKT transition
temperature (TBKT), we vary the pair-exchange coupling
strength, λ12, from 0.1 to 1.0. To fix the chemical potential
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FIG. 5. TBKT/Tc of the two-band system, as a function of the
pair-exchange coupling strength λ12 for different values of intraband
coupling λ22 at given ω0 = 4.0t2.

around the vicinity of the Van Hove singularity of the quasiflat
band in the coupled system, we tune the total number density,
ntot . In Fig. 5, we plotted the ratio of TBKT/Tc for the different
values of pair-exchange coupling strength ranging from 0.01
to 1.0. In the two-band model, in the weak coupling regime
for the quasiflat band with λ22 = 0.25, the TBKT transition
temperature is found to be approximately 20% to 22% of Tc

for the pair-exchange coupling regime, ranging from 0.1 to
0.4. Similarly, in contrast, the single quasiflat band case, as
depicted in Fig. 3, shows that for the coupling strength from
0.15 to 0.4 for a2n = 1.0, the TBKT is only around 0.5% to
1.5% of Tc. This result suggests that coupling a deep band with
the quasiflat band significantly enhances the TBKT by approxi-
mately 10–100 times compared to the single-band case. From
Eq. (13), the superfluid stiffness of the deep band is directly
related to the superconducting gap 
deep which behaves like
a reservoir of superfluid stiffness, screening the suppression
of the superfluid stiffness. In Fig. 6, the maximum value of
the TBKT/Tc and its corresponding pair-exchange coupling λ12
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FIG. 6. The maximum value of (TBKT/Tc )max and its corre-
sponding pair-exchange coupling constant λmax

12 between the band
condensates, as a function of the intraband coupling constant λ22 of
the quasiflat band.

van Hove singularitySC

NS

TBKT

Tc

Pseudogap

μ/t1

FIG. 7. Mean-field critical temperature Tc and BKT transition
temperature TBKT as a function of the chemical potential, in the
single-band case for a given cutoff ω0 = 4t2 and λ = 0.25.

between the band condensates are plotted as a function of
intraband coupling of the quasiflat band. It shows that with
the suitable choice of pair-exchange and intraband couplings,
we can achieve the maximum enhancement of the TBKT. The
two-band system behaves like a single-band system as λ12 is
much larger than λ11, λ22, as a result there is a decline of
the TBKT for very large values of λ12. In Fig. 7, when the
chemical potential reaches the Van Hove singularity of the
quasiflat band, there is a huge opening of the pseudogap. In
Fig. 8, for the two-band case, as the chemical potential ap-
proaches the strong Van Hove singularity, there is a significant
decrease in the pseudogap. This effect can be attributed to the
screening-like mechanism that is associated with multiband
superconductivity.

μ/t1

Pseudogap
1-band Tc

2-band Tc

Weak vHs

deep band
Strong vHs

quasi-flat band

NS

SC

(TBKT ≈  0.1K - 1K )

(TBKT ≈  10K - 30K )

(Tc ≈  10K - 70 K )
(Tc ≈  10K - 100K )

2 - band TBKT

1 - band TBKT

FIG. 8. Mean-field critical temperature Tc and Berezinskii–
Kosterlitz–Thouless transition temperatures TBKT as a function of the
chemical potential, in the two-band case, for a given cutoff energy
ω0 = 4t2, with coupling strengths λ11 = 0.25, λ22 = 0.25, λ12 =
λ21 = 0.2. A single-band TBKT is plotted as well, to highlight the
amplification between the single-band scenario and the two-band
scenario.
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FIG. 9. Superfluid stiffness as a function of the temperature for
two band case with intraband coupling strength of deep and quasi
flat band are 0.25 (red) and 0.25 (blue), respectively. The total super-
fluid stiffness is also shown (green), pair-exchange coupling strength
λ12 = 0.1.

For a more realistic description of monolayer FeSe, we
opted for the hopping parameter t1 = 10 meV and the
coupling constants λ11 = 0.25, λ22 = 0.25, and λ12 = 0.2.
Depending on the chemical potential, the resulting mean-field
critical temperature Tc for the single-band case is in the range
10–70 K, while for the two-band scenario, it is approxi-
mately 10-100 K. The BKT transition temperature (TBKT)
for the single-band case falls within the range 0.1-1 K,
while for the two-band case, it spans 10 to 30 K, closely
matching the BKT temperature of around 24 K observed in
FeSe monolayer superconductors as reported in Ref. [29].
The experimental observation of the mean-field temperature
for onset of pairing and opening of the pseudogap for the
FeSe monolayer occurs around 55–65 K, which coincides
with the temperature range of 10 to 100 K extracted from
parameter fits with our considered model. Moreover, in this
parameter set, the superconducting gap for the two-band case
ranges from 7 to 16 meV, reflecting values that are both
reasonable and consistent with the STM and ARPES studies
reporting the superconducting gap value from 8 to 20 meV
[17,18,29]. In Fig. 9, the superfluid phase stiffness is plotted
as a function of temperature, showing how the presence of
multigap/multiband contributes to the enhancement of super-
fluid stiffness. In Fig. 10, TBKT/t1 is plotted as a function of
the pairing strength for both cases. In the strong-coupling
regime, there is a significant amplification of TBKT in the
two-band system compared to the single-band system. In both
cases, the chemical potential is fixed around the VHs of the
quasiflat band. In the single-band case, the ratio between the
mean-field pairing temperature Tc, that can be measured by
ARPES or by the deviation from the normal-state resistivity
lowering the temperature, and the TBKT cannot be lower than
10, indicating a strong suppression of TBKT and a very large
pseudogap regime in temperature for single-band systems.
Remarkably, we demonstrate that in the case of two bands, one
deep and the other quasiflat with a VHs, the TBKT is enhanced
by an order of magnitude and the ratio Tc/TBKT can lower sub-
stantially toward values of the order 2-5. Interestingly, FeSe
superconducting monolayers show a BKT transition around

T B
K

T /
 t 1

λ22 = λ

0.01

0.1

0 0.1 0.2 0.3 0.4 0.5

FIG. 10. TBKT/t1 as a function of the pairing strength for
both single-band and two-band cases. For the two-band case,
pair-exchange coupling strengths considered are λ12 = 0.05(red),
0.1(green), 0.2(blue). The intraband coupling strength for the deep
band is λ11 = 0.25.

24 K [29] and a mean-field temperature for onset of pair-
ing and pseudogap opening, as detected by resistivity and
ARPES, of the order of 55–65 K. Hence, the experimental
ratio Tc/TBKT ranges from 2 to 3, a number that cannot be
obtained with a single-band model system, but instead a two-
band system such as the one considered in this work can allow
ratios in the same range observed experimentally.

IV. CONCLUSIONS

In this work, we have explored the influence of electronic
band configurations and their properties, such as Van Hove
singularities, and of the pairing regimes on the suppression
of both superfluid stiffness and TBKT temperature. We have
addressed the challenge of superfluid stiffness suppression
by utilizing multiband and multicondensate effects, thereby
enabling the stabilization of high-Tc 2D superconductivity.
In the single-band case, as the band becomes flatter, the
effective mass of electrons increases, leading to an increas-
ingly pronounced effect of superfluid stiffness suppression.
This effect is even larger for 2D tight-binding electrons due
to the presence of the Van Hove singularity in the density
of states. Interestingly, while the Van Hove singularity is
known to increase the mean-field superconducting critical
temperature, it also leads to substantial suppression of the
superfluid stiffness and hence of TBKT. Additionally, we have
observed an inverse relationship between superfluid stiffness
and the superconducting gap in the strong-coupling regime.
Consequently, the superconducting gap emerges as the pri-
mary determinant of superfluid stiffness suppression in the
strong-coupling regime, which is generated in the vicinity
of a Van Hove singularity. Here, we have demonstrated a
method for circumventing the suppression of the superfluid
stiffness in quasiflat band systems by providing a reservoir
of phase stiffness with a deep band characterized by a weak
pairing of its electrons, exploiting multiband and multigap
superconductivity. Specifically, we have analyzed a coupled
quasiflat and deep dispersing two-band 2D system by tuning
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the pair-exchange coupling between the band condensates.
Our findings indicate that coupling with the deep band is able
to increase the TBKT temperature by 10-100 times when com-
pared to the single-band case and also significantly shrinks
the pseudogap region between Tc and TBKT arising because
of amplitude, phase and vortex-antivortex fluctuations. We
conclude that our proposed electronic configuration provides
an effective means of screening the suppression of the super-
fluid stiffness and enhancing by order of magnitudes the TBKT

temperature in the multiband coupled 2D systems that possess

quasiflat bands and strong Van Hove singularities, coupled
with deep bands having weak-pairing strengths.
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