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Magnetization amplification in the interlayer pairing superconductor 4Hb-TaS2
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A recent experiment on the bulk compound 4Hb-TaS2 reveals an unusual time-reversal symmetry-breaking
superconducting state that possesses a magnetic memory not manifest in the normal state. Here we provide a
mechanism for this observation by studying the magnetic and electronic properties of 4Hb-TaS2. We discuss the
criterion for a small magnetization in the normal state in terms of spin and orbital magnetizations. Based on an
analysis of lattice symmetry and Fermi surface structure, we propose that 4Hb-TaS2 realizes superconductivity
in the interlayer, equal-spin channel with a gap function whose phase winds along the Fermi surface by an integer
multiple of 6π . The enhancement of the magnetization in the superconducting state compared to the normal state
can be explained if the state with a gap winding of 6π is realized, accounting for the observed magnetic memory.
We discuss how this superconducting state can be probed experimentally by spin-polarized scanning tunneling
microscopy.
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I. INTRODUCTION

A recent experiment raises an intriguing puzzle about
the interplay between magnetism and superconductivity in
the multilayer transition metal dichalcogenide compound
4Hb-TaS2 [1]. As expected, the sample exhibits vortices when
cooled in a magnetic field below the superconducting Tc =
2.7 K and no vortices appear below Tc for zero-field-cooling
(ZFC). However, the behavior of the system during a mixed
training-ZFC protocol poses a puzzle. Specifically, vortices
appear spontaneously if the system is cooled in zero field after
being trained in a magnetic field applied above the supercon-
ducting Tc and below T ∗ = 3.6 K although there is no direct
sign of a residual magnetization above Tc. This surprise is best
reflected in the hysteresis curve for the vortex density versus
the training field applied above Tc, as shown in Fig. 1(a).

The origin of the spontaneous vortices that appear below
Tc is not understood. However the fact that the vortex density
and chirality respond to a training field applied above Tc

sets important constraints on the possibilities. In particular,
it implies that a state with spontaneously broken time-reversal
symmetry (TRS) must already have been established above Tc,
but the magnetization in this state is too small to be detected
by the SQUID magnetometer. These remarkable observations
raise a natural question: how can a small magnetization in the
parent metallic phase be highly amplified in the descendant
superconductor?

One possibility for the time-reversal symmetry-breaking
(TRSB) state proposed previously is a chiral spin liquid (CSL)
or chiral metallic state on the 1T layers [1,2]. The monolayer
compound 1T-TaS2 is known to be a Mott insulator [3–5].
If the 1T layers in 4Hb-TaS2 are in a CSL phase, the spin

chirality can carry the memory of the training field with-
out generating a detectable magnetization, hence orienting
a chiral superconductor below Tc [1,2]. Light doping of the
Mott insulators due to charge transfer to the 1H layers in
4Hb-TaS2 [6–8] may turn the CSL into a chiral metal, with
similar effect. However ab initio calculation and spectro-
scopic experiments indicate an almost completely depleted
1T band [8,9]. These results call for an alternative expla-
nation of the memory effect not relying on lightly doped
1T layers.

In this paper we investigate a mechanism for the magnetic
memory observed in the superconducting state that is con-
sistent with the structure and symmetry of 4Hb-TaS2. Our
mechanism rests on the assumption that the metallic state
above Tc hosts at least a weak ferromagnetic (FM) moment,
which may be too small to be detected [see Fig. 1(b)]. We
then determine the superconducting instabilities consistent
with such a normal state and examine the requirements on the
SC states for enhanced magnetization. Our key insight is that,
the TRSB order, while suppressing the intralayer conventional
BCS pairing, may favor an interlayer equal-spin pairing state
protected by inversion symmetry. An imbalance between the
spin-up and down pairings generically happens in this pairing
state, such that the minority spin component can remain in an
unpaired normal state. The angular momentum carried by the
majority Cooper pairs gives rise to enhanced magnetization in
the SC phase. The proposed mechanism leads to a number of
predictions including a spin dependent “partial gap” structure,
a linear-in-temperature specific heat, and the possibility of
a second transition temperature below Tc, all of which are
consistent with existing experiments [8,10] or testable in the
future.
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FIG. 1. (a) A reproduction of the hysteresis curve from the
magnetometry experiment [1]. The vertical axis counts the num-
ber of spontaneous vortices, and the horizontal axis is the training
field applied above Tc; the insets illustrate the spontaneous vortices.
(b) A heuristic phase diagram along the temperature axis inferred
from the training-ZFC process. The magenta arrow defines the
ZFC path.

The paper is structured as follows. In Sec. II, we introduce
lattice structure and symmetry of 4Hb-TaS2 and present a
tight-binding model for the bands near the Fermi surface. In
Sec. III, we calculate the magnitude of magnetization in pres-
ence of weak ferromagnetism in the proposed TRSB normal
state, and discuss constraints on the strength of the magnetic
order from the experimental observations. We then analyze the
pairing channels allowed by the Fermi surface geometry and
lattice symmetries in Sec. IV, from which we propose that the
material favors an interlayer pairing. This interlayer pairing
is then examined in great detail: we classify in Sec. V the
symmetries of the interlayer pairing, and point out in Sec. VI
two major physical consequences of the interlayer pairing–
nontrivial gap winding and imbalance in the spin up and spin
down pairing sectors. In Sec. VII, we calculate the magne-
tization for several interlayer superconducting states, one of
which exhibits major enhanced magnetization that match the
experimental value. We conclude the paper in Sec. VIII with
a summary of results and discussions for future experimental
verification of our predictions.

II. MODEL SETUP

A. Lattice symmetry

The bulk 4Hb-TaS2 structure is shown in Fig. 2(a). The
lattice is centrosymmetric, with inversion centers residing on
Ta atoms in T layers. The inversion i interchanges the H
and H′ layers, which, as we will show later, is crucial to the
formation of interlayer superconductivity.

The lattice has the following symmetries: mz is reflec-
tion with horizontal mirror plane in the 1H layer; mx is
reflection with vertical mirror plane that contains the bond
R1 [see Fig. 2(b)]; s2 is a twofold screw along the vertical
direction, and c3z is a threefold rotation along the vertical
direction.

ARPES data [10] suggests that the bands near the Fermi
energy come from the H and H′ layers and consist of three
orbitals |dz2〉, |dx2−y2〉, |dxy〉 and two spins σ =↑,↓ [11]. In
this orbital subspace, the dominant spin–orbit coupling (SOC)
is the spin Sz-preserving Ising SOC L̂zŜz.

FIG. 2. Lattice information of 4Hb-TaS2. (a) The 3D 4Hb-TaS2

lattice. The tantulum atoms form a simple stacking of triangular
lattices with a four-layer-periodic unit cell T–H–T–H′, where T and
H denote two different layer structures. The H and the H′ layers
are related by inversion symmetries i with inversion ceters on Ta
atoms of the T layers. (b) Definition of the nearest, 2nd-nearest, and
3rd-nearest neighbor bonds within the H layer.

B. Tight-binding model

For all our microscopic calculations in later sections, we
employ a six-band tight-binding model derived from DFT
calculations [12] that matches ARPES data [10]. Define

d†
r,H = (d†

r,H,↑, d†
r,H,↓), (1)

where r labels lattice sites on one layer, σ =↑,↓ labels spins,
and

d†
r,H,σ = (d†

z2,σ,r,H, d†
xy,σ,r,H, d†

x2−y2,σ,r,H) (2)

is the creation operators for the orbitals |dz2〉, |dx2−y2〉, and
|dxy〉 and spins σ at site r. The Hamiltonian for the H layer
is, in the Fourier-transformed momentum space,

HH =
∑

k

d†
k,HHH(k)dk,H, (3)

with

HH(k) = E0 + σ0 ⊗
(

6∑
i=1

Rie
iRi·k + Sie

iSi·k + Tie
iT i·k

)
, (4)

where σ0 is the identity matrix in the spin space, Ri, Si, and Ti

are 3×3 matrices consisting of nearest neighbor, next-nearest
neighbor and third neighbor hoppings [see Fig. 2(b)]. The
onsite term is

E0 = σ0 ⊗ diag(ε0 − μ0, ε1 − μ0, ε2 − μ0) + λSO

2
σ z ⊗ Lz,

(5)

with σ z the z-component Pauli matrix and Lz =
(0 0 0

0 0 2i
0 −2i 0

)
.

The values of the hopping matrices and onsite energies are
give in Appendix B.

As a consequence of the Ising SOC which conserves
the spin σ , the eigenstates are decoupled into spin-up and
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FIG. 3. Band structure of 4Hb-TaS2. (a) Energy dispersion along
high-symmetry path in the Brillouin zone (BZ). (b) Fermi surfaces
(FSs) for the H layer (top) and the H′ layer (bottom). There are a
smaller, near circular, hole-like FS and a larger, hexagonal, elec-
tronlike FS, concentered at the corners of the BZs, K and K ′. The
complete set of FSs consists all those in red, blue, and gray.

spin-down sectors

HH =
∑

σ

∑
n=1,2,3

En,σ,kc†
n,σ,kcn,σ,k, (6)

where the creation operators c†
n,σ,k are related to the orbital

operators by c†
n,σ,k = ∑

�=z2,xy,x2−y2 u(�)
n,σ,kd†

�,σ,k,H, where
un,σ,k,H are vectors that diagonalize the Hamiltonian matrix
HH(k)un,σ,k,H = En,σ,kun,σ,k,H. The dispersion En,σ,k along
high-symmetry paths in the Brillouin zone (BZ) is shown in
Fig. 3(a).

The Hamiltonian for the H′ can be obtained from that for
the H layer via inversion i:

HH′ (k) = HH(−k). (7)

III. MAGNETIZATION IN THE NORMAL STATE

A. Breaking of time-reversal symmetry in the normal state

The ability to train the vortex state using a field below T ∗ =
3.6 K implies a TRSB order with a spontaneous magnetization
in the normal state. Here we leave open its microscopic origin,
but assume that the corresponding TRSB order parameter, φ,
couples to the electrons as a Zeeman field. In addition to spin
polarization, this coupling leads to orbital magnetization in
the form of bond currents through the Ising SOC. We expect
that the TRSB order has multiple frozen FM domains with
random orientations, which get realigned by the training field
below T ∗. Below we estimate the magnetization of these
aligned domains and discuss under which conditions it may
be very small in the normal state and amplified below Tc.

B. Estimation of the weak ferromagnetism

Since we assumed that φ couples to the electrons as a Zee-
man field, we introduce an effective field Beff to measure the
splitting between the spin-up and -down bands: E↑ − E↓ �
φ � μBBeff. Below we calculate the out-of-plane magneti-
zation, Mtot induced by φ (or equivalently, Beff). The total

magnetization is

Mtot = Mspin + Morb, (8)

the first term is the spin magnetization

Mspin = gs

2

μB

V2D unit cell

∑
n

∫
d2k

(2π )2
c†

n,kσ
zcn,k, (9)

with gs ≈ 2 the spin g-factor, V2D unit cell the area of the unit
cell in a single H layer, and we defined c†

n,k = (c†
n,↑,k, c†

n,↓,k ).
The second term is orbital magnetization, given by [13]

Morb = |e|
h̄

∑
n

∫
d2k

(2π )2

× Im〈∂kx unk|Hk + Enk − 2EF|∂ky unk〉 fnk, (10)

when time-reversal symmetry breaking is weak, the total
magnetization Mtot is linearly proportional to the effective
symmetry breaking field, Beff. Express Beff = Beff T, where
Beff is the strength of the effective field Beff in Tesla (T). Our
numerical estimation finds that

Mtot = 2.4 Beff × 10−4μB/Vu.c., (11)

where μB/Vu.c. denotes Bohr magneton per volume of the
four-layer unit cell Vu.c., with Vu.c. = 2V2D unit cell. This pro-
vides an estimate of the strength of the weak FM order: for
the magnetization in the TRSB phase to be nondetectable by
a magnetometry device of sensitivity 10−10 T [14], the order
parameter cannot exceed Beff = 6×10−5 T.

IV. PAIRING CHANNELS: INTRALAYER
VERSUS INTERLAYER

As the resistivity near the transition temperature exhibits
BCS behavior with no substantial fluctuation regime [10], we
here seek a pairing state consistent with a weak coupling BCS
instability. This pairing is highly constrained by the Fermi sur-
face (FS) geometry and symmetry. To see this, it is convenient
to treat the layer index (H, H′) as a good quantum number. The
(↑, H) sector has a smaller, near circular, holelike FS and a
larger, hexagonal, electronlike FS, concentered at the K point
of the H-layer BZ. The (↓, H′) sector has similar FSs centered
at K of the H′-layer BZ, as shown in Fig. 3(b). The FSs from
the two sectors exactly coincide with each other. Similarly, the
other two sectors, (↑, H′) and (↓, H) have FSs centered at K ′.

This FS geometry suggests that the only two possible pair-
ing channels are

(↑, H, k) ↔ (↓, H,−k)︸ ︷︷ ︸
opposite spin, intralayer

or (↑, H, k) ↔ (↑, H′,−k)︸ ︷︷ ︸
equal spin, interlayer

. (12)

The former in Eq. (12) describes the TRS-preserving, con-
ventional BCS pairing. This channel is suppressed by the
breaking of TRS in the normal state: the chemical potentials
are different for the up and down spins, E↑ − E↓ �= 0, and
time-reversed electronic states are already energetically de-
tuned, disfavoring the spin-singlet BCS pairing. On the other
hand, the latter in Eq. (12) describes an inversion-symmetric,
spin-triplet pairing, which remains a good pairing channel
since inversion symmetry i is unbroken in the normal state.
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This is a simple argument in favor of interlayer superconduc-
tivity in 4Hb-TaS2.

Furthermore, we argue that fluctuations of the TRSB order
parameter φ can mediate this pairing. The effective action that
couples the fluctuations of φ to the low-energy electrons is

S = χ−1φ2 + φ(nH,↑ − nH,↓ + nH′,↑ − nH′,↓), (13)

where χ > 0 is the susceptibility for φ, and n�,σ denotes
the electron number density for layer � and spin σ . Upon
integrating out φ one gets

Seff ∼ −χ (nH,↑ − nH,↓ + nH′,↑ − nH′,↓)2. (14)

It contains the term −χnH,↑nH′,↑, which is attractive when
decoupled in the spin-triplet intralayer pairing channel, and
the term χnH,↑nH,↓, which is repulsive in the conventional
BCS channel. Therefore the only possible pairing favored by
the fluctuations of φ is the interlayer spin-triplet pairing.

V. SYMMETRY OF THE INTERLAYER PAIRING

A. Summary of main points

We now characterize the proposed interlayer spin-triplet
pairing states using lattice symmetries. The point group sym-
metry D6h of the paramagnetic normal state is broken down
to C6h by the FM order. The interlayer, equal-spin pairing
is necessarily symmetric in the spin channel, and gives an
antisymmetric orbital wave function living in the odd-parity
irreps of C6h. Furthermore, the pairing intrinsically involves
different momentum layers in the 3D BZ: denote 
HH′ (
H′H)
as the pairing between H (H′) and the adjacent H′ (H) layer
above it, 
HH′ and 
H′H are related by the twofold rotation
c2 in C6h (strictly speaking, the twofold screw). Depending on
the eigenvalue of c2 being ±1, we have 
HH′ = ±
H′H, and
the gap has maximum amplitude (horizontal line node) on the
kz = 0 or kz = π respectively (kz = π or kz = 0) plane in the
3D BZ. As we argue below, a single bilayer setup retains the
essential feature of the interlayer pairing function obtained
from a complete 3D pairing symmetry analysis. In this case

HH′ carries the irrep of S6, generated by inversion and c3, and
is fully characterized by a function in the 2D momentum plane
k = (kx, ky). The full 3D gap function can be easily recovered
from 
HH′ on the plane of maximum gap.

B. Interlayer pairing in a bilayer system

Here we discuss the symmetry classification of the gap
function. Recall that normal state Hamiltonian H0 preserves
the full point group symmetry D6h = 〈c3, mx, mz, i〉. Let
σ 0,1,2,3 denote the Pauli matrices for the spin space ↑,↓ and
μ0,1,2,3 denote those for the layer space H and H′. The most
general pairing is written as

Hpairng =
∑

k

c†
k
(k)(c†

−k)T , (15)

with

c†
k = (c†

k,↑,H, c†
k,↑,H′ , c†

k,↓,H, c†
k,↓,H′ ). (16)

Here c†
k is the creation operator for the lowest electronic band

where the Fermi energy lies, and


(k) =
∑

a=0,x,y,z

(ψa(k)(iσ y) + da(k) · σ(iσ y)) ⊗ μa, (17)

ψa(k) and da = (dx
a (k), dy

a (k), dz
a(k)), a = 0, 1, 2, 3 are any

complex functions of k to be constrained below.
Fermion anticommutation relation imposes the parity con-

dition 
(k) = −
T (−k), or

ψ0(k) = ψ0(−k), ψ1(k) = ψ1(−k),

ψ2(k) = −ψ2(−k), ψ3(k) = ψ3(−k),

d0(k) = −d0(−k), d1(k) = −d1(−k),

d2(k) = d2(−k), d3(k) = −d3(−k). (18)

Since we will be interested in the interlayer, spin triplet
channels |↑H 〉|↑H′ 〉 and |↓H 〉|↓H′ 〉, the relevant pairing
functions to be considered are dx

1 (k), dy
1 (k), dx

2 (k), and dy
2 (k).

Explicitly, the relevant pairing terms are (suppressing the mo-
mentum dependence of dx,y

1,2)


interlayer,↑ =
∑

k

(− dx
1 + idy

1 + dy
2 + idx

2

)
c†

k,H,↑c†
−k,H′,↑

+
∑

k

(− dx
1 + idy

1 − dy
2 − idx

2

)
c†

k,H′,↑c†
−k,H,↑,

(19a)


interlayer,↓ =
∑

k

(
dx

1 + idy
1 + dy

2 − idx
2

)
c†

k,H,↓c†
−k,H′,↓

+
∑

k

(
dx

1 + idy
1 − dy

2 + idx
2

)
c†

k,H′,↓c†
−k,H,↓.

(19b)

Treating layer index as another pseudospin index,1 we see that
dx,y

1 (k) produces the spin-triplet, layer triplet pairing, while
dx,y

2 (k) produces the spin-triplet, layer-singlet pairing. This
implies that d1(k) is an odd function of momentum in the
spin-layer space while d2(k) is an even function momentum
in the spin-layer space.

Now let us examine how d1,2 transform under elements of
the point group D6h. Write

d1 = dx
1 (k)x̂ + dy

1 (k)ŷ, (20a)

d2 = dx
2 (k)α̂ + dy

2 (k)β̂, (20b)

where the basis function x̂ (ŷ) denotes the layer-triplet, spin-
triplet (layer-triplet, spin-singlet) wave function, while α̂

(β̂) denotes the layer-singlet, spin-triplet (layer-triplet, spin-
singlet) wave function. We have turned off the dz component
as it gives the spin-mixing channel |↑↓〉 + |↓↑〉 that is irrel-
evant for us purposes. The following transformation rule can
derived from that of the electron creation operators:

i: d1(k) → d1(−k), d2(k) → −d2(−k), (21a)

c3: d1,2(k) → R2Dd1,2
(
c−1

3 (k)
)
, (21b)

1We will comment on the validity of treating the layer index as a
pseudospin index in Sec. V C.
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where R2D =
(− 1

2 −
√

3
2√

3
2 − 1

2

)
is the usual SO(2) rotation matrix

for c3. The transformation under mx and mz can be obtained in
a similar manner. Importantly, we see that

i: x̂, ŷ → x̂, ŷ, α, β̂ → −α̂,−β̂, (22)

in other words, the basis vectors α̂, β̂ transform as (polar) vec-
tors, while the basis vectors x̂, ŷ transform as pseudovectors.
These rules allow us to construct the basis functions for the
pairing functions d1,2.

C. Interlayer pairing in the 3D bulk

The bulk 4Hb-TaS2 contains multiple layers and a 3D
treatment of the pairing functions is warranted. Below we
outline this analysis. To start with, we absorb the layer index
into momentum. We temporarily suppress spin indices for
simplicity; the spin indices can be easily restored (see below).
We define a new version of Fourier transform that includes
both the H and H′ layers as

c†
r,�,H = 1√

2N

∑
k,kz

e
−i(k·r+kz2�c 1

2
)
c†

k,kz
, (23a)

c†
r,�,H′ = 1√

2N

∑
k,kz

e
−i(k·r+kz (2�+1)c 1

2 c†
k,kz

, (23b)

where k = (kx, ky) is the 2D momentum, and kz ∈
[
− π

c 1
2

, π
c 1

2

]
,

where c = 2c 1
2

is the distance between two H layers, while
c 1

2
is the distance between adjacent H and H′ layers. Under

this definition, the in-plane gap function 
12(k) and 
21(k)
acquires kz dependence∑

�


12c†
k,�,Hc†

−k,�,H′ + 
21c†
k,�,H′c

†
−k,�+1,H + H.c.

=
∑

kz

(
12e
−ikzc 1

2 + 
21e
ikzc 1

2 )c†
k,kz

c†
−k,−kz

+ H.c., (24)

Let us now examine how the gap functions transform under
the layer pseudospin index. According to Eqs. (23), inter-
changing layer indices H ↔ H′ amounts to multiplying by a

phase c†
k,kz

→ e
ikzc 1

2 c†
k,kz

. This phase multiplication obviously
leaves Eq. (24) unchanged, meaning that absorbing the layer
indices into momentum will only retain the channels that are
symmetric in the layer pseudospins (i.e., layer pseudospin
triplet), in contrast to the more general treatment in Eq. (17).
The retaining of only symmetric channels in the layer indices
makes sense, since the layer indices are spatially locked with
momentum and is strictly speaking not an independent inter-
nal degree of freedom (had the two layers sit on top each other
without any spatial displacement the layer index would have
been a genuine free index).

Now, we further define

d1(k, kz ) = (
12(k) + 
21(k)) cos kzc 1
2
, (25a)

d2(k, kz ) = i(−
12(k) + 
21(k)) sin kzc 1
2
, (25b)

upon restoring spin indices d → (ψ, d ), the above d1 → d1

and d2 → d2 correspond to the vectors d1,2 in Eq. (20).

Fermion anticommutation relation requires that


12(k, kz )e
−ikzc 1

2 + 
21(k, kz )e
ikzc 1

2

= −
12(−k,−kz )e
ikzc 1

2 + 
21(−k,−kz )e
−ikzc 1

2 . (26)

If 
12 and 
21 do not depend on kz, then we must have

21(k) = −
12(−k).

Under the twofold screw s2 (denoted as c2 in the point
group notation), we have

c2: d1(k, kz ) → d1(−k, kz ), d2(k, kz ) → −d2(−k, kz ),

(27)

this means that d1 and d2 transform under the even and odd
irreps of c2, respectively.

The superconducting state results from a ferromagnetically
ordered state. Such a state has point group symmetry C6h,
generated by c3, i, and c2. The lattice basis functions corre-
sponding to different irreps of C6h are given in Table I.

The above symmetry analysis classifies the gap function d
but is not valid for the pairing function 
12(k), because the
operation c2 transforms 
12(k) to 
21(−k). In fact, a single

12(k) transforms to itself only under c3 and i, hence 
12(k)
itself is classified by the symmetry group S6 generated by c3

and i. The irreps of d can be easily recovered from those of

12(k) by further specifying the character of c2 (being ±1,
which further specifies the dominant kz momentum plane on
which the gap function amplitude is maximal). The classifica-
tion of basis functions for 
12 is given in Table II.

D. Relation between a 2D gap function and a 3D gap function

The above analysis shows that the gap function 
12(k, kz )
is intrinsically 3D and is dominant on the kz = 0 or kz = π

layers. While a complete analysis of superconductivity should
involve the full 3D BZ, below we justify the calculation in a
2D BZ layer. This will allow us to study the magnetization
in the superconducting state with an approximate 2D gap
function 
k,↑ on a 2D BZ in the next sections.

The gap function 
12 always lives in the odd parity rep-
resentations. As Table II suggests, the winding of a single
Fermi surface is enough to specify whether it lives on the
kz = 0 or the kz = π plane in the 3D BZ. For example, if
gap winding on the inner and outer Fermi surfaces differ by
multiples of 12π , then both lives on the same kz plane in the
3D BZ; otherwise, the gap winding on the inner and outer
Fermi surfaces must differ by a multiples of ±3π , ±9π and so
on, and one of the will live in the kz = 0 plane while the other
on the kz = π plane. However, as the orbital magnetization
receives contributed mainly from the vicinity of the FSs, we
can “superpose” the kz = 0 and kz = π planes to get a single
2D BZ, and the calculation of magnetization on this plane
should match that of a full 3D calculation. For this reason,
we have been using a 2D model in the main text and the
sections above, treating the layer indices H and H′ as internal
indices. The calculated magnetization should be understood
as the result for a full 3D magnetization (i.e., averaged over
the momentum planes indexed by kz).

As a side comment, when the gap function lives on kz =
π plane, the kz = 0 plane remains metallic with a nodal line
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TABLE I. Table for the lowest order basis functions for irreps of C6h = 〈c3, i, c2〉 = 〈c3, i, mz〉. The representative elements in the table are
c3 and c2 = i ◦ mz. We defined x̂± = x̂ ± iŷ, K+ = ∑

j ω
j sin k · e j , K− = ∑

j (ω
j )∗ sin k · e j , K2

+ = ∑
j (ω

j )∗ cos k · e j , K2
− = ∑

j ω
j cos k · e j ,

where j = 0, 1, 2, ω = ei 2π
3 , e0 = (1, 0), e1 = (− 1

2 ,
√

3
2 ), and e2 = (− 1

2 , −
√

3
2 ). Note at small momentum, K± ∼ k± ≡ kx ± iky, and K2

± ∼ k2
±.

The vertical lattice constant is set to unity.

C6h Character Basis function for interlayer |↑ ↑〉 channel Basis function for interlayer | ↓↓〉 channel

Irrep c3 c2 (dx − idy )x̂+ (dx + idy )x̂−
Ag +1 +1 K2

+ cos kz
2 x̂+ K2

− cos kz
2 x̂−

Bg +1 −1 K− sin kz
2 x̂+ K+ sin kz

2 x̂−
E1g −1 −2 K+ sin kz

2 x̂+, K3
− sin kz

2 x̂+ K− sin kz
2 x̂−, K3

+ sin kz
2 x̂−

E2g −1 +2 cos kz
2 x̂+, K2

− cos kz
2 x̂+ cos kz

2 x̂−, K2
+ cos kz

2 x̂−
Au +1 +1 K− cos kz

2 x̂+ K+ cos kz
2 x̂−

Bu +1 −1 K2
+ sin kz

2 x̂+ K2
− sin kz

2 x̂−
E1u −1 −2 sin kz

2 x̂+, K2
− sin kz

2 x̂+ sin kz
2 x̂−, K2

+ sin kz
2 x̂−

E2u −1 +2 K+ cos kz
2 x̂+, K3

− cos kz
2 x̂+ K− cos kz

2 x̂−, K3
+ cos kz

2 x̂−

Fermi surface, yet this nodal line structure may be gapped out
by an interlayer tunneling and an intralayer pairing.

VI. PHYSICAL CONSEQUENCES
OF THE INTERLAYER PAIRING

A. Topology

Denote the pairing gap function between H and the adja-
cent H′ layer above it as


k,↑ = 〈c†
k,H,↑c†

−k,H′,↑〉. (28)

Due to the breaking of TRS, all the irreps of S6 become
one-dimensional and allow chiral Ansätze in the equal-spin-up
channels. Due to the discrete rotation c3, the orbital angular
momentum carried by 
k,↑ is defined modulo 3. Equivalently,
the gap windings on the inner and outer FSs centered at K
can only differ by multiples of 6π . Furthermore, this winding
difference, or the total gap winding upon including the sign
+/− for electron-/hole-like FSs, exactly defines the (gauge
invariant) Chern number cBdG for the Bogoliubov-de Gennes
(BdG) bands. From this we conclude that the BdG Chern
number can only be multiples of 3.

To illustrate the above claims, we perform a microscopic
calculation by solving the BCS mean-field equation for the
interlayer pairing gap function (see Appendix D for more
detail)


k,↑ = −
∫

d2k′

(2π )2
Vk−k′ 〈uk,↑,H|uk′,↑,H〉2 tanh εk′

2T

2εk′

k′,↑, (29)

here |uk,↑,H〉 is the normal state Bloch wave function for spin
↑ and layer H, εk is the dispersion of the Bogoliubov quasi-
particles, and we assumed for simplicity a constant attractive
interaction Vk = V < 0. The solution is shown in Fig. 4(b).
This Ansatz lives in the Eu irrep of S6 and has a −4π winding
on both the inner and outer FSs, but has a vanishing Chern
number, cBdG = 0.

B. Unpaired minority component

A direct consequence of the interlayer spin-polarized pair-
ing is that the other spin component remains unpaired and
forms a gapless FS below Tc. This can be understood from
a Landau free energy analysis. Denote the real space, coarse
grained interlayer spin-polarized pairing order parameters as

σ . At the quadratic level, the allowed terms are

F2 =
∑

σ

rσ |
σ |2, (30)

where r↑ and r↓ are generally different because TRS is already
broken in the normal state. As a consequence the critical
temperatures for pairing of the two spin components Tc↑ and
Tc↓ are also different. Note that there is no proximity cou-
pling between the paired and unpaired components because
the crossterm 
↑
∗

↓ is forbidden due to spin-Sz conservation.
Therefore the unpaired spin component remains gapless be-
tween the upper and lower critical temperatures.

The prediction of two transition temperatures raises a
possible discrepancy between this theory and experimental

TABLE II. Table for the lowest order basis functions for irreps of S6 = 〈c3, i〉. We defined k± ≡ kx ± iky. The vertical lattice constant is set
to unity.

S6 Character Basis function for interlayer |↑↑〉 channel Basis function for interlayer | ↓↓〉 channel

Irrep c3 
12(k, kz )x̂+ 
12(k, kz )x̂−
Ag +1 K2

+ cos kz
2 x̂+, K− sin kz

2 x̂+ K2
− cos kz

2 x̂−, K+ sin kz
2 x̂−

Eg −1 K+ sin kz
2 x̂+, K3

− sin kz
2 x̂+, K2

− cos kz
2 x̂+, cos kz

2 x̂+ K− sin kz
2 x̂−, K3

+ sin kz
2 x̂−, K2

+ cos kz
2 x̂−, cos kz

2 x̂−
Au +1 K− cos kz

2 x̂+, K2
+ sin kz

2 x̂+ K+ cos kz
2 x̂−, K2

− sin kz
2 x̂−

Eu −1 sin kz
2 x̂+, K2

− sin kz
2 x̂+, K3

+ cos kz
2 x̂+, K+ cos kz

2 sin kz
2 x̂−, K2

+ sin kz
2 x̂−, K3

− cos kz
2 x̂−, K− cos kz

2
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FIG. 4. (a) Illustration of the real space, NN interlayer pairing
between layers H and H′. (b) The gap function 
 for the cBdG = 0
Ansatz. The upper (lower) panel shows the amplitude (phase) of 


on both the inner and outer FSs. The solid lines are solved from
Eq. (29) and the dashed lines are obtained from a NN interlayer
pairing Ansatz as a lattice approximation. The gap minimum is set
to the experimental value 0.44 meV [8].

observations. Since the breaking of TRS in the normal state
is assumed to be weak, one might expect it would lead to
only a small difference between the two critical temperatures.
However, experiments have not observed the lower transi-
tion temperature down to 0.5 K [10].2 The discrepancy may
be resolved by considering the quartic terms of the Landau
energy:

F4 = u(|
↑|4 + |
↓|4) + v|
↑|2|
↓|2. (31)

While u is a property of the electronic band structure, the other
coefficient v ∝ χ2 is proportional to the square of the chiral
susceptibility χ (see Appendix D for derivation). When the
fluctuations of φ are sufficiently strong such that v > 2u >

0, a total suppression of the minority spin pairing can be
achieved.

2It is worth noting that there may be an anomalously wide sepa-
ration between the two transition temperatures even at the quadratic
level because the bands are close to a Van Hove singularity. In a
weakly ferromagnetic state, the majority component gets closer to it,
while the minority gets further, which can lead to a sizable difference
even for small magnetization.

VII. MAGNETIZATION IN THE SUPERCONDUCTING
STATE

Having discussed general features of the interlayer pairing
states we now come to the central discussion of how and to
what extent such pairing amplifies the normal state magneti-
zation. To this end, we derive in Appendix E expressions for
the magnetization in the interlayer pairing state. Importantly,
the orbital magnetization explicitly contains a Berry curva-
ture contribution, which traces back to the orbital angular
momentum of the pairing state (A similar relation is known
for the normal state [15]). One consequence is that a nonzero
cBdG enhances orbital magnetization, as we will show in detail
below.

A. Magnetization in the interlayer pairing state

The bulk magnetization consists of three parts:

Mz = Mz
orb,t-b + Mz

orb,atom + Mz
spin, (32)

where the last two terms are the atomic angular momentum
and atomic spin contribution to the magnetization, which can
be unambiguously written as

Mz
orb,atom = − μB

V2D unit cell
ReTr

[∫
BZ

d2k

(2π )2
U †

BdG

(
Lz 0
0 −Lz

)
×
(

[UBdG]1:3 fk

[UBdG]4:6(1 − fk)

)]
, (33)

Mz
spin = gs

2

μB

V2D unit cell
ReTr

×
[∫

BZ

d2k

(2π )2
U †

BdG

(
[UBdG]1:3 fk

[UBdG]4:6(1 − fk)

)]
, (34)

where UBdG diagonalizes the Hamiltonian

HBdG(k) = UBdG(k)EkU †
BdG(k), (35)

fk = f (Ek) is Fermi-Dirac distribution (now a diagonal ma-
trix), and [UBdG]1:3 denotes the first three rows of UBdG.

The first term in Eq. (32), Mz
orb,t-b, denotes the orbital mag-

netization due to hopping and pairing. It has the form

Mz
orb,t-b = e

h̄
ImTr

[∫
BZ

d2k

(2π )2
∂kU †

BdG × (E16×6 + HBdG|
=0)

×
(

∂k[UBdG]1:3,: f:,k

∂k[UBdG]4:6,:(1 − f:,k)

)]
. (36)

B. Candidate pairing Ansätze

Now we analyze the pairing in real space. We assume equal
spin, interlayer pairing, i.e., the pairing is only between the
same spin species of the H layer and the H′ layer. For the rest
of this section, we will focus on the spin up sector and quite
often we will omit the spin index σ =↑.

Hpairing,↑ =
∑
r,δ

(d†
z2,↑,r,H, d†

xy,↑,r,H, d†
x2−y2,↑,r,H)
δ

×

⎛⎜⎜⎝
d†

z2,↑,r+δ,H′

d†
xy,↑,r+δ,H′

d†
x2−y2,↑,r+δ,H′

⎞⎟⎟⎠+ H.c., (37)
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where 
δ is a 3×3 matrix denoting the δ-neighbor pairing in
the orbital space. We model 
δ phenomenologically by the
following Ansatz:


vert = 03×3, 
U1 = [
1]3
i, j=1, 
U4 = [
2]3

i, j=1, (38)

and the other four nearest-neighbor pairing matrices are re-
lated to 
U1 and 
U4 by (see Fig. 4 for the definition of the
bonds Ui)


U6 = ei 2π
3 RT 
U4 R, 
U2 = e−i 2π

3 R
U4 RT ,


U3 = ei 2π
3 RT 
U1 R, 
U5 = e−i 2π

3 R
U1 RT . (39)

The BdG Hamiltonian reads

HBdG,↑ = HH,↑ + HH′,↑ + Hpairing,↑

=
∑

k

(
d†

k,↑,H, dT
−k,↑,H′

)
HBdG(k)

(
cdk,↑,H

(d†
−k,↑,H′ )T

)
, (40)

where we defined the Hamiltonian matrix

HBdG(k) =
(

HH(k) 
orb(k)

(
orb(k))† −HT
H(k)

)
(41)

with the help of Eq. (7). 
orb(k) is the pairing matrix in
momentum space which we keep only up to nearest-neighbor

bonds and has the form


orb(k) = 
vert +
6∑

i=1


Ui e
ik·δi , (42)

where δi are the six nearest-neighbor bonds.
We project 
orb

k to the lowest band to obtain the gap func-
tion of that band, 
(k):


(k) = u†
k,H
orb(k)u∗

−k,H′ = u†
k,H
orb(k)u∗

k,H, (43)

where we have made use of the inversion symmetry for the
normal state wave function uk,H = u−k,H′ . The relation (43)
established the connection between our effective theory and
the microscopic orbital pairing in the lattice. The symmetry
properties of the BdG Hamiltonian will be discussed in the
next section.

The simplest Ansätze with pairing along a vertical bond be-
tween H and H′ always give cBdG = 0 (two Ansätze with only
vertical pairings 
vert are given in Appendix. G). As we will
be focusing on the relation between magnetization and cBdG,
we wish to obtain Ansätze with nonzero Chern numbers of
±3. To find them, we consider Ansätze with nearest-neighbor
(NN) interlayer pairing as sketched in Fig. 4(a). Furthermore,
we construct a NN Ansatz that closely approximates the solu-
tion of Eq. (29), see Fig. 4(b). We thus obtain three Ansätze
with distinct Chern numbers cBdG = 0,±3:

(i) A cBdG = 0 Ansatz:


1 =
⎛⎝−0.008 + 0.010i 0 0

0 −0.035 − 0.039i −0.033 − 0.009i
0 −0.033 − 0.009i −0.034 + 0.018i

⎞⎠,


2 =
⎛⎝−0.003 − 0.021i 0 0

0 −0.023 + 0.061i 0.039 − 0.018i
0 0.039 − 0.018i −0.049 − 0.017i

⎞⎠. (44)

(ii) A cBdG = 3 Ansatz:


1 =
⎛⎝−0.932 − 1.258i −0.852 − 0.992i 0.02 − 0.687i

0.846 − 1.401i 0.248 − 0.20i −0.552 − 2.172i
0.396 − 0.707i 0.202 + 1.598i 0.472 + 0.065i

⎞⎠,


2 =
⎛⎝ 0.389 − 0.334i −1.076 + 0.292i 0.107 − 1.187i

−0.002 − 0.706i 1.089 + 0.653i 0.798 + 1.933 j
−0.468 + 1.421i 0.09 − 0.151i −1.435 − 0.928i

⎞⎠. (45)

(iii) A cBdG = −3 Ansatz:


1 =
⎛⎝−0.566 + 1.234i −0.021 + 0.600i −0.921 + 0.495i

0.577 + 0.857i −0.098 + 0.714i −0.417 − 0.621i
−0.484 + 1.283i −2.129 − 0.199i −0.0161 − 0.378i

⎞⎠,


2 =
⎛⎝−0.447 − 0.067i 1.404 − 2.184i −0.342 − 0.755i

−0.644 + 0.247i −0.472 + 0.655i 1.560 + 1.105i
0.021 + 0.256i −1.640 + 0.348i −0.612 + 1.650i

⎞⎠. (46)

Their Berry curvatures in the BZ are plotted in Fig. 5.
In the next section, we use the derived magnetization

formula to calculate the magnetization of the above three
interlayer pairing Ansätze.

C. Numerical results for magnetization

In Fig. 6, we plot the magnetization as a function of the
effective Zeeman energy splitting E↑ − E↓ induced by the
TRSB order parameter φ for the three NN Ansätze men-

024502-8



MAGNETIZATION AMPLIFICATION IN THE INTERLAYER … PHYSICAL REVIEW B 110, 024502 (2024)

FIG. 5. Berry curvature for the three Ansatze with cBdG = +3, 0, −3.

tioned above. All three exhibit a jump in the magnetization

M when E↑ − E↓ crosses zero. Only the cBdG = +3 state
gives a positive, paramagnetic jump in magnetization, while
both the cBdG = 0,−3 Ansätze give a negative (diamagnetic)
jump. Comparison with the experimental hysteresis curve in
Fig. 1 points at the cBdG = +3 Ansatz as the most promis-
ing candidate of the three Ansätze. Encouragingly, the jump
is of the same order of magnitude as the remnant field
deduced experimentally, MSC,exp = 2.28×10−4μB/Vu.c. (red
dots in Fig. 6) [1].

Further remarks on magnetization are in order. We notice
from Fig. 6 that the size of the hysteresis jump is approxi-
mately proportional to cBdG, consistent with the understanding
that a nonzero cBdG enhances the orbital magnetization, and
further suggests that the orbital magnetization is the leading
contribution to the total magnetization. However, we point
out that the precise relation between the gap winding and
the magnetization is not straightforward, as several factors

FIG. 6. Magnetization in the normal state (dashed line) and in
the interlayer pairing Ansätze (solid lines) with a gap of 0.44 meV.
The three pairing Ansätze have BdG Chern numbers +3, 0, and −3.
The lower and upper horizontal axes are related by E↑ − E↓ = μBBeff

[see the discussion above Eq. (11)]. The two red dots denote the
remnant magnetization inferred from the experiment [1]. (Inset)
Magnetization as a function of the gap size for the three pairing
Ansätze. All calculations performed at T = 2 K.

(such as the gap sizes on the inner and outer FSs and tem-
perature) can affect the magnetization, even for a given gap
winding. As an illustration to this caveat, we plot in the inset
of Fig. 6 the magnetization as a function of gap size at an
infinitesimal field, and point out that the cBdG = −3 Ansatz
can still have a positive magnetization at very small gap. Nev-
ertheless, for the experimentally relevant temperature and gap
size, the orbital magnetization is the leading contribution for
large gap winding and the expected relation between the total
gap winding and hysteresis jump holds (see Appendix F 2).
Combining the numerical results of cBdG and magnetization,
we present the following picture for understanding the exper-
imental observations on 4Hb-TaS2: if the 1H and 1H′ layers
are in an interlayer spin-triplet pairing state with cBdG = 3,
and a large imbalance between the number of spin-up and
spin-down Cooper pairs exists, an amplified magnetization
can appear due to the excessive angular momentum carried
by the majority spin Cooper pair.

VIII. CONCLUSION AND DISCUSSION

In conclusion, we have formulated a phenomenological
theory to understand the puzzling appearance of spontaneous
vortices in 4Hb-TaS2. Assuming that a weak FM order devel-
ops in the normal state, we showed that a weak coupling BCS
instability exists in the interlayer, spin-polarized pairing chan-
nel. The breaking of TRS results in imbalance in the spin-up
and spin-down pairings, and a total suppression of the minor-
ity spin pairing may be achieved, consistent with a single Tc

observed in experiment. The angular momentum carried by
the majority spin Cooper pair naturally enhances the magneti-
zation and explains the appearance of spontaneous vortices in
the superconducting phase. Our proposal of interlayer, spin-
polarized pairing in a single spin component for 4Hb-TaS2

is quite different from previous proposals [12,16,17]. Our
proposed pairing state can be verified in a spin-polarized STM
experiment [18], in which a gap should be observed only
in one spin component, but not in the other. We note that
such a “partial gap” structure has been observed in a spin-
unpolarized STM experiment [8]. More generally, our theory
suggests a novel type of FM superconductor and could be
relevant to a large family of centrosymmetric compounds [19].

Finally, we mention a few predictions of our theory for
existing and future experiments.

First, we note that Tc = 2.7 K is consistently reported in
all experiments with or without a field training. It is plausible
that the superconductivity in 4Hb-TaS2 reported so far are
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all preceded by a TRSB state at higher temperature, and the
existence of multiple randomly oriented domains prohibits
macroscopic ferromagnetism, hence the unobserved magnetic
moment in the normal state.

Second, in our proposed pairing state, the unpaired mi-
nority FS exhibits a linear-in-temperature specific heat, in
agreement with existing experiment [10]. We note that the
specific heat reveals a ∼15% residual contribution in the
superconducting state [10] and two distinct superconducting
transitions are not observed down to 0.5 K. Here we point
out the possibility that superconductivity of the majority spin-
species can promote enhanced fluctuations or pseudo-gap-like
behavior for the minority spin-species.

Third, we have not specified the microscopic origin for
the TRSB order parameter φ. While the most natural inter-
pretation for φ is a FM order parameter, other interesting
possibilities (e.g., φ being the scalar spin chirality in a
CSL [1]) exist.
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APPENDIX A: LATTICE SYMMETRY

We set up the coordinates in such a way that x axis is paral-
lel to the bond R1 in Fig. 2. Denote the lattice constant (i.e., the
nearest neighbor bond distance) to be a. The origin is placed
on an inversion center on the 1T layer. The z periodicity is four
layers (1H’-1T-1H-1T), with a four-layer distance c. We have
a = 3.3381 Å and c = 23.728 Å [10]. The 4Hb-TaS2 has a
lattice symmetry of the No. 194 space group P63/mmc. The
point group is D6h of order 24, generated by

mz: (x, y, z) → (
x, y,± 1

2 − z
)
, (A1a)

mx: (x, y, z) → (−x, y, z), (A1b)

i: (x, y, z) → (−x,−y,−z), (A1c)

s2: (x, y, z) → (−x,−y, z + 1/2), (A1d)

c3: (x, y, z) →
(

− x

2
−

√
3

2
y,

√
3

2
x − 1

2
y, z

)
. (A1e)

Symmetry action on the tight-binding Hamiltonian in mo-
mentum space gives

mz: U †
mz
HH(k)Umz = HH(k), (A2a)

mx: U †
mx
HH(−kx, ky)Umx = HH(k), (A2b)

i: U †
i HH(−k)Ui = HH(k), (A2c)

c3: U †
c3
HH(c−1

3 (k))Uc3 = HH(k), (A2d)

T : σ yH∗
H(−k)σ y = HH(k), (A2e)

TABLE III. Values of hopping and onsite parameters (units:
meV) from Refs. [12,20].

t0 t1 t2 t11 t12 t22

−0.1917 0.4057 0.4367 0.2739 0.3608 −0.1845

r0 r1 r2 r11 r12 r22

0.0409 −0.069 0.0928 −0.0066 0.1116 0

u0 u1 u2 u11 u12 u22

0.0405 −0.0324 −0.0141 0.1205 −0.0316 −0.0778

ε0 ε1 ε2 μ0 λSO

1.6507 2.5703 2.5703 −0.0500 0.1713

with

Umz = (−iσ z ) ⊗ 13×3, (A3a)

Umx = (−iσ x ) ⊗ diag(1,−1, 1), (A3b)

Ui = 12×2 ⊗ 13×3, (A3c)

Uc3 = e−i π
3 σ z ⊗ R, (A3d)

UT = iσ y ⊗ K13×3, (A3e)

where

R ≡ e−i 2π
3 Lz =

⎛⎝1
−1/2 −√

3/2√
3/2 −1/2

⎞⎠ (A4)

is the unitary matrix for the threefold rotation c3.

APPENDIX B: TIGHT-BINDING HAMILTONIAN

In angular momentum basis |l, m〉 we have |dz2〉 = |2, 0〉,
|dx2−y2〉 = 1√

2
(|2, 2〉 + |2,−2〉) and |dxy〉 = − i√

2
(|2, 2〉 −

|2,−2〉). The angular momentum operators in the orbital
subspace (|dz2〉, |dxy〉, |dx2−y2〉) have the form

Lz =
⎛⎝0 0 0

0 0 2i
0 −2i 0

⎞⎠, Lx = Ly = 0. (B1)

The nearest, second nearest, and third nearest hopping ma-
trices are constrained by lattice symmetry to the form

R1 =
⎛⎝t0 −t1 t2

t1 t11 −t12

t2 t12 t22

⎞⎠,

S1 =

⎛⎜⎝ r0 r2 − r2√
3

r1 r11 r12

− r1√
3

r12 r11 + 2√
3
r12

⎞⎟⎠,

T1 =

⎛⎜⎝u0 −u1 u2

u1 u11 −u12

u2 u12 u22

⎞⎟⎠. (B2)

The tight-binding parameters are given in Table III. We have

Q2 = RQ†
1RT , Q3 = RT Q1R, Q4 = Q†

1,

Q5 = RQ1RT , Q6 = RT Q†
1R (B3)

for Qi = Ri, Si, Ti (i = 1, 2, . . . , 6).
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FIG. 7. Conjectured 2D phase diagram for 4Hb-TaS2.

Now we have c3 : dk → e−i 2π
3 Lz

e−i π
3 σ dc3(k) = e−i π

3 σ

Rdc3(k), and we choose the gauge such that unk = Run,c3(k),
therefore

c3: cnk → e−i π
3 σ cn,c3(k). (B4)

APPENDIX C: PROPOSED PHASE DIAGRAM

In the main text, we proposed a mechanism for the in-
terlayer spin-triplet pairing mediated by the fluctuation of
the TRSB/FM order parameter φ. The underlying assump-
tion for this mechanism is a two dimensional phase diagram
spanned by temperature and another tunable parameter (such
as doping, strain etc.), as shown in Fig. 7. We assume that
a quantum phase transition entering the FM phase happens
at T = 0 as the horizontal axis parameter is tuned, around
which the quantum fluctuation of the FM order is large; such
a phase transition is hidden inside the dome of the SC phase.
As a result, fluctuations of the order parameter φ may still be
strong as one approaches along a low temperature horizontal
path from the paramagnetic phase to the ferromagnetic phase.
This path is distinct from the vertical, ZFC path traced out
in the experiment, on which a FM order establishes at higher
temperature and the fluctuation of φ in the FM phase is small.

APPENDIX D: FURTHER DETAILS FOR THE GAP
EQUATION AND FREE ENERGY

To numerically solve the BCS mean-field equation for the
gap function, Eq. (3) in the main text, we linearize it by sub-
stituting the Bogoliubov quasiparticle energy εk by the normal
state quasiparticle energy Ek; near the FSs we further have
Ek = vkk⊥, where k⊥ = |k⊥| is the norm of the momentum
k⊥ orthogonal to the Fermi surface tangent, k‖. We also write
d2k = dk⊥dk‖. After integrating over k⊥ and introducing a
cutoff � (of the order of the Fermi energy), we get


k = −V log

(
�

Tc

)∫
FSs

dk′
‖

(2π )2vk′
(〈uk,↑,H|uk′,↑,H〉)2
k′ ,

(D1)

where Tc is the transition temperature to be extracted from the
solution of Eq. (D1). Clearly, Tc depends on the value of the
effective attraction V ; since we cannot estimate V due to lack

of enough experimental input, we will not attempt to extract
the transition temperature. Our focus will be on the symmetry
and topology of the gap function.

Equation (D1) is then solved as an eigensystem equation.
Define

Mk,k′ = −
√


k
k′

vkvk′
(〈uk,↑,H|uk′,↑,H〉)2, (D2)

which is a symmetric matrix whose rows and columns are la-
beled by discretized momentum k that runs over the two FSs.
The largest eigenvalue of M gives the gap solution: denote
the corresponding eigenvector as ak, then the gap function is
obtained as


k =
√

vk


k
ak. (D3)

The amplitude and phase of the solution 
k is plotted in
Fig. 3(b) in the main text.

The quartic terms in the Ginzburg-Landau free energy is
given in Eq. (31). Assuming a TRSB field φ that couples
the electrons as an effective Zeeman field, φ(n↑ − n↓), where
nσ is the electron density for spin σ , the quartic term v is
produced by the diagrams in Figs. 8(a) and 8(b), and the term
u by the diagram in Fig. 8(c). However, notice that in Fig. 8(a)
the TRSB field propagator carries zero momentum so this di-
agram gives a vanishing result. The diagram in Fig. 8(b) does
not have such a constraint on the TRSB field momentum q
and it serves as the lowest order diagram contributing to the v

term. One concludes that v ∝ χ2, where χ is the susceptibility
of the TRSB field φ.

APPENDIX E: DERIVATION OF MAGNETIZATION
FORMULA IN AN INTERLAYER

SUPERCONDUCTING STATE

For the unitary matrix UBdG(k) that diagonalizes the BdG
Hamiltonian in Eq. (35), we introduce the block notation

UBdG(k) =
(

[U11] [U12]
[U21] [U22]

)
. (E1)

We have

HBdG =
∑

k

(
3∑

i=1

εiγ
†
kiγki +

6∑
i=4

εiγ̃
†
kiγ̃ki

)
, (E2)

where (
γk

γ̃k

)
=
(

γk

(χ†
k )T

)
= U †

BdG

(
dk,↑,H

(d†
−k,↑,H′ )T

)
. (E3)

We have

unk(r) =
∑
R,�

eik·(R−r)un�(k)φ�R(r) =
∑

R

eik·(R−r)wnR(r),

(E4a)

wnR(r) =
∑
R′�

φ�R′ (r)
Vcell

(2π )3

∫
BZ

eik·(R′−R)un�(k)d3k, (E4b)

rwnR(r) = Vcell

(2π )3

∫
BZ

[((−i)∂k + R)eik·(r−R)]unk(r)d3k,

(E4c)
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FIG. 8. Feynman diagrams at quartic level. The wavy and solid lines represent the propagators for the chiral field φ and electrons,
respectively.

where φ�0 is a wave function for the atomic orbital �, and
un�(k) is the eigenvector; unk(r) is the Bloch wave function for
the nth band, and wnR(r) is the wave function for the Wannier
orbital centered at site R. Integrating Eq. (E4c) by parts gives

rwnR(r) = Vcell

(2π )3

∫
BZ

eik·(r−R)(R + i∂k)unk(r)d3k

= Vcell

(2π )3

∫
BZ

∑
R′,�

eik·(R′−R)(R − R′ + r + i∂k)

× un�(k)φ�R′ (r)d3k. (E5)

The second quantized angular momentum operator is defined
as

L̂z =
∫

drψ†(r)l̂zψ (r), (E6)

where the quantum field annihilation operator is defined as

ψ (r) =
∑

k

(
3∑

i=1

〈r|γ †
ki|0〉γki + 〈r|γki|0〉γ †

ki

+
6∑

i=4

〈r|γ̃ †
ki|0〉γ̃ki + 〈r|γ̃ki|0〉γ̃ †

ki

)
. (E7)

In the following, we first derive an expression for 〈L̂z〉 in terms
of the Wannier orbitals, and then convert to tight-binding
functions. Our derivation parallels that in Ref. [21]. We
have

〈L̂z〉 =
∑

k

∫
dr

3∑
i=1

〈0|γki|r〉l̂z〈r|γ †
ki|0〉 fi + 〈0|γ †

ki|r〉l̂z〈r|γki|0〉(1 − fi ) +
6∑

i=4

〈0|γ̃ki|r〉l̂z〈r|γ̃ †
ki|0〉 fi + 〈0|γ̃ †

ki|r〉l̂z〈r|γ̃ki|0〉(1 − fi )

=
∑

k

∫
dr

3∑
i=1

1

N

∑
R′,R

eik·(−R′+R)
3∑

j′, j=1

φ∗
R′,↑,H, j′ (r)[U11]∗j′i l̂

H
z φR,↑,H, j (r)[U11] ji fi

+
∑

k

∫
dr

3∑
i=1

1

N

∑
R′,R

eik·(R′−R)
3∑

j′, j=1

φR′,↑,H′, j′ (r)[U21] j′i l̂
H′
z φ∗

R,↑,H′, j (r)[U21]∗ji(1 − fi )

+
∑

k

∫
dr

3∑
i=1

1

N

∑
R′,R

eik·(−R′+R)
3∑

j′, j=1

φ∗
R′,↑,H, j′ (r)[U12]∗j′i l̂

H
z φR,↑,H, j (r)[U12] ji fi+3

+
∑

k

∫
dr

3∑
i=1

1

N

∑
R′,R

eik·(R′−R)
3∑

j′, j=1

φR′,↑,H′, j′ (r)[U22] j′i l̂
H′
z φ∗

R,↑,H′, j (r)[U22]∗ji(1 − fi+3)

=
∑

k

∫
dr

3∑
i=1

1

N

∑
R′,R

[eik·(−R′+R)[W 11]∗i,R′ (r)l̂z[W 11]i,R(r) fi + eik·(R′−R)[W 21]i,R′ (r)l̂z[W 21]∗i,R(r)(1 − fi )]

+
∑

k

∫
dr

3∑
i=1

1

N

∑
R′,R

[eik·(−R′+R)[W 12]∗i,R′ (r)l̂z[W 12]i,R(r) fi+3 + eik·(R′−R)[W 22]i,R′ (r)l̂z[W 22]∗i,R(r)(1 − fi+3)]

= L1 + L2, (E8)

where ni = ∑
k fi,k is the density. We used W to denote the Wannier orbitals. L1 and L2 comes from the decomposition of l̂z:

by definition l̂z = r×v = r×iĤ (r)r = (r − R)×iĤ (r)(r − R) + R×iĤ (r)(r − R), the two terms respectively define L1 and L2.
First, look at the first term: using Eq. (E5), we have (r − R)[W ](r) = Vcell

∫
BZ

d3k
(2π )3

∑
R′,� eik·(R′−R)(−R′ + r + i∂k)un�(k)φ�R′ (r),
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and

L1 = i
∑

k

∫
dr
∑
i, j′, j

1

N

∑
R′,R,R′

1,R1

V 2
cell

∫
BZ

d3k1

(2π )3
e−ik·R′

e−ik′
1·(R′

1−R′ )(−R′
1 + r − i∂k′

1
)[U11]∗j′i(k

′
1)φ∗

R′
1,↑,H, j′ (r)

× HH(r)
∫

BZ

d3k1

(2π )3
eik·Reik1·(R1−R)(−R1 + r + i∂k1 )[U11] ji(k1)φR1,↑,H, j (r) fik

+ i
∑

k

∫
dr

∑
i, j′, j′

1

N

∑
R′,R,R′

1,R1

V 2
cell

∫
BZ

d3k′
1

(2π )3
eik·R′

eik′
1·(R′

1−R′ )(−R′
1 + r + i∂k′

1
)[U21] j′i(k

′
1)φ∗

R′
1,↑,H′, j′ (r)

× HH′ (r)
∫

BZ

d3k1

(2π )3
e−ik·Re−ik1·(R1−R)(−R′

1 + r − i∂k1 )[U21]∗ji(k1)φR1,↑,H′, j′ (r)(1 − fik) + · · · , (E9)

now the sums over R and R′ can be done, which makes k = k1 = k′
1. About overall factor: note that 1

N

∑
k → Vcell

∫
d3k

(2π )3 which

can be easily verified. So writing all the integral over k as sum, we have 1
N3 . The sum over R gives one N factor, and so does the

sum over R′, so we are left with 1
N

∑
k → Vcell

∫
d3k

(2π )3 . For convenience, we denote∫
r,R,R′,k,i, j′, j

≡
∫

dr
∑
i, j′, j

∑
R′,R

Vcell

∫
BZ

d3k

(2π )3
, (E10)

We rewrite L1:

L1 = i
∫

r,R,R′,k,i, j′, j
eik·(R−R′ )(−R′ + r)[U11]∗j′i(k)φ∗

R′,↑,H, j′ (r) × HH(r)(−R + r)[U11] ji(k)φR,↑,H, j (r) fik

+ i
∫

r,R,R′,k,i, j′, j
eik·(R−R′ )∂k[U11]∗j′i(k)φ∗

R′,↑,H, j′ (r) × HH(r)∂k[U11] ji(k)φR,↑,H, j (r) fik

+ i
∫

r,R,R′,k,i, j′, j
eik·(R′−R)(−R′ + r)[U21] j′i(k)φR′,↑,H′, j′ (r) × HH′ (r)(−R + r)[U21]∗ji(k)φ∗

R,↑,H′, j (r)(1 − fik)

+ i
∫

r,R,R′,k,i, j′, j
eik·(R′−R)∂k[U21] j′i(k)φR′,↑,H′, j′ (r) × HH′ (r)∂k[U21]∗ji(k)φ∗

R,↑,H′, j (r)(1 − fik) + · · · , (E11)

the first (and the third...) line gives the atomic angular momentum (and this sets R − R′) while the second (and the fourth...) line
gives the Bloch angular momentum. Carrying out the integral over r gives:∑

R′,R

eik·(R−R′ )
∫

drφ∗
R′,↑,H, j′ (r) × HH(r)φR,↑,H, j (r) =

∑
R′,R

∫
eik·(R−R′ )[HH,R′,R] j′, j = HH(k) j′, j,

∑
R′,R

eik·(R′−R)
∫

drφR′,↑,H, j′ (r) × HH′ (r)φ∗
R,↑,H, j (r) =

∑
R′,R

∫
eik·(R′−R)[HH′,R′,R] j′, j = HH′ (−k) j′, j,

where we have used the fact that all the φ j are real (they are dxy, dx2−y2 and dz2 orbitals). Therefore we have

L1 =
∑
i, j′, j

Vcell

∫
BZ

d3k

(2π )3
{[U11]∗j′i(k)lH

j′ j[U11] ji(k) + i∂k[U11]∗j′i(k) × HH(k) j′ j∂k[U11]′i(k)} fik

+
∑
i, j′, j

Vcell

∫
BZ

d3k

(2π )3
{[U21] j′i(k)lH′

j′ j[U21]∗ji(k) + i∂k[U21] j′i(k) × HH′ (−k) j′ j∂k[U21]∗ji(k)}(1 − fik) + . . .

=
∑
i, j′, j

Vcell

∫
BZ

d3k

(2π )3
{[U11]∗j′i(k)l j′ j[U11] ji(k) + i∂k[U11]∗j′i(k) × HH(k) j′ j∂k[U11]′i(k)} fik

+
∑
i, j′, j

Vcell

∫
BZ

d3k

(2π )3
{−[U21]∗j′i(k)l j′ j[U21] ji(k) − i∂k[U21]∗j′i(k) × HT

H (k) j′ j∂k[U21] ji(k)}(1 − fik)
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+
∑
i, j′, j

Vcell

∫
BZ

d3k

(2π )3
{[U12]∗j′i(k)l j′ j[U12] ji(k) + i∂k[U12]∗j′i(k) × HH(k) j′ j∂k[U12] ji(k)} fi+3,k

+
∑
i, j′, j

Vcell

∫
BZ

d3k

(2π )3
{−[U22]∗j′i(k)l j′ j[U22] ji(k) − i∂k[U22]∗j′i(k) × HT

H (k) j′ j∂k[U22] ji(k)}(1 − fi+3,k ). (E12)

We write the above as

L1 = Vcell

∫
d3k

(2π )3
U †

BdG(12×2 ⊗ l )UBdG + i∂kU †
BdG

(
HH(k)

−HT
H(k)

)(
∂k[U11](k) f1:3,k ∂k[U12](k) f4:6,k

∂k[U21](k)(1 − f1:3,k ) ∂k[U22](k)(1 − f4:6, k)

)
,

(E13)

where l is the 3×3 matrix in the orbital basis, and UBdG = UBdG(k). Then, note that magnetization is proportional to charge times
angular momentum, so we define MLC = −eL1

Vcell
(note e = |e| is the absolute value of the charge) and

MLC = −e ReTr
∫

BZ

d3k

(2π )3
U †

BdG(12×2 ⊗ l )UBdG + e ImTr
∫

BZ

d3k

(2π )3
∂kU †

BdG × (HBdG|
=0)

(
∂k[UBdG]1:3,: f:,k

∂k[UBdG]4:6,:(1 − f:,k)

)
. (E14)

The overall signs matches through in Eqs. (10) and (11) of
Ref. [21] (note that in Ref. [21] γ ∝ −e carries a sign).

One can verify that when pairing term is zero the above
formula correctly reduces to the normal state magnetization.

Then we have the second term L2, that contains
R×iĤ (r)(r − R). In parallel with [21], we propose that this

term has the expression

MIC = e
∫

d3k

(2π )3
Im

×
{
∂kU †

BdG × E:

(
∂k[UBdG]1:3,: f:,k

∂k[UBdG]4:6,:(1 − f:,k)

)}
, (E15)

FIG. 9. Total magnetization M as a function of the gap size 
 for the three Ansätze with cBdG = +3, 0, −3 at zero field for three
temperatures T = 1, 2, and 5 K.
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TABLE IV. Magnetization for the three Ansätze at temperatures T = 1, 2, and 5 K at gap size of 0.44 meV and zero magnetic field. The
magnetization is in the units of 10−4 μB/Vu.c., where Vu.c. is the volume of the four-layer unit cell of 4Hb-TaS2.

Ansatze cBdG = +3 cBdG = 0 cBdG = −3

Magnetization Morb,t-b,↑+↓ Morb,atom,↑+↓ Mspin,↑+↓ Morb,t-b,↑+↓ Morb,atom,↑+↓ Mspin,↑+↓ Morb,t-b,↑+↓ Morb,atom,↑+↓ Mspin,↑+↓

T = 1 K 4.56 −1.52 3.04 −1.64 −5.48 6.92 −10.0 −0.604 2.18
T = 2 K 3.58 −1.50 2.82 −2.58 −5.44 6.70 −10.9 −1.46 1.96
T = 5 K 2.70 −1.56 2.22 −3.16 −5.52 5.94 −11.2 −0.238 10.1

where E: = E = diag(ε1, . . . , ε6). This term is related to
the Berry curvature of the BdG bands.

APPENDIX F: FURTHER DETAILS ON MAGNETIZATION

1. Normal state magnetization

In 2D, the orbital magnetization Morb has the unit e
h̄ eV =

e eV
6.582119569×10−16eV·s =1.51927×1015e s−1 =2.52939 μB

V2D unit cell
.

Therefore

Morb = μB

V2D unit cell
2.52939 ×

∑
n

∫
d2k

(2π )2
Im

× 〈
∂kx unk

∣∣Hk + Enk − 2EF

∣∣∂ky unk
〉
fnk, (F1)

where the sans-serif quantities denote the values when the
unit is eV. Note that the orbital magnetization (10) contains
a localized angular momentum part:

Morb,atom = −|e|
2

gorb〈r̂ × v̂〉 = −|e|
2m

gorb〈r̂ × mv̂〉

= −|e|h̄
2m

gorb〈L̂z〉 = −gorbμB〈L̂z〉

= μB

V2D unit cell

(
−gorb

√
3

2

)∫
d2k

(2π )2

∑
n

u†
nkLzunk.

(F2)

The spin magnetization is

Mspin = 1

2
μBg〈c†c〉 = μB

V2D unit cell

√
3

2

1

2
g
∫

d2k
(2π )2

fnk, (F3)

where k is the numerical value that we use for momentum
when the unit is 1/a.

The normal state magnetization in the spin up sector is(
Mz

orb,t-b,↑, Mz
orb,atom,↑, Mz

spin,↑
)

= (−0.0840, 0.246, 0.944) μB/Vu.c.. (F4)

We then calculate the total magnetization M↑ + M↓ in pres-
ence of a magnetic field B. When B=0 we have M↑ + M↓ =0.
When B = 5 T, we have(

Mz
orb,t-b,↑+↓, Mz

orb,atom,↑+↓, Mz
spin,↑+↓

)
= (−0.000280,−0.000416, 0.00182) μB/Vu.c.. (F5)

2. Superconducting state magnetization: further plots

We compute the total magnetization M as a function of the
gap size 
 using Eq. (32). The result is shown in Fig. 9, for
temperatures T = 1,2, and 5 K.

For the realistic gap size 
 = 0.44 meV, we also com-
pute the components of the magnetization, Morb,t-b,↑+↓,
Morb,atom,↑+↓, Mspin,↑+↓, at three temperatures T = 1,2, and
5 K. The result is given in Table IV.

APPENDIX G: PAIRING ANSATZE ALONG
A VERTICAL BOND

Here we consider a simple “vertical” pairing 
orb., i.e., the
pairing exists only for a vertical bond between the H and H′
layers. Note that 
orb. is a 3×3 matrix in the orbital basis.

FIG. 10. (Left) Sketch of the vertical interlayer pairing. (Middle) Amplitude and winding of the gap function on the Fermi surfaces in the
vertical pairing Ansatz Eq. (G1) (giving the E1u irrep), with zero gap winding on the FSs. (Right) Amplitude and winding of the gap function
on the Fermi surfaces in the vertical pairing Ansatz Eq. (G2) (giving the E2u irrep), with 2π gap winding on the FSs.
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FIG. 11. Magnetization in the vertical pairing interlayer pairing
Ansätze (G1) and (G2) with a gap size of 0.44 meV. The lower
and upper horizontal axes are related by E↑ − E↓ = μBBeff. The two
red dots denote the remnant magnetization inferred from the experi-
ment [1]. The inset shows the magnetization as a function of the gap
size for the three pairing Ansätze. Magnetizations are calculated at
T = 2 K.

(i) The following gives a real space Ansatz in the Eu irrep,
living on the kz = 0 layer:


orb.,(�,H)←(�,H′ ) = 13×3,


orb.,(�,H)←(�−1,H′ ) = −
orb.,(�,H)←(�,H′ ). (G1)

The winding of the gap function on the Fermi surface is zero,
as verified in the middle panel of Fig. 10.

(ii) The following gives a real space Ansatz in the Eu irrep
living on the kz = π layer:


orb.,(�,H)←(�,H′ ) =
⎛⎝0 0 1

0 0 0
1 0 0

⎞⎠,


orb.,(�,H)←(�−1,H′ ) = 
orb.,(�,H)←(�,H′ ). (G2)

The winding of the gap function on the Fermi surface is 2π ,
as verified in the right panel of Fig. 10.

Note that both Ansätze give a zero Chern number for the
BdG band, due to the two fermi surface geometry (the inner
FS is holelike and the outer FS is electron like). The mag-
netization as a function of E↑ − E↓ induced by the TRSB
order parameter φ for the two vertical pairing states Eqs. (G1)
and (G2) is shown in Fig. 11.
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