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Nonreciprocal superconductivity, also known as the superconducting diode effect, has been extensively studied
in the presence of a magnetic field or some form of ferromagnetic order breaking time-reversal symmetry.
We here show that another class of magnetic order known as altermagnetism, which also breaks time-reversal
symmetry but does not exhibit a finite net magnetic moment, can also give rise to a superconducting diode effect.
Whether this is the case depends on the combination of the system’s point group and altermagnetic order param-
eter, which we explore systematically for two-dimensional crystalline systems. If the superconducting electrons
are in a centrosymmetric crystalline environment, an electric field Ez (or other sources of inversion symmetry
breaking) can be used to turn on and tune the nonreciprocity, yielding an electric-field-tunable diode effect;
there are also noncentrosymmetric point groups, which are not reached by applying Ez �= 0 in a centrosymmetric
crystal, but still allow for an altermagnetic order parameter with nonreciprocal superconductivity. Depending on
the residual magnetic point group, the zeros of the critical current asymmetry, Jc(n̂) − Jc(−n̂), are pinned along
high-symmetry crystalline directions n̂ = ê j or are free to rotate in the plane of the system. In some cases, the
zeros can be rotated by tuning the electric field Ez. We discuss all of these phenomena both on the general level
using exact symmetry arguments and more explicitly by constructing and solving minimal lattice models. We
provide experimental setups to realize the altermagnetic superconducting diode effect.
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I. INTRODUCTION

The broad class of magnetically ordered states referred to
as “altermagnets” (AMs) has recently become a subject of
notable interest and has motivated a significant amount of the-
oretical [1–40] and experimental [41–47] studies, probing into
its nature and emergence. Just as with any form of magnetic
order, time-reversal symmetry is broken in an AM. However,
as opposed to ferromagnets, AMs do not exhibit a finite net
magnetic moment, which is guaranteed by a magnetic point
symmetry. This means that the state is invariant under the
product �gm of time reversal � and a unitary lattice sym-
metry gm. Unlike a collinear antiferromagnet, gm is not lattice
translation for an AM, where the reversal of all local magnet
moments resulting from application of � cannot be undone by
a lattice translation TR. Instead, gm is a point-group symmetry
such as a rotation or reflection symmetry of the underlying
crystalline lattice.

While a Pomeranchuk instability [48,49] in the l = 2 (or
higher l) spin-triplet channel of a Fermi liquid falls into
the category of AMs, a lot of interesting consequences have
recently been uncovered. For instance, since gm is not transla-
tion, AMs can exhibit an anomalous Hall effect, even without
net magnetic moment, unlike antiferromagnets, where �TR

does not allow for a finite Hall response [11,46]. Furthermore,
the spin texture of the Bloch states in the presence of an
AM can lead to a Zeeman splitting with protected nodal lines
[29]. Further consequences have been explored in thermal
transport [28], Josephson junctions [14,27], and other tunnel
junction setups [50]. What is more, the effect of AMs on other
coexisting interaction-induced orders is very rich; in partic-
ular, superconductivity [18,31–36,39,51] has been explored,

sparking off broader questions regarding the nature of strongly
correlated materials exhibiting superconductivity and mag-
netism beyond the conventional paradigm of ferromagnetism
and antiferromagnetism.

Concurrently, nonreciprocal transport in superconductors
and superconducting junctions, particularly the superconduct-
ing diode effect (SDE), has garnered various experimental
[52–78] and theoretical [79–114] attention. The SDE refers
to a difference in the critical current Jc(n̂) in opposite di-
rections, n̂ and −n̂. In that case, applying a current J with
min[Jc(±n̂)] < J < max[Jc(±n̂)] leads to superconducting
transport along one and resistive behavior along the opposite
direction, yielding a superconducting analog of a semicon-
ducting diode. On top of fundamental theoretical questions,
the rich space of potential applicability of such nonreciprocal
responses on modern-day electronics and devices renders the
SDE an exciting topic to delve into from an experimental and
technological standpoint.

Importantly, time-reversal symmetry � implies Jc(n̂) =
Jc(−n̂), which therefore needs to be broken to ob-
tain a finite SDE. So far, external magnetic fields [53–
66,68,79–83,87,94–96,103,107,110,111], proximity-induced
magnetism [72,73,76], and interaction-induced order param-
eters in the same electron liquid [74,84,109,115] have been
discussed as possible causes for the broken time-reversal sym-
metry inducing the SDE. All of these �-breaking orders fall
under the category of (spin and/or orbital) ferromagnetism
and are associated with a nonzero net magnetic moment.
Due to its residual magnetic symmetry �Tex,y , with nearest-
neighbor vectors ex,y, collinear antiferromagnetism as the
only cause of symmetry reduction cannot stabilize the SDE.
This therefore begs the question of whether and under which
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conditions AMs can induce a SDE in an otherwise symmetry-
unbroken superconductor and what the consequences are of
the nontrivial magnetic point symmetries of the AM on the
critical current Jc(n̂). This is the scope of our present work.

To this end, we here systematically analyze, using a
combination of symmetry arguments and explicit model cal-
culations, which of the possible AMs in two-dimensional (2D)
crystalline systems can yield a critical current asymmetry
Jc(n̂) − Jc(−n̂) �= 0. Indeed, there are several candidate AMs
where a SDE is possible despite the lack of net magnetization.
We will show that, depending on the residual magnetic point
group, the zeros of the current asymmetry Jc(n̂) − Jc(−n̂) are
either aligned with high-symmetry crystalline directions, can
be rotated by an electric field, or are not at all pinned to the
crystalline axes.

The remainder of the manuscript is organized as follows. In
Sec. II, we describe the method of calculating Jc(n̂) and dis-
cuss the general constraints on its directional dependence and
on its asymmetry resulting from magnetic point symmetries.
We further systematically go through all AM order parameters
in 2D single-band models, study whether they induce an SDE
and, if so, how the current asymmetry Jc(n̂) − Jc(−n̂) de-
pends on n̂. In Sec. III, we demonstrate the AM-induced SDE
on a case-by-case basis by constructing and solving explicit
lattice models, detailing the distinctive characters in each of
the cases. Finally, Sec. IV summarizes our findings.

II. GENERAL CONSIDERATIONS

Before presenting explicit calculations, we start by dis-
cussing general constraints on the AM-induced SDE, resulting
from symmetries. We will see under which conditions the
SDE is forced to vanish along high-symmetry directions and
systematically go through all possible AM order parameters
of 2D systems.

A. Diode effect efficiency

To set the stage for our symmetry discussion, we begin by
first outlining the basic procedure for the calculation of the
critical current. Denoting the superconducting order param-
eter for Cooper pairs with center-of-mass momentum q by
�q, we expand the change of the free energy as a result of
superconductivity δFS := F[�q] − F[0] up to quartic order
in �q,

δFS ∼
∑

q

aS
q |�q|2 + bS

∑
qi

�∗
q1

�∗
q2

�q3
�q4

δq1+q2,q3+q4
,

(1)

where we neglected the momentum dependence of the quar-
tic term. The equilibrium superconducting state is found by
minimizing δFS. Restricting the analysis to single-q states,
�q ∝ δq,q0

, the value of q0 is determined by the minimum
of aS

q . We define the critical current Jc(n̂) along n̂ as the
maximal magnitude of J(q) = 2e|�q|2∇aS

q oriented along n̂.
Postponing a microscopic evaluation of aS

q to Sec. III below,
we here only note that a unitary symmetry with vector repre-
sentation g implies aS

q = aS
gq and, thus, J(gq) = gJ(q) as well

as Jc(n̂) = Jc(gn̂).

To quantify the “degree” or amount of diode effect, it will
be convenient for us to first introduce a signed efficiency
parameter

ηs(n̂) := Jc(n̂) − Jc(−n̂)

Jc(n̂) + Jc(−n̂)
(2)

such that the angle-resolved diode-effect efficiency is η(n̂) =
|ηs(n̂)| � 0. We next discuss symmetry constraints on η(n̂).
From the discussion above, it follows that a unitary symmetry
with vector representation g enforces ηs(gn̂) = ηs(n̂). Since
ηs(n̂) = −ηs(−n̂), which immediately follows from the defi-
nition (2), the SDE efficiency is required to vanish along any
direction n̂0 obeying gn̂0 = −n̂0; in short,

gn̂0 = −n̂0 ⇒ η(n̂0) = 0. (3)

Clearly, Eq. (3) is obeyed for all n̂ if g is inversion (I) or
twofold rotation along the out-of-plane (ẑ) direction C2z for
a 2D system; these symmetries are thus required to be broken
to allow for a finite SDE. While the following constraints are
readily generalized to three spatial dimensions, we first focus
for notational simplicity on a 2D system in the xy plane. If
g is a twofold rotational symmetry, C2m̂, along an in-plane
direction m̂ or a mirror-plane symmetry, σm̂, spanned by ẑ
and m̂, Eq. (3) implies that η(n̂) = 0 for n̂ perpendicular
to m̂. In other words, the zeros of η(n̂) are pinned along
high-symmetry directions if the point group contains twofold
rotations along in-plane directions or mirror planes perpen-
dicular to the system plane. Note that rotations with degrees
higher than two do not pin the zeros.

Similar constraints arise from magnetic point symmetries,
i.e., nonunitary symmetries, �gm, given by the product of
time reversal � and some unitary symmetry gm. Such a mag-
netic symmetry implies aS

q = aS
−gmq and consequently Jc(n̂) =

Jc(−gmn̂); this, in turn, leads to ηs(gmn̂) = ηs(−n̂) = −ηs(n̂).
As such, the presence of the magnetic symmetry �gm implies
that

gmn̂0 = n̂0 ⇒ η(n̂0) = 0. (4)

Equation (4) contains the special case of preserved time-
reversal symmetry, gm = 1, for which gmn̂ = n̂ always holds,
implying η(n̂) = 0 for all n̂; this just recovers the often-stated
fact that � needs to be broken to get an SDE. However, Eq. (4)
also shows that zeros of the angle-resolved SDE efficiency are
pinned along high-symmetry directions if the system exhibits
a magnetic reflection symmetry, �σm̂, or magnetic rotational
symmetry, �C2m̂; in both cases, it holds η(m̂) = 0. We will
see examples of all of these constraints in the explicit model
calculations of Sec. III below.

We finally point out that Eqs. (3) and (4) also apply for
the three-dimensional case. As such, we see that a twofold
nonmagnetic rotation (mirror) symmetry leads to line (point)
nodes for η(n̂) on the sphere {n̂ ∈ R3|n̂2 = 1}, while magnetic
rotations (mirror) symmetries imply point (line) nodes.

B. AM-induced SDE

With these symmetry constraints at hand, we are now in po-
sition to analyze under which conditions an AM moment can
induce an SDE and, if nonzero, whether the angle-resolved
SDE efficiency η(n̂) has to have zeros along certain directions.
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FIG. 1. Schematic of the possible realizations of the consid-
ered models by (a) proximity-induced AM in a superconductor,
(b) proximity-induced superconductivity on an AM metal, and
(c) both orders coexisting in a single material. Our analysis also
applies to the case where the proximitizing material, the AM in
(a) and the superconductor in (b), is only present on one side. The
advantage of the symmetric design is that an external electric field Ez

can be used to reduce the symmetries of the systems in a controllable
way.

To be precise, in this work, we use the following definition of
an AM order parameter. We define an AM order parameter
as a time-reversal-odd order parameter (i.e., some form of
magnetic order), which, unlike a ferromagnet, does not lead to
a finite net magnetic moment or spin polarization; in addition,
we require that it preserve lattice translation, unlike an antifer-
romagnet or more complex translational-symmetry-breaking
orders (such as an incommensurate spiral or a tetrahedral
magnet).

For concreteness, we study the prototypical case of a min-
imal model for the normal state—one that only contains a
single, spinful band,

H0 =
∑

k

c†
k,s[s0εk + gk · s + Nk · s]s,s′ck,s′ , (5)

where c†
k,s are electron creation operators of spin s and mo-

mentum k, s = (sx, sy, sz ), s0 = 1, are spin Pauli matrices.
Furthermore, εk is the bare dispersion, gk the spin-orbit vector,
and Nk the AM order parameter. Since these three quantities
are, by design, even, even, and odd under �, respectively, they
have to obey

εk = ε−k, gk = −g−k, Nk = N−k. (6)

We therefore conclude that εk always preserves inversion,
gk can only be nonzero if inversion I is broken (as usual),
and the AM order parameter cannot break I (and will al-
ways be odd under �I) in the class of models in Eq. (5).
To describe superconductivity, we assume that Cooper pairs
form in the spin-singlet channel, and that the superconducting
order parameter transforms trivially under all point symme-
tries and preserves time reversal. Therefore, Nk is the only
term-breaking time reversal and gk the only source of broken
inversion symmetry in Eq. (5); this is why both are required
to obtain a finite SDE, η �= 0.

The different possible physical realizations of this class of
models are illustrated in Fig. 1. Either the AM term Nk will be
proximity induced in superconducting systems, see Fig. 1(a),
or vice versa—a proximitized superconductor induces pairing
in a metallic AM material [Fig. 1(b)]. Although not essential
for the realization of the following effects, we here assumed
that the proximitizing materials are placed symmetrically on
both sides such that an electric field Ez can be used to further

reduce the symmetries in situ. Our symmetry analysis and
minimal-model study here still applies when the proximitizing
material is only present on one side. In that case, the terms
induced by Ez �= 0 in the models below will already be present
for Ez = 0. Finally, our analysis also applies if both AM and
superconductivity arise spontaneously in the same electron
liquid, see Fig. 1(c). We note in passing that this is the only
scenario which would allow to realize altermagnetic diodes as
a bulk effect in three dimensions and where the back-action
mechanism of Ref. [115] can apply, possibly giving rise to
enhanced η.

To address the question of which AM order parameters
can induce an SDE, we start by considering all possible point
groups G0 of 2D crystalline systems. For each of them, we
go through all of its irreducible representations and check
whether a generic time-reversal-odd Nk · s in Eq. (5) trans-
forming under it is an AM; this requires the presence of a
residual symmetry that ensures that the expectation value of
the total spin,

S =
∑

k

c†
k,sss,s′ck,s′ , (7)

has to vanish. For instance, an AM order parameter transform-
ing under Ag of G0 = D2h will lead to a residual C2z rotation
symmetry, implying that 〈Sx〉 = 〈Sy〉 = 0. The additional σv

mirror symmetry further implies that also 〈Sz〉 vanishes. In the
first three columns of Table I, we list all such combinations of
G0 and AM order parameters, some of which were already
tabulated in Ref. [29]. To organize the list, the first 11 lines
refer to the AM order parameters for centrosymmetric point
groups G0; interestingly, we find that, in all cases, these AM
order parameters will continue to be proper AMs with 〈S〉 = 0
when an electric field is applied, Ez �= 0, which reduces the
point groups to GEz � G0. Coming back to our previous exam-
ple, G0 = D2h will be reduced to GEz = C2v . It still contains
the two symmetries used above to show that there is no finite
magnetization. The remaining lines of Table I refer to the AM
order parameters in the 2D noncentrosymmetric point groups
that are not reached by applying Ez in centrosymmetric point
groups. In all those cases, reducing the point group further by
application of Ez leads to a finite magnetization.

For all of these AMs and point groups, we investigate
whether a superconducting order parameter in the singlet
channel and transforming under the trivial representation of
G0 can give rise to an SDE. Clearly, due to inversion sym-
metry, there cannot be an SDE for the centrosymmetric point
groups at Ez = 0. However, applying an electric field does
allow for finite η in a few cases, see penultimate column in
Table I. This is remarkable since it shows that finite magne-
tization is not required to obtain an SDE. Also, some of the
AMs in certain noncentrosymmetric point groups allow for
an SDE without finite moment. In Table I we also list whether
and, if so, how the residual symmetries pin the zeros of η(n̂) to
high-symmetry lines. These aspects will be further discussed
on a case-by-case basis in the following section.

III. MODEL STUDIES

In order to demonstrate the features we have deduced
by symmetry analysis above more explicitly and to discuss
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TABLE I. Summary of possible AM order parameters Nk in 2D models of the form of Eq. (5). For each point group G0, we list all the
irreducible representations (IR) that can give rise to an AM; the respective form of Nk for small k is shown in the third column, where τ and
Rϕ are, respectively, a real-valued constant and a rotation matrix along the third direction not fixed by symmetry. Applying an electric field Ez

reduces the point group to GEz . In case of the centrosymmetric G0 (first 11 lines), all order parameters remain AMs (as indicated in the fourth
column), characterized by zero net magnetization; this is not the case for the noncentrosymmetric G0 (lines 12–20). In the column SDE, we
indicate whether the respective AM will give rise to an SDE (in the centrosymmetric point groups, only possible for Ez �= 0). We also indicate
whether the angle-resolved SDE efficiency η(n̂) has zeros along generic directions n̂0 (and their C3z-related partners) or along crystalline axes,
êx,y. For D3 and D6, we introduced n̂i

Ez
with n̂i

Ez=0 = êi, i = x, y, and pointing along a generic direction for Ez �= 0. The last column shows
candidate materials, based on their conduction type—metallic (M) or insulating (I)—focusing on those cases where an SDE is present.

G0 IR of AM Nk GEz SDE Materials

C4h Bg (0, 0, k2
x − k2

y + τkxky ) C4; AM ✗

C6h Bg Rϕ (k2
x − k2

y , −2kxky, 0) C6; AM η(±C j
3zn̂0) = 0

D2h Ag (0, 0, kxky ) C2v; AM ✗

A1g [0, 0, kxky(k2
x − k2

y )] ✗

D4h B1g (0, 0, kxky ) C4v; AM ✗

B2g (0, 0, k2
x − k2

y ) ✗

A1g [0, 0, kxky(k2
x − 3k2

y )(3k2
x − k2

y )] ✗

B1g (k2
x − k2

y , −2kxky, 0) η(±C j
3z êx ) = 0 CrSb (M) [2], MnTe (I) [116,117]

D6h C6v; AM
B2g (2kxky, k2

x − k2
y , 0) η(±C j

3z êy ) = 0

E2g (0, 0, 2kxky ), (0, 0, k2
x − k2

y ) ✗

D3d A1g [k2
x − k2

y , −2kxky, τkxky(k2
x − 3k2

y )(k2
y − 3k2

x )] C3v; AM η(±C j
3z êy ) = 0 Fe2O3, CoF3 (I) [2]

D2 A (0, 0, kxky ) C2; no AM ✗

D3 A1 [k2
x − k2

y , −2kxky, τkxky(k2
x − 3k2

y )(k2
y − 3k2

x )] C3; no AM η(±C j
3zn̂

y
Ez

) = 0

A1 [0, 0, kxky(k2
x − k2

y )]

D4 B1 (0, 0, kxky ) C4; no AM ✗

B2 (0, 0, k2
x − k2

y )

A1 [0, 0, kxky(k2
x − 3k2

y )(3k2
x − k2

y )] ✗

B1 (k2
x − k2

y , −2kxky, 0) η(±C j
3zn̂

y
Ez

) = 0 VNb3S6 (M) [2,118]
D6 C6; no AM

B2 (2kxky, k2
x − k2

y , 0) η(±C j
3zn̂

x
Ez

) = 0

E2 (0, 0, 2kxky ), (0, 0, k2
x − k2

y ) ✗

additional aspects, we here construct and solve concrete lattice
models; to this end, we use three different point groups and
AM order parameters that can induce an SDE as examples.

A. General formalism

In all of these lattice models, superconductivity will be
described in the same way. We start with an attractive (g > 0)
interaction in the spin-singlet Cooper channel,

HI = −g
∑

q

C†
qCq , Cq =

∑
k

ck+q/2isyc−k+q/2, (8)

and add it to the Hamiltonian in Eq. (5), H0 → H0 + HI . We
then perform a mean-field decoupling in the Cooper channel
and introduce �q = g 〈Cq〉, leading to the following Hamilto-
nian:

HMF =
∑

k

c†
khkck +

∑
k,q

[�qc†
k+q/2isyc†

−k+q/2 + H.c.]

+
∑

q

|�q|2
g

,

hk = s0εk + gk · s + Nk · s. (9)

Using a redundant Nambu basis, defined by 
k =
(ck+q/2, isyc†

−k+q/2)T , we obtain a Bogoliubov–de Gennes
Hamiltonian,

HBdG =
(

hk+q/2 �q

�∗
q −syh∗

−k+q/2sy

)
, (10)

which allows us to rewrite the Hamiltonian (9) for a given q
as

HMF(q) =
∑

k



†
k HBdG
k + |�q|2

g
. (11)

Next, we integrate out the electrons in this quadratic
mean-field Hamiltonian and recover the Ginzburg-Landau ex-
pression in Eq. (1). The key quantity aS

q is related to the
particle-particle bubble �(q) at finite q in the usual way, aS

q =
g−1 − �(q). Keeping both intra- and interband contributions,
the particle-particle bubble is of the form

�(q) = 1

4

∑
k,ν=p,m,η=±

k,q,ν,η tanh
Ek,q,ν,η

2T
, (12)
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where k,q,ν,η contains the coherence factors and Ek,q,ν,η are
Bogoliubov energies (see Appendix B for their explicit form);
the indices ν and μ label the four different states associated
with spin and particle-hole space in our redundant Nambu
basis, cf. Eq. (10). From the resulting aS

q , we compute the di-
rectional dependence of the critical current and hence η(n̂) as
described in Sec. II A. We will next apply this formalism using
a few different normal-state Hamiltonians H0 to elucidate the
nature of the SDE in various point groups.

B. Pinned zeros and Ez tunability in D6h

We start from the centrosymmetric point group G0 = D6h,
where εk obeys εk = ε−k = εC3zk = εσvk. To model such a
dispersion, we take a nearest-neighbor hopping model on
the triangular lattice, εk = −∑3

j=1 t cos(a j · k), where a j are
three C3z-related primitive vectors. For notational simplicity,
we measure all energies in units of t in the following. The
presence of I in D6h implies gk = 0. We can see in Table I
that D6h has four possible AM order parameters and only
two of them—those transforming under B1g and B2g—can
give rise to an SDE when also applying an electric field Ez.
For concreteness, we will here focus on B1g, which reduces
D6h to the magnetic point group generated by C3z, �C2z,
�σv , and I . We construct the lowest-order, Brillouin-zone-
periodic form of Nk consistent with B1g, which corresponds
to first-nearest-neighbor-hopping processes on the triangular
lattice, with explicit form presented in Appendix B; it behaves
as

Nk ∼ N0
(
k2

x − k2
y ,−2kxky, 0

)T
(13)

around the � point, i.e., for |k| → 0. Due to Nk = N−k, see
Eq. (6), and B1g being odd under C2z, it holds (Nk)z = 0 to
arbitrary order in k. Note that this order parameter obeys all
of the properties in our definition of an AM: by design [see
Eq. (9)] it is translationally invariant and breaks time-reversal
symmetry (due to Nk = N−k). The absence of finite spin
polarization immediately follows by noting that the residual
C3z and C2z� symmetries (also present for Ez �= 0) imply,
respectively, that 〈Sx,y〉 and 〈Sz〉 have to vanish, which we have
also checked explicitly.

To understand the salient features of this model, let us
start first with Ez = 0, with results displayed in the first col-
umn (a) of Fig. 2. One can see in Figs. 2(ai) and 2(aii) that
the maximum of �(q) is pinned to q = 0 as long as N0 in
Eq. (13) is smaller than a critical value. This pinning is a
consequence of C3z symmetry. It means that, in the current
model, a sufficiently strong AM order is required to induce
finite-momentum pairing. While finite-momentum pairing can
be induced by AM order, as pointed out in recent publica-
tions in the context of different models without C3z symmetry
[31,51], it does not necessarily follow immediately, as we can
see here. Moreover, since we have inversion symmetry and
unbroken C3z, we observe that �(q) is sixfold symmetric. This
symmetry is inherited by the critical current Jc(n̂) shown in
Fig. 2(aiii); it thus obeys Jc(n̂) = Jc(−n̂) and there is no SDE,
η = 0, see Fig. 2(aiv).

As anticipated in Table I, we therefore have to apply an
electric field Ez, which reduces D6h to C6v , to get an SDE.
On the level of the Hamiltonian, the electric field induces a

FIG. 2. SDE in point group D6h. Columns (a) and (b) compare
the cases for zero and nonzero electric field Ez. Rows (i) and (ii)
show the particle-particle bubble �(q) in the Brillouin zone below
and above the critical value of the strength N0 of the AM order; the
orange circles denote the location of the maxima. Row (iii) shows
the critical current Jc(n̂) as a function of direction n̂. The resulting
angle-resolved SDE efficiency (2) is plotted in the last row (iv) and
is only finite for Ez �= 0. The magnetic point group dictates the zeros
of η to be confined along high-symmetry directions, as discussed in
the main text. Explicit parameters are given in Ref. [119].

nonzero spin-orbit vector gk. We again refer to Appendix B for
its explicit form throughout the Brillouin zone and here only
note that gk ∼ α(ky,−kx, 0)T as |k| → 0. Similar to (Nk)z =
0 noted above, the last component (gk)z has to vanish to all
orders in k as a consequence of C2z and Eq. (6).

The corresponding results for finite Ez are shown in the
second column, (b), of Fig. 2. We observe that, even in the
presence of α �= 0, the maximum of �(q) is pinned to zero
momentum, see Fig. 2(bi), due to the still unbroken C3z sym-
metry. However, as a consequence of inversion symmetry
breaking, �(q) is not an even function anymore. As soon
as a critical value of N0 is surpassed, the maxima of �(q)
move from zero q to three nonzero, C3z-related momenta, as
indicated by the orange circles in Fig. 2(bii). The number of
degenerate maxima is reduced from six to three [compared
with Fig. 2(aii)] when applying Ez �= 0 as I is broken.
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By the same token, the critical current Jc(n̂) is not an even
function anymore, see Fig. 2(biii), and we obtain an SDE,
η �= 0, as can be clearly seen in Fig. 2(biv). This demonstrates
explicitly that an SDE is also possible when the only source
of broken � is an AM, i.e., in the absence of a net magnetic
moment. As the SDE requires broken I , it is tunable by an
electric field. What is more, we observe that η(n̂) has zeros
along the high-symmetry directions êx, C3zêx, and C2

3zêx as fol-
lows from the magnetic reflection symmetry �σv and Eq. (4)
[or σd and Eq. (3), for that matter]. For an AM order parameter
transforming under B2g, the behavior is very similar. The main
difference is that the aforementioned zeros of η(n̂) are pinned
along the orthogonal directions êy, C3zêy, and C2

3zêy, since,
instead of �σv , we have the magnetic reflection symmetry
�σd .

C. Generic zeros in C6h

To demonstrate explicitly that the zeros of η(n̂) are not
always pinned along high-symmetry directions for the SDE
induced by an AM, we next consider the case G0 = C6h. It
exhibits no rotations C2m̂ or reflections σm̂ with in-plane m̂,
such that neither Eq. (3) nor Eq. (4) can apply (irrespective
of the form of broken time-reversal symmetry). One conse-
quence of the reduced symmetries is that the bare dispersion
exhibits more terms compared to D6h discussed above, which
we describe with the leading-order contribution ∝ t ′ in

εk = −
3∑

j=1

[t cos (a j · k) + t ′ cos (a′
j · k)]. (14)

Here, a′
j are three C3z-related next-nearest-neighbor vectors

on the triangular lattice (a′
1 = 2a2 − a1, a′

j = C j−1
3z a′

1). As can
be seen in Table I, only one of the two possible AM order
parameters—the one transforming under Bg of C6h—can give
rise to an SDE. As a result of the reduced symmetry, the two
different AM order parameters associated with B1g and B2g in
D6h now both transform under Bg of C6h and can hence mix.
Introducing a 3 × 3 matrix Rϕ describing rotations by ϕ along
the third direction, this admixture can be parametrized as

Nk = RϕNB1g

k ∼ N0Rϕ

(
k2

x − k2
y ,−2kxky, 0

)T
, (15)

where NB1g

k is the B1g AM order parameter of D6h used above
in Sec. III B and the asymptotic relation again refers to the
vicinity of the � point, k → 0.

To obtain a finite SDE, η �= 0, inversion symmetry I still
needs to be broken by application of an electric field Ez �= 0.
This induces a spin-orbit coupling term gk. For the same rea-
son as above, the spin-orbit vector is less constrained than in
D6h and can be written in the form Rϕ′gk, where gk is identical
to the one used for D6h above, obeying gk ∼ α(ky,−kx, 0)T .
For Nk, gk �= 0, the residual magnetic point group of the
system is generated by C3z and C2z�. As such, the only con-
straints on the particle-particle bubble and the critical current
are �(q) = �(C3zq) and Jc(n̂) = Jc(C3zn̂), which are clearly
visible in our numerical results in Figs. 3(a) and 3(b), re-
spectively. As expected, the maxima and minima of these two
quantities are not pinned along high-symmetry directions and,

FIG. 3. SDE in the point group C6h at Ez �= 0. (a) Particle-particle
bubble �(q) in the Brillouin zone; (b) critical current Jc(n̂) as a
function of direction n̂ for N0 = −0.21; (c) angle-resolved SDE
efficiency η(n̂). Due to the reduced symmetry compared to D6h [cf.
Fig. 2(biv)], the zeros (and also maxima) of η are rotated away from
high-symmetry directions; (d) SDE efficiency η as a function of
magnetic field and altermagnetic order parameter N0 shown in blue
and red, respectively. The magnetic field is chosen along the x direc-
tion. In this figure, we used α = 0.4, t ′ = 0.05t , g−1 = 0.5�(q = 0),
ϕ = −0.25π , and ϕ′ = 0.

therefore, the zeros of η(n̂), shown in Fig. 3(c), are not pinned
either.

We further present in Fig. 3(d) the diode efficiency η for
both the magnetic field-induced SDE and the altermagnetic
SDE. To treat them on equal footing, we use the same model
and set B2 = N2

0 = ∑
k∈BZ N2

k. Employing the same parame-
ters as in the other parts of Fig. 3, we find that the efficiency is
significantly larger in the AM case; this demonstrates that the
AM SDE is not a subleading, and thus generally weaker, effect
compared to the magnetic-field-induced one, contrary to what
one might have expected since the average magnetization is
required to vanish for an AM. However, we caution that both
magnetic fields and AMs can yield sizable SDE with relative
magnitudes depending largely on the parameters chosen.

D. Ez tunable zeros and polarization in D3

We finally discuss the AM-induced SDE for the case where
G0 is already a noncentrosymmetric point group. As such, an
electric field will not be required to get an SDE. Nonetheless,
as we will see, Ez can still be used to tune the properties of
the system in a nontrivial way. For concreteness, let us choose
G0 = D3. As can be seen in Table I, there is only a single AM
order parameter, transforming under the trivial representation
of the point group. While, to leading (quadratic) order in
k, it has the same form as Nk in Eq. (13), the subleading
corrections are different. In particular, the reduced symmetries
allow for a finite (Nk)z component,

Nk ∼ N0
[
k2

x − k2
y ,−2kxky, τkxky

(
k2

x − 3k2
y

)(
k2

y − 3k2
x

)]
,

(16)
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FIG. 4. SDE in the noncentrosymmetric point group D3. (a) and
(c) show the directional-dependence of the critical current Jc(n̂) for
zero and finite electric field, respectively. The corresponding SDE
efficiencies η(n̂) are displayed in (b) and (c). Since Ez �= 0 breaks
all in-plane rotation symmetries C2m̂, it can be used to rotate the
symmetry-imposed zeros of η(n̂) away from high-symmetry direc-
tions. It can also be used to control the net magnetization, see (e),
where the spin polarization as a function of Ez is shown; the inset is
a zoomed-in version of the respective contribution of the two bands
(in orange and green) to 〈Sz〉. (f) reveals that both Fermi surfaces
(corresponding to the two bands) are present for α = 0.05 and, for
α = 0.1, only one of the bands contribute. Explicit parameters are
given in Ref. [120].

where we only kept the leading term in every component and
τ is a real parameter that is not determined by symmetry. The
total spin polarization still vanishes, 〈S〉 = 0, as required for
an AM, which follows from the preserved C3z (〈Sx,y〉 = 0) and
C2x (〈Sz〉 = 0) symmetries.

Interestingly, the spin-orbit vector has two different contri-
butions, gk = gI

k + gII
k , where gI

k ∼ β[kx, ky, ky(3k2
x − k2

y )] is
already allowed by the point group D3 without the need of
an external electric field, and gII

k ∼ α[ky,−kx, kx (k2
x − 3k2

y )] is
the spin-orbit coupling term induced by a perpendicular elec-
tric field Ez, i.e., α ∝ Ez + O(E3

z ). The full expressions for
Nk, gI

k, and gII
k we use are provided in Appendix B. Finally, for

the dispersion, we restrict ourselves just to a nearest-neighbor
hopping term on the triangular lattice, εk = −∑3

j=1 t cos(a j ·
k).

Let us first focus on Ez = 0 (α = 0). Since C2z, I , and � are
already broken, we find a finite SDE, see Figs. 4(a) and 4(b).
Furthermore, we observe that the extrema of the critical cur-
rent rotated by 90◦ in comparison to D6h [cf. Fig. 2(biii)]. This
is closely related to the discussion in Sec. II A; since D3 has
twofold rotational symmetry C2x about the in-plane direction

x, the current has to obey Jc(C2xn̂) = Jc(n̂), which pins its
extrema along êx- and C3z-related directions. Similarly, Eq. (3)
implies that the angle-resolved efficiency η(n̂) has to go to
zero for n̂ = êy, C3zêy, and C2

3zêy, which is also observed in
our numerics [see Fig. 4(b)].

To demonstrate the effect of a finite Ez, we repeat the
analysis now in the presence of the induced spin-orbit cou-
pling term gII

k . The electric field transforms as A2 of D3 and
reduces the point group to C3. Altogether, since time reversal
and inversion are still broken, the system still shows an SDE,
see Figs. 4(c) and 4(d), only now there is no twofold in-plane
rotation (C2x) or a mirror-plane σm̂ as a symmetry. Naturally,
it follows that the zeros of η(n̂) are not pinned to the high-
symmetry directions, but are now free to move in-plane, as is
clearly visible in Fig. 4(d). An electric field can thus be used
to tune the orientation of the zeros of the SDE efficiency η(n̂).

By the same token, we also find that the Ez-induced reduc-
tion of the point group leads to the order parameter losing
its AM nature—since all in-plane rotations are broken, we
expect 〈Sz〉 �= 0 for α �= 0; meanwhile, we still have 〈Sx,y〉 = 0
since C3z remains unbroken. This is indeed what we find
when computing the expectation value of the spin operators in
Eq. (7) explicitly within our model, with the result displayed
in Fig. 4(e). We can further see that the orientation of the spin
polarization can be swapped by changing the sign of α, as
expected by symmetry, and also by increasing |α| beyond a
certain magnitude. To understand the latter observation better,
we consider the inset in Fig. 4(e), which shows the contri-
butions from the bands σ = ±1 to the total polarization. As
we start increasing α in the positive direction, for very small
values of α, the σ = −1 band (shown in green) starts con-
tributing more than its counterpart σ = 1 (shown in orange) to
〈Sz〉. This happens until a certain value of α is reached, from
whence the σ = 1 starts taking over and ends up contributing
the bulk of the total polarization, thereby flipping the value of
〈Sz〉. This flipping of polarization on the same side can also
be well understood by noting that at α = 0.05t , both Fermi
surfaces [see Fig. 4(f)] corresponding to σ = ±1, shown in
orange and green, respectively, contribute. Meanwhile, when
α = 0.1t , only the green one contributes to the spin polariza-
tion. Taken together, we see that an AM order parameter in
the noncertrosymmetric point group D3 (same applies to D6,
see Table I) can induce an SDE, with both the zeros in the
efficiency η(n̂) and the spin polarization being tunable by an
applied electric field Ez.

IV. CONCLUSION

In this work, we have studied under which conditions
a conventional two-dimensional superconducting phase can
exhibit an SDE, ηs �= 0 in Eq. (2), if the only source of
broken time-reversal symmetry is an AM order parameter. To
approach this question systematically, we started by listing
all AM order parameters Nk, coupling to the electrons as
given by Eq. (5), for all possible 2D crystalline point groups,
see Table I. For each of them, we checked whether there
are still residual symmetries, such as inversion symmetry or
twofold rotation along a direction perpendicular to the plane
of the system, that would enforce the critical currents along
opposite directions to be the same, Jc(n̂) = Jc(−n̂). We found
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that there are indeed several point groups and associated AM
order parameters (C6h with AM in Bg; D6h with AM in B1g

and B2g; D3d with A1g; D3 with AM in A1; D6 with B1 and
B2) that give rise to an SDE, as we have also checked by ex-
plicit model calculations. Since, by design, the total magnetic
moment vanishes when an AM is the only source of broken
time-reversal symmetry, this demonstrates that the SDE does
not require finite net magnetization. A direct comparison with
the magnetic-field-induced SDE reveals that the altermagnetic
SDE is not a subleading effect; in fact, depending on param-
eters, the altermagnetic efficiency can even be substantially
larger when compared in the same model with the magnetic-
field scenario.

In the context of the SDE, the AM order parameters can be
further categorized in the following way: the AMs transform-
ing under Bg of C6h, B1g or B2g of D6h, and A1g of D3d will only
give rise to an SDE if also an electric field Ez perpendicular
to the plane of the system is applied. This breaks inver-
sion symmetry, a necessary requirement for the SDE. Note,
however, that in all cases listed here, there are still enough
symmetries present to guarantee a vanishing net magnetic
moment. This shows that AMs allow for electric-field-tunable
(rather than the frequently discussed magnetic-field-tunable)
SDEs. In turn, the AMs transforming under A1 and B1,2 for
the noncentrosymmetric point groups D3 and D6, respectively,
will immediately give rise to an SDE, without application of
an electric field; moreover, for Ez �= 0, the symmetries will
be lowered in such a way that the order parameters cease to
be AMs. Here, the electric field can be used to control the
out-of-plane magnetization of the system.

Another important distinction of the different scenarios for
AM-induced SDEs can be made based on the directions n̂ j

where the SDE efficiency vanishes, η(n̂ j ) = 0. While n̂ j are
pinned along high-symmetry directions for D6h (reduced to

C6v by Ez �= 0) and D3d (reduced to C3v), this is not the case
for the SDEs induced by the Bg AM in C6h (reduced to C6),
where n̂ j point along generic (C3z-related) directions. Finally,
for the AMs of noncentrosymmetric point groups D3 and D6

that can induce an SDE, applying an electric field Ez �= 0
allows to rotate the n̂ j with η(n̂ j ) = 0 away from crystalline
to generic directions.

These findings, which can be deduced from symmetry
considerations, are summarized in Table I. We have further
constructed and solved minimal lattice models for the differ-
ent classes of and phenomena associated with AM-induced
SDEs discussed above. This further illustrates and explicitly
demonstrates the complex interplay of AM and superconduc-
tivity. We finally point out that there are several setups that
can be used to realize and probe the proposed AM-induced
SDE experimentally, see Fig. 1. Given that there are already
candidate materials with the right symmetries (see last column
in Table I), the rapidly growing number of AM candidate
materials [26], and the fact that heterostructures are routinely
grown or stacked, this seems to be well within current experi-
mental reach.
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APPENDIX A: EXPRESSION FOR THE PARTICLE-PARTICLE BUBBLE

In this section, we state the expression for the particle-particle bubble in the presence of both inter- and intraband pairings.
Given the Hamiltonian, defined in Eq. (11), we begin by defining a few quantities,

li,k,q = gi,k,q + Ni,k,q, i = x, y, z g±
p,k,q = lx,k+q/2 ± ily,k+q/2, g±

m,k,q = lx,−k+q/2 ± ily,−k+q/2. (A1)

In addition, the renormalized energies are given as

Ek,q,p,± = εk+q/2 ± gp, Ek,q,m,± = ε−k+q/2 ± gm, (A2)

where g2
p = ∑

i=x,y,z l2
i,k+q/2 and g2

m = ∑
i=x,y,z l2

i,−k+q/2. Armed with these definitions, we can write down the various coherence
factors k,q,ν,η for the spinful model as

k,q,m,∓ = ∓ Gk,q

gm(Ek,q,m,∓ + Ek,q,p,+)(Ek,q,m,∓ + Ek,q,p,−)
+ 2

(Ek,q,m,∓ + Ek,q,p,∓)
; (A3)

k,q,p,∓ = ∓ Gk,q

gp(Ek,q,m,− + Ek,q,p,∓)(Ek,q,m,+ + Ek,q,p,∓)
+ 2

(Ek,q,m,∓ + Ek,q,p,∓)
; (A4)

where Gk,q = g+
m,k,qg−

p,k,q + g−
m,k,qg+

p,k,q + 2gpgm + 2lz,k+q/2lz,−k+q/2. The final expression for the particle-particle bubble �(q)
then reads

�(q) = 1

4

∑
k

(
k,q,p,+ tanh

Ek,q,p,+
2T

+ k,q,p,− tanh
Ek,q,p,−

2T
+ k,q,m,+ tanh

Ek,q,m,+
2T

+ k,q,m,− tanh
Ek,q,m,−

2T

)
. (A5)
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FIG. 5. Multicomponent momentum dependence of (a) the altermagnet term Nk, (b) inversion-symmetry breaking term gI
k, and (c) spin-

orbit coupling term gII
k induced by Ez. For point groups D6h and C6h, τ = 0, τ̃ = 0, and β = 0, while for D3, τ �= 0, τ̃ �= 0, and β �= 0.

APPENDIX B: DETAILS OF THE MODELS

We here state the basis functions used to characterize the terms Nk and gk of the Hamiltonian in Eq. (9) of the main text for
various point groups. Applying the convention where one of the primitive lattice vectors of the underlying triangular lattice is
given by a1 = (1, 0)T , the leading basis functions explicitly read as

Nk = N0

⎛
⎝−8

3

(
cos kx − cos

kx

2
cos

√
3ky

2

)
,
−8 sin kx

2 sin
√

3ky

2√
3

, 64τ

(
sin 5kx

2 sin 3
√

3ky

2 + sin kx
2 sin

√
3ky

2 − sin 2kx sin
√

3ky
)

3
√

3

⎞
⎠

(B1)

gI
k = β

(
2

3

(
2 cos

kx

2
+ cos

√
3ky

2

)
sin

kx

2
,

2√
3

cos
kx

2
sin

√
3ky

2
,

8
( − 2 cos 3kx

2 sin
√

3ky

2 + sin
√

3ky
)

3
√

3

⎞
⎠, (B2)

gII
k = α

(
2√
3

cos
kx

2
sin

√
3ky

2
,

−2

3

(
2 cos

kx

2
+ cos

√
3ky

2

)
sin

kx

2
, 16τ̃

(
− cos

kx

2
+ cos

√
3ky

2

)
sin

kx

2

)
. (B3)

These are the functions with the least number of nodal lines that satisfy the required symmetry constraints while being periodic
on the Brillouin zone (Fig. 5). As explained in the main text, τ = 0 for point groups D6h and C6h and therefore Eq. (B1) reduces
to Eqs. (13) and (15), respectively, when expanded for small k. As the point group D3 permits the AM order parameter to also
have a third component, it is given by Eq. (B1), with τ �= 0 resulting in Eq. (16) for k → 0. Similarly, the leading basis functions
for the electric-field-induced spin-orbit coupling gII

k are given by Eq. (B3), with τ̃ = 0 for G = D6h and C6h; meanwhile, τ̃ �= 0
for G = D3. Finally, the leading spin-orbit vector at zero electric field for the point group D3 is given by gI

k in Eq. (B2).
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