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Theory of quasiparticle-induced errors in driven-dissipative Schrödinger cat qubits
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Understanding the mechanisms of qubit decoherence is a crucial prerequisite for improving the qubit
performance. In this paper, we discuss the effects of residual Bogolyubov quasiparticles in Schrödinger cat
qubits, either of the dissipative or Kerr type. The major difference from previous studies of quasiparticles in
superconducting qubits is that the Schrödinger cat qubits are operated under nonequilibrium conditions. Indeed,
an external microwave drive is needed to stabilize cat states, which are superpositions of coherent degenerate
eigenstates of an effective stationary Lindbladian in the rotating frame. We present a microscopic derivation
of the master equation for cat qubits and express the effect of the quasiparticles as dissipators acting on the
density matrix of the cat qubit. This enables us to determine the conditions under which the quasiparticles give
a substantial contribution to the qubit errors.
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I. INTRODUCTION

Superconducting circuits represent one of the most promis-
ing physical platforms for realizing qubits, the elementary
building blocks of quantum computers [1]. Operational su-
perconducting qubits include transmon [2], fluxonium [3],
and many others. All qubits are subject to errors due to their
environment, and quantum error correction imposes a huge
overhead cost in any quantum computer architecture, since
a single logical qubit must be represented by many physical
qubits [4]. Then, qubits with intrinsic protection against some
errors may reduce this cost and offer a technological advan-
tage. One way to implement such intrinsic protection is to
encode the qubit states in a bosonic degree of freedom, well
separating the two states in the phase space, thus reducing
their sensitivity to local noise [5,6]. This separation can be
achieved via an interplay between a microwave drive and
nonlinear couplings; such Schrödinger cat qubits have been
successfully fabricated in recent years [7–15].

Like other superconducting qubits based on Josephson
junctions, Schrödinger cat qubits are subject to various
noise sources, such as photon escape, dielectric loss, and,
finally, residual Bogolyubov quasiparticles. Even though su-
perconducting qubits are operated at very low temperatures,
so hardly any quasiparticles should be present in ther-
mal equilibrium, typically a significant number of residual
nonequilibrium quasiparticles can still be detected. Presum-
ably generated by rare energetic events (such as cosmic rays
[16]), dilute quasiparticles recombine very slowly, and it is
well established that their density (normalized to the Cooper
pair density) is usually in the range xqp ∼ 10−5 − 10−8

[17–20]. Many experiments studying the coherence of trans-
mon or fluxonium qubits [21–23] are successfully described
by taking into account residual quasiparticles via the the-
ory developed in Refs. [24–26]. As qubits are improved by
eliminating other error sources, Bogolyubov quasiparticles are
likely to ultimately limit the coherence times.

The fundamental difference between the conventional
qubits, such as transmon or fluxonium, and cat qubits is that
the former are based on stationary eigenstates of a static
Hamiltonian, while the latter rely on a strong microwave
drive. In fact, the qubit states are stationary only in a fast
rotating reference frame, whose frequency is determined by
a device-dependent combination of the natural frequencies
of the circuit and the drive. The cat qubit states may be
eigenstates of an engineered Kerr-like bosonic Hamiltonian
[9] or form the stationary manifold of a two-photon dissipative
Lindbladian [7,10]. This poses the question of how the driven
(Kerr qubit) or driven-dissipative (dissipative qubit) nature of
the Schrödinger cat qubits affects their interaction with the
residual quasiparticles. The present paper is dedicated to a
theoretical investigation of this question.

In the following, we start from the quasiparticle tunneling
Hamiltonian as in Refs. [25,26] and calculate the rates of var-
ious errors in Kerr and dissipative cat qubits. To identify these
errors, it is convenient to use the phenomenological master
equation, which became a standard tool for the description of
the cat qubits’ dynamics [9,11,27–32]:

d ρ̂

dt
= L0ρ̂ + κ−D[â]ρ̂ + κ+D[â†]ρ̂ + κφD[â†â]ρ̂. (1)

Here ρ̂ is the density matrix in the Hilbert space of a har-
monic oscillator, which encodes the qubit, with raising and
lowering operators â†, â. The density matrix is written in
the rotating frame, in which the Lindbladian superoperator
appearing on the right-hand side of Eq. (1) is stationary.
Its main part L0 actually defines the qubit: it is purely
Hamiltonian for the Kerr qubit, L0ρ̂ ≡ −i[HK , ρ̂] with Kerr
Hamiltonian HK = −K (â†2 − α2)(â2 − α2), or purely dissi-
pative for the dissipative qubit, L0ρ̂ ≡ κ2D[â2 − α2]ρ̂, with
the dissipator D[Ô]ρ̂ ≡ Ôρ̂Ô† − (Ô†Ôρ̂ + ρ̂Ô†Ô)/2 for any
operator Ô, in both cases parametrized by a number α

(which can be taken real and positive without loss of gen-
erality). The qubit computational space is spanned by the
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two coherent states |±α〉 ≡ e±α(â†−â)|0〉 (weakly nonorthog-
onal for α � 1, 〈α|−α〉 = e−2α2

) or, equivalently, by their
orthogonal linear combinations (Schrödinger cats) |C±

α 〉 ≡
(|α〉 ± |−α〉)/

√
2(1 ± e−2α2 ). The two states form a degen-

erate eigenspace of the Kerr Hamiltonian HK , while the four
corresponding operators |Cσ

α 〉〈Cσ ′
α | with σ, σ ′ = ± form a sta-

tionary subspace of the dissipator D[â2 − α2]. The coefficient
K or κ2 determines the intrinsic timescale of the Lindbladian
L0, which is set by the inverse of either the energy gap ω0 ∼
Kα2 separating the excited states of the Kerr Hamiltonian
from the qubit subspace for the Kerr qubit or the relaxation
rate ω0 ∼ κ2α

2 towards the qubit subspace for the dissipative
qubit. The last three terms in Eq. (1) describe undesired re-
laxation processes for the qubit, characterized by the rates κ∓
(typically referred to as single-photon loss and gain rates) and
κφ (pure dephasing rate), and lead to various errors. Typically,
the photon loss rate κ− � κ+, κφ .

A master equation similar to (1) is often used for con-
ventional static qubits (like transmon or fluxonium), written
for the 2 × 2 qubit density matrix, where the harmonic os-
cillator operators have to be replaced by the Pauli operators
as â, â† → σ̂∓ ≡ (σ̂x ∓ iσ̂y)/2, â†â → (σ̂z + 1)/2, L0ρ̂ =
−i(ωqb/2)[σ̂z, ρ̂] with the qubit frequency ωqb typically in the
GHz range; the quasiparticle contribution to the correspond-
ing rates was derived in Refs. [24–26], where it was shown to
be determined by the frequency-dependent normalized quasi-
particle current spectral density Sqp(ω). Thus, it is natural to
set the goal of calculating the coefficients κ±, κφ in Eq. (1)
due to quasiparticle tunneling, and to see how they differ from
those in Refs. [24–26]. These coefficients uniquely determine
the error rates of the qubit.

The standard derivation of the master equation gives
Eq. (17) for the rates. (There are important subtleties that
we address below.) As in conventional qubits, the rates are
determined by Sqp(ω), but the characteristic frequencies can
be different. (i) For the photon loss rate κ−, we find that the
relevant frequency is that of the rotating frame, while for static
qubits it was the energy difference between the two qubit
states. In practice, the two are of the same order of magnitude
(in the GHz range, i.e., the typical frequency scale for super-
conducting circuits), so κ− is quite similar for static and driven
qubits. This is not surprising, since in both cases the error
is due to the same physical process: a quasiparticle absorbs
energy from the qubit while tunneling across a Josephson
junction. (ii) For the photon gain rate κ+ the situation is
already different: while for static qubits the relevant frequency
was negative (the quasiparticle had to give energy to the qubit,
so the rate was strongly suppressed by the corresponding
Boltzmann factor), for driven cat qubits we find a contribution
at a positive frequency, which corresponds to a quasiparticle
taking energy from the drive, and thus not subject to ther-
mal suppression. (iii) The coefficient κφ , when calculated at
the leading perturbative level, formally involves Sqp(ω = 0)
which is logarithmically divergent. For static qubits, Ref. [26]
proposed to cut off this divergence by κφ itself; subsequently,
this argument was refined in Ref. [33], where resummation
of an infinite subseries of the perturbation theory resulted in a
nonexponential decay of the qubit coherence. For Schrödinger
cat qubits, we find that the main effect of the dephasing term is

captured if the logarithmic divergence is cut off at the intrinsic
frequency scale ω0 of the qubit, as discussed above: ω0 ∼ Kα2

for the Kerr qubit, or ω0 ∼ κ2α
2 for the dissipative qubit. The

remaining terms have relative smallness ∼α2e−2α2
, for which

the logarithmic divergence in Sqp(ω → 0) is not cut off by
the intrinsic qubit dynamics, leads to the same problem as
addressed in Refs. [26,33].

Moreover, with the dissipator κφD[â†â], as written for the
whole Hilbert space of the harmonic oscillator, Eq. (1) is not
valid for the dissipative qubit, strictly speaking. The reason
is that the qubit-quasiparticle coupling has to be included
perturbatively on top of the dissipative zeroth-order dynamics,
in contrast to the usual situation when dissipative terms in
the master equation represent a perturbation with respect to
a Hamiltonian dynamics. As a result, the expression (17c) for
κφ only makes sense when Eq. (1) above is properly projected
onto the qubit subspace.

Another point to stress is that Eq. (1), although being a
convenient tool to study qubit errors, is not complete, formally
speaking. Namely, one may, in principle, add higher-order dis-
sipators D[â†mân] with n, m > 1, as well as Hamiltonian-type
perturbations of the form −i[ĥ, ρ̂], with ĥ being a Hermitian
combination of â, â†, all of them inequivalent to each other
when operating in the full Hilbert space of the oscillator. And
indeed, below we find that the qubit coupling to quasiparticles
generates a whole series of such terms. However, in the qubit
subspace, their effect reduces to small corrections with respect
to the dissipators already appearing in Eq. (1), under the same
assumptions that are used in the construction of the qubit
itself, namely, the smallness of the superconducting phase
fluctuations.

In the following section, we discuss these subtleties in
detail, after defining the model and introducing the key quanti-
ties. In particular, we relate the eigenvalues of the Lindbladian
of Eq. (1), which determine the qubit errors, with the co-
efficients κ±, κφ , see Eqs. (14) and (16) for the dissipative
and Kerr qubit, respectively. The derivation of the results is
presented in Sec. III for the Kerr qubit and in Sec. IV for
the dissipative qubit, where we also compare our results to
some recent experiments. Finally, in Sec. V we investigate
the possibility of quasiparticle overheating by the drive, using
the approach of Ref. [34]. Even though the main interest of
this paper is to derive Eq. (1) rather than to solve it, some
properties of its solutions are relevant for the discussion, so
we present some technical details regarding Eq. (1) in two
appendices.

II. MODEL AND SUMMARY OF THE MAIN RESULTS

Throughout the paper, we use units where the Planck and
Boltzmann constants h̄ = kB = 1.

A. Quasiparticle-qubit coupling

In this subsection, we show how the model of Refs. [24,25]
is adapted to Schrödinger cat qubits.

There are several different experimental realizations of
such qubits [7–15,35]. All of them contain one or several
Josephson junctions connecting several superconducting is-
lands. We label the islands by an index ι, the quasiparticle
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states on each island by k, and for brevity we omit the spin
index whose role amounts to the usual factor of 2 in the rates.
Assuming all islands ι to have the same superconducting gap
	, and focusing on quasiparticle energies close to the gap, we
write the quasiparticle Hamiltonian as

Ĥqp =
∑

ι∈{islands}

∑
k

ει,k γ̂
†
ι,k γ̂ι,k, ει,k ≈ ξ 2

ι,k

2	
, (2)

where γ̂
†
ι,k and γ̂ι,k , respectively, are the creation and annihi-

lation operators for quasiparticles with energy ει,k measured
from 	, and ξι,k are the electron energies measured from the
Fermi level in the normal state. They determine the normal
density of states ν0 per spin projection or, equivalently, the
inverse mean level spacing δι, on each island,

1

δι

=
∑

k

δ(ξι,k ), (3)

assumed to be energy-independent and proportional to the
island volume Vι: 1/δι = ν0Vι. Here we assume ν0 to be the
same for all islands.

As in Refs. [24,25], we assume the quasiparticle density
nqp or, equivalently, the dimensionless concentration xqp ≡
nqp/(2ν0	) to be fixed by some external processes and not by
thermal equilibrium. The distribution of these quasiparticles
over the energy levels f (ει,k ) will be assumed to be deter-
mined by the phonon temperature T ∼ 10 − 30 mK [7–15] in
most of the paper (except in Sec. V where we study possible
deviations from the thermal distribution due to the drive).
Then the occupation probability f (ει,k ) of each energy level
is f (ει,k ) = fT (ει,k ) with

fT (ε) = xqp

√
	

2πT
e−ε/T , (4)

so the density 2ν0
∫ ∞
−∞ dξ fT (ξ 2/2	) matches the given nqp.

The quasiparticles couple to the superconducting degrees
of freedom when they tunnel across the Josephson junctions.
Labeling the junctions by j and denoting the superconducting
phase difference across each junction j by ϕ̂ j , we have the
coupling Hamiltonian [24,25]:

ĤJqp =
∑

j∈{junctions}

∑
k,k′

T j,kk′ γ̂
†
ι jL,k γ̂ι jR,k′

× (uι jL,kuι jR,k′eiϕ j/2 − vι jL,kvι jR,k′e−iϕ j/2) + H.c. (5)

Here ι jL and ι jR are the two islands forming junction j, and
uι,k, vι,k are the Bogolyubov coefficients:

v2
ι,k = 1 − u2

ι,k = 1

2
− 1

2

ξι,k√
	2 + ξ 2

ι,k

. (6)

The tunneling matrix elements T j,kk′ , assumed to be real and
energy-independent (on the relevant scale 	), determine the
Josephson energy EJ j of the corresponding junction by the
Ambegaokar-Baratoff relation [36]:

∑
k,k′

T 2
j,kk′δ(ξk′ ) δ(ξk ) = EJ j

π2	
. (7)

If we focus on low energies, |ξι,k|  	, then uι,k ≈ vι,k ≈
1/

√
2, and the Hamiltonian assumes a simpler form:

ĤJqp =
∑

j∈{junctions}
Î j sin

ϕ̂ j

2
, (8a)

Î j ≡ i
∑
k,k′

T j,kk′ (γ̂ †
ι jL,k γ̂ι jR,k′ − γ̂

†
ι jR,k′ γ̂ι jL,k ). (8b)

The operator Î j is the quasiparticle contribution to the electric
current through the junction (up to a factor of the electron
charge). As in Refs. [24,25], the results will be expressed in
terms of the normalized quasiparticle current spectral density
in each junction,

Sqp, j (ω) ≡
∫ ∞

−∞
〈Î j (t ) Î j (0)〉 eiωt dt, (9)

where the time dependence is determined by the Hamiltonian
Ĥqp in Eq. (2): Î j (t ) ≡ eiĤqpt Î je−iĤqpt . This spectral density
indicates the probability to absorb a quantum of energy ω

at the junction j. For the thermal distribution (4) and to the
leading order in |ω|/	, T/	, Sqp, j (ω) evaluates to

Sqp, j (ω) = xqp
16EJ j

π

√
	

2πT
eω/2T K0

( |ω|
2T

)
, (10)

where K0(z) is the modified Bessel function. At large posi-
tive ω � T , this expression is slowly decaying, ez K0(|z|) ∼√

π/(2|z|), while at large negative frequencies it is expo-
nentially suppressed, ez K0(|z|) ∼ √

π/(2|z|) e−2|z|, since the
quasiparticle has to emit energy. At small |ω|  T , Sqp, j (ω)
is logarithmically divergent: ez K0(|z|) ∼ ln(1/|z|).

The qubit degree of freedom is represented by a combi-
nation of phases ϕ̂ j on several junctions, which depends on
the specific device architecture. In the fast rotating frame, the
corresponding dynamical variable is convenient to express in
terms of the harmonic oscillator raising and lowering opera-
tors â†, â, which appear in the master equation (1) and whose
dynamics is slow. Then, each phase ϕ̂ j can be represented as

ϕ̂ j = ϕbias, j + ϕd, je
−iωd t + ϕ∗

d, je
iωd t

+ (ϕa, j âe−iωat + ϕ∗
a, j â

†eiωat ) + · · · . (11)

Here ϕbias, j is a constant phase bias, not necessarily small,
controlled by an external flux. ωd and ϕd, j are the frequency
of the external classical drive and its amplitude on the jth
junction. ϕa, j is the amplitude of the qubit mode on the
jth junction, and ωa is the frequency of the rotating frame.
This frequency is determined by the requirement that the
dynamics of â†, â is slow, and is given by a device-dependent
combination of the natural frequencies of the circuit and the
drive. Finally, “. . .” stands for terms involving other degrees
of freedom of the circuit, which are orthogonal to the qubit
mode; they are weakly coupled and strongly detuned in energy
(on the scale of the qubit dynamics), so their effect can be
neglected.

We make the crucial assumption that |ϕa, j |  1/α and
|ϕd, j |  1 to expand sin(ϕ̂ j/2) in Eq. (8a); this holds when
all junctions are sufficiently large, such that their Joseph-
son energy exceeds the charging energy. We note that the
same assumption underlies the construction of the cat qubits
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themselves [5–15]. Indeed, the zeroth-order Lindbladian L0 is
obtained using the expansion of the Josephson nonlinearity to
several low orders.

B. Error rates in the phenomenological master equation

The phenomenological master equation (1) includes error
dissipators that can be naturally related to various physical
mechanisms, such as photon escape to an external circuit for
single-photon loss κ−D[â], high-energy photons due to poor
filtering for single-photon gain κ+D[â†], coupling to two-level
systems for pure dephasing κφD[â†â]). The main subject of
this paper is the microscopic derivation of the quasiparticle
contribution to the different error dissipators. In this subsec-
tion, we briefly discuss qubit errors due to these dissipators, as
found by the approximate solution of Eq. (1) within the com-
putational subspace. The error rates are obtained by assuming
κ+, κ−, κφ to be small and treating the corresponding terms as
perturbations on top of the main term L0. Most of these results
are known [9,11,27–32] (see also Ref. [37] for a systematic
perturbation expansion, implemented numerically).

To recall the general structure of the degenerate Lindbla-
dian perturbation theory [37–43], if the master equation is
of the form ∂ρ̂/∂t = L0ρ̂ + L1ρ̂ with L1  L0, then we can
define two subspaces S‖ and S⊥, such that L0ρ̂ = 0 for all ρ̂ ∈
S‖, and the equation L0x̂ = ρ̂ with unknown x̂ has solutions
for all ρ̂ ∈ S⊥. Equivalently, S‖ and S⊥ are spanned by two
sets of right eigenvectors with zero and nonzero eigenvalues,
respectively. Then, any density matrix can be split as ρ̂ =
ρ̂‖ + ρ̂⊥, which defines the projectors P‖ and P⊥ = 1 − P‖,
such that L0P‖ = P‖L0 = 0. (Note that P‖ can be viewed as
the result of the evolution eL0t at t → ∞ for a dissipative L0.)
The perturbation L1 induces nontrivial dynamics in the slow
subspace. This slow subspace is a weakly deformed S‖, such
that the density matrix has a small component in S⊥, namely,

ρ̂⊥ = −P⊥L−1
0 P⊥L1ρ̂‖ + O

(
L2

1

)
, (12)

and the dynamics is determined by the projected master equa-
tion:

∂ρ̂‖
∂t

= P‖L1ρ̂‖ − P‖L1P⊥L−1
0 P⊥L1ρ̂‖ + O

(
L3

1

)
. (13)

The component ρ̂⊥ then follows adiabatically according to
Eq. (12). It determines the small but finite probability to find
the system outside S‖ at any instant of time.

For the dissipative qubit, the zero subspace S‖ of L0 is
spanned by four matrices |Cσ

α 〉〈Cσ ′
α | with σ, σ ′ = ±. The first-

order term in the projected master equation can be found
using the known left eigenvectors of L0 corresponding to the
zero eigenvalue (see Ref. [44] and Appendix A). Taking into
account the perturbation L1, three out of four eigenvalues
become nonzero; their large-α asymptotes are

λx = −2κ−α2 − 2κ+(α2 + 1), (14a)

λy = −2κ−α2 − 2κ+(α2 + 1) − 2κφα2e−2α2
, (14b)

λz = −2κ−α2e−4α2 − 2κ+e−2α2 − 2κφα2e−2α2

−κ2
−

κ2
e−2α2

. (14c)

The eigenvalue λz corresponds to the eigenvector |C+
α 〉〈C−

α | +
|C−

α 〉〈C+
α | ∝ |α〉〈α| − |−α〉〈−α|. Its exponential smallness, in

contrast with λx and λy, is a manifestation of the suppressed
probability to transfer population between |α〉 and |−α〉 by a
local perturbation, because of their small overlap. This strong
asymmetry between different rates is a general feature of cat
qubits, which allows for an efficient implementation of quan-
tum error correction codes [44]. The suppression is especially
strong for the first-order photon loss, ∝ e−4α2

; however, in the
second order in κ− the standard factor e−2α2

is restored [45],
as found by evaluating the second term in Eq. (13).

The leakage probability,

wleak ≡ 1 −
∑

σ

〈
Cσ

α

∣∣ρ̂∣∣Cσ
α

〉
, (15)

for the dissipative qubit is determined by ρ̂⊥ from Eq. (12)
as wleak = −∑

σ 〈Cσ
α |ρ̂⊥|Cσ

α 〉. Indeed, since Trρ̂ = 1 is con-
served, Trρ̂⊥ = 0, and thus

∑
σ 〈Cσ

α |ρ̂‖|Cσ
α 〉 = 1. The photon

loss D[â] does not produce any leakage in the first order, while
D[â†] and D[â†â] yield a finite leakage probability, ∼κ+/κ2

and ∼α2κφ/κ2, respectively.
For the Kerr qubit the zero subspace of L0 is much larger:

in addition to the four-dimensional qubit subspace, it includes
all matrices that are diagonal in the basis of the eigenvec-
tors of the Kerr Hamiltonian HK . Moreover, at large α low
eigenstates come in doublets with exponentially small energy
splitting; this makes the off-diagonal matrix elements within
each doublet also slow. Then, for ρ̂ in the computational
space spanned by |Cσ

α 〉〈Cσ ′
α |, the projection P‖ D[â]ρ̂ is also

in the computational space, while P‖ D[â†]ρ̂ and P‖ D[â†â]ρ̂
have components on other states as well, which corresponds
to probability leakage outside the computational space. As a
result, if one simply projects L1 on the computational sub-
space by brute force, (i) there is no exponential suppression
of the κ+, κφ contribution to the eigenvalue λz and (ii) all four
eigenvalues are nonzero, the finite value of λ0 representing the
leakage rate:

λx = −2κ−α2 − κ+(2α2 + 1) − κφα2, (16a)

λy = −2κ−α2 − κ+(2α2 + 1) − κφα2, (16b)

λz = −2κ−α2e−4α2 − κ+ − κφα2, (16c)

λ0 = −κ+ − κφα2. (16d)

Since typically κ− � κ+, κφ , the eigenvalue λz may still be
dominated by the first term; at the same time, the finite leakage
rate −λ0 implies that all probability would eventually leak
out of the computational subspace. However, we should re-
call that Eq. (16) do not represent the true error rates, since
the leaked probability is brought back to the computational
subspace by the one-photon loss D[â], and this process may
occur without error. As a result, the stationary state of the
full Lindbladian contains a small probability ∼κ+/κ−, κφ/κ−
outside the computational space. Numerics shows that the first
nonzero eigenvalue decreases with growing α in a steplike
fashion, with an exponential envelope, ∼e−Cα2

with C ≈ 0.8
[11,29]. Thus, the true error rates can be much smaller than
predicted by Eq. (16).
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C. Quasiparticle-induced error rates

Assuming no correlation between the quasiparticle cur-
rents Î j on different junctions, we find that their contributions
to various error rates add up incoherently. Thus, in the follow-
ing we will omit the junction index j everywhere, as if there
were only one Josephson junction in the system. If there are
several junctions, one should restore the index j and sum the
corresponding rates over j.

The standard perturbative derivation of the master equation
(see, e.g., Ref. [46]) results in the coefficient at a dissipator
D[Ô] such that the master equation reproduces the rates of
the bath-induced transitions between energy levels of the un-
perturbed system, as given by Fermi’s golden rule with the
perturbation Ô. Since the master equation (1) is written in the
rotating frame, we have to substitute ϕ̂ from Eq. (11) with fast
oscillating terms in Eq. (8a), and apply the golden rule for
periodic perturbations to different terms in the expansion of
sin(ϕ̂/2) oscillating at different frequencies. In principle, this
procedure leads to an infinite series of dissipators of the form
D[â†nâm].

Under the assumption |ϕa|α  1, high-order dissipators
are weak. Among the first-order contributions, the strongest
one is the photon loss D[â]. The photon gain D[â†], although
weaker, leads to a qualitatively different effect for the Kerr
qubit, namely, leakage out of the computational space, as
discussed in the previous subsection. In the first order, cou-
pling to quasiparticles also produces a Hamiltonian correction
∝ i[â†â, ρ̂]; however, it can be removed by adjusting the ro-
tating frame frequency. Second-order contributions, although
weaker, have a different symmetry: while single-photon loss
(gain) switches the photon parity (−1)â†â, the second-order
terms preserve parity, and thus may require a different error
correction scheme. Among these, the pure dephasing D[â†â]
is the most important; indeed, the two-photon loss, D[â2],
acts trivially in the qubit subspace, while the two-photon
absorption, D[â†2], is weak due to the lack of high-energy
quasiparticles (by the same smallness as in the single-photon
processes, κ+/κ−  1). These are the three processes in-
cluded in Eq. (1), and our result for the coefficients is

κ− = Sqp(ωa)
|ϕa|2

4
cos2 ϕbias

2
, (17a)

κ+ = Sqp(ωd − ωa)
|ϕa|2

4

|ϕd |2
4

sin2 ϕbias

2
, (17b)

κφ = Sqp(ω0)
|ϕa|4
16

sin2 ϕbias

2
, (17c)

calculated to the leading order in tunneling and ω/	, and
valid up to some details to be discussed in the following
paragraphs.

The ϕbias dependence in Eq. (17) reflects quasiparticle in-
terference in the error process, like in static qubits [23]. In cat
qubits, ϕbias determines the working point and cannot be easily
adjusted. Typically, ϕbias is some generic number of the order
of unity, but in some devices it may be close to 0 or π , so some
rates vanish. Then one has to include corrections to Eqs. (8a)
and (10), subleading in ξk/	 and |ω|/	, respectively [26,47],
that would make the rates finite.

Most of the terms in the expansion of sin(ϕ̂/2) oscillate at
frequencies far exceeding ω0, the frequency scale of L0; then,
in the first approximation one can neglect L0 and write the
golden rule as if the mode â corresponded to a harmonic oscil-
lator with zero frequency, and all energy were taken or given
by the quasiparticle. Equation (17a) is obtained by picking
the leading term (ϕa/2)âe−iωat cos(ϕbias/2) in the expansion of
sin(ϕ̂/2); its effect is obviously described by the photon loss
dissipator κ−D[â] since the rates of all transitions induced by
this perturbation are proportional to the same factor Sqp(ωa),
independent of the transition.

By analogy, the photon gain dissipator κ+D[â†] can be
obtained from the conjugate term (ϕ∗

a/2)â†eiωat cos(ϕbias/2).
This results in an expression for κ+ obtained from Eq. (17a)
by the replacement Sqp(ωa) → Sqp(−ωa). This corresponds
to a quasiparticle emitting energy ωa, whose rate is propor-
tional to the population of such high-energy quasiparticles.
For quasiparticles in equilibrium with phonons at tem-
perature T , it is proportional to e−ωa/T , a rather small
factor for typical parameters (ωa ∼ a few GHz, T ∼ 10 −
30 mK). We find a large contribution to D[â†] originat-
ing from a higher-order term in the expansion of sin(ϕ̂/2):
−(ϕ∗

a/2)â†eiωat (ϕd/2)e−iωd t sin(ϕbias/2). Typically, the drive
frequency ωd > ωa, so this term oscillates at a positive fre-
quency; during a single tunneling process a drive photon is
absorbed by the quasiparticle which then immediately emits a
qubit resonator photon.1 For typical experimental parameters,
the smallness introduced by going to the next order in the ex-
pansion turns out to be well compensated by the absence of the
factor e−ωa/T . In the specific case ωd = 2ωa (relevant for the
Kerr qubit), the perturbation oscillates at the same frequency
as the photon loss. Then, instead of an incoherent sum of two
dissipators, κ−D[â] + κ+D[â†], one has to mix the two terms
coherently in a single dissipator D[

√
κ− â + √

κ+â†], which,
however, leads to practically the same results for errors, as we
numerically check in Appendix B.

Generally, the assumption of quasiparticle equilibrium
should not be taken for granted in a driven system. The
quasiparticle distribution may be altered by absorption of
drive photons, which competes with phonon emission and
quasiparticle escape. The resulting nonthermal quasiparticle
population at high energies can give another contribution
to κ+. The rates for photon absorption, phonon emission,
and quasiparticle escape are quite dependent on the specific
qubit architecture. In Sec. V, we study this competition for
qubits produced in Refs. [9,10] and find the corresponding
contribution to κ+ to be smaller than the higher-order drive
contribution discussed just above. However, the difference is
less than an order of magnitude, so for some structures the
nonthermal population may dominate the rate κ+.

The dephasing dissipator κφD[â†â] can be obtained in the
leading order by expanding sin(ϕ̂/2) to the second order and
taking the cross-term −(|ϕa|2/4)â†â sin(ϕbias/2). In contrast
to the previous ones, this term does not oscillate, leading to
a divergent quantity Sqp(ω = 0). Then, to describe its effect,
it is necessary to consider the unperturbed dynamics of the

1If ωd < ωa, the same absence of the Boltzmann factor is found in
a higher order (p + 1), such that pωd > ωa.
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system, which is quite different for the Kerr and dissipative
qubits.

For the Kerr qubit, whose unperturbed dynamics is Hamil-
tonian, the situation is rather standard. Namely, â†â should
be decomposed into components corresponding to transitions
between different energy levels εlσ of the Kerr Hamiltonian
HK . These levels are classified by their parity σ = (−1)â†â,
which is conserved by HK , and an integer l � 0, such that
ε0+ = ε0− = 0 correspond to |C±

α 〉. Since the perturbation
â†â conserves parity, instead of the single dissipator D[â†â],
the master equation contains a sum of dissipators, each one
corresponding to a given transition, with the coefficient pro-
portional to Sqp(εlσ − εl ′σ ). Since relevant levels are those
with not too high l, l ′, we can write |εlσ − εl ′σ | ∼ |εlσ | ∼
|εl ′σ | ∼ Kα2  T for typical experimental parameters. Then,
with logaritmic precision, we can write

Sqp(εlσ − εl ′σ ) ≈ xqp
16EJ

π

√
	

2πT
ln

T

Kα2
, (18)

and wrap all components back into the dissipator D[â†â]
whose coefficient is given by Eq. (17c) with ω0 ∼ Kα2.
This procedure works for all transitions for which l > 0 or
l ′ > 0; these transitions determine the leakage out of the
computational space, which is the main effect of D[â†â] in
the Kerr qubit, as discussed in the previous subsection and
represented by the −κφα2 terms in Eq. (16). Still, D[â†â]
has an exponentially small component which acts directly
in the computational space with l = l ′ = 0; this component
can be represented as 2κφα2e−2α2D[σz], where σz is the Pauli
matrix in the basis |C+

α 〉, |C−
α 〉, and κφ is proportional to

Sqp(0). For this component, the logarithmic divergence is not
cut off by the Kerr Hamiltonian, and one has to invoke the
same arguments as in Refs. [26,33] for stationary qubits.
This issue, however, seems to be of little practical relevance
for the cat qubits due to the exponential smallness of the
divergent component and the weakness of the logarithmic
divergence.

For the dissipative qubit, to derive the dephasing dissipa-
tor κφD[â†â], we face an unconventional task of developing
perturbation theory in system-bath coupling on top of the
dissipative unperturbed system dynamics. We find that the
Markovian master equation (1), valid in the whole Hilbert
space of the â oscillator, cannot be derived. We can only jus-
tify the first-order term in the projected master equation (13),
but not the second-order term. Still, from the practical point of
view, the first-order term is sufficient as long as quasiparticles
are dilute.

Physically, the first-order term in Eq. (13) describes the fol-
lowing process: the qubit residing in the steady computational
subspace S‖ is suddenly hit by a quasiparticle, performing
a transition to the orthogonal subspace S⊥, followed by the
relaxation back to S‖ (we remind that the projector P‖ =
limt→∞ eL0t ). Since the levels in S⊥ are broadened by the re-
laxation, the quasiparticle energy slightly changes during this
process; namely, some energy can be taken from the drive and
emitted into the bath which is responsible for the dissipative
L0. It is this inelastic process that smears the singularity in
Sqp(ω → 0).

The second-order term in Eq. (13) would correspond to a
process when a second quasiparticle arrives quickly after the
first one, so the qubit has not yet relaxed back to S‖, and the
two quasiparticles exchange energy with the drive and the bath
independently from each other. However, in such process the
quasiparticles may also exchange energy among themselves;
to account for this, one has to go back to the original Hamil-
tonian and study the two-quasiparticle process in full detail.
This would produce a contribution to the projected master
equation which is of the same order, but does not reduce to
the second-order term in Eq. (13). In practice, xqp is rather
small, so such two-quasiparticle processes are too rare to be
included into the scope of the present paper.

The derivation presented in Sec. IV results in an effective
Lindbladian superoperator acting on 2 × 2 density matrices ρ̂‖
in the qubit coding subspace, which can be interpreted as the
projection P‖κφD[â†â]ρ̂‖, with logarithmic precision. Beyond
the logarithmic precision, the dissipator should be decom-
posed into a sum of terms corresponding to eigenvalues λm

and eigenvectors of the dissipative Lindbladian L0. Each such
term is proportional to Re Sqp(iλm), instead of Sqp(εlσ − εl ′σ )
for the Kerr qubit. As for the Kerr qubit, there is also an
exponentially small component which remains proportional
to the logarithmically divergent Sqp(0), to be handled as in
Refs. [26,33] for stationary qubits.

III. DISSIPATORS FOR THE KERR QUBIT

In this section, we provide more details on the derivation
of the different dissipators in the case of the Kerr qubit. The
derivation of the master equation follows the standard text-
book route (see, e.g., Ref. [46]). We start with the Hamiltonian
of the decoupled system (the â mode) and bath (the quasipar-
ticles),

Ĥ0 ≡ ĤK + Ĥqp = −K (â†2 − α2)(â2 − α2) +
∑
ι,k

ει,k γ̂
†
ι,k γ̂ι,k,

(19)
where ι = L, R denotes the two islands forming the Josephson
junction (see the discussion in the end of Sec. II A), and the
qubit-quasiparticle coupling perturbation in the form

Ĥ1(t ) = Î ⊗ (Âe−i�t + Â†ei�t ), (20)

where the current operator Î is given by Eq. (8b), and the
factor in the brackets represents one of the terms of the ex-
pansion of sin(ϕ̂/2), oscillating at a given frequency � > 0
determined by the corresponding combination of terms in
Eq. (11). For example, we have a perturbation � = ωa and

Â = cos
ϕbias

2

×
[
ϕa

2
â − |ϕa|2ϕa

48
(âââ† + ââ†â + â†ââ) + · · ·

]
,

(21a)

where we only keep the first term by virtue of the assumption
|ϕa|α  1. Another perturbation has � = ωd − ωa and

Â = − sin
ϕbias

2

(
ϕ∗

aϕd

4
â† + · · ·

)
. (21b)

024505-6



THEORY OF QUASIPARTICLE-INDUCED ERRORS IN … PHYSICAL REVIEW B 110, 024505 (2024)

Assuming the frequencies of different terms to be suffi-
ciently different, we neglect the interference between them
and treat each term of the form (20) separately (we return to
this point at the end of this section).

Using the standard assumption that the full system-bath
density matrix remains factorizable at all times, ρ̂(t ) ⊗ ρ̂qp

(that is, the incident quasiparticles have no memory of the
qubit state), where the quasiparticle density matrix,

ρ̂qp =
∏

ι=L,R

∏
k

{ f (ει,k ) γ̂
†
ι,k γ̂ι,k + [1 − f (ει,k )] γ̂ι,k γ̂

†
ι,k}, (22)

remains unchanged during the evolution, we pass to the in-
teraction representation with respect to the Hamiltonian Ĥ1,
writing ρ̂(t ) = e−iĤK t ˆ̃ρ(t ) eiĤK t . In the second order of the
perturbation theory, the slow matrix ˆ̃ρ(t ) satisfies the equation

d ˆ̃ρ(t )

dt
= −

∫ t

−∞
Trqp{[ ˆ̃H1(t ), [ ˆ̃H1(t ′), ˆ̃ρ(t ′) ⊗ ρ̂qp]]}, (23)

where ˆ̃H1(t ) = eiĤ0t Ĥ1(t ) e−iĤ0t . Making the Markovian ap-
proximation, ˆ̃ρ(t ′) ≈ ˆ̃ρ(t ), we take ˆ̃ρ(t ) out of the integral,
which now can be evaluated explicitly.

To determine the time dependence of ˆ̃H1(t ) explicitly, we
pass to the basis {|ψl〉} of eigenstates of ĤK , ĤK |ψl〉 = εl |ψl〉
(for the sake of compactness, we momentarily suppress the
parity index σ , so summations over l run over all eigenstates)
and represent the operator Â in terms of its matrix elements

All ′ ≡ 〈ψl |Â|ψl ′ 〉:
eiĤK t Âe−iĤK t =

∑
l,l ′

All ′e
i(εl −εl′ )t |ψl〉〈ψl ′ |. (24)

This expression, together with the oscillating factors e±i�t in
Eq. (20), determines the time dependence of the qubit part of
ˆ̃H1(t ), while the time dependence of the quasiparticle opera-

tors is determined straightforwardly by Ĥqp. The standard next

step would be to substitute ˆ̃H1(t ) in Eq. (23) and to make the
secular approximation, which consists of neglecting all terms
in Eq. (23) that oscillate at nonzero frequencies. Here we
make this approximation only partially, in the same spirit as
in Ref. [48]: we neglect fast terms rotating as e±2i�t , but keep
those proportional to ei(εl −εl′ )t . We also note that the definition
(9) implies

Re
∫ ∞

0
〈Î (−t ) Î (0)〉 e−iωt dt = 1

2
Sqp(ω), (25a)

Re
∫ ∞

0
〈Î (0) Î (−t )〉 e−iωt dt = 1

2
Sqp(−ω), (25b)

and neglect the imaginary parts. Indeed, terms originating
from the imaginary parts (Lamb shifts) result in Hamiltonian
perturbations of the form ∝ i[ÂÂ†, ρ̂] in the master equation.
The strongest term, ∝ i[â†â, ρ̂], can be corrected by choosing
an appropriate drive frequency; higher-order terms, containing
higher powers of â†â, are small by virtue of the assumption
ϕa|α|  1.

Finally, we pass back to the Schrödinger representation,
and obtain the following equation for the matrix elements of
ρ̂(t ):

dρll ′

dt
= − i(εl − εl ′ )ρll ′ +

∑
l1l2

Sqp(� + εl2 − εl ′ )

2
All1ρl1l2 A†

l2l ′ +
∑
l1l2

Sqp(� − εl + εl1 )

2
All1ρl1l2 A†

l2l ′

−
∑
l1l2

Sqp(� − εl1 + εl2 )

2
A†

ll1
Al1l2ρl2l ′ −

∑
l1l2

Sqp(� + εl1 − εl2 )

2
ρll1 A†

l1l2
Al2l ′

+
∑
l1l2

Sqp(−� + εl2 − εl ′ )

2
A†

ll1
ρl1l2 Al2l ′ +

∑
l1l2

Sqp(−� − εl + εl1 )

2
A†

ll1
ρl1l2 Al2l ′

−
∑
l1l2

Sqp(−� − εl1 + εl2 )

2
All1 A†

l1l2
ρl2l ′ −

∑
l1l2

Sqp(−� + εl1 − εl2 )

2
ρll1 Al1l2 A†

l2l ′ . (26)

Since the frequency � > 0 is a few GHz, while the energy
scale of εl is in the MHz range, in the first two lines of this
equation one can approximate Sqp(� + . . .) ≈ Sqp(�) (thus
falling into the case studied in Ref. [49]), and then these two
lines wrap into the matrix element of Sqp(�)D[Â]ρ̂, leading
to Eqs. (17a) and (17b) for Â of Eqs. (21a) and (21b), respec-
tively. The last two lines contain Sqp at negative frequencies,
so they are suppressed by the Boltzmann factor. They can
be wrapped into Sqp(−�)D[Â†]ρ̂ if one neglects the Kerr
qubit energies in the argument of Sqp; however, the typical
frequency scale of Sqp(ω) at negative frequencies is given by
the temperature T , so such approximation requires a stronger
condition |εl − εl ′ |  T .

Nonoscillating terms in the expansion of sin(ϕ̂/2) pro-
duce a perturbation of the form Ĥ1 = Î ⊗ Â with Â = Â† =
− sin(ϕbias/2)(|ϕa|2/4)â†â to the leading order in |ϕa|α. The
same perturbative treatment as above results in an equation
similar to Eq. (26), which can be obtained from Eq. (26) by
omitting the last two lines (to avoid double counting) and
setting � → 0. If we make the replacement (18) in all terms,
the sums wrap into Sqp(Kα2)D[Â]ρ̂ leading to Eq. (17c).

Let us now estimate different contributions for the sam-
ple described in Ref. [9]. The qubit is hosted in an
aluminum superconducting loop (with gap 	 = 200 µeV)
containing a small Josephson junction with the Josephson
energy EJ/(2π ) = 22 GHz and three larger junctions with the
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Josephson energy E ′
J/(2π ) = 200 GHz, pierced by a mag-

netic flux � = 0.26 (in the units of the superconducting flux
quantum) and maintained at temperature T = 18 mK. The os-
cillator frequency ωa = 2π × 6 GHz and the drive frequency
ωd ≈ 2ωa. The phase difference across the small junction
is described by Eq. (11) with ϕbias = −1.31, ϕa = 0.20,
ϕd = 0.06, while the phase difference on each of the large
junctions is parametrized by ϕ′

bias = 0.11, ϕ′
a = 0.07, ϕ′

d =
0.02 (ϕa and ϕ′

a can be found from the oscillator frequency
and the Josephson potential). The parameters of the Kerr qubit
are K = 2π × 6.7 MHz, α2 = 2.5.

Taking the perturbation (21a), we obtain κ−/(2π ) = xqp ×
8.1 GHz, the main contribution coming from quasiparticle
tunneling across the three large junctions and only 17% being
due to tunneling across the small junction. The contribution to
κ+ from the Hermitian conjugate of the perturbation (21a) is
smaller by a factor Sqp(−ωa)/Sqp(ωa), which for the thermal
distribution of quasiparticles amounts to e−ωa/T ∼ 10−7 for
all junctions. The contribution to κ+ from the perturbation
(21b) is more significant due to the absence of a thermal
factor: For each junction j, it is smaller than κ− by the
factor (ϕd, j/2)2 tan2(ϕbias, j ), which gives κ+ ∼ 10−4κ− with
the main contribution coming from the small junction. The
dephasing rate κφ/(2π ) = xqp × 50 MHz is also dominated
by the small junction.

In the experiment [9], the measured qubit error rates were
reproduced by the solution of Eq. (1) with κ−/(2π ) ∼ 10 kHz
and rather large κ+/κ− ∼ 0.04, κφ/κ− ∼ 0.02. If we assume
that the photon loss is entirely due to quasiparticles, it would
require the concentration xqp ∼ 10−6, which is rather high, but
still realistic. However, the quasiparticles would not be able
to reproduce the observed values of κ+, κφ . Other dissipation
mechanisms are needed to explain these values.

A subtle detail about the experimental realization of the
Kerr qubit [9] is that the detuning ωd − 2ωa = −4.4 MHz ×
2π is not large enough compared to the typical spacing be-
tween the energy levels of the Kerr Hamiltonian, ∼Kα2. Then,
the perturbations proportional to â and â† rotate at close
frequencies, and one cannot treat them as two separate pertur-
bations of the form (20), as we briefly mentioned in Sec. II C.
Here we prefer not to study the case of a general detuning;
we just compare the limit of large detuning, which results
in two separate dissipators κ−D[â] + κ+D[â†], and the limit
of zero detuning which again has the form (20) and yields
a single coherent dissipator D[

√
κ− â + √

κ+ â†]. We check
numerically in Appendix B that these two extremes lead to
very similar results. Thus, from the practical point of view,
one can still use the phenomenological master equation (1).

IV. DISSIPATORS FOR THE DISSIPATIVE QUBIT

In this section, we address the (rather unconventional) task
of deriving the error dissipators perturbatively in the system-
bath coupling when the uncoupled system’s dynamics is not
Hamiltonian, but dissipative. In the conventional case when
the unperturbed qubit dynamics is Hamiltonian (as in the
previous section), tracing out the quasiparticles in the Born-
Markov approximation yields the dissipators in terms of the
quasiparticle correlator Sqp(ω) at real frequencies, determined
by transitions between energy levels of the unperturbed qubit;

these finite transition frequencies regularize most of the loga-
rithmically divergent terms in the dephasing dissipator. The
unperturbed dissipative qubit already has no energy levels,
but still has nontrivial dynamics; hence, it is not clear a
priori, at what frequencies the quasiparticle correlator should
enter the error dissipators. Thus, we are obliged to revisit the
whole derivation scheme for master equation, starting from
a Lindbladian unperturbed qubit dynamics and Hamiltonian
qubit-quasiparticle coupling.

We start from the Liouville-von Neumann equation for the
density matrix ρtot(t ) of the total system “qubit oscillator +
quasiparticles,”

d ρ̂tot(t )

dt
= L0ρ̂tot(t ) − i[Ĥqp, ρ̂tot(t )] − i[Ĥ1(t ), ρ̂tot(t )],

(27)
where L0 = κ2D[â2 − α2] is the familiar Lindbladian of the
dissipative qubit, while Ĥqp and Ĥ1(t ) = Î ⊗ Â(t ) are given
by Eqs. (19) and (20), respectively. The passage to the interac-
tion representation with respect to the perturbation Ĥ1(t ) now
has the form

ρ̂tot(t ) = eL0t (e−iĤqpt ˆ̃ρtot(t )eiĤqpt ), (28)

and leads to the following equation of motion for ˆ̃ρtot(t ):

d ˆ̃ρtot(t )

dt
= −ie−L0t [eiĤqpt Ĥ1(t )e−iĤqpt , eL0t ˆ̃ρtot(t )]

≡ L̃1(t ) ˆ̃ρtot(t ). (29)

As usual, we assume the full system-bath density matrix to
remain factorizable at all times, ˆ̃ρtot(t ) = ˆ̃ρ(t ) ⊗ ρ̂qp, with the
quasiparticle density matrix ρ̂qp given by Eq. (22). Then, in
the second order of the perturbation theory, the slow matrix
ˆ̃ρ(t ) satisfies the equation

d ˆ̃ρ(t )

dt
=

∫ t

−∞
dt ′ Trqp{L̃1(t )L̃1(t ′)[ ˆ̃ρ(t ′) ⊗ ρ̂qp]}, (30)

which so far looks quite analogous to Eq. (23) for the Hamil-
tonian case.

To write the time dependence explicitly, we assume that
the Lindbladian L0 = κ2D[â2 − α2] in zeroth-order approx-
imation has a complete biorthogonal set of left and right
eigenvectors.2 Since the superoperator L0 commutes with the
left and right parity, (−1)â†âρ̂ = σ ρ̂ and ρ̂(−1)â†â = σ ′ρ̂,
respectively, its eigenvalues λσσ ′

m can be labeled by the two
parities σ, σ ′ = ± and an integer m � 0, such that λσσ ′

0 = 0.
The left and right eigenvectors, ς̂ σσ ′

m and �̂σσ ′
m , are assumed to

form a complete biorthogonal set:3

L0�̂
σσ ′
m = λσσ ′

m �̂σσ ′
m , (31a)

2We are not aware of a rigorous mathematical proof of the existence
of a complete set of eigenvectors (which is not guaranteed a priori
for a non-Hermitian operator L0). Still, numerical diagonalization in
a truncated basis does not show any sign of the opposite.

3We define the left eigenvectors ς̂ σσ ′
m in such a way that they enter

Eq. (31) without Hermitian conjugation to compactify the notations.
Then the superscripts σσ ′ at ς̂ σσ ′

m should be understood as a label
indicating the corresponding eigenvalue, while the left (right) parity
operation acts as (−1)â† âς̂ σσ ′

m = σ ′ς̂ σσ ′
m and ς̂ σσ ′

m (−1)â† â = σ ς̂σσ ′
m .
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Tr{ς̂ σσ ′
m L0ρ̂} = λσσ ′

m Tr{ς̂ σσ ′
m ρ̂} ∀ρ̂, (31b)

Tr{ς̂ σσ ′
m �̂σσ ′

m′ } = δmm′ , (31c)∑
m,σ,σ ′

�̂σσ ′
m Tr{ς̂ σσ ′

m ρ̂} = ρ̂ ∀ρ̂. (31d)

For m = 0, the right eigenvectors are simply �̂σσ ′
0 = |Cσ

α 〉〈Cσ ′
α |,

while the four left eigenvectors ς̂ σσ ′
0 (also called the invariants

of the dynamics, since (∂/∂t )Tr{ς̂ σσ ′
0 ρ̂} = 0) can be found in

Ref. [44] and in Appendix A.
We define the matrix elements of the superoperators, corre-

sponding to multiplication by an arbitrary operator Ô from the
left and right (for the sake of compactness, we momentarily
suppress the parity indices σ, σ ′, so summations over m run
over all eigenvectors),

Ô�̂m =
∑

m′

−→
O m′m�̂m′ ,

−→
O m′m = Tr{ς̂m′Ô�̂m}, (32a)

�̂mÔ =
∑

m′

←−
O m′m�̂m′ ,

←−
O m′m = Tr{�̂mÔς̂m′ }, (32b)

and expand the density matrix in this basis:

ˆ̃ρ(t ) =
∑

m

r̃m(t ) �̂m. (33)

We also introduce the quasiparticle structure factor in the
time representation, S̃qp(t − t ′) ≡ Tr{Î(t ) Î (t ′) ρ̂qp}. For the
thermal ρ̂qp, given by Eq. (22) with the distribution (4), it
evaluates to

S̃qp(t ) = 8EJ

π

√
	

2πT

xqp√
(t + i/T )(t − i0+)

. (34)

Then we can transform Eq. (30) into an equation for the
coefficients r̃m(t ):

dr̃m(t )

dt
= −

∑
m′,m′′

e(λm′′ −λm )t
∫ t

−∞
dt ′ e(λm′−λm′′ )(t−t ′ )

× [
−→
A mm′ (t ) − ←−

A mm′ (t )][S̃qp(t − t ′)
−→
A m′m′′ (t ′)

− S̃qp(t ′ − t )
←−
A m′m′′ (t ′)]r̃m′′ (t ′). (35)

Here one can observe the crucial difference from the Hamil-
tonian case: since the eigenvalues λm have nonzero real
parts, the time integral may diverge exponentially. In the
Hamiltonian case, the exponential factor e(λm′ −λm′′ )(t−t ′ ) is
purely oscillatory; combined with the oscillating or constant−→
A m′m′′ (t ′),

←−
A m′m′′ (t ′), and with the decaying S̃qp(t − t ′) ∼

1/|t − t ′|, this is sufficient to ensure the convergence of the
integral and to justify the Markovian approximation, which
essentially means that the integral is dominated by r̃m′′ (t ′ ≈ t ).
Exponential divergence in the dissipative case means that the
values r̃m′′ (t ′) in the remote past are more important than those
at t ′ ≈ t , so a Markovian master equation cannot be derived.

In simple terms, it makes no sense to study weak dissipative
perturbations of an already strongly dissipative dynamics.
This problem can be bypassed in two cases.

First, if the relaxation rates | Re λm| are small compared to
the oscillation frequencies [e.g., to � in Eq. (20)], one can cut
off the time integral in Eq. (35) at times t − t ′ ∼ τ∗ such that
1/�  τ∗  1/| Re λm′′ |, and make the Markovian approxi-
mation. The resulting master equation describes the dynamics,
coarse-grained in time on the scale τ∗, so the dissipation
contained in L0 and the dissipation due to the perturbation
Ĥ1 are treated on equal footing. This is equivalent to simply
neglecting the dissipative part of L0 and effectively deriving
the dissipators due to Ĥ1 as in the Hamiltonian case. For the
dissipative qubit, this gives the dissipators D[â] and D[â†]
with the rates κ− and κ+ given by Eqs. (17a) and (17b), the
same as for the Kerr qubit.

Second, in the absence of fast oscillations, Eq. (35) can be
cast into a Markovian form for those m′′ which have λm′′ = 0,
that is, those in the computational subspace of the dissipa-
tive qubit. Then the time integral converges exponentially for
Re λm′ < 0, and it is easy to see that it results in the quasipar-
ticle current spectral density, taken at an imaginary frequency.
Indeed, for real frequencies ω we have (including the factor of
2 from spin)

Sqp(ω) ≡
∫ ∞

−∞
〈Î (t ) Î(0)〉 eiωt dt

= 8EJ

π	

∞∫
−∞

dξk dξk′ f (εk )[1− f (εk′ )]δ(εk − εk′ + ω)

= 16EJ

π

∫ ∞

0

dε√
ε

θ (ε + ω)√
ε + ω

f (ε), (36)

where we assume the quasiparticles to be dilute, so the occu-
pations f (εk )  1 and we replace 1 − f (εk′ ) → 1, arriving at
Eq. (10). For a decaying exponential,∫ ∞

0
〈Î (±t ) Î (0)〉 e−�t dt

= 4EJ

π2	

∫ ∞

−∞
dξk dξk′

f (εk )[1 − f (εk′ )]

∓i(εk − εk′ ) + �

= 8EJ

π

∫ ∞

0

dε f (ε)√
ε(ε ± i�)

= 1

2
Sqp(±i�), (37)

where Sqp(ω) at complex ω is understood as the analytical
continuation from the real positive semiaxis. For λm = 0,
the corresponding components of Eq. (35) give the projected
dynamics in the computational subspace. Restoring the left
(right) parity indices σ, σ ′, we find that the projected de-
phasing dissipator P‖κφD[â†â]ρ̂‖ in Eq. (13) is effectively
replaced by a superoperator Lφρ̂‖, defined on the computa-
tional subspace S‖ by its action on the basis matrices �̂σσ ′

0 :

Lφ�̂σσ ′
0 = δσ,−σ ′ �̂σσ ′

0
|ϕa|2
32

sin2 ϕbias

2

∞∑
m=0

Tr
{[

ς̂ σσ ′
m , â†â

]
�σσ ′

0

}[
Sqp

(
iλσσ ′

m

)
Tr

{
ς̂ σσ ′

0 �̂σσ ′
m â†â

} − Sqp
( − iλσσ ′

m

)
Tr

{
ς̂ σσ ′

0 â†â�σσ ′
m

}]
.

(38)
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Similarly to the Kerr qubit case, we notice that −λσσ ′
m ∼

κ2α
2  T , and if we take all Sqp(±iλσσ ′

m ) ≈ Sqp(κ2α
2) with

logarithmic precision, then the completeness relation (31d)
results in Lφ = P‖κφD[â†â] with κφ given by Eq. (17c).
Again, this argument does not work for the m = 0 term with
λσσ ′

0 = 0, so the divergence of Sqp(ω → 0) persists, and has
to be handled as in Refs. [26,33]. However, the relative con-
tribution of the m = 0 term is exponentially small; evaluating
the contributions from m > 0 and m = 0 separately, we find a
rate proportional to Sqp(κ2α

2) + (15/4)e−2α2
Sqp(0) at α � 1

(omitting all common factors).
Returning to Eq. (35), let us now focus on terms with

λm �= 0. In fact, the growing exponential e−λmt disappears
when one goes back from the interaction representation to
the Schrödinger one. Then, the corresponding superoperator
describes the leakage from the computational subspace, rep-
resented by P⊥L1ρ̂‖ in Eq. (12), which is thus well-defined.

Let us now estimate different contributions for the sample
described in Ref. [10]. It includes two small Josephson junc-
tions with EJ/(2π ) = 90 GHz and an inductor consisting of
five larger junctions with E ′

J/(2π ) = 225 GHz, all made of
aluminum with 	 = 200 µeV and maintained at temperature
T = 10 mK. These three elements (the two small junctions
and the inductor) are all connected in parallel and have the
same phase drop ϕ, except one of the small junctions which
is also subject to a static flux bias of a half flux quantum,
thus having the phase drop ϕ + π . The qubit oscillator fre-
quency ωa = 2π × 8.0 GHz and the drive frequency ωd =
2π × 11.2 GHz. The main dissipator defining the cat qubit
has the rate κ2 = 2π × 40 kHz, and α2 was varied in the
range 0 − 7. The phase difference across the small junctions
is described by Eq. (11) with ϕbias = 0 or π , ϕa ≈ ϕd ≈ 0.03
(extracted from the measured values of κ2 and frequency shifts
of the qubit oscillator and of the buffer oscillator provid-
ing the strong dissipation), while each of the large junctions
has ϕ′

bias = 0 and ϕ′
a ≈ ϕ′

d = ϕd/5. Taking the perturbation
(21a), we obtain κ−/(2π ) = xqp × 0.27 GHz, the main con-
tribution (∼70%) coming from quasiparticle tunneling across
the unbiased small junction. κ+ ∼ (2 × 10−4)κ− and κφ ∼
(3 × 10−3)κ− for α2 = 7 are determined by the π -biased
small junction. Again, κ+ comes from the drive perturbation
(21b) rather than thermal quasiparticle population.

In Ref. [10], the rate κ− = 2π × 53 kHz was measured (no
reliable values for κ+ and κφ could be extracted). To produce
such a high rate, one needs the quasiparticle concentration
xqp ∼ 10−4. This value seems to be unrealistically high, so the
photon loss is likely to be dominated by other mechanisms. (It
should be noted, though, that while the Josephson junctions
were made of aluminium, much of the circuit was made of
niobium. The latter has a larger gap, so the aluminium islands
would attract all quasiparticles generated in the niobium part
of the circuit. This could possibly lead to an unusually high
effective xqp.)

V. QUASIPARTICLE KINETICS

A. Qualitative discussion

So far, we have taken for granted that the quasiparticle
energy distribution is thermal, Eq. (4), with the temperature T
fixed by the phonon bath. However, the system is subject to a
microwave drive, so the quasiparticles absorb energy from the
driving field, and their energy distribution can deviate from the
thermal one. In fact, the quasiparticle distribution in the sta-
tionary state is determined by the competition between energy
absorption from the drive and thermalization with phonons.
In this section, we investigate this issue using the approach of
Refs. [34,50,51].

Quasiparticles interact with the drive photons when they
tunnel through Josephson junctions, while they interact with
phonons anywhere inside each island. This means that the
interaction with phonons, a bulk effect, should dominate over
the interaction with photons, a surface effect, in large enough
islands. In small islands, if the phonon emission is not effi-
cient enough, the hot quasiparticles can escape to neighboring
large islands. Thus, we expect that photon absorption by
thermal quasiparticles due to the perturbation (8a), expanded
to the linear order in the oscillating terms ∝ e−iωd t , e−iωat in
Eq. (11), creates weak replicas of the main thermal population
at energies ε such that 0 < ε − ωd ∼ T and 0 < ε − ωa ∼ T .
(We remind that we measure ε from the superconducting gap
	.) In the following, we estimate the strength of these repli-
cas, neglecting the depletion of the main thermal population
at ε ∼ T .

Among the error rates that we have studied in the pre-
vious sections, it is the photon absorption rate κ+ that is
most sensitive to excess quasiparticle population at high ener-
gies. Indeed, we have seen that the leading-order contribution
is κ+ ∝ Sqp(−ωa) ∝ f (ωa). This could make one think that
the replica at ε ≈ ωa may give an important contribution to
Sqp(−ωa). However, appearance of a quasiparticle with energy
ε ≈ ωa is necessarily a consequence of a photon loss error in
the qubit. Thus, this contribution cannot be associated with
the dissipator κ+D[â†], independent from κ−D[â]. Therefore,
we will estimate the contribution to κ+ from the replica at
ε ≈ ωd > ωa only.

B. Inelastic and elastic rates

Here we calculate the rates of different quasiparticle
transitions, which are needed to determine the stationary
quasiparticle distribution.

Fermi’s golden rule with the perturbation (5) and the phase
expansion (11) yields the probability per unit time to fill a
given state k with a given spin on an island ι by any quasipar-
ticle absorbing a photon in the form of a sum over all junctions
j involving the island ι:

�abs(εk ) =
∑
j∈ι

∑
k′

f (εk′ ) 2πT 2
j,kk′ cos2 ϕbias, j

2

[ |ϕd, j |2
4

δ(εk′ + ωd − εk ) + 〈â†â〉 |ϕa, j |2
4

δ(εk′ + ωa − εk )

]

=
∑
j∈ι

EJ jδι

π
cos2 ϕbias, j

2

[ |ϕd, j |2 f (εk − ωd )√
2	(εk − ωd )

+ |ϕa, j |2〈â†â〉 f (εk − ωa)√
2	(εk − ωa)

]
, (39)

024505-10



THEORY OF QUASIPARTICLE-INDUCED ERRORS IN … PHYSICAL REVIEW B 110, 024505 (2024)

where each term in the square bracket is present only for
such εk that the argument of the square root is positive. The
average 〈â†â〉 is over the stationary density matrix of the qubit,
〈â†â〉 ≈ α2 up to exponentially small terms. The mean-level
spacing δι = 1/(ν0Vι) is defined by Eq. (3), and is inversely
proportional to the island’s volume Vι. At the same time, EJ j

is proportional to the area of the jth junction. This matches the
discussion of the previous paragraph: a quasiparticle living in
a large island can absorb a photon only when it comes close
to the junction, hence the surface-to-volume ratio.

To describe the quasiparticle thermalization with phonons,
we adopt the standard model of electrons coupled to acoustic
phonons [52,53] in which the effective electron-phonon cou-
pling is α2F (ω) ∝ ω2 for the phonon frequency ω. Various
material parameters entering the phonon emission rate can
be conveniently wrapped into a single coefficient. To relate
to experimentally measured values, available in the literature,
one can use the time τ0, such that the phonon emission rate
(i.e., the golden-rule probability per unit time for a quasipar-
ticle initially in a given state to leave this state by emitting a
phonon) by a quasiparticle of energy εk � 	 is given by [52]

�em(εk � 	) = 1

3τ0

ε3
k

T 3
c

, (40)

where Tc is the superconductor’s critical temperature. Alter-
natively, one may use the coefficient �, which controls the
energy exchange between electrons and phonons for the mate-

rial in the normal state: the power per unit volume transferred
from electrons to phonons, kept at temperatures Te and Tph,
respectively, is given by �(T 5

e − T 5
ph) [54–56]. The two coef-

ficients are related:

1

τ0
= �T 3

c

48 ζ (5) ν0
. (41)

In this model, the phonon emission rate for a quasiparticle
with energy εk  	 is given by [34,52]

�em(εk  	) = 8

315 ζ (5)

�ε
7/2
k√

2	 ν0

= 128

105

ε
7/2
k√

2	 T 3
c

1

τ0
.

(42)
The values of � and τ0 for aluminum, found in the literature,
are not very consistent among themselves: the available values
of � = (0.2 − 0.3) × 109 W/(m2 K5)[55,57] yield τ0 ∼ 1 µs
according to Eq. (41), while Refs. [58,59] report τ0 ∼ 100 ns.
For the estimates below, we use the most recent information,
namely, � = 0.3 × 109 W/(m2 K5) [57].

As the smallest islands in the dissipative Kerr qubit of
Ref. [10] are connected by junctions with ϕbias, j = 0, we use
the Hamiltonian (5) with the next-to-leading order expansion
of the Bogolyubov coefficients to find the rate of elastic
tunneling to neighboring islands (since the leading order van-
ishes). The golden rule then gives the probability per unit time
for a given quasiparticle on an island ι to escape this island via
any junction:

�esc =
∑
j∈ι

∑
k′

2πT 2
j,kk′ δ(εk′ − εk )

(
sin2 ϕbias, j

2
+ ξ 2

k

ξ 2
k + 	2

cos2 ϕbias, j

2

)

≈
∑
j∈ι

4EJ jδι

π
√

2	εk

(
sin2 ϕbias, j

2
+ 2εk

	
cos2 ϕbias, j

2

)
. (43)

C. Hot quasiparticle population

As discussed in Sec. V A, the quasiparticles are more likely
to overheat in small islands. In both experimental realizations
[9,10], the smallest islands are located inside the chain of N
large junctions (N = 3 in Ref. [9] and N = 5 in Ref. [10]).
Thus, we focus on quasiparticle overheating on islands ι =
1, . . . , N − 1, assuming them to be identical. The two islands
ι = 0, N terminating the chain are assumed to be large, so the
quasiparticle overheating on these islands is neglected. All N
junctions are also assumed to be identical, with the Josephson
energy E ′

J . Denoting by f̃ι(ε) ≡ f (ε) − fT (ε) the correction
to the thermal distribution at high energies ε ≈ ωd , ωa due to
photon absorption, we can write the kinetic equation as

0 = �abs(ε) − �em(ε) f̃ι(ε)

+ �esc(ε)

[
f̃ι+1(ε) + f̃ι−1(ε)

2
− f̃ι(ε)

]
, (44)

with the boundary conditions f̃ι=0 = f̃ι=N = 0. We assume
that only a small fraction of quasiparticles is excited, so we
neglect the depletion of the main thermal population and
evaluate �abs(ε) using Eq. (39) with the thermal f (ε) = fT (ε),

Eq. (4). Then the kinetic equation is straightforwardly solved
by expanding in the eigenfunctions of the discrete Laplacian
with zero boundary conditions,

√
2/N sin(πm ι/N ), labeled

by m = 1, . . . , N − 1:

f̃ι(ε) =
N−1∑
m=1

Wmι �abs(ε)

�em(ε) + �esc(ε)[1 − cos(πm/N )]
, (45a)

Wmι ≡ 1 − (−1)m

N
cot

πm

2N
sin

πm ι

N
. (45b)

The largest weight is on the island ι = (N − 1)/2,

W(N−1)/2 = 2

N
sin

πm

2
cot

πm

2N
cos

πm

2N
, (46)

while Sqp(−ωa) is determined by the spatial average:

N−1∑
ι=1

Wmι

N − 1
= 1 − (−1)m

N (N − 1)
cot2 πm

2N
. (47)

Both these quantities decay with increasing m. They are equal
to 1 for N = 3, m = 1 (the Kerr qubit of Ref. [9]), and
are close to 1 for N = 5, m = 1 (the dissipative qubit of
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TABLE I. Values of the dimensionless parameters suppressing
the population of excited quasiparticles, as defined in Eq. (48).

�ph �esc

Ref. [9], ε ≈ ωd 0.4 2 × 103

Ref. [9], ε ≈ ωa 10−3 50
Ref. [10], ε ≈ ωd 600 104

Ref. [10], ε ≈ ωa 20 103

Ref. [10]), while for m = 3 they are much smaller. Thus, we
write

f̃ (ε ≈ ωd ) =
√

ωd

ε − ωd

f (ε − ωd )

�ph + �esc
, (48a)

1

�ph
≡ 315 ζ (5)

8π

E ′
J |ϕ′

d |2
�V ω′

d
4

cos2 ϕ′
bias

2
, (48b)

1

�esc
≡ 1

1 − cos(π/N )

|ϕ′
d |2/4

tan2(ϕ′
bias/2) + 2ωd/	

, (48c)

while for f̃ (ε ≈ ωa) we have a similar expression, differing
by a substitution ωd → ωa, |ϕ′

d |2 → |ϕ′
a|2〈â†â〉. The coeffi-

cient 1/(�ph + �esc) gives the fraction of the low-temperature
quasiparticle population transferred to the higher energies
around ε ≈ ωd (recall that the number of quasiparticles in-
volves the integration with the density of states, ∝ 1/

√
ε). The

dimensionless quantities �ph and �esc, respectively, deter-
mine the relative efficiencies of the two cooling mechanisms,
namely, the phonon emission and the quasiparticle escape to
large islands.

Thus obtained correction to the distribution function con-
tributes to the error rates via the quasiparticle structure
factor. Namely, plugging f̃ (ε ≈ ωd ) into Eq. (36), we obtain
Sqp(−ωa) = Sqp(ωd − ωa)/(�ph + �esc) for junctions con-
necting two small islands, and half of this value for junctions
connecting a small and a large island (since hot quasiparticles
are available only on the small island). We remind that the
contribution of f̃ (ε ≈ ωa) cannot be included into the photon
gain rate as discussed above (Sec. V A).

The approximate values of the island volumes are V ≈
0.001 µm3 and V ≈ 0.2 µm3 in Refs. [9,10], respectively [60].
Using � = 0.3 × 109 W/(m2 K5) for aluminum [57], and the
same qubit parameters as in Secs. III, IV, we obtain the values
of �ph and �esc listed in Table I. We see that for islands of
such volume, the phonon emission does not prevent quasi-
particle heating by photon absorption, and it is the exchange
with large islands, rather than phonons, that maintains the
thermal distribution. The found values of �ph and �esc for
ε ≈ ωd result in a contribution to κ+ about 5 − 6 times smaller
than the one given in Eq. (17b) and estimated in Secs. III
and IV. Note, however, that the values of �ph,�esc are very
much dependent on specifics of the structure, such that quasi-
particle overheating cannot be a priori disregarded in any
device.

VI. CONCLUSIONS

We have conducted a comprehensive analysis of the influ-
ence of Bogolyubov quasiparticles on Schrödinger cat qubits,

whose operation intrinsically involves an external drive and,
possibly, dissipation. Starting from the quasiparticle tunneling
Hamiltonian, we derived microscopically the error dissipators
appearing in the phenomenological master equation (1) and
uncovered the limitations on its validity. In particular, we
found the single-photon loss rate to be similar to the relaxation
rate of the excited state in undriven superconducting qubits.
On the contrary, the single-photon gain rate in driven qubits
is significantly enhanced with respect to the thermal rate in
undriven qubits, since quasiparticles can absorb additional
photons from the drive and transfer extra energy to the qubit.
The pure dephasing rate, whose perturbative derivation results
in a logarithmic divergence for conventional undriven qubits,
behaves more regularly for cat qubits where most of the di-
vergence is cured on the intrinsic time scales of the cat qubit.
However, this regularization works only for transitions that
start from the computational subspace of the cat qubit. In that
case, the phenomenological master equation (1) can be written
with logarithmic precision.

Like in conventional undriven superconducting qubits,
quasiparticles thus constitute an intrinsic source of errors in
both Kerr and dissipative cat qubits. Estimating the error rates
for the existing cat qubit devices, we conclude that they are not
yet at the stage where quasiparticle-induced errors represent
their main limitation.
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APPENDIX A: PERTURBATIONS OF THE DISSIPATIVE
CAT QUBIT

Here we analyze the slow dynamics of the dissipative cat
qubit, perturbed by the error dissipators in Eq. (1). For this, it
is convenient to introduce the eigenstates |ψlσ 〉 and the eigen-
values μlσ of the Kerr Hamiltonian, such that (â†2 − α2)(â2 −
α2)|ψlσ 〉 = μlσ |ψlσ 〉, classified by the parity σ = (−1)â†â

and an integer l � 0. The two eigenvectors, corresponding to
μ0± = 0, are the cat states |ψ0±〉 ≡ |C±

α 〉. Then, besides the
obvious four right eigenvectors �̂σσ ′

0 = |ψ0σ 〉〈ψ0σ ′ | of L0 =
κ2D[â2 − α2] with the eigenvalue λ = 0, we can construct
additional right eigenvectors (still not forming a complete set),
noting that

L0|ψlσ 〉〈ψ0σ ′ | = −κ2μlσ

2
|ψlσ 〉〈ψ0σ ′ |, (A1a)

L0|ψ0σ 〉〈ψl ′σ ′ | = −κ2μl ′σ ′

2
|ψ0σ 〉〈ψl ′σ ′ |. (A1b)

The four left eigenvectors ς̂ σσ ′
0 of L0, corresponding

to the zero eigenvalues, called invariant operators since
(∂/∂t )Tr{ς̂ σσ ′

0 ρ̂} = 0, are also known [44] and given by (up
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to a normalization)

ς̂ σσ
0 =

∞∑
l=0

|ψlσ 〉〈ψlσ |, (A2a)

ς̂+−
0 =

∞∑
n,m=0

(−1)n−mIn−m(α2)

2n + 1 − 2m

â†2n+1|0〉〈0|â2m

(2n)!! (2m)!!

= (ς̂−+
0 )†, (A2b)

as can be found by explicitly acting from the left,
â†2n+1|0〉〈0|â2mL0, and using the recursive relation for the
modified Bessel function In(z):

2n

z
In(z) = In−1(z) − In+1(z), (A3a)

In(z) =
∫ π

−π

dφ

2π
ez cos φ+inφ. (A3b)

Using 1/(2n − 2m + 1) = (i/2)
∫ π

0 e−(2n−2m+1)iθ dθ and∫ π/2
0 I0(z cos θ ) z cos θ dθ = sinh z, we calculate the matrix el-

ements between the coherent states |±α〉:
〈σα|ς̂+−

0 |σ ′α〉

= σe−α2
∞∑

n,m=0

(−1)n−mα2n+2m+1In−m(α2)

(2n − 2m + 1) (2n)!! (2m)!!

= iσ

2
αe−α2

∫ π

0
dθ

∫ π

−π

dφ

2π
e−iθ−2α2 sin φ sin θ

= σe−α2 sinh 2α2

2α
(A4)

(independent of σ ′), which gives

〈C−
α |ς̂+−

0 |C+
α 〉 =

√
sinh 2α2

2α2
= 〈C+

α |ς̂−+
0 |C−

α 〉. (A5)

This factor has to be included when projecting on the zero
subspace, since the left eigenvectors (A1) are not normalized.

Similarly to the previous calculation, using∫ π/2
0 I1(2z cos θ ) dθ = (sinh2 z)/z, we calculate

〈σα|âς̂+−
0 â†|σ ′α〉

= σ ′e−α2

α

∞∑
n,m=0

(−1)n−mα2n+2mIn−m(α2)

(2n − 2m + 1) (2n)!! (2m)!!
(2n + 1)2m

= iσ ′

2
αe−α2

∫ π

0
dθ

∫ π

−π

dφ

2π
e−2α2 sin φ sin θ (α2e−iθ − e−iφ )

= σ ′αe−α2
∫ π/2

0
[I0(2α2 cos θ ) α2 cos θ + I1(2α2 cos θ )]dθ,

(A6)

which gives

〈C+
α |âς̂+−

0 â†|C−
α 〉 =

√
sinh 2α2

2α2
(α2 + tanh α2). (A7)

These results enable us to express the projections of various
Lindbladian perturbations L1 on the zero subspace of L0

according to

P‖L1

∣∣Cσ
α

〉〈
Cσ ′

α

∣∣ =
∑
σ1,σ

′
1

Tr
{
ς

σ1σ
′
1

0 L1

∣∣Cσ
α

〉〈
Cσ ′

α

∣∣}〈
Cσ ′

1
α

∣∣ςσ1σ
′
1

0

∣∣Cσ1
α

〉 ∣∣Cσ1
α

〉〈
Cσ ′

1
α

∣∣. (A8)

Noting that

â
∣∣Cσ

α

〉 = α
√

hσ

∣∣C−σ
α

〉
, h+ ≡ tanh α2, h− ≡ coth α2,

(A9)
we find
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FIG. 1. Comparison of the results obtained from the phenomeno-
logical master equation (1) with α2 = 2.5, κ−/K = 10−3, κφ = 0
(solid lines) and from the master equation where the sum of the
dissipators κ−D[â] + κ+D[â†] is replaced by a single coherent dissi-
pator D[

√
κ− â + √

κ+ â†] (dashed lines). In the upper panel, we plot
the first nonzero eigenvalue λ1, and on the lower panel the leakage
probability wleak (the probability to be outside the computational
subspace) in the stationary state, defined in Eq. (15).
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These 4 × 4 matrices have a 2 × 2 block structure, since
all perturbations conserve the product of the left and right
parities; their eigenvalues are found straightforwardly, lead-
ing to Eq. (14) in the limit α2 � 1. Note that since the
perturbation D[â†â] conserves the left and right parity sep-
arately, it produces a zero eigenvalue for both |C+

α 〉〈C+
α | and

|C−
α 〉〈C−

α |.

APPENDIX B: NUMERICAL RESULTS
FOR THE PHENOMENOLOGICAL MASTER EQUATION

Here we address the issue of frequency matching raised
in Secs. II C and III. We numerically solve Eq. (1), as well
as its counterpart with the sum of the photon loss (gain)
dissipators κ−D[â] + κ+D[â†] replaced by a single coherent
dissipator D[

√
κ− â + √

κ+ â†]. The interesting quantities to
compare are (i) the first nonzero eigenvalue λ1 and (ii) the
probability wleak to be outside the computational space, as
defined by Eq. (15), evaluated in the stationary state of the
full Lindbladian.

For Eq. (1), the first nonzero eigenvalue as a function of α2

exhibits a plateau which begins approximately when the leak-
age terms balance the photon loss in Eq. (16c), 2κ−α2e−4α2 ∼
κ+ + κφα2 [11,29]. From a practical point of view, it is conve-
nient to work with α2 in the beginning of the plateau, since for
larger α2 other error rates increase. Thus, we choose α2 = 2.5
used in the experiment [9].

For such moderate values of α2, it is possible to use brute
force, representing the Lindbladian as a matrix in the basis
|n〉〈n′|, built from the Fock states |n〉 of the harmonic os-
cillator, â†â|n〉 = n|n〉. For α2 = 2.5, truncation at n = 30 is
sufficient to obtain a precision exceeding the thickness of the
curves in the figures.

Using the brute force diagonalization of the full Lindbla-
dian, we calculate the first nonzero eigenvalue λ1, as well as
the probability wleak to be outside the computational space
in the stationary state, Eq. (15). For both quantities, the two
solutions are very close, as shown in Fig. 1, so we conclude
that the frequency-matching issue can be ignored for practical
purposes.
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