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Spin wave dynamics excited by a focused laser pulse in antiferromagnet CrSBr
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The manipulation of magnetization dynamics by a focused laser with thermal and nonthermal mechanisms
is a fascinating research topic. While such phenomena in ferromagnets have been intensively studied, the
laser-induced magnetization dynamics in antiferromagnets remain to be clarified. In the present paper, we theo-
retically investigate both thermal and nonthermal mechanisms in CrSBr films, a van der Waals antiferromagnet
with triaxial magnetic anisotropy, which has attracted great research interest recently. In contrast to previous
reports on ferromagnet, the magnetization dynamics in CrSBr show several distinct features, especially for the
thermal mechanism associated with the shear stress, where the presence and symmetry of spatial patterns of
the dynamical magnetization strongly rely on the nonuniformity of shear stress and the strength of the in-plane
magnetic field. From the nonthermal excitation, we find an isotropic spin-wave propagation at zero field, as well
as an enhanced anisotropy introduced by the magnetic field. Our results could be useful for the laser-induced
spin dynamics in antiferromagnets.
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I. INTRODUCTION

Since the discovery of laser-induced ultrafast demagnetiza-
tion [1], the manipulation of magnetism by a pulsed laser and
the magnetization dynamics therein have become an attrac-
tive theme in the field of spintronics, where both nonthermal
and thermal mechanisms are recognized to contribute. The
nonthermal effects can be generated by either the transient
magnetic field of the light [2–4] or an effective magnetic
field due to photomagnetic interactions, which results in, for
instance, the inverse Faraday effect (IFE) [5–7] and the in-
verse Cotton-Mouton effect [8]. For the thermal origin, the
laser irradiates the sample and unavoidably causes an in-
crease in the temperature of the sample. As a consequence,
in rare-earth orthoferrites with strong temperature-dependent
magnetic anisotropy, the magnetization dynamics can be trig-
gered by the variation of the anisotropic field due to the
ultrafast heating [9–11]. Another well-known thermal effect
is a local stress introduced to the lattice by a focused laser
beam, which generates sound waves and further excites spin
waves or magnons via the spin-lattice coupling [12–15]. The
interaction between sound and spin waves from this mecha-
nism gives rise to various interesting phenomena, such as the
bireflection of spin waves [16], the magnetization switching
[17], the coherent oscillation between phonons and magnons
[18], and the formation of spatial magnetization pattern [19].

The magnetization dynamics due to thermal and nonther-
mal origins of a focused laser can be distinguished from the
distinct characteristics in the angular-dependent propagation
of the generated spin waves [12,20,21], which can be read by
the technique of all-optical spin-wave tomography, where the
spin-wave dispersion and the coupling of magnon and phonon
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can be extracted [13,22,23]. As the early works in this di-
rection mainly focused on ferro- and ferrimagnetic materials,
the laser-induced magnetization dynamics in antiferromag-
nets have attracted arising attention [24–27]. For example, a
quadrupolar shape of spin-wave propagation induced by laser
was observed in a van der Waals antiferromagnetic CrSBr film
[24,27], which may reflect the strong magnon-phonon cou-
pling in this material [28–30]. An explicit theoretical analysis
on laser-induced magnetization dynamics in antiferromagnets
remains exclusive.

In the present paper, we study the laser-induced spin-wave
dynamics in triaxial antiferromagnetic films, with repre-
sentative materials CrSBr, by analyzing the spatiotemporal
evolution of the measurable out-of-plane magnetization from
both thermal and nonthermal mechanisms. For the thermal
excitation, we consider the spin torques generated by pres-
sure and shear stresses with both uniform and standing-wave
profiles across the film thickness. In contrast to the pres-
sure stress case, where the dynamical magnetization always
presents quadrupolar spatial distribution, the shear stress is
found to be able to excite magnetization dynamics only when
the symmetry of the system is broken by an external magnetic
field or by a nonuniform deformation across the thickness.
In the case with an external magnetic field, the resulting
spatial profile of dynamic magnetization follows the situation
in ferromagnetic films, i.e., with a dipolar characteristic in
spatial propagation of the excited spin wave. The shear stress
with a standing-wave profile produces a quadrupolar shape of
spin-wave propagation at zero field, which gradually gains
the dipolar characteristic with applying and increasing the
magnitude of the external magnetic field. In the nonthermal
mechanism, we consider the IFE which causes isotropic spin
wave propagation at zero field and shows anisotropic spin
propagation in the presence of an external magnetic field.
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II. MAGNETOSTATIC SPIN WAVES
IN ANTIFERROMAGNET

According to Refs. [24,27–30], the intrasublattice ex-
change interaction for the magnetic moments within a single
layer in CrSBr is sufficiently strong to form the ferromagnetic
layer and the weak intersublattice between neighboring layers
is responsible for the establishment of the interlayer antiferro-
magnetic order. Since the strong intrasublattice is irrelevant to
the film geometry in the sub-Terahertz frequency scale, we
consider a two-sublattice antiferromagnetic model and take
the total energy density consisting of the Zeeman energy,
a triaxial anisotropic term, and an intersublattice exchange
coupling as

E (r, z, t ) = − μ0H ·
∑
i=1,2

M0mi + 2Jm1 · m2

−
∑
i=1,2

∑
η=x,y

Kη
(
mη

i

)2
,

(1)

where mi(r, z, t ) stands for the normalized magnetization of
the ith sublattice with r and z being the in-plane and out-of-
plane components of the position vector. M0 is the sublattice
saturation magnetization. By including both the external mag-
netic field H0 (along the x direction) and the demagnetization
contribution Hin, the total magnetic field is expressed as
H(r, t ) = H0 + Hin(r, t ). J and Kη are the coefficients of the
Heisenberg exchange interaction and the anisotropy, respec-
tively, with their values J > 0 and Kx > Ky > 0. As a van der
Waals antiferromagnet with in-plane easy-axis anisotropy, the
magnetic moments of exfoliated CrSBr are naturally aligned
within the plane, which is therefore suitable for observing
the dynamics of the out-of-plane magnetization by optical
approaches. For other antiferromagnets with bulk crystalline,
a proper crystal face orientation is required to make the mag-
netic moments within the film plane. In addition, the weak
antiferromagnetic exchange interaction between ferromag-
netic layers in CrSBr with opposite spins makes the anisotropy
and dipolar interaction more important than those in normal
antiferromagnets. Assuming that the external magnetic field is
weaker than the spin-flop field, the system is in the collinear
configuration with Néel vector along the x direction. The mag-
netization dynamics of the two sublattices can be described by
the Landau-Lifshitz equation

∂t m1(2) = −γ m1(2) × μ0Heff,1(2), (2)

where γ is the gyromagnetic ratio and μ0Heff,1(2) =
−∇m1(2)E/M0 calculated from Eq. (1) represents the total
effective magnetic field acting on the local sublattice mag-
netization. By substituting the time-harmonic solution into
Eq. (2), we find the relation between the dynamical magne-
tization components and the demagnetization field within the
magnetic film as

my
1(2) = μ0(κ1(2)Hin,y + iν1(2)Hin,z ),

mz
1(2) = −iμ0(κ ′

1(2)Hin,y + iν ′
1(2)Hin,z ), (3)

where the expressions of the coefficients κi, κ ′
i , νi, and ν ′

i
are shown in Appendix A. Then, by following the standard
approach for magnetostatic spin waves [31], we express the
demagnetization field by the gradient of a scalar potential,

i.e., Hin = ∇φ, and solve the boundary condition of the scalar
potential in the film geometry associated with the Maxwell’s
equation ∇ · [M0(m1 + m2) + Hin] = 0. The characteristic
equation of the eigenfrequencies for a given in-plane wave
vector k can be expressed as [32,33]

(1 + κ ′)2

(
kz

in

k

)2

−2(1 + κ ′) cot
(
kz

ind
)kz

in

k
−1

= −(ν ′)2 sin2 θk, (4)

where d represents the film thickness and θk is the angle
between the wave vector and the Néel vector. The normal
component of the wave vector kz

in satisfies

(
kz

in

)2 = −1 + κ sin2 θk

1 + κ ′ k2. (5)

Here, κ , κ ′, and ν ′ are functions of ω, as shown in Appendix A.
The numerical solution of Eq. (4) leads to a series of eigenfre-
quencies for the spin waves, ω jk, of which the corresponding
wave functions are given by

My
1(2), j (k, z) = −iμ0Cjk

(
κ1(2)k sin θkZ1 + ν1(2)k

z
inZ2

)
, (6)

Mz
1(2), j (k, z) = −μ0Cjk

(
ν ′

1(2)k sin θkZ1 + κ ′
1(2)k

z
inZ2

)
, (7)

with Z1(z) = sin(kz
inz) and Z2(z) = cos(kz

inz). The common
coefficient Cj in Eqs. (6) and (7) is determined by the or-
thonormality condition [34]

∑
i=1,2

(−1)i
∫ d/2

−d/2
dz

(
Mz∗

i, jM
y
i, j′ − My∗

i, jMz
i, j′

) = iδ j j′ , (8)

in which δ j j′ stands for the Kronecker delta function.

III. SPIN-WAVE DYNAMICS EXCITED
BY A FOCUSED LASER PULSE

According to the linear response theory, the dynamical
magnetization can be described, in general, by

m(r, z, t ) = 1

M0

∫
dr′dz′dt ′χ(r, z, t ; r′, z′, t ′) · HT (r′, z′, t ′),

(9)
where χ is the response tensor and HT is the perturbation field
triggering the magnetization dynamics. By projecting Eq. (9)
into the eigenmodes of the spin waves, the spatiotemporal evo-
lution of the induced transverse magnetization components in
the ith sublattice can be written as [21]

mα
i (r, z, t ) =

∑
k

eik·r 1

M0

∫
dz′dt ′

×
∑
β,i′

χ
αβ

ii′ (k, z, z′, t, t ′)Hβ

i′T (k, z′, t ′), (10)

with α, β ∈ {y, z}. The spin susceptibility χ
αβ

ii′ is given by

χ
αβ

ii′ (k, z, z′, t, t ′) = −iγμ0M0

∑
j

e−iω jk (t−t ′ )

×Mα
i, j (k, z)Mβ∗

i′, j (k, z′). (11)

The dissipation effect can be included by introducing
(1 − iα0) in front of ω jk, with α0 denoting the Gilbert
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FIG. 1. The schematic of our geometry with the the upper and
lower surfaces of the magnetic film defined as z = −d/2 and d/2,
respectively. The equilibrium sublattice magnetic moments and the
external magnetic field both lie in the x-direction within the film
plane. A focused laser pulse heats the film and generates a local
lattice deformation at the heating area as well as a propagating elastic
wave (the ring-shaped deformation).

damping constant. The out-of-plane component of the net
magnetization mz

net integrated over the magnetic film can be
characterized experimentally by the Faraday (Kerr) angle �F

as

�F (r, t ) ∝
∑

k

eik·r ∑
j

mz
net, j (k, t ), (12)

where the contribution from the jth spin wave mode with the
wave vector k is derived from Eq. (10), that is, mz

net, j (k, t ) =∫ d/2
−d/2(mz

1, j + mz
2, j )(k, z, t )dz.

A. Thermal excitation

To simulate the thermal excitation of spin waves by a
focused laser pulse, we model the perturbation field HT in
Eq. (10) by considering the lattice deformation due to local
heating schematically shown in Fig. 1. The thermal expansion
due to the heating effect generates shear and pressure stresses
to the lattice, which brings in not only a static lattice deforma-
tion at the heating area but also sonic pulses propagating with
approximately transverse or longitudinal sound speed. The
lattice deformation further creates a torque to the magnetiza-
tion due to the magnetoelastic coupling [20,21]. In contrast to
the ferromagnetic case, the magnetoelastic coupling mainly
correlates the lattice with the Néel vector, instead of the net
magnetization. Its explicit form in the long-wavelength limit
reads [35]

Hme = Bαβnαnβeαβ, (13)

where Bαβ = B‖δαβ + B⊥(1 − δαβ ) are the magnetoelastic
coupling constants, nα � (mα

1 − mα
2 )/2 is the α component of

the Néel vector, and eαβ = (∂βRα + ∂αRβ )/2 corresponds to
the strain of the lattice.

By considering the fact that the lattice deformations
due to the shear and pressure stresses are mainly in the

out-of-plane and in-plane directions separately with a rel-
atively weak coupling, we neglect the interplay between
the in-plane and out-of-plane lattice dynamics for the sim-
plification of our analytical description. Since the resulting
sonic pulse propagates separately with the transverse and
longitudinal sound speeds, the out-of-plane and in-plane lat-
tice deformation are described by Rz(r, z, t ) and Rl (r, z, t ),
respectively [20,21]. To analyze the role of the different pro-
files of the displacement in the thickness direction, we take
Rl � gl (r, t ) fl (z) and Rz � gz(r, t ) fz(z)ez. The gl (r, t ) and
gz(r, t )ez including both localized deformation and acoustic
pulses can be obtained through the equations of lattice mo-
tion with the temperature distribution [21]. For the profiles
of the displacements in the thickness direction, we take two
cases in the following: (1) Uniform profile f u

z(l )(z) = 1 [21]
and (2) standing-wave form f st

z(l )(z) = cos(kz
p(z + d/2)) with

kz
p = π/2d , which corresponds to a free boundary of the upper

surface z = −d/2 and a fixed boundary of the lower surface
z = d/2 [36–38]. Both cases are considered to be relevant to
the recent experiments in van der Waals antiferromagnets like
CrSBr [24,25,27].

The effective excited magnetic field μ0HiT =
−∇miHme/M0 from the magnetoelastic coupling reads

H1T = −H2T = − B⊥

2μ0M0
ik(Rl sin 2θkey + Rz cos θkez ).

(14)
Substituting it into the Eq. (10), we can get mz

net, j (k, t ) from
the pressure stress,

mz
net, j (k, t ) ∝ −k2e− k2W 2

4 sin 2θk
Mpr

j (k)(
ω

pr
p
)2

×
[

Apr
k e−iω jkt + Bpr

k e−iωpr
p t + Cpr

k eiωpr
p t − 1

ω jk

]
, (15)

and that from the shear stress

mz
net, j (k, t ) ∝ −ik3e− k2W 2

4 cos θk
Msh

j (k)(
ωsh

p

)2

×
[

Ash
k e−iω jkt + Bsh

k e−iωsh
p t + Csh

k eiωsh
p t − 1

ω jk

]
, (16)

where

Apr(sh)
k = 1

ω jk
− Bpr(sh)

k − Cpr(sh)
k , (17)

Bpr(sh)
k = 1

2
(
ω jk − ω

pr(sh)
p

) , (18)

Cpr(sh)
k = 1

2
(
ω jk + ω

pr(sh)
p

) . (19)

Here, the frequency ω
pr
p from Rl lattice displacement is ω

pr
p =√

c2
l k2 + (ct k

z
p)2 and the frequency ωsh

p due to the dynamic of

Rz is ωsh
p =

√
c2

t k2 + (clk
z
p)2, with ct and cl being the trans-

verse and longitudinal sound velocities. W characterizes the
size of the laser spot. The expressions of Mpr

j (k) and Msh
j (k)
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are given by

Mpr
j (k) = Mz

j (k) × (
N y

j (k)
)∗

fl (z) (20)

and

Msh
j (k) = Mz

j (k) × (
N z

j (k)
)∗

fz(z), (21)

where M j = M1, j + M2, j and N j = M1, j − M2, j rep-
resent the magnetization and the Néel vector for the jth
eigenmode of the magnetostatic spin wave, respectively, and
the overline notation above a function stands for an integral
over the thickness, for instance, Mz

j = ∫ d/2
−d/2 M

z
jdz, where

the symmetry of the wave functions is essential to give a
finite value.

B. Nonthermal excitation

For the nonthermal excitation mechanism, we consider the
IFE of a circularly polarized laser pulse [39,40], which results
in a strong magnetic field pulse along the direction of laser
beam [5–7]. The circularly polarized laser beam is set to
propagate within the z direction, so the effective magnetic
field from IFE is

HT (r, t ) = e−r2/W 2
δ(t )τdhzez, (22)

where hz is the amplitude of the effective excited field and τd

stands for the duration of the pulse. By substituting Eq. (22)
into Eq. (10), we obtain the z component of the induced
sublattice magnetization as

mz
net, j (k, t ) ∝ − ie− k2W 2

4 e−iω jktMz
j (k) × (

Mz
j (k)

)∗
hz. (23)

IV. RESULTS

In this section, we apply our formalism to CrSBr, a rep-
resentative antiferromagnetic van der Waals material with
triaxial anisotropy. In the geometry of Fig. 1, we take the
material parameters μ0Hex = 0.2 T, μ0Hx

a = 1.6 T, μ0Hy
a =

0.64 T, μ0M0 = 0.26 T [24,25], and the transverse and longi-
tudinal sound velocities ct = 1.1 km/s and cl = 5 km/s [41].
The damping constant is adopted to be α0 = 0.1. The thick-
ness and size of the laser spot are taken to be d = 150 nm
and W = 1.4 µm, respectively. Note that although the strength
of the Heisenberg exchange interaction is even weaker than
the anisotropy, it is still important to include it for the proper
magnon spectrum [24,25].

A. Thermal excitation with uniform
deformation in thickness direction

The results of the thermal excitation from the calculation
with an acoustic wave distributed uniformly in the thickness
direction, i.e., with f u

z(l )(z)= 1, are plotted in Fig. 2, which

displays the snapshots of the mz
net distribution with arbitrary

unit at 4 ns after laser pumping at zero magnetic field. A quan-
titative estimation of mz

net requires not only the laser intensity
but also various materials parameters, such as the magnetoe-
lastic coupling coefficient and thermal expansion coefficient
for thermal excitation, and the magneto-optic susceptibility
for nonthermal mechanism. By considering the fact that the
experimental measurement in CrSBr has already shown the

FIG. 2. Snapshot of mz
net distribution (in arbitrary units) due to

(a) the pressure stress and (b) the shear stress in CrSBr at 4 ns after
an ultrafast laser pulse in the absence of external magnetic field.

detectable magnitude in the magneto-optical Kerr effect ac-
cording to Ref. [27], we here focus on the spatiotemporal
evolution of the signal. As shown by Fig. 2(a), the mz

net dy-
namics can be efficiently excited by the pressure stress, which
presents very similar features to those in the ferromagnetic
case, namely, with a quadrupolar around the heating area and
an expansive circle due to the propagating of a sonic pulse
[21]. The excitation due to shear stress is, however, forbid-
den according to Fig. 2(b), which is in sharp contrast to the
situation in ferromagnets [21].

To understand the vanishing of the net magnetization mz
net

in the shear-stress-induced dynamics in Fig. 2(b), we analyze
the properties of the zero-field magnon dispersion relations
and the symmetry of the corresponding wave functions. The
typical features of the magnon dispersion are explicitly shown
as Fig. 3(a) by taking θk = π/3 as an example, where the blue
and cyan curves correspond to the high- and low-frequency
sets of the volume modes, labeled VHs and VLs in the fol-
lowing. The orange curve and the pink one within the gap
between VHs and VLs are two surface modes [33]. The one
of the higher (lower) frequency are labeled as SH (SL). More
results with different θk can be found in Appendix B.

Figures 3(b) and 3(c) plot the spatial profiles of the mag-
netization density Mz

j and the Néel density N z
j along the

thickness direction for two selected volume modes VH1 and
VL1, as well as the two surface modes at the wave vectors
indicated by the black dots in Fig. 3(a). As one can see from
Fig. 3(b), the profiles of Mz

j for VH1 and SL are antisym-

metric functions, resulting in Mz
j = 0 and hence a vanishing

contribution to Msh
j according to Eq. (21). For VL1 and SH,

their symmetric profile of Mz
j in Fig. 3(b) gives a finite

average value of Mz
j . However, as shown in Fig. 3(d), their

profiles of N z
j are antisymmetric, which leads to N z

j fz(z) = 0
under the condition of a uniform lattice deformation profile
f u
z (z) = 1. As a consequence, these modes do not contribute

to Msh
j (k) neither. A systematic examination shows that all

VHs (VLs) exhibit the same symmetry as VH1 (VL1), which
thus indicates a zero Msh

j (k) for any mode in the absence of
an external magnetic field. This explains the absence of the
magnetization dynamics in Fig. 2(b). In the meantime, the
symmetric profiles of N y

j and Mz
j for the VLs and SH give

nonvanishing Mpr
j (k) in Eq. (20), forming the snapshot of mz

net
in Fig. 2(a).

For a comparison, we calculate the dispersion curves and
the typical wave functions at the same angle θk = π/3 in the
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FIG. 3. Spin-wave dispersion relations of CrSBr at θk = π/3
(a) without and (b) with an external magnetic field at 100 mT. Blue
and cyan curves represent the high- and lower-frequency sets of
volume modes, i.e., VHs and VLs, while the orange and pink curves
correspond to the dispersions of the two surface modes (SH and
SL) [33]. Spatial profiles of wave functions Mz

j , N
y
j , and N z

j at
(b)–(d) 0 mT and (f)–(h) 100 mT, for the modes indicated in (a) and
(b), i.e., VH1 and VL1 at kd = 8 and SH and SL at kd = 0.5. The
colored solid (dashed) curves stand for the nonzero real (imaginary)
part of wave functions with those vanishing components discarded.

presence of a magnetic field at μ0H0 = 100 mT, as plotted in
Figs. 3(e)–3(h). The magnetic field along the Néel’s direction
not only introduces a frequency shift of each magnon band but
also breaks the symmetry of the wave functions. As clearly
seen from Figs. 3(f)–3(h), neither Mz

j nor N z
j varies asym-

metrically in the thickness direction. This implies finite values
of Mz

j and N z
j f u

z (z), resulting in a nonvanishing Msh
j . One

may expect the activation of the shear-stress-induced magneti-
zation dynamics. Indeed, by evaluating Msh

j of different modes
and substituting them into Eqs. (12) and (16), we do observe
the spatiotemporal evolution of the magnetization, as shown
in Fig. 4 with a magnetic field μ0H0 = 100 mT, where the
expansions of the activated area are observed and similar to
that in a ferromagnetic film generated by the same mechanism

FIG. 4. Snapshot of mz
net distribution (in arbitrary units) due to

shear stress in CrSBr with 100 mT external magnetic field at (a) t =
0.1 ns, (b) t = 1 ns, and (c) t = 4 ns after the arrival of the laser pulse.

[20,21]. This can be understood by the fact that the magnetic
field along the Néel direction breaks the time-reversal symme-
try of the antiferromagnetic system and makes it analogous to
a ferromagnet in terms of spin-wave excitation.

B. Thermal excitation with standing-wave profile
in thickness direction

The thermal excitation with a standing sound wave in the
thickness direction, i.e., with f st

z(l )(z) = cos(kz
p(z + d/2)) as

explained in Sec. III A, is then studied. The results with zero
magnetic field are plotted in Fig. 5, which displays the snap-
shots of the mz

net distribution at 4 ns after the sudden heating
due to the laser pulse.

As we can see, both pressure and shear stresses can gener-
ate magnetization dynamics without a magnetic field. This is
because the applied f st

z(l ) without even or odd symmetry always

gives finite N y
j f st

l (z) and N z
j f st

z (z) in Eqs. (20) and (21).
One distinct feature, compared to the situation with a uniform
profile in Fig. 4, the circular-shaped expansion of the signal
disappears in the snapshot of mz

net induced by shear stress in
the present case, which suggests the significant suppression

FIG. 5. Snapshot of mz
net at 4 ns induced by (a) pressure stress

and (b) shear stress with a standing-wave acoustic profile f st
z(l )(z) =

cos(kz
p(z + d/2)) in the absence of magnetic field. The temporal

evolution of mz
net induced by (c) pressure stress and (d) shear stress

at position x = 1 µm and y = 1 µm.
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of the propagating sonic pulse. This can be understood as
follows. According to Eq. (16), the size of the laser spot
determines the amplitudes of the activated spin waves by
the factor e−k2W 2/4, which indicates that the dominance of
the modes with a wave vector k < 2/W . From the condi-
tion W 	 d , we have kz

p = 2π/d 	 k, which leads to ωsh
p �

cl kz
p + (ct k)2/(2clkz

p). The lateral velocity of the sonic pulses
is estimated to be ∂kω

sh
p = c2

t k/(clkz
p) 
 ct , explaining the

vanishing of the propagation in Fig. 5(b). This picture is also
supported by a simulation at a longer time with t = 120 ns,
where the circular expansion of the shear sonic pulse becomes
visible again (not shown). For the pressure-induced dynamics,
we have ω

pr
p � ct kz

p + (clk)2/2ct kz
p and hence ∂kω

pr
p ≈ 0.57cl ,

which is sufficient to maintain the circular-shaped propagating
profile in Fig. 5(a).

To show the temporal evolution of mz
net in the exposure

area, we present the results as a function of time at the position
with x = 1 µm and y = 1 µm in Figs. 5(c) and 5(d). The mz

net
induced by pressure and shear stresses both exhibit oscilla-
tory behavior, but with different frequencies about 13 GHz
and 52 GHz, respectively. These frequencies correspond to
ω

pr
p � ct kz

p and ωsh
p � clkz

p. The irrelevance of the spin-wave

frequencies ω jk is due to the small magnitude of Apr(sh)
k in

Eqs. (15) and (16) under the condition of ω jk 	 ω
pr(sh)
p , ac-

cording to Eqs. (17)–(19). The relatively quick decay of the
oscillation amplitude in Fig. 5(c) reflects the faster propaga-
tion of the pressure pulse discussed above, leaving a static
nonzero quadrupolar at the exposure area.

Another surprising feature in Fig. 5 is that the spatial
distribution of mz

net in the exposure area generated by the
shear stress looks quite similar to that due to the pressure
stress, namely, with quadrupolar symmetry. This differs from
previous reports of ferromagnets [12,20] and the results of
antiferromagnets with a uniform deformation shown in Fig. 4.
Note that the spatial profile of the dynamical magnetization
distribution, as a superposition of spin waves with different
wave vectors, is determined by the wave-function properties
of different modes. As expressed by Eq. (15), the spatial
symmetry of mz

net induced by pressure stress is related to the
Mpr

j (k) and the factor sin 2θk from the anisotropic magnetoe-
lastic coupling. A detailed analysis shows that the contributed
VLs and SH modes (of nonvanishing Mz

j) with θk = θ0,
π − θ0, π + θ0, and 2π − θ0, which share the same disper-
sion relations, also have the same spatial profiles of Mz

j and
N y

j,st = N y
j f st

l . As an example, the results of N y
j,st with θ0 =

π/3 are presented in Figs. 6(a)–6(d), with the corresponding
Mz

j the same as Fig. 2(b). As a consequence, mz
net exhibits

a quadrupolar symmetry determined by the factor sin 2θk.
For the shear-stress-induced mechanism, however, N z

j,st with
θk = θ0 and π + θ0 for VLs and SH present an opposite
sign to those with θk = π − θ0 and 2π − θ0 according to
Figs. 6(e)–6(h) with θ0 = π/3, which, together with the angu-
lar dependence cos θk in Eq. (16), also results in a quadrupolar
characteristic.

As shown in Fig. 3, an external magnetic field along the
easy axis could significantly modify the symmetry of the wave
functions. It is thus necessary to examine the role of the

FIG. 6. Zero-field spatial profiles of (a)–(d) N y
j,st = N y

j,st f st
l and

(e)–(h) N z
j,st = N z

j,st f st
z in the thickness direction for the selected SH

and SL modes at kd = 0.5 and VH1 and VL1 modes at kd = 8. Here,
we take θk = π/3, 2π/3, 4π/3, 5π/3. The meanings of the colored
curves are all the same as those in Fig. 3.

magnetic field in the present case. The profiles of Mz
j ,

N y
j,st N z

j,st at 100 mT with θ0 = π/3 are plotted in Fig. 7. As
seen, the profiles of Mz

j,st from the four θk in Figs. 7(a)–7(d)
all share the same shape for each mode, except a reversal with
respect to the z = 0 plane, which thus give the same value
of Mz

j,st. For N y
j,st in Figs. 7(e)–7(h) and N z

j,st in Figs. 7(i)–
7(l), although their details at the four angles still show some
differences, the integral over the thickness N y

j,st and N z
j,st leads

to the same sign for each mode. As a consequence, one may
expect that the symmetry of mz

net induced by pressure and
shear stresses should be determined mainly by the factors
sin 2θk and cos θk, respectively, under a large magnetic field.
This is confirmed by direct calculations of spatial magne-
tization distribution, from which the results are plotted in
Fig. 8, where quadrupolar and dipolar features are clearly
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FIG. 7. Spatial profiles of (a)–(d) Mz
j , (e)–(h) N y

j,st = N y
j f st

z , and (i)–(l) N z
j,st = N z

j f st
z for selected SH and SL modes at kd = 0.5 and

VH1 and VL1 modes at kd = 8 with an external magnetic field μ0H0 = 100 mT. All curves have the same meanings as those in Fig. 3.

recognizable from the spin-wave excitation due to the pressure
and shear stresses.

FIG. 8. Snapshot of mz
net distribution (in arbitrary units) at 4 ns

due to (a) pressure stress and (b) shear stress with μ0H0 = 100 mT.

C. Nonthermal excitation

In the nonthermal excitation, the dynamic evolution of
magnetization without and with an external magnetic field
(100 mT) is shown in Fig. 9, where we have assumed that
the rotation of the magnetic moments after the IFE effec-
tive field pulse is small enough to make the system lie in
the linear spin-wave regime. At an early time t = 0.1 ns, the
spatial distribution of the excited mz

net follows the circular
shape of the laser spot [7]. As the generated spin waves
propagate within the film plane, mz

net in the two cases start
to present distinct features. Specifically, the expansion of mz

net
keeps isotropic in the absence of magnetic field, but gradually
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FIG. 9. Evolution of the normalized mz
net excited via nonthermal

IFE mechanism (a)–(c) without and (d)–(f) with an external magnetic
field at μ0H0 = 100 mT.

becomes anisotropic with an external magnetic field at
100 mT [see Figs. 9(e) and 9(f)]. This reflects the field-
induced modification in the spin-wave spectrum and the
corresponding wave functions. On the one hand, the mag-
netic field affects the dispersion of spin waves by increasing
the frequency gap between high-frequency and low-frequency
modes and altering the group velocity of the spin waves. On
the other hand, as discussed above, the symmetry of the wave
functions at zero magnetic field prevents the readout of VHs
and SL modes from mz

net. As a consequence, the spin-wave
propagation in Figs. 9(a)–9(c) is nearly isotropic within the
plane. The inclusion of the magnetic field breaks this rela-
tion and activates all modes, including VHs (blue curves in
Fig. 10), whose dispersions show a strong angular dependence
allowing the anisotropic propagation pattern. A discussion on
the role of triaxial anisotropy can be found in Appendix B.

V. SUMMARY AND DISCUSSION

In summary, we studied the laser-induced magnetization
dynamics in triaxial antiferromagnet CrSBr film from ther-
mal and nonthermal mechanisms. For the thermal excitation
mechanism, we consider the magnetoelastic torque due to the
thermally generated shear and pressure pulses of either uni-
form or standing-wave profiles along the thickness direction.
The pressure stress is found to be able to excite magnetization
dynamics regardless of the value of external magnetic field,
while shear stress can be relevant only when one applies
an in-plane magnetic field to modify the symmetry of wave
functions or introduce a standing-wave stress in the thick-
ness direction to activate the dark modes with antisymmetric

FIG. 10. Spin-wave dispersions in CrSBr film at different wave
vectors and magnetic field. The dark blue and dark green solid lines
are the high-frequency and low-frequency bulk modes calculated
from Eq. (B1). Other symbols are of the same meanings as those
in Fig. 3.

profile of Néel density. Interestingly, the spatial distribution of
the excited dynamical magnetization induced by nonuniform
shear stress at zero magnetic field exhibits a quadrupolar
characteristic, which is in sharp difference from the typical
dipolar shape in ferromagnet from the same mechanism. The
inclusion of a large magnetic field can change the quadrupolar
feature back to the dipolar characteristic. For the nonthermal
excitation, the spatial propagation of the excited spin wave
is also affected by the magnetic field, which can be under-
stood from the changes in the symmetry and dispersion of the
spin waves.

It is also noteworthy that the presence of defects may
introduce some additional localized modes [30] or influence
the local Heisenberg exchange coupling [42],which may af-
fect the magnetic response but can be safely neglected here
because the intensity of such effects is found to be rather
weak, and more importantly the size of the defects is typically
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in the nanometer scale, much smaller than the wavelength of
spin wave studied in our present paper.

Finally, we would like to point out that the calculation with
a uniaxial anisotropy was also performed, where the results
from the thermal excitation were quite similar to those of
the triaxial anisotropy presented here, owing to the consistent
properties of wave-function symmetry. In nonthermal excita-
tion, the dynamics is determined solely by the properties of the
spin waves and hence becomes very sensitive to the magnetic
parameters. The evolution of the spatial patterns then rely
on the magnetic anisotropy. From applications, ultrafast mag-
netization dynamics induced by laser can be beneficial for,
e.g., ultrafast magnetic storage devices and magneto-optical
devices. As previous related studies have been performed
mainly in ferromagnets, our paper reveals the possibilities to
use antiferromagnets instead, which have many well-known
advantages, such as the higher operation speed and the ab-
sence of stray field.
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APPENDIX A: COEFFICIENTS IN CHARACTERISTIC
EQUATION AND WAVE FUNCTIONS

In the characteristic equation, i.e., Eq. (4), κ , κ ′, and ν ′ are
defined as

κ = κ1 + κ2, κ ′ = κ ′
1 + κ ′

2, ν ′ = ν ′
1 + ν ′

2, (A1)

with the detailed expressions of κi, νi, κ ′
i , and ν ′

i being the
same as those in Eqs. (6) and (7):

κ1/2 = [(
ω2 + ω±ω∓ + ω2

ex ± ωexω
′
∓
)
ωex

∓ω±(ω2 − ω∓ω′
∓)

]
/D, (A2)

ν1/2 = [±(ω2 − ω∓ω′
∓)ω

−(ω± + ω′
∓ − ωex)ωωex]/D, (A3)

κ ′
1/2 = [(

ω2 + ω′
±ω′

∓ + ω2
ex ± ωexω∓

)
ωex

∓(ω2 − ω∓ω′
∓)ω′

±
]
/D, (A4)

ν ′
1/2 = ν1/2 ± 2ωωexω

y
a/D. (A5)

Here, we define the frequencies

ω± = ωH ± ωx
a ± ωex, (A6)

ω′
± = ω± ∓ ωy

a, (A7)

with ωH = γμ0H0, ωex = γμ0Hex, and ω
x,y
a = γμ0Hx,y

a .
Here, the effective fields due to exchange interaction and

anisotropy are defined as μ0Hex = 2J /M0 and μ0Hx,y
a =

2Kx,y/M0, respectively. The denominator in Eqs. (A2)–(A5)
is defined as

D = [(
ω2

H − ω2
0 + 2ω′2

0 − ωy
a

2)(
ω2

H − ω2
0

)
+ω4 − 2ω2

(
ω2

H + ω2
0 − ω′2

0

)]
/ωM, (A8)

with

ω0 = [(
2ωex + ωx

a

)
ωx

a

]1/2
, (A9)

ω′
0 = [(

ωex + ωx
a

)
ωy

a

]1/2
, (A10)

and ωM = γμ0M0.

APPENDIX B: SPIN WAVE SPECTRUM IN CrSBr

According to Sec. II, the spin-wave modes can be calcu-
lated from two combined equations of the demagnetization
field Hin = ∇φ and sublattice magnetization m1(2), i.e.,
Eqs. (3) from Landau-Lifshitz equation and ∇ · [M0(m1 +
m2) + Hin] = 0 from Maxwell’s equation, under the proper
boundary conditions. In the film geometry with a finite thick-
ness, all eigenfrequencies for a given in-plane wave vector k
satisfy the characteristic equation, Eq. (4). Some typical dis-
persions with material parameters in CrSBr are illustrated in
Fig. 10 with different values of θk, which is defined as the an-
gle between the wave vector and the Néel vector. We adopted
both zero and a finite external magnetic field at 100 mT.

Note that the spin-wave spectrum of the triaxial antifer-
romagnetic thin film differ from those of uniaxial antifer-
romagnets like MnF2 [33] mainly in two aspects. First, the
low-frequency volume modes are all degenerate in uniaxial
antiferromagnet at zero magnetic field, while this degeneracy
is lifted by the triaxial anisotropy. Second, the high-frequency
volume modes in uniaxial antiferromagnets always have nega-
tive group velocities at any θk. In triaxial antiferromagnets, the
high-frequency volume modes with small θk still have nega-
tive group velocities but those at large θk gain positive group
velocities, as shown in Figs. 10(c)–10(e) and 10(h)–10(j).

In the bulk case, the scalar potential can be written as
φ(r) = φ0eik·r+ikzz [32], where k remains defined as the in-
plane part of the wave vector and kz is the z component.
By substituting this scalar potential into the two combined
equations, we obtain the dispersion relations of the two bulk
modes,

(ω±
bulk)2 = b ±

√
b2 − ac, (B1)

in which

a = ω2
H − ω0

2, (B2)

b = ω2
H + ω0

2 − ω′
0

2 + ωx
aωM sin2 θk, (B3)

c = 2ω′
0

2 − ωy
a

2 − 2
(
ωx

a + ωy
a

)
ωM sin2 θk + a. (B4)

These bulk dispersions with different θk are plotted as the dark
blue and dark green solid lines in Fig. 10.
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