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We study two-dimensional d-wave altermagnetic metals, taking into account the presence of substrate-induced
Rashba spin-orbit coupling. We consider the altermagnet band structure using a 2D band Hamiltonian near the
� point under external magnetic field. It is shown that time-reversal-symmetry breaking due to altermagnetism,
together with Rashba coupling and external magnetic field, can result in nontrivial band topology. The topolog-
ical phases can be tuned by magnetic field strength and directions, and are classified by their Chern numbers.
Furthermore, we investigate the charge response by computing the full optical conductivity tensor with and
without magnetic field. In particular, we focus on magneto-optical responses, which are the finite-frequency
analog of the Berry curvature-induced anomalous Hall conductivity. Finally, using experimentally realistic
parameters for RuO2, we estimate the Faraday angle in the absence of magnetic fields.
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I. INTRODUCTION

Electronic systems without time-reversal-symmetry (TRS)
and, hence, finite Berry curvature of the band structure can
display intriguing (Hall) transport properties, most promi-
nently the anomalous Hall effect [1]. The origin of the latter
can be multifold depending on the interplay between topology
of the electronic structure, different types of TRS breaking
magnetic order, and spin-orbit coupling [2,3]. A prominent
example is magnetic Weyl semimetals [4], where the intrinsic
Berry curvature can be probed by magneto-optical measure-
ments. In general, the optical conductivity is not only a
powerful probe but also determines the frequency-dependent
permittivity and, thus, the coupling to electromagnetic waves.
A strong off-diagonal component potentially has enormous
practical implications for manufacturing quantum devices that
utilize nonreciprocity, i.e., in quantum circulators [5–8]. In
many cases, TRS is broken extrinsically by applied magnetic
fields, which makes it difficult to implement these platforms
in practical devices. Here advanced types of metallic magnets
with intrinsically broken TRS and their heterostructures could
lead to quantitative improvements.

Altermagnetism (AM), as defined in Refs. [9,10], describes
a recently discovered class of collinear magnetic materials that
break TRS by a compensated order, but differ qualitatively
from conventional collinear antiferromagnets (AFMs) in their
electronic properties [9–12]. In AMs, sublattices of opposite
spin are not related by simple translation or inversion but
require nontrivial rotations [9,10], for example, because a
low crystal environment leads to anisotropic spin densities
even though the absolute magnitude of the sublattice magne-
tizations are equal [see Fig. 1(a)] or because of spontaneous
orbital ordering [13]. Altermagnets then have only a combined
point group and TRS, and can be classified using the spin
group formalism [9]. A key consequence—and a reason for

the large recent interest in AMs [9,10,14,15]—is the strong
splitting of spin-polarized electron bands on the altermagnetic
background. Crucially, spin splitting is not set by relativistic
spin orbit coupling but can be large, comparable to electronic
energy scales. The unusual spin-split band structure from
strong TRS breaking leads to unusual transverse responses
of spin and charge, and magneto-optical responses in AMs
[16–31].

In this paper, we present a comprehensive study of the
nontrivial band topology and calculate the finite frequency op-
tical response of AM thin films with substrate induced Rashba
coupling, as depicted in Fig. 1(b). Band topology in altermag-
nets is also investigated in Refs. [32,33]. We then study the
associated optical Hall response which has also recently been
discussed for the AM candidate FeSb2 [34,35]. We show how
spin-orbit coupling together with the strong TRS breaking
spontaneously generates a nonzero Hall conductivity without
external field, in agreement with Ref. [16]. We analyze the re-
sulting band topology by computing the Chern number, taking
spin-orbit coupling strength, background Néel magnetization
direction n, and the field B as parameters; rotating n can
be achieved, in principle, by applying an external magnetic
field [36]. For n perpendicular to the surface, we identify
two nontrivial topological phases characterized by the Chern
number, which can be tuned by magnetic field directions. In
particular, as the magnetic field rotates in plane, the system
undergoes four topological transitions in which the Chern
number changes by unity.

The TRS breaking of AMs results in an antisymmetric
Hall component of the optical conductivity tensor. We show
that the Hall response at arbitrary frequency is expressed
as a momentum integral over a function proportional to the
Berry curvature, and tends to the anomalous Hall conduc-
tivity at vanishing frequency. The flexibility in engineering
band topology mentioned above can then be used to tune the
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FIG. 1. Schematic plots of altermagnetism (AM) on a square
lattice. (a) The magnetic order on the square lattice. The spin up (red)
and down (blue) sublattices are shown explicitly. The deformation
of magnetic atom orbitals is represented by red and blue ellipses.
The resulting AFM order does not have combined translation or
inversion and time-reversal symmetry T , but is symmetric under
combined real space C4 rotation and T . The system is additionally
invariant under T and real-space mirror reflections; the two mirror
planes intersecting the lattice are shown as dashed lines. (b) 2D AM
metal on a substrate, which induces interfacial spin-orbit coupling,
and a Néel vector of arbitrary direction n determined by the intrinisc
anisotropy and applied magnetic field B.

anomalous Hall conductivity. Note that the anomalous Hall
conductivity is not related directly to the band Chern number,
as nontrivial Berry curvature can generate a nonzero Hall
conductivity even though the Chern number might still be
zero [16]. In particular, the anomalous Hall conductivity can
be nonzero even without magnetic field. Finally, we estimate
the Faraday effect from optical conductivity without magnetic
field. Using microscopic band parameters, which have been
discussed for the AM candidate RuO2 [10,37], we estimate
the order of magnitude of the Faraday angle to be: θF ∼
10−5 rad. Overall, TRS breaking responses can arise in AM
in the absence of external magnetic field or net magnetization,
which can be advantageous for applications, i.e., in quantum
circulators.

The rest of the paper is organized as follows. Section II
introduces the low-energy Hamiltonian of a d-wave AM and
discusses its electronic properties. There, we also study and
map out the band topology in different parameter regimes,
including spin-orbit coupling and external magnetic fields. In
Sec. III, we explicitly compute the optical conductivity as a
function of frequency. In particular, we compute the anoma-
lous Hall conductivity as a function of band parameters and
relate the results to the band topology in the previous section.
The results are then used to calculate the Faraday angle in
Sec. IV. We conclude in Sec. V

II. MODEL AND BAND TOPOLOGY

We consider a minimal model of a two-dimensional (2D)
d-wave metallic AM on a substrate. An effective low-energy
model expanded to quadratic order in momenta around the �

point (Brillouin zone center) is given by the Hamiltonian [38]

H = p2

2m
+ α(σ × p) · ez − μBσ · B + Halt. (1)

Here, m is the effective mass, α quantifies the Rashba spin-
orbit coupling induced by the substrate, and σ is a vector of the
spin Pauli matrices. The last term in Eq. (1) is due to the AM

FIG. 2. Fermi surfaces at n = (0, 0, 1)T and μ = 0.5t (a) without
spin-orbit coupling and (b) α = 0.1t . The electron Sz spin component
along the Fermi surface is shown in color: red and blue are spin up
and down, respectively. Spin-orbit coupling couples spin to momen-
tum and splits the elliptical Fermi surfaces at the four points along the
diagonals where the Sz components vanish. The Fermi surfaces show
the C4T symmetry, and the mirror symmetries along two vertical
planes that intersect the two BZ diagonals.

background, which has combined four-fold real-space rotation
and time-reversal symmetry C4T :

Halt = βM

2

(
p2

x − p2
y

)
n · σ. (2)

The unit vector n is parallel to the background Néel magneti-
zation. The strength of this coupling is quantified by βM. The
altermagnetic contribution is a nonrelativistic effect that con-
serves the electron spin. d-wave magnetism can be read from
Halt by noting that it vanishes along the diagonals px = ±py.
Note that n changes signs under time reversal. We assume
that n is an independent parameter and neglect the coupling
between n and the magnetic field. We also neglect orbital
effects from the perpendicular component of B. The model
(1) is represented schematically in Fig. 1(b).

It is convenient to rewrite Eq. (1) as

H = p2

2m
+ N(p) · σ, (3)

with

N(p) = βM

2

(
p2

x − p2
y

)
n + αp × ez − μBB. (4)

The eigenvalues of the Hamiltonian (3) are compactly ex-
pressed as

ε±(p) = p2

2m
± |N(p)|, (5)

and the respective eigenstates η±(p) are spinors with spin
polarized along ±N.

First, we shall discuss the effect of each term in Hamilto-
nian (3) on the electronic band structure. Without spin-orbit
coupling and magnetic field, i.e., α = |B| = 0, the Fermi sur-
face at positive chemical potential μ consists of two identical
ellipses at an angle π/2 with respect to each other and inter-
secting at the diagonals px = ±py, with spins polarized along
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±n [see Fig. 2(a)]. The ellipses’ major and minor axes a and
b are given by

a2 = 2μ

(1/m) + βM
, (6a)

b2 = 2μ

(1/m) − βM
. (6b)

For physical systems, μB|B|, αpF � βM p2
F ∼ μ where

pF = 2mμ is the Fermi momentum at the intersections.
Therefore, the inclusion of a small spin-orbit coupling splits
the Fermi surfaces at the four intersection points by δp⊥ ∼
2αpF /vF � pF , where vF = pF /m is the Fermi velocity at
these points [see Fig. 2(b)]. For n along the z-axis without
magnetic field, the Hamiltonian (3) has magnetic group C′

4
symmetry, and two additional magnetic point group mirror
planes along the diagonals of the Brillouin zone (BZ). The
shape of the split Fermi surfaces retains the C4 symmetry.
Similarly, the magnetic field only slightly distorts the Fermi
surface. For both B, n along the z axis, The shape of the
Fermi surfaces is C4 symmetric. However, the magnetic field
additionally induces a gap of 2μB|B| at the origin, where the
bands are otherwise degenerate.

In the rest of this paper, we shall take the lattice constant
to be unity. Thus, momentum p is dimensionless, whereas
1/m, α and βM have the units of energy. We shall take as the
unit of energy t which is of the order of the bandwidth. A typ-
ical value is t ∼ 1 eV. For the numerical simulations below,
we shall express all band parameters in the reduced unit and
set 1/m = t, βM = μ = 0.5t, pF = 1 and αpF = 0.1t , unless
otherwise specified. Frequency ω is also expressed in units
of t .

We now discuss the band topology of our system, which
originates from the spin structure of the Hamiltonian (3) in
momentum space. The band topology is determined by the
Berry curvature of the lower band,

�(p) = 1

2
N̂ ·

(
∂N̂
∂ px

× ∂N̂
∂ py

)
, N̂ = N

|N| , (7)

and the Chern number

C = 1

2π

∫
�(p)d2 p. (8)

Thus, the topology of the system is determined by the in-
terplay between Rashba spin-orbit coupling α, the vector n,
and the external field B, all of which which enter in N in
Eq. (4). In the rest of this section, we shall first discuss the
case without magnetic field, where the system is gapless and
C is ill-defined. We then move to three gapped cases due to
external field, which exhibit nontrivial band topology.

For later convenience, we derive another expression for
�(p). By substituting the differential identity

dN̂ = dN
|N| − N̂

|N|d|N| (9)

into Eq. (7), we obtain

�(p) = 1

2|N|2 N̂ ·
(

∂N
∂ px

× ∂N
∂ py

)
. (10)

FIG. 3. Berry curvature �(p) as a function of momentum for
selected n directions at B = 0: (a) �(p) for n = (0, 0, 1)T; (b) �(p)
for n = (1, 0, 1)T/

√
2. Note the gap closing at the origin which

appears as a singularity in �(p).

First, we consider the case of zero magnetic field, B = 0.
The two bands touch at the origin, and the Chern number is
ill-defined. Near the origin, the Berry curvature exhibits d-
wave structure with large quadrupole moments. For n along
the z axis, the Berry curvature reads [38]

�(p) = − αβ2
M

(
p2

x − p2
y

)
2
[
α2 p2 + β2

M

(
p2

x − p2
y

)2
/4

]3/2 . (11)

The dipole moments compensate each other to give C = 0
[see Fig. 3(a)]. At n away from the z axis, the quadrupoles
are generally not perfectly compensated [see Fig. 3(b)].

The external magnetic field gaps out the bands and the
Chern number becomes well-defined. In the rest of this sec-
tion, we take n = ez and study the relation of the resulting
topology to field directions. Note that spin-orbit coupling is
still essential for band topology. In the absence of spin-orbit
coupling, N̂ lies entirely in the plane extended by the vectors
n and B, thus �(p) given by Eq. (7) is identically zero.

A. Perpendicular magnetic field

We consider a magnetic field along the z axis, that is, B =
(0, 0, B)T. It is sufficient to consider a small field because the
band topology at larger field values is the same. The dominant
contributions to the Chern number C in Eq. (8) come from
around the origin. Therefore, it is sufficient to consider �(p)
at small p where the altermagnetic term can be neglected. We
find near the origin that

N ≈ (αpy,−αpx,−μBB)T, (12)

which is formally identical to the Rashba case where the
magnetic field B is equivalent to the gap term [1]. The Chern
number reads [1]

C = − 1
2 sign B. (13)

Note that C does not depend on βM . We numerically confirm
the conclusions above and show the results in Fig. 4. Note
that here the Chern number is a half integer, since we have
only considered the long-wavelength limit near the � point. It
is expected that AM will induce nontrivial topology at other
regions of the BZ where the bands are gapped. The total Chern
number must add up to an integer.
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FIG. 4. Berry curvature �(p) as a function of momentum for n =
(0, 0, 1)T. Upper column: B = 0.01(0, 0, 1)T for βM = 0.5 (left) and
βM = −0.5t (right). Lower column: B = −0.01(0, 0, 1)T for βM =
0.5t (left) and βM = −0.5t (right). Comparing to Fig. 3, the origin
is no longer singular due to gap opening from magnetic field. In all
cases, the Chern number C does not depend on βM in agreement with
Eq. (13). Note the large absolute values of �(p) near the origin, the
sign being determined by |B|.

B. In-plane magnetic field

An in-plane magnetic field, B = (Bx, By, 0)T, induces tun-
able band topology, as can be seen from

N =
(

αpy − μBBx,−αpx − μBBy,
βM

2

(
p2

x − p2
y

))T

. (14)

The magnetic field shifts the center of the Berry curvature
quadruple moment from the origin to momentum,

p0 = μB

α
(−By, Bx, 0)T, (15)

see Figs. 5(a) and 5(b). Analogous to the previous subsection,
we take the external field to be small and shift the momentum
origin to p0. The vector N near p0 now reads

N ≈
(

αpy,−αpx,
βM

2

(
p2

0,x − p2
0,y

))T

. (16)

Although it is again formally identical to the Rashba case, the
gap is now provided by the altermagnet term. As a result, the
Chern number is given by

C = 1
2 sign

[
βM

(
p2

0,x − p2
0,y

)]
, (17)

and can be tuned by in-plane field directions. In particular, the
gap closes at p0,x = ±p0,y corresponding to Bx = ±By, and
the system undergoes a series of topological transitions as B
is rotated in the plane. These topological transitions are shown
in Fig. 5(c) for B = B(cos φ, sin φ, 0)T and φ ∈ (0, 2π ). Note
that the gap closing occurs when B lies within the mirror
planes. The topological transitions described above are similar

FIG. 5. Berry curvature and band topology for n = (0, 0, 1)T

and in-plane magnetic field. Upper row: Berry curvature �(p) as
a function of momentum at (a) B = 0.01(1, 0, 0)T and (b) B =
0.01(0, 1, 0)T. The Chern numbers C have the opposite sign in agree-
ment with Eq. (17). The center of the Berry curvature quadruple
moment is shifted by p0 from the origin given by Eq. (15). Lower
row: (c) Schematic plot of C as a function of magnetic field polar
angle φ. (d) Schematic phase diagram as a function of B directions
given by Eq. (19). Blue and green regions correspond to C = ±1/2,
respectively. The dashed line is the equator which contains the phase
diagram in (c).

to a case in the context of Weyl semimetals considered in
Ref. [39].

We note in passing that if n is also rotated in plane,
�(p) vanishes identically. This is because N̂ now lies entirely
within the xy plane, and Eq. (7) is identically zero.

C. Arbitrary magnetic field directions

We now let B have arbitrary directions and constant magni-
tude. Analogous to before, the in-plane components of B shift
the center of the Berry curvature dipole to p0, near which the
z component of N determines the gap:

N ≈
(

αpy,−αpx,
βM

2

(
p2

0,x − p2
0,y

) − μBBz

)T

. (18)

Thus, substituting Eq. (15) in Nz above, the gap closing is
determined by

B2
x + B2

y + B2
z = |B|2, Bz = μBβM

2α2

(
B2

y − B2
x

)
. (19)

Graphically, Eq. (19) means that the critical line in the space
of B is the intersection of a hyperbolic paraboloid with a
sphere; see Fig. 5(d). We see that there are two global topo-
logical phases. For Bz = 0, we reencounter the four phase
transitions discussed in Sec. II B.

Finally, note that there also exist two global topological
phases with opposite C = ±1/2 for a system with Rashba
SOC but without the AM term Halt. There, the critical line
is the equator in external field directions. As can be seen from
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FIG. 6. Real longitudinal conductivity due to inter-band transi-
tions. (a) Schematic plot for absorption by interband transition that
excites an electron from the filled lower band (red) to the unfilled
upper band (blue). (b) Conductivity Re σxx at n = (0, 0, 1)T. The
peak is at ω = 2αpF , the Rashba splitting of Fermi surfaces.

Fig. 5(d), Halt pushes the critical line into the two hemispheres,
which makes the in-plane topological transitions possible.

III. OPTICAL CONDUCTIVITY

We now discuss the linear electric conductivity in the sys-
tem described by the Hamiltonian (3). First, let us discuss the
general properties of conductivity under time-reversal trans-
formation. The conductivity tensor σαβ satisfies the Onsager
relation,

σαβ (ω; n, B) = σβα (ω; −n,−B), (20)

due to time-reversal operation. The time-reversal-odd quanti-
ties n and B change signs. Thus, in a time-reversal-invariant
system, σαβ is symmetric. If time-reversal-symmetry is bro-
ken, the conductivity can be decomposed into symmetric σ s

and antisymmetric σ as components:

σαβ = σ s
αβ + σ as

αβ. (21)

Equation (20) then gives that σ as (σ s) is an odd (even) function
of n and B.

There are additional constraints on σαβ when dissipation
can be neglected. In our system, this corresponds to frequen-
cies ω below the minimum direct band-gap � between the two
Fermi surfaces, which forbids the direct interband transition
from the filled lower band to the unfilled upper band; see
Fig. 6(a). Here we also neglect dissipation due to impurity
scattering. The additional constraint on σαβ can be derived by
setting to zero the energy dissipation per unit time:

−Re j · Re E = − 1
4 ( j + j∗) · (E + E∗) = 0. (22)

(This derivation is similar to that given in Ref. [40], p. 332, for
the dielectric tensor εαβ .) After substituting jα = σαβEβ and
time averaging, the terms E∗

αE∗
β and EαEβ vanish since they

are proportional to exp(±2iωt ). We then have

−1

2

∑
αβ

(σαβ + σ ∗
βα )EαE∗

β = 0. (23)

As a result, the conductivity is anti-Hermitian in the absence
of dissipation, that is,

σαβ (ω; n, B) = −σ ∗
βα (ω; n, B). (24)

Equations (20) and (24) mean that, at ω < �, σ s is imaginary
whereas σ as is real and can be written

σ as
αβ = εαβγ gγ , (25)

where g is a real vector function that changes signs under time
reversal: g(ω; n, B) = −g(ω; −n,−B). In particular, at ω →
0, σ as

xy tends to the anomalous Hall conductivity σAH which
results from nontrivial band Berry curvature of the system [see
Eq. (38) below].

We now compute the optical conductivity of the system (3)
and study its dependence on the parameters n and B. We set
temperature T = 0.01t � αpF for numerical convenience,
which agrees with the T = 0 limit since in all cases that we
consider below, the energy gap � between the Fermi surfaces
obeys � � T .

In what follows, we use the Mastubara Green’s functions.
The free-electron Green’s function is written as

G±(p) = −
∫ 1/T

0
dτeip0τ 〈Tτ {a±(τ, p)a†

±(0, p)}〉 (26)

= 1

ip0 − ε±(p) + μ
. (27)

Here a±(τ, p) is the electron field of the ± band at imagi-
nary time τ , and Tτ denotes time ordering. We have used
four-vector notation p = (p0, p), where p0 is the fermion
Matsubara frequency. The free Green’s function in spin basis
is given by

G(p) = 1
2 {G+(p) + G−(p) + σ · N̂[G+(p) − G−(p)]}. (28)

Equation (28) can be derived by operating G(p) on the eigen-
states η±(p) which correspond to spin parallel and antiparallel
to N̂.

Furthermore, the electric current operator is defined as

jα (k) = −∂H (k − eA)

∂Aα

= e
[

j (0)
α (k) + j (1)

α (k)
]
, (29)

where e is the electron charge, A is the vector potential, and
j (0) and j (1) are

j (0)
α (k) = ∂H (k)

∂kα

, (30)

j (1)
α (k) = −e

(
1

m
Aα + βMτ z

αβn.σAβ

)
. (31)

Here τ z is the third Pauli matrix. Note that j (1)
α (k) is already

linear in the perturbation. We choose the Coulomb gauge,
div A = 0, and set the scalar potential to zero. The conduc-
tivity is then evaluated as

σαβ = ie2

ω
[�αβ (ω) − �αβ (0)] + σ

(1)
αβ . (32)

Here, the first contribution is the Kubo response associated
with the perturbed density matrix, and

σ
(1)
αβ = i

e2

ω

(
Ne

m
δαβ − βMτ z

αβn · σ

)
(33)

(Ne is the electron density) comes from directly averaging
j (1) over the equilibrium distribution (as indicated by the
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overline). This gives

n · σ = T
∑
p0,p

Tr [G(p)(n · σ)] =
∑

p

[nF+ − nF−]n · N̂,

(34)

where we substituted Eq. (28). The functions nF± =
nF [ε±(p) − μ] are Fermi distributions of the bands where
nF (x) = [exp(x/T ) + 1]−1 at chemical potential μ and tem-
perature T = 0. The factor (nF+ − nF−) restricts the momen-
tum integration to the region between the two Fermi surfaces.
The contribution from j (0) is given in terms of the current-
current correlation function,

�αβ (ω) = lim
ik0→ω+iδ

−T
∑
p0,p

Tr
[
G(p+) j (0)

α (p)G(p−) j (0)
β (p)

]
,

(35)

where p± = p ± k/2, the four-vector k = (k0, 0), and k0 is the
bosonic Matsubara frequency. In the analytical continuation,
ik0 → ω + iδ, where δ is a positive infinitesimal. Leaving the
details of evaluating Eq. (35) to Appendix A, here we give the
final result,

�αβ (ω)=
∑

p

[
∂N
∂ pα

· ∂N
∂ pβ

−
(

N̂ · ∂N
∂ pα

)(
N̂ · ∂N

∂ pβ

)]
f−(ω, p)

+ i
∑

p

N̂ ·
(

∂N
∂ pα

× ∂N
∂ pβ

)
f+(ω, p), (36)

where we have introduced the functions

f±(ω, p)= (nF+ − nF−)

(
1

ω − 2|N| + iδ
± 1

ω + 2|N| + iδ

)
.

(37)

The factor (nF+ − nF−) physically means that the photon
excites an electron from the filled lower band to the unfilled
upper band with band gap 2|N|; see Fig. 6. The explicit
expression of Eq. (36) in terms of band parameters is given
by Eq. (A6) in Appendix A.

In Eq. (36), the first term proportional to f− contributes
to the symmetric component σ s(ω) of the conductivity. As
can be seen from Eq. (32), σ s vanishes at ω → 0. This is
due to neglecting impurity scattering, which gives dissipation
even at ω = 0. The second term provides the antisymmetric
part σ as(ω) in Eq. (32) and is proportional to �(p) given by
Eq. (10). At ω → 0, this term gives the anomalous Hall con-
ductivity σAH. To see this, we substitute this term in Eq. (36)
into Eq. (32), then take the limit ω → 0 to obtain the standard
expression for σAH of a two-band system [1]:

σ as
xy (0) = σAH = −e2

∫
(nF+ − nF−)�(p)

d2 p

(2π )2
. (38)

Here we have used Eq. (10) and the identity

lim
ω→0

1

ω

(
1

ω − 2|N| + iδ
+ 1

ω + 2|N| + iδ

)
= − 1

2|N|2 .

(39)
Note that for cases with C = 0 but nontrivial �(p), σAH can
still be nonzero due to the (nF+ − nF−) factor in Eq. (38).
In what follows, we shall use σAH to denote exclusively
the anomalous Hall conductivity at zero frequency given by
Eq. (38). σxy then refers to the xy components of the con-
ductivity tensor (32) at arbitrary frequencies. In the cases

where we compute σxy(ω), it includes only the antisymmetric
component σ as (25).

Finally, note that Eq. (37) can be rewritten using the
identity

1

ω ± 2|N| + iδ
= P

1

ω ± 2|N| − iπδ(ω ± 2|N|), (40)

where P denotes the principle value. The delta function cor-
responds to interband transitions since 2|N(p)| is the direct
band gap at momentum p. For frequencies below the mini-
mum band gap � between the two Fermi surfaces, this term
vanishes identically due to the (nF+ − nF−) factor in Eq. (36),
and there is no dissipation in the system in the limit of no
impurities. This is due to the aforementioned impossibility of
exciting an electron from the filled lower band to the unfilled
upper band, as demonstrated schematically in Fig. 6(a). It
can then be shown that σαβ given by Eq. (32) satisfies the
no-dissipation condition (24).

In the rest of this section, we numerically compute (32) for
the different magnetic-field cases considered in Sec. II.

A. No magnetic field

We start from the simplest case in which n = ez and set the
magnetic field to zero. The system then has C4T symmetry.
Using Eq. (20) and the fact that the antisymmetry part in the
conductivity in Eq. (32) changes signs under a C4 rotation, we
find that

σxx = σyy and σxy = 0. (41)

The longitudinal conductivity σxx is plotted as a function of
frequency ω in Fig. 6(b). In particular, the anomalous Hall
response is absent despite the presence of magnetic order.
This is because the system has a 4′ symmetry, i.e. a four-fold
rotation symmetry about the out-of-plane axis supplemented
by a time reversal. This symmetry forbids the existence of a
finite gz (and, hence, σ as

xy ) in Eq. (25).
Tilting n away from the z axis immediately generates a

nonzero σ as as the 4′ symmetry is now broken [see Figs. 7(a)
and 7(b) for the setting and the Fermi surface plot], except
when n lies within the two mirror planes. In the latter case,
there are m′ symmetries, i.e. mirror symmetries supplemented
by time reversal, that forbid a finite gz. The results are shown
in Figs. 7(c) and 7(d). For Re σxy, we observe multiple peaks
of the order αpF . This is due to the tilted n, which distorts
the four corners of the Fermi surface along the diagonals as
shown in Fig. 7(b). The peaks then correspond to the direct
interband transitions at these inequivalent corners (for n = ez,
their positions coincide and the peaks cancel). For σAH at
ω = 0 in Eq. (38), it is zero when n = ez as mentioned above.
As n becomes in plane, σAH again vanishes. This is true more
generally for the antisymmetric component σ as(ω) (25) at
arbitrary frequency, because the corresponding contribution
in Eq. (36) is proportional to �(p), which vanishes when N̂
becomes a planar vector.

B. Perpendicular magnetic field

We now return to the case of n = ez. As discussed in
Sec. II, the dominant contribution to the Chern number comes
from near the origin for small perpendicular field, whereas in
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FIG. 7. Fermi surfaces and conductivity for n inside the xz plane
and μ = 0.5t without magnetic field. (a) Schematic for the coordi-
nate system, where θ is the azimuthal angle of n inside the xz plane.
(b) Fermi surfaces at θ = π/4. (c) Re σxy given by Eq. (32) at θ =
π/4 as a function of frequency ω. (d) Anomalous Hall conductivity
σAH in Eq. (38) as a function of θ .

Eq. (38), only the region between the two Fermi surfaces con-
tributes to σAH. Here the dominant contribution to σAH comes
from near the four intersectional lines, where the altermag-
netic term vanishes. Near these points, �(p) ∼ μB|B|/(αp3

F )
for μB|B| � 2αpF . The momentum area near the splitting in
which this holds is δp⊥δp‖, where δp‖ ∼ α/βM is the mo-
mentum distance in the tangential direction along which the
altermagnetic term dominates. As a result, σAH is strongly
suppressed by the small ratio μB|B|/μ:

σAH ∼ �(p)δp⊥δp‖ ∼
(

αpF

μ

)(
μB|B|

μ

)
. (42)

We plot σAH as a function of μB|B| in Fig. 8, which shows
σAH ∝ μB|B| for μB|B| � 2αpF .

FIG. 8. Anomalous Hall conductivity σAH in Eq. (38) as a func-
tion of μB|B| for B and n along ez. We have σAH ∝ μB|B| up to
μB|B| ≈ 2αpF = 0.2t , in agreement with Eq. (42).

FIG. 9. Anomalous Hall conductivity σAH in Eq. (38) as a func-
tion of in-plane magnetic field angle φ. Upper row: σAH at n =
(0, 0, 1)T for (a) μB|B| = 0.1 and (b) μB|B| = 0.01. Lower row: σAH

at n = (1, 0, 1)T/
√

2 for (c) μB|B| = 0.1 and (d) μB|B| = 0.01. The
vertical dashed lines are the in-plane topological transition points
described in Sec. II B. Note the rescaled σAH for μB|B| = 0.01 as
σAH decreases with decreasing field.

C. In-plane magnetic field

Despite that band topology and the Chern number C can
be tuned by an arbitrarily small in-plane magnetic field, for
μB|B| � αpF � μ, the effect on conductivity is small. This
is because the change in the Berry curvature �(p) is con-
centrated near the origin, but in Eq. (38) the integration is
taken between the two Fermi surfaces at momenta of order pF .
Therefore, for the topological phase transitions to be observ-
able in conductivity, it is necessary that the center of the Berry
curvature quadrupole moments obeys p0 ∼ pF . As follows
from Eq. (15), this gives μB|B| ∼ αpF , namely, when the
Zeeman splitting becomes comparable to the Rashba splitting.

In Figs. 9(a) and 9(b), we illustrate the aforementioned
relation between Zeeman and Rashba energies by plotting
σAH in Eq. (38) at n = ez as a function of the magnetic
field’s polar angle φ. At gap closing angles, namely, φ =
π/4, 3π/4, 5π/4, 7π/4, we see that σAH changes discontin-
uously for μB|B| = 0.1 [see Fig. 9(a)]. This is because p0
rotates with in-plane field and the gap closings occur at the
four split corners of the Fermi surface. The discontinuous
change is absent for a smaller Zeeman energy μB|B| = 0.01
[see Fig. 9(b)]. For comparison, we also show the results for
n = (1, 0, 1)/

√
2 in Figs. 9(c) and 9(d). These results show

that, at n away from ez, signatures of topological phase tran-
sitions can still be seen by sharp jumps of σAH [see Fig. 9(c)]
when μB|B| ∼ αpF . However, at lower magnetic field, the
features are smoothed out [see Fig. 9(d)].

IV. FARADAY EFFECT

The breaking of time-reversal symmetry and the pres-
ence of a nonzero σ as also results in the Faraday effect: for
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FIG. 10. Faraday rotation with the Néel vector
n = (1, 0, 1)T/

√
2. (a) Schematic plot for the Faraday effect,

where linear polarized light is incident normally along the z axis
on the material with thickness l . The linear polarization is along
the x axis and is rotated by angle θF inside the xy plane after
passage of the material. (b) Faraday angle θF [see Eq. (54)] as a
function of frequency ω for α = 0.1t, βM = μ = 0.5t, m = 1/t
and B = 0. The parameter t = 1 eV. The gray line is the direct
band gap � above which Eq. (54) becomes invalid. (c) θF as a
function of αpF for ω = 0.05 eV (gray line). Equation (54) holds for
ω � αpF � μ = 0.5 eV.

frequencies below the band gap, the linear polarization of a
normally incident light is rotated by the Faraday angle θF after
passing through the material; see Fig. 10(a). We show that in
the AM, θF is nonzero even without magnetic field.

To compute θF , we follow the approach in Ref. [40]. The
main idea of the derivation is as follows. First, we decom-
pose the normally incident light into the two polarization
eigenmodes e± within the material with thickness l , each
propagating with different wave numbers k±. The resulting
polarization after the passage is then found by recombining
the two eigenmodes again after propagating through the ma-
terial. Since for two-dimensional systems l � c/ω, we then
take the limit l → 0 in the final expressions.

We now decompose the incident light into the two eigen-
modes given by Eq. (43). These two eigenmodes are found
in Appendix B. They are elliptically polarized inside the xy
plane,

e+ = (λ1, iλ2, 0)T, e− = (λ2,−iλ1, 0)T, λ2
1 + λ2

2 = 1,

(43)

with refractive indices n±, respectively. The corresponding
wave numbers are k± = n±ω/c. In Appendix B, we also give
expressions for n±, λ1, λ2 in terms of σαβ .

In an anisotropic medium, the decomposition depends on
the incident polarization e0. For simplicity, we take e0 to be
along the principle x axis:

e0 = (1, 0, 0)T = λ1e+ + λ2e−. (44)

After propagating through the material of thickness l , the
electric field has the form

E = E0(λ1e+eik+l + λ2e−eik−l ), (45)

which can be written in real form as

Ex = E0 cos ωt, Ey = E0ρ sin(ωt + ϕ), (46)

where ρ and ϕ are given by

ρ =
∣∣∣∣λ1λ2(eik+l − eik−l )

λ2
1eik+l + λ2

2eik−l

∣∣∣∣, (47)

ϕ = arg

(
λ1λ2

(
eik+l − eik−l

)
λ2

1eik+l + λ2
2eik−l

)
. (48)

Equation (46) satisfies

E2
x

cos2 ϕ
− 2 sin ϕ

ρ cos2 ϕ
ExEy + E2

y

ρ2 cos2 ϕ
= E2

0 , (49)

corresponding to elliptically polarized light. Relative to the
incident x axis, its major axis is at an angle

θF = 1

2
arctan

(
2ρ sin ϕ

1 − ρ2

)
, (50)

and its eccentricity is given by

ε = 2
√

ρ4 + 2(2 sin2 ϕ − 1)ρ2 + 1

ρ2 + 1 +
√

ρ4 + 2(2 sin2 ϕ − 1)ρ2 + 1
. (51)

Physically, the incident linear polarization broadens into an
ellipse and rotates with angle θF after passage through the
material.

We now take the limit k±l � 1 in Eqs. (47) and (48) and
obtain

ρ =
∣∣∣∣λ1λ2(k+ − k−)l

λ2
1 + λ2

2

∣∣∣∣, (52)

ϕ = π

2
+ arg

(
λ1λ2(k+ − k−)l

λ2
1 + λ2

2

)
. (53)

In a nonabsorbing medium, ϕ = π/2 and ε = 1, that is, the
electromagnetic wave remains linearly polarized. The Faraday
angle θF then becomes

θF = arctan ρ. (54)

We check that in the isotropic limit and weak TRS breaking,
n± ≈ n0 ∓ |σxy|/(2ε0n0) where n0 is the isotropic refractive
index at vanishing off-diagonal conductivity tensor σxy = 0.
This gives the usual isotropic result θF = σxy/(2ε0n0c), where
σxy is the conductivity per monolayer [40–42].

We now demonstrate the Faraday effect in altermagnets
without magnetic field by numerically computing Eq. (54)
as a function of frequency for n = (1, 0, 1)T/

√
2 and B = 0:

the principle axes of σαβ are then along the kx and ky axes.
To convert to physical units, we choose t = 1 eV (which
is of the order of the bandwidth in RuO2 [10]), such that
αpF , ω, βM are in units of eV. The conductivity in Eq. (32)
is then converted to units of e2/(h̄l ), where l = 0.65 nm is the
thickness of an altermagnetic RuO2 monolayer [37]. We find
that θF ∼ 10−5 rad for frequencies below the direct band gap
[see Fig. 10(b)]. For comparison, these values are one order
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of magnitude larger than the Kerr angles measured in cuprates
10−6 rad [43–46].

It is also shown in Appendix B that at small ω:

θF ∝ ω. (55)

In Fig. 10(b), this is observed for ω � � the band gap. In
Fig. 10(c), we also show θF as a function of αpF for fixed
frequency ω = 0.05 eV. We see that the estimated θF values
depend strongly on the strength of spin-orbit coupling.

V. CONCLUSIONS

In this paper, we quantitatively investigated the band
topology and optical response in a two-dimensional d-wave
altermagnetic metal with substrate-induced Rashba coupling.

Using a low-energy Hamiltonian, we find that, with Rashba
spin-orbit coupling and external magnetic field, the band ex-
hibits nontrivial topology depending on the magnetic field
directions. For given magnetic field strength but arbitrary
directions, there are globally two topological phases charac-
terized by Chern numbers C = ±1/2. Changing field strength
shifts the critical line. For in-plane magnetic field, there are
four topological transitions at which the gap closes and C
changes by unity. These transitions correspond to magnetic
field directions that lie within mirror planes of the system and
do not depend on field strength.

It is also shown that the nontrivial band topology induces
anomalous Hall conductivity σAH that can be tuned by an
external magnetic field. We demonstrate this explicitly by
computing the conductivity tensor as functions of frequency
and external field directions. It turns out that even if the band
Chern number is zero, nontrivial Berry curvature �(p) can
still result in nonzero σAH by, for example, tilting the Néel
vector n that breaks the 4′ symmetry. In cases with nonzero
C, the correspondence between C and σAH is not straight-
forward, since only electrons lying between the two Fermi
surfaces contribute to σAH. The effect of quantization of C
is the most pronounced when the magnetic field is in plane,
and the Zeeman splitting is comparable to the Rashba splitting
of the Fermi surfaces. In this case, the gap closings of the four
topological transitions occur between the two Fermi surfaces,
and σAH undergoes discontinuous changes as the field rotates
in plane.

We also point out that, even though the anomalous Hall
conductivity is not directly related to the Chern number for a
metallic system, the nontrivial band topology is still expected
to lead to chiral edge resonances. Despite their hybridization
with gapless bulk modes and the absence of immunity against
backscattering, the chiral edge resonance may still serve as a
signature of the topological nature of metallic bands.

Finally, we also showed, by an explicit numerical computa-
tion, that broken time-reversal-symmetry in our model results
in a nonzero Faraday angle θF . Using parameters for RuO2,
θF is estimated to be of order 10−5 rad. Overall, the tunabil-
ity of the electric conductivity makes AM heterostructures
a potentially useful platform in manufacturing nonrecipro-
cal quantum devices without the need for external magnetic
fields.
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APPENDIX A: COMPUTATION OF EQ. (36)

First, we perform the trace over spin in Eq. (35) by substi-
tuting Eqs. (3) and (28), then using the identities

Tr(σ aσ b) = 2δab, Tr(σ aσ bσ c) = 2iεabc,

Tr(σ aσ bσ cσ d ) = 2(δabδcd − δacδbd + δadδbc). (A1)

The result is given by products of the electron Green’s func-
tions G± defined in Eq. (28). As will be shown below, only
interband transition terms, that is, G±G∓, remain after sum-
ming over p0. Therefore, to simplify the expressions, we
keep only these terms. Introducing the abbreviated notation
G+− = G+(p−) etc., the result is

�αβ (ω) = −T
∑
p0,p

{[
∂N
∂ pα

.
∂N
∂ pβ

−
(

N̂.
∂N
∂ pα

)(
N̂.

∂N
∂ pβ

)]

× (G++G−− + G−+G+−) + iN̂.

(
∂N
∂ pα

× ∂N
∂ pβ

)
× (G++G−− − G−+G+−)

}
. (A2)

We now sum over the Matsubara frequency p0 and perform
the analytical continuation ik0 → ω + iδ using the following
identity:

lim
ik0→ω+iδ

T
∑

p0

Gα (ip0 + ik0, p)Gβ (ip0, p)

=
∫ ∞

−∞

dz

2π
tanh

z

2T

[
Im GR

α (z, p)GA
β (z − ω, p)

+ GR
α (z + ω, p) Im GR

β (z, p)
]

= −[nFα (p) − nFβ (p)]
1

ω − [εα (p) − εβ (p)] + iδ
, (A3)

where GR,A
α (ω, p) = 1/[ω − εα (p) ± iδ] are the retarded and

advanced Green’s functions and nFα (p) = nF [εα (p) − μ] is
the Fermi distribution. Thus, for finite ω, only interband tran-
sition terms α �= β remain, which physically correspond to
direct band transitions induced by a photon with frequency ω

and negligible momentum. We then have

−T
∑

p0

(G++G−− ± G−+G+−)

= (nF+ − nF−)

[
1

ω − (ε+ − ε−) + iδ

∓ 1

ω + ε+ − ε− + iδ

]
. (A4)
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Substituting Eq. (A4) in Eq. (A2) and using the identity ε+ −
ε− = 2|N| gives Eq. (36) in the main text.

For reference, we provide the full expression for �αβ (ω)
by substituting Eq. (3) and the expression

∂Ni

∂ pα

= αεiαkez,k + βMniτ
z
αβ pβ (A5)

into Eq. (36), resulting in

�αβ (ω) =
∑

p

f−(ω, p){α2[δαβ − (ez × N̂)α (ez × N̂)β]

+ β2
Mτ z

αγ pγ τ z
βδ pδ[1 − (N̂ · n)2]

+ αβM (τ z
αγ pγ [(ez × n)β − (n · N̂)(ez × N̂)β]

+ τ z
βγ pγ [(ez × n)α − (n · N̂)(ez × N̂)α])}

+ i
∑

p

f+(ω, p){α2N̂zεαβ + αβM[τ z
αγ pγ

× (N̂βnz − nβN̂z ) + τ z
βγ pγ (nαN̂z − N̂αnz )]}.

(A6)

The functions f±(ω, p) are defined in Eq. (37). In evaluating
the antisymmetric term in Eq. (A6), we have used

α2εi jkN̂iε jαl ez,lεkβmez,m = α2εi jkN̂iε jαεkβ, (A7)

since εi jz = εi j is the two-dimensional antisymmetric tensor.
Using the identity εi jεkl = δikδ jl − δilδ jk , this gives

α2εi jkN̂i(δ jkδαβ − δ jβδαk ) = α2εαβ N̂z, (A8)

since α, β = x, y and εiαβ = εzαβ .

APPENDIX B: EIGENMODES OF LIGHT INSIDE
A DIELECTRIC MEDIUM

The eigenmodes of light propagation inside the material
are determined by the dielectric tensor εαβ [not to be confused
with the eccentricity (51)], which is related to the conductivity
by the relation [40]

εαβ = δαβ + i

ωε0
σαβ. (B1)

The vacuum permittivity is denoted by ε0. The medium is
assumed to be nonabsorbing, ω < �, in which case it can be
seen from Eq. (24) that

εαβ (ω) = ε∗
βα (ω), (B2)

i.e., the symmetric and antisymmetric components, εs
αβ and

εas
αβ , are real and imaginary, respectively. The Onsager

relation εαβ (ω; n, B) = εβα (ω; −n,−B) then determines that
εs
αβ (εas

αβ) is an even (odd) function of n and B.
Our system corresponds to an anisotropic εαβ . The sample

thickness l � c/ω, which is always satisfied for thin films (c
is the speed of light). In the cases considered in Sec. IV, the
principle axes of εs

αβ are always along the x and y axes. We
fix the linear polarization of the normally incident wave along
the x axis.

We now find the eigenmodes. We assume the normal vector
of the surface to be along one of the principle axes of εαβ .
Then E is always transverse: n · E = 0 where n = kc/ω and
k is taken along the z axis. E then satisfies the Fresnel equa-
tion [40]:

(n2δαβ − εαβ )Eβ = 0. (B3)

In the inverse dielectric tensor εαβ , we separate out the sym-
metric and antisymmetric components,

εαβ = εs
αβ + εas

αβ, (B4)

and choose the x and y axes to be the principle axes of
(εs

αβ ) with principle values n2
0x, n2

0y; n0x, n0y are the refractive
indices of the material. For the antisymmetric part, we write
for later convenience εas

xy = iGz. Equation (B3) then gives for
the eigenmodes

n2
± = 1

2 (εxx + εyy) ±
√

1
4 (εxx − εyy)2 + G2

z . (B5)

The corresponding elliptically polarized eigenvectors are
given by Eq. (43), where the coefficients λ1, λ2 satisfy

λ2

λ1
= i

Gz

[
1

2

(
n2

0x − n2
0y

) ∓
√

1

4

(
n2

0x + n2
0y

)2 + G2
z

]
. (B6)

In a nonabsorbing medium, it follows from Eq. (B2) that
n2

0x, n2
0y, and Gz are real. Note that all intensive physical

quantities above are defined per unit thickness, whereas in
two-dimensional materials they are per monolayer.

Finally, we look at the limiting behavior of θF (54) for
ω → 0. Then εxx, εyy ∼ 1/ω2 � εxy ∼ 1/ω by substituting
the diamagnetic term in Eq. (32) into Eq. (B1). As a result,
λ2/λ1 ∼ 1/ω (remember Gz ∼ 1/ω) and n± ∼ 1/ω. Equa-
tion (54) then gives

tan θF ∼ (n+ − n−)ω

(λ1/λ2) + (λ2/λ1)
∼ ω → 0. (B7)
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