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Gate-tunable crossover between vortex-interaction and pinning dominated regimes in
Josephson-coupled lead islands on graphene
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The resistance of a Josephson junction array consisting of randomly distributed lead islands on exfoliated
single-layer graphene shows a broad superconducting transition to zero with an onset temperature close to the
transition temperature of bulk Pb. The transition region evolves with the back-gate voltage with two peaks in
the temperature derivative of the resistance. The region above the lower-temperature peak is found to be well
described by the Berezinskii-Kosterlitz-Thouless model of the thermal unbinding of vortex-antivortex pairs,
while that below this peak fits well with the Ambegaokar-Halperin model of thermally activated phase slip or
vortex depinning. Thus, a gate-tunable crossover between interaction and pinning dominated vortices is inferred.
This is elaborated in terms of free vortices as well as strong pinning sites in this highly inhomogeneous Josephson
junction array.
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I. INTRODUCTION

Superconductivity in two dimensions is intriguing for
many reasons, including the abundance of low-energy fluc-
tuations due to the absence of long-range order in two
dimensions at finite temperatures [1,2], the presence of a
superconductor to insulator transition (SIT) [3–6], and a su-
perinsulator phase [7]. Granularity plays an important role in
two-dimensional (2D) superconductors (SCs), and the inter-
play between Coulomb energy EC, Josephson coupling energy
EJ, and the thermal energy kBT broadly dictates different
regimes. The Coulomb energy EC is the energy cost of ex-
changing a Cooper pair with a SC island [8], while EJ dictates
the energy cost for two SC grains to have unequal phases. The
dominance of EC leads to a superinsulator phase with local-
ized Cooper pairs and mobile vortices. Competition between
EC and EJ, with both dominating over kBT , leads to SIT, while
the dominance of EJ leads to superconductivity.

For EJ � EC, the low-energy phase fluctuations manifest
as vortex-antivortex pairs at finite temperatures. This broadens
the superconducting transition in a 2D SC, and it has mostly
been described by the much celebrated works of Berezinskii
[9] and Kosterlitz and Thouless [10] and is known as the BKT
model. In this model the thermal unbinding of such pairs lead
to a finite resistance at any nonzero current below the bulk
superconducting critical temperature TC and above a phase-
transition temperature denoted TBKT.

Compared to a three-dimensional SC, the screening capa-
bility of currents in a 2D SC for perpendicular magnetic fields
is much weaker [11], and so the effective screening length
λ⊥, which dictates the intervortex interaction, can exceed the
sample size. The logarithmic dependence of the interaction
energy on the intervortex separation, required for the BKT
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model, is possible only for sample sizes below λ⊥. This im-
posed finite sample size rules out a true BKT phase transition
in thermodynamically large 2D samples, and some dissipation
may persist due to finite size induced free vortices below
TBKT. Nevertheless, in certain regimes signatures of the BKT
transition have been observed [12–14].

Another regime of interest in a finite size 2D array of
Josephson junctions (JJs) is described by the Ambegaokar-
Halperin (AH) model of thermally activated phase slips
(TAPSs) [15,16]. In this case, the vortices drift under a bias
current through the intergrain regions and over a potential
landscape [17] with vortex pinning sites, dictated by EJ and
grain distribution, leading to finite resistance. The smaller EJ

regions, finite sample size, and applied bias current in this
nonuniform JJ array can contribute free vortices below the
overall TBKT [18].

Graphene’s exposed two-dimensional electron gas with
easy control of its carrier density through a back gate makes
it a popular tunable substrate for studying gate-tunable SCs.
Superconducting materials that do not wet the graphene
surface are ideal for this because one can easily get a
2D array of JJs by using suitable deposition conditions.
Many interesting phenomena, including the gate-tunable SIT
[3] and magnetic-field-tuned superconductor-metal transition
with double quantum criticality [13], have been observed in
such SC-graphene hybrid systems. Such samples fall in a
regime dominated by the interplay of EC and EJ, with both
being much larger than kBT .

In this paper, we report on the resistance vs tempera-
ture R(T ) and current-voltage characteristics (IVCs) of a
four-probe device consisting of lead islands on exfoliated
single-layer graphene, with the back-gate voltage providing
a handle on EJ. This work focuses on a regime where the
EJ and kBT interplay dictates the superconducting transition,
with EC being much smaller. The resistance shows a broad
gate dependent transition to zero resistance with two peaks in
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FIG. 1. (a) Raman spectrum taken on graphene showing the two
characteristic Raman peaks at approximately 1577 cm−1 (G peak)
and 2665 cm−1 (2D peak). The ratio I (2D)/I (G) = 2.3 confirms the
graphene is single layer. The inset is the optical image of single-
layer graphene, where the white scale bar is 15 µm. (b) Optical
image showing the four contact pads in a van der Pauw geometry.
The white dashed line marks the graphene boundary. (c) SEM image
showing the distribution of Pb islands (gray) on graphene (black
background). The red crosses mark potential sites for strong pinning
of vortices, while the pink circles on the right side and yellow ones
on the left side outline some low- and high-EJ regions, respectively.
(d) Schematic diagram of the four-terminal configuration for electri-
cal measurements in the Pb-graphene hybrid device.

its temperature derivative. The gate voltage dependent R(T ) is
well described by the BKT and AH models for temperatures
above and below the low-temperature peak, respectively. The
IVCs in the low-temperature region show a critical current and
are found to be consistent with the AH model. Finally, a gate-
tunable crossover between interaction and pinning dominated
vortex regimes is concluded.

II. EXPERIMENTAL DETAILS

Monolayer graphene was prepared by exfoliating Kish
graphite on a highly p-doped silicon wafer with 300 nm
thick gate-quality oxide on it. The substrate was first cleaned
by sonicating it in acetone, isopropyl alcohol, and deion-
ized water consecutively for 5 min each and then in 50 W
oxygen plasma for 2 min [19]. Exfoliation was done within
30 min of this cleaning process. Graphene flakes were then
identified under optical microscope. The inset in Fig. 1(a)
shows the graphene monolayer used for fabricating the ac-
tual device. The Raman spectrum of the graphene flake in
Fig. 1(a) gives the ratio of the characteristic G and 2D bands
as I (2D)/I (G) = 2.3, which confirms it is single layer. The
absence of the D peak implies graphene is defect-free.

Lithography with resists and wet chemicals was avoided
for making electrical contacts on graphene to prevent con-
tamination, which is found to significantly affect the Pb
morphology and the graphene-Pb interface transparency. The
contacts on the single-layer graphene were made by deposit-
ing Cr/Au (5/45 nm) in a van der Pauw geometry using
a mechanical mask, as shown in Fig. 1(b). Pb was then

deposited using a thermal evaporation technique. It can be
observed from the scanning electron microscope (SEM) im-
age in Fig. 1(c) that Pb formed discrete nanometer-sized
islands on graphene in the size range from 30 to 300 nm
instead of forming a uniform layer due to its poor wettability
on graphene [20,21]. Thus, the Pb-graphene hybrid device is a
2D random array of Josephson junctions with a distribution in
island size, shape, and interisland separation. One can also see
regions in Fig. 1(c) with the interisland separation larger and
smaller than average. One should also note the distribution
in the local coordination of islands that occasionally leads to
voids surrounded by several islands.

When Pb is deposited on graphene, the substrate tempera-
ture during deposition, Pb deposition rate and thickness play
a key role in deciding the size, the size distribution of Pb
islands, and also their separation [22,23]. Thirty nanometers
of Pb were thermally evaporated on graphene by keeping
the temperature of the substrate at 71 ◦C. Pb deposited on
the SiO2 substrate surrounding graphene also formed dis-
tinct islands with an interisland separation larger than that on
graphene, thus preventing any electrical conduction through
them. Hence, the electrical conduction happens only through
Pb islands that are coupled through graphene. A good-quality
interface between Pb and graphene was also ensured by de-
positing Pb at the high rate of 20 Å/s, apart from avoiding the
wet chemical processes.

After Pb was deposited, devices were promptly mounted on
a cryostat which was then cooled in a closed cycle refrigerator
to its base temperature of 1.3 K. Low-pass R − C filters with
a 15 kHz cutoff frequency as well as high-frequency-cutoff
pi filters were installed in the measurement lines at room
temperature to minimize electromagnetic noise. The transport
measurement wires also go through Cu-powder filters at the
base temperature to further reduce the noise interference. The
four-probe transport measurements were carried out using a
dc-current source as depicted in Fig. 1(d). Current was var-
ied over a limited range, from −20 to 20 µA, to minimize
Joule heating. For the resistance measurements, the device
was biased with 1 µA current of both polarities. The volt-
age measured from the device was amplified using a Femto
voltage amplifier. Gate voltage Vg between −90 and 90 V was
applied to the Si substrate with 10 k� series resistance. All the
measurements reported here were carried out in zero applied
magnetic field.

III. THEORETICAL BACKGROUND

In 2D samples with superconducting islands on graphene
[3,24], Vg controls the graphene’s carrier density, which dic-
tates the interisland Josephson coupling. This results in a Vg

dependent EJ. As discussed later, the superconducting transi-
tion region in the above sample is best described by the BKT
and AH models. The BKT model’s applicability was extended
from superconducting thin films [12] to 2D arrays of JJs by
Lobb et al. [2,25]. The AH model of phase slip in a single JJ
[15] has been used to understand the flux pinning and creep
in granular superconductors, similar to JJ arrays [16,26]. In
this section we discuss the details of the BKT and AH models
and the role of inhomogeneities and finite sample size that are
relevant to this work.
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A. Berezinskii-Kosterlitz-Thouless model

The BKT transition is described for ordered 2D thermody-
namic systems with interaction between two vortices having a
logarithmic dependence on their separation. According to the
BKT model, thermal unbinding of the bound vortex-antivortex
pairs into free vortices happens above TBKT. A current small
enough not to induce vortex unbinding in a 2D SC induces
motion of the free vortices due to a Lorentz force in a direction
perpendicular to the current. The motion of the free vortices
leads to a voltage and thus dissipation. An important length
scale in the BKT model is the vortex correlation length ξ+(T ).
For T > TBKT, ξ+(T ) ∝ exp{b√(TCO − TBKT)/(T − TBKT)}
[1,12]. ξ+ represents the length scale above which vortex pairs
begin to unbind, or alternatively, it is the average distance
between two free vortices. Thus, the free-vortex density above
TBKT goes as 1/ξ 2

+(T ), which leads to dissipation and resis-
tance. This resistance, due to the motion of free vortices in the
small current limit, is given by [1,12]

R/RN = a exp[−2b
√

(TCO − T )/(T − TBKT)]. (1)

Here, a and b are nonuniversal constants of the order of
unity, RN is the normal state resistance, and TCO is the critical
transition temperature.

The perpendicular screening length [11] in a 2D supercon-
ductor is given by λ⊥ = 2λ2/d , with λ being the penetration
depth and d being the thickness. Thus, λ⊥ � λ, and it can
exceed the size of the 2D SC samples. λ⊥ also dictates the
crossover in the separation r dependence of the intervortex
interaction force, which varies as 1/r for r < λ⊥ and as 1/r2

for r > λ⊥. Thus, the intervortex interaction energy is loga-
rithmic for r < λ⊥, and it decays much faster for larger r. The
logarithmic interaction is crucial for the applicability of the
BKT physics.

The BKT transition temperature TBKT of a uniform JJ array
depends on EJ as [27] TBKT = αEJ(TBKT). Here, α depends
on the array configuration, and EJ(T ) is the temperature de-
pendent Josephson coupling energy. For a uniform square
array α = π/2kB, with kB being the Boltzmann constant. For
such a uniform JJ array, λ⊥ is given by [2,28] λ⊥(T ) =
�0/[2πμ0iC(T )]. Here, iC is the critical current of each junc-
tion, which depends exponentially on temperature [25] for
proximity junctions.

In a uniform array of Josephson junctions with lattice pa-
rameter a0, the energy required to generate a vortex-antivortex
pair separated by r is given by [29] 2πEJ ln(r/a0). Thus,
there is a finite probability for creation of such pairs with
finite separation at nonzero temperatures. The energy required
to produce a single vortex, on the other hand, is given by
πEJ ln(L /a0). Here, L ≡ min[L, λ⊥], with L being the
array size. Thus, a finite size system or a small λ⊥ can
contribute to the formation of free vortices at nonzero tem-
peratures [29]. This results in the free-vortex density [28,29]
nfs(T ) ∝ (eL /a0)−πEJ (T )/kBT . For infinite samples, as TBKT

is approached from above, ξ+ grows and diverges at TBKT,
leading to no free vortices below TBKT. But for a finite size
system, a cutoff is imposed on ξ+ at a temperature slightly
above TBKT because ξ+ cannot grow beyond [30] L .

The behavior of ξ+ is also modified in the presence
of a finite applied current due to current induced vortex

pair-breaking effects that are important down to zero temper-
ature. Thus, ξ+ does not diverge at TBKT for finite currents.
The finite current introduces an extrinsic length scale rC in
the system [2,31], such that the vortex pairs with separation
more than rC unbind due to applied current. The density of
such current-unbound free vortices for T < TBKT is given by
[28,29] ncu(T ) ∝ [iC(T )/i]−πEJ (T )/kBT , with i being the bias
current per junction. In summary, unbound or free vortices
may be present in a 2D SC JJ array at any nonzero temperature
for several reasons, including finite size and current effects.
Consequently, the free-vortex density may not abruptly jump
to zero with cooling at TBKT, leading to a widening of the
transition region.

B. Vortex pinning and the Ambegaokar-Halperin model

The AH theory quantitatively models the small finite resis-
tance observed in an overdamped Josephson junction with a
bias current smaller than the critical current. This resistance
arises due to the TAPS processes. Defining x = I/IC, with
I being the bias current and IC being the junction critical-
current value (in the absence of thermal fluctuations), the
time-averaged voltage for the Josephson junction for x < 1
at temperature T is given by [15,32]

V = 2(ICRN)
√

1 − x2 exp [−γ (
√

1 − x2 + x sin−1 x)]

× sinh (πγ x/2). (2)

Here, γ is the ratio of the zero-current barrier height, i.e., 2EJ,
to kBT , and RN is the normal state resistance. Note that the
above expression is valid for large γ values. Furthermore,
in the limit [15] x → 0, the above expression leads to a
resistance,

R = RN[I0(γ /2)]−2. (3)

Here, I0 is the modified Bessel function of zeroth order. The
detailed IVC in Eq. (2) is nonlinear as the applied current
reduces the barrier for phase slip. The barrier vanishes as the
bias current approaches the critical current IC.

In a uniform square 2D Josephson junction array, Rz-
chowski et al. [17] calculated the potential seen by a single
vortex to be like an “egg crate.” In this case, the barriers are
at the junctions between two superconducting islands, and the
minima lie at the junctions of four superconducting islands.
On the application of bias current, a vortex existing in this
array will move in this potential, crossing the barriers at the
junctions by thermal activation and resulting in a phase slip of
2π across the junction it moves through. Tinkham [16] argued
that the kinetics of the driven, highly damped, thermally acti-
vated processes in granular superconductors involve the same
2π phase slip physics as the thermally activated phase motion
in a single, overdamped, current-driven Josephson junction.

For a JJ array, the actual barrier seen by a vortex in a
minimum is lower than that in a single junction. For a uniform
square JJ array, this barrier is found to be close to [25] 0.2EJ,
while that for a triangular array is [25] 0.043EJ. For a random
array, we can expect a distribution in barrier energies due to
the varied island coordination and EJ values. For a granular
superconductor consisting of polycrystalline YBa2Cu3O7−δ ,
Bhalla and Pratima [33,34] used the modified expression
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γ = A(1 − T/TCO)m for the normalized barrier height to ex-
plain the dissipation. Here, m is a variable exponent, and
the constant A includes an unspecified dependence of γ on
the applied magnetic field, with T/TCO being the reduced
temperature. Similarly, for our Pb-graphene hybrid system,
we modify the zero-bias resistance (3) to

R = RN{I0[A(1 − T/TCO)m/2]}−2. (4)

Here, both A and m can be expected to depend on the gate
voltage Vg.

As discussed earlier, a finite density of free vortices can
exist at nonzero temperature below TBKT due to nonzero cur-
rent bias and finite sample size. An applied bias current drives
the free vortices and antivortices towards the opposite edges
of the JJ array. In a steady state, the vortices driven out will
get replaced by newly generated pairs in the bulk and by
those entering from the edges. The free vortices will have to
overcome the pinning sites, and we assume the AH model
is most appropriate for this depinning physics. As discussed
later, strong inhomogeneities and finite size can add to free
vortices and the dissipation.

C. Effect of inhomogeneities and finite size

An inhomogeneous JJ array has a distribution in EJ values
as well as in the local coordination of islands. This leads
to a potential-energy landscape for individual vortices with
features at different length scales. The voids, mentioned ear-
lier, lead to sharp local minima as strong pinning sites, while
the EJ patches larger and smaller than the average amount
to mounds and puddles, respectively. The bias current will
give an overall slope, which is opposite for the two vortex
polarities, to this landscape perpendicular to the bias current,
while the sample edges will have sharp down steps where
the vortices can escape. The inhomogeneity in EJ will also
lead to an inhomogeneous distribution of the bias current with
smaller EJ regions carrying lower current. The intervortex
interaction will add complications to this simple independent
vortex picture.

The vortex-antivortex pair excitations in shallow regions
will occur more because they will cost less energy. Under a
bias current some of these vortices can move out into other
regions at finite temperature. The depinning will also affect
the current induced free-vortex density as the vortex and
antivortex of the pair have to overcome pinning sites to get
sufficiently separated. In this sense, the AH model will play a
role in the creation of free vortices as well as their movement
until they exit from an edge.

The inverse of this process, due to finite size, can also
contribute to dissipation. A free vortex can enter, preferably
through the weaker EJ regions near a sample edge, under a
bias current and at finite temperature and occupy a pinning
site. Such a vortex will face a barrier predominantly dictated
by the local EJ values at the edge to reach a pinning site. The
vortex activation over a barrier and depinning play important
roles in its creation and further movement into the sample
under bias current until it either exits from the opposite edge
or it meets an antivortex and gets annihilated.

When the sample is cooled, EJ becomes nonzero at TCO

and then increases further with cooling. The pinning will be

ineffective just below TCO and down to certain temperature
since the thermal energy kBT will exceed the EJ dependent
pinning energies. The dissipation in this regime can thus
be described by the vortex-antivortex interaction physics,
i.e., a BKT model with a suitable (or average) temperature
dependent EJ. With further cooling, the pinning energy at
few sites will start to exceed kBT , and there could be a
mixed regime with an interplay between intervortex inter-
action and pinning. Moreover, the free-vortex density due
to inhomogeneities and finite sample size under an applied
bias current will start dominating over that expected from
the BKT physics of a uniform array. Thus, below a certain
temperature the pinning physics will predominantly dictate
the dissipation.

IV. RESULTS AND ANALYSIS

A. Gate dependent resistance measurements

Figure 2(a) displays the measured resistance with tem-
perature at Vg = 0 V for the graphene-Pb hybrid sample.
It shows a broad resistive transition with cooling as the re-
sistance R drops gradually starting from a superconductivity
onset temperature of about 7 K, which is close to the su-
perconductivity critical temperature of the bulk lead. The
broadened R(T ) curve, displaying a two-step transition to
the zero-resistance state, is characteristic of granularity in
SCs [35–37]. The derivative of the resistance with respect
to temperature, i.e., dR/dT [see Fig. 2(b)], exhibits two
peaks. The higher-temperature narrow peak corresponds to
the onset temperature TCO, which is associated with supercon-
ductivity inside the Pb islands. Below TCO, a weak Josephson
coupling with energy EJ sets in, leading to weak phase coher-
ence between islands with phase fluctuations proliferating as
vortices.

With cooling, EJ increases, and a relatively less steep re-
duction in resistance, marked by a broader peak in dR/dT
compared to that at TCO, is observed. The temperature corre-
sponding to this peak marks a crossover between two regimes,
as discussed later, and thus, it is denoted TX. This peak
also has some fine structure, which presumably arises from
a distribution in EJ values and is influenced by the detailed
island distribution in this finite size sample. As the temper-
ature is further lowered, global phase coherence is achieved,
leading to a macroscopic SC state. The temperature T zero

C at
which the macroscopic SC state is achieved is defined at 1%
of R10K.

There is significant variation in R(T ) and the dR/dT
curves with Vg, as shown in Figs. 2(c) and 2(d). The car-
rier density in this graphene, which is electron doped due
to the interface traps and the presence of Pb, is the lowest
at Vg = −90 V, and it increases monotonically with Vg. The
Dirac point in this sample is not accessible due to significant
electron doping, as seen from the normal state resistance vari-
ation with Vg in Fig. 2(f). The Josephson coupling between Pb
islands, mediated by graphene, is expected to increase with Vg

due to the increase in carrier density in graphene. As a result,
when Vg is increased from −90 to +90 V, T zero

C increases
from about 2 to 4 K, although TCO remains nearly the same
as shown in Fig. 2(e). Thus, the transition region between TCO
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FIG. 2. (a) Four-probe resistance R (at 1 µA bias current) and (b) its first derivative dR/dT as a function of temperature at gate voltage Vg

= 0 V, illustrating the two-step resistive transition. The vertical black, red, and blue dashed lines mark the onset temperature TCO = 7.04 K,
the crossover temperature TX = 5.58 K, and the global SC temperature T zero

C = 3.44 K, respectively. (c) and (d) The variation in R and dR/dT
versus T , respectively, with gate voltage Vg. Here, Vg varies from −90 to 90 V (upper to lower curve) with 
Vg = 10 V. The curves in (d) have
been uniformly shifted vertically for clarity, and the arrows indicate the local maxima. (e) The variations of TCO, TX, and T zero

C with Vg. (f) The
Vg dependence of the resistance at T = 13.8 K, showing that the Dirac point of the hybrid system is below −90 V. The inset of (f) shows the
variation of resistance with Vg and at the 1.33 K base temperature.

and T zero
C widens with the reduction in Vg as TX decreases.

Interestingly, with decreasing Vg or EJ, the peak in dR/dT
at TCO becomes more pronounced, indicating a much sharper
onset of superconductivity. At the same time the peak at TX

becomes broader with decreasing Vg, and the fine structure in
it becomes clearer.

Figure 3 shows plots of R/RN versus T/TCO at several Vg

values. The green dashed lines are the least-squares fits down
to TX using Eq. (1), yielding a, b, and TBKT as the fitting
parameters. RN is taken to be 90% of the R10K value at the
corresponding Vg. Since the BKT fit works well for TCO >

T > TX, the vortex dynamics in this regime is dominated by
logarithmic intervortex interactions. Deviation from Eq. (1) is
observed below TX, which is slightly more than TBKT, as seen
in Fig. 3. The system should go to the zero-resistance state be-
low TBKT, but it starts deviating from the BKT fit above TBKT,
with a resistance tail implying the presence of free vortices
well below TBKT. The latter could arise due to inhomogeneity,
current induced unbinding, and finite size effects, as discussed
in Sec. III.

As the system cools down, EJ increases, and more Pb
islands become phase coherent due to proximity induced su-
perconductivity in graphene [27]. When the pinning energy
of some dominant pinning sites exceeds kBT substantially,
a pinning dominated regime may occur. The pinning here
does not refer to the intraisland pinning, which would cost
significantly more energy. As discussed in Sec. III C, one
can have smaller than average EJ patches that contribute free
vortices. But with some strong pinning sites, the dissipation

is dominated by pinning. In fact, the free-vortex density may
also get affected by the presence of the strong pinning sites.
Equation (4) is thus fitted to the resistive tails and below TX.
As discussed earlier, the unspecified Vg dependence of γ is
included in A and m. With further cooling, both the free-vortex
density and the mobility decreases, and thus, below T zero

C , one
gets a zero-resistance state.

Equation (4) breaks down for T > TX, as the intervor-
tex interaction starts dominating over the pinning, leading
to the BKT regime. For T < TX, pinning dominates over
the intervortex interaction. Fitting parameters from the two
models are plotted in Fig. 4 as a function of Vg. It can be
observed in Fig. 4(a) that the parameters a and b from Eq. (1)
are of the order of unity, as stated in the theory [12]. The
monotonic increment of TBKT with an increase in Vg is also
consistent with the literature [24,27]. In Fig. 4(b), the fitting
parameter A from Eq. (4) increases with Vg. This is expected
because Josephson coupling grows with Vg. However, the
exponent m decreases slightly with an increase in Vg and
then saturates.

B. V -I characteristics

Figures 5(a) and 5(b) show the measured voltage as a
function of the bias current in the four-probe configuration at
different temperatures for Vg = −30 and 30 V, respectively.
The nonhysteretic and smooth voltage without any abrupt
jump as a function of current suggests that the system is in
the overdamped limit with negligible heating effects. Further,
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FIG. 3. Normalized resistance as a function of normalized tem-
perature at Vg = −90, −60, −30, 30, 60, and 90 V. The green and
red dashed lines are the fits using the BKT equation (1) and the AH
equation (4), respectively.

there is a nonzero slope at zero bias current, particularly for
temperatures close to TX, as shown in the zooms in Figs. 5(c)
and 5(d). The red dashed curves in these plots are the fits
obtained using the Eq. (2) with the fitting parameter γ , as
shown in Figs. 5(e) and 5(f) as red squares, as a function of
temperature. The solid lines show γ = A(Vg)(1 − T/TCO)m,
with A and m taken from Fig. 4(b) at the respective Vg values
that were obtained by fitting Eq. (4) to the experimental R(T )
curves. The agreement between the two γ provides significant
support for the applicability of the AH model. Further, the
decrease of γ with increasing temperature is consistent with
the reduction in Josephson coupling with temperature leading
to easier flux transport.

Figure 6(a) shows the measured V (I ) curves for a wider
Vg range at T = 1.33 K. The fits with Eq. (2) are made
to identify the other fitting parameter IC, which is plotted

FIG. 4. Fitting parameters (a) a, b, and TBKT for T > TX and
(b) m and A for T < TX, plotted as a function of Vg.

FIG. 5. (a) V -I characteristics at temperatures T = 1.33, 1.61,
2.02, 2.52, 3.10, 3.72, 4.28, 5.08 K < TX and 5.92, 6.93 K > TX

for Vg = −30 V. (b) V − I characteristics at temperatures T = 1.61,
2.02, 2.52, 3.10, 3.72, 4.28, 5.08, 5.92 K < TX and 6.93 K > TX

for Vg = 30 V. (c) and (d) Zooms of these curves. Red dashed lines
are the fits to Eq. (2) for V (I ) curves at T < TX. (e) and (f) Tem-
perature dependence of γ obtained by fitting V (I ) (red squares) and
that deduced from A and m (blue lines) used in fitting R(T ) curves
below TX.

as red squares in Fig. 6(b) as a function of Vg. On the ap-
plication of bias current, vortices experience Lorentz force,
and analogously, there is tilting of the pinning potential
transverse to the applied current. When the bias current is
increased and it eventually reaches a critical value where
the pinning energy barrier diminishes, there is free-flow
motion of vortices. We identify this fitted IC value as the
depinning current.

FIG. 6. (a) V -I characteristics for Vg = −90, −60, −30, 0, 30,
60 and 90 V at T = 1.33 K. The red dashed lines are the fit to Eq. (2).
(b) The Vg dependence of IC obtained from the fits in (a).
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V. DISCUSSION AND CONCLUSION

The Appendix estimates some of the relevant quantities for
the studied sample at a specific Vg value using the theoret-
ical results for a uniform square array. This shows that λ⊥
stays well above the sample size, justifying the applicability
of the BKT model. The free-vortex density expected from
this approach due to finite size and bias current should drop
extremely rapidly at TBKT. This is contrary to the observed
dissipation below TX or TBKT. The IC values from the AH
model fits of the IVCs appear to be reasonable compared to
those anticipated from a uniform JJ array.

As discussed before, the nonuniformities in a random JJ
array can occur at different length scales, leading to regions
of different EJ in addition to the local pinning sites. Thus,
one can imagine a somewhat oversimplified picture with a
distribution in TBKT with some sort of an overall average
TBKT. The small TBKT (or EJ) regions would still contribute
free vortices [18] at temperatures below the average TBKT

but above their local TBKT. Thus, the pinning can be the
actual hindrance in dissipation until the temperature drops
below the lowest TBKT of all the regions where the free-
vortex density will vanish. The pinning physics, as pointed
out earlier, may also contribute to the free-vortex generation
process.

It is also noteworthy that the observed crossover between
the two regimes at TX shows a smooth matching at this temper-
ature without any noticeable regime beyond the two models.
Further, this is the case for all studied Vg values. Thus, a single
model should be able to describe both regimes. The model of
Lobb et al. [25] combined the AH model and the BKT model,
with the former describing the mobility of the free vortices
and the latter dictating their density. Eventually, the mobility
does not depend so drastically on temperature compared to
the free-vortex density in uniform arrays, and thus, the BKT
model works in the whole temperature range.

In conclusion, the studied Pb-graphene hybrid system ex-
hibits a gate-tunable two-step transition to the zero-resistance
state as it is cooled below TCO, i.e., when the islands become
superconducting. The initial dissipation from the motion of
the free vortices fits well with the BKT model. But with
cooling, the pinning dominates below a crossover temperature
TX. This regime fits well with the AH theory. The EJ inhomo-
geneities broaden the BKT transition, leading to free vortices
over a wide temperature range, and at the same time the pin-
ning sites become much stronger. The increase in TX with Vg

provides a tunability in this crossover. The overall transition
width increases with decreasing Vg as TCO remains the same,
while TX, TBKT, and T zero

C decrease. Last, this experiment has
enabled us to acquire a deeper understanding of the dissipation
in nonuniform JJ arrays.
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APPENDIX: SOME ESTIMATES USING THE UNIFORM JJ
ARRAY RESULTS

Some quantitative estimates are discussed here for
Vg = −30 V using the theoretical results for a uniform
square array and the temperature dependence of the criti-
cal current expected for graphene-superconductor Josephson
junctions. From the relations [25] kBTBKT = πEJ(TBKT)/2,
EJ = �0iC/(2π ), and λ⊥(T ) = �0/[2πμ0iC(T )], we get
iC(TBKT)/TBKT = 26.64 nA/K and TBKTλ⊥(TBKT) = 9.85
mm K. Using these for Vg = −30 V, for which TBKT =
5 K, we get iC(TBKT) = 133.5 nA and λ⊥(TBKT) = 1.97 mm.
In the temperature range of our study for such proximity
based Josephson junctions [25] we use iC(T ) = iC(0)[1 −
(T/TCO)]2 to find iC, using iC(TBKT), at different temperatures.
This relation is applicable because the ratio of the interisland
separation and the normal metal (graphene) coherence length
is much less than 1 and it does not change much over the
temperature range of interest here. This gives iC = 1.07 µA
at T = 1.33 K and thus λ⊥(1.33K) = 0.25 mm. The latter
exceeds the sample size by more than 1 order of magnitude.

Estimating 150 junctions in a linear size of about 15 µm in
our sample, we get the scaled critical current 150iC = 159 µA
at 1.33 K. It is 20 µA at TBKT. Both are much larger than the
1 µA bias current used in R(T ) measurements. The 159 µA
current is also much larger than the AH model fit to IVCs,
which gives IC = 11.6 µA at 1.33 K [see Fig. 6(b)]. On the
other hand, the BKT model does not fit the R(T ) and IVCs,
while the AH model with a 0.2EJ barrier (i.e., the value for
the uniform square array [2]) will have IC = 15iC = 15.9 µA
at 1.33 K. This is comparable to the AH fitted value. It
is estimated to be 0.022 × 150iC = 3.5 µA for a uniform
triangular array.

The free-vortex density, as discussed earlier, due to finite
size is given by nfs ∝ (eL/a0)−πEJ (T )/kBT , while that due to
finite bias current is ncu ∝ [iC(T )/i]−πEJ (T )/kBT . Both these
expressions are for a uniform JJ array. The quantity eL/a0 is
temperature independent, and for the sample studied here, it
is about 400, considering L = 15 µm and a0 = 100 nm. The
quantity iC(T )/i, which is the same as IC(T )/I , is about 150 at
1.33 K for I = 1 µA, and it will decrease with increasing tem-
perature. Thus, current-unbound free vortices will dominate if
we use uniform square array results. Note that both of these
would still amount to a much sharper drop in the free-vortex
density with temperature [18] at TBKT than the observed drop
in resistance in our system.
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