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Magnetic moments of chiral phonons induced by coupling with magnons

Qian Wang , Meng-Qiu Long,* and Yun-Peng Wang †

Hunan Key Laboratory for Super-Micro Structure and Ultrafast Process, School of Physics,
Central South University, 932 South Lushan Road, Changsha, People’s Republic of China

(Received 4 January 2024; revised 21 May 2024; accepted 1 July 2024; published 17 July 2024)

Chiral phonons composed of circular atomic motion possess a tiny magnetic moment as a result of the small
g factor of ions. The couplings with the spin and orbit of electrons could entail a large magnetic moment. In this
paper, we explore the possibility of an emergent phonon magnetic moment due to coupling with magnons in a
hexagonal lattice. The magnetic moment of the phonon results from the mixture of magnon composition in the
nonresonant coupling condition. Only one of the optical phonons gains a magnetic moment in the ferromagnetic
case, while both phonon modes acquire a magnetic moment in the antiferromagnetic case. The magnon-induced
magnetic moment of the phonon is proportional to the square of the magnon-phonon coupling strength. We also
studied the case of nonequal atomic masses on sublattices which entails different magnetic moments of the two
phonon modes.
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Phonons are quasiparticles corresponding to the collec-
tive motions of atoms in crystals. Phonons are traditionally
regarded as linear back-and-forth atomic motions, thus pos-
sessing no angular momentum. It was not until the proposal of
chiral phonons [1–3] that people recognized the concept of an-
gular momentum of phonons. Chiral phonons, i.e., circularly
polarized phonons carrying finite angular momentum, have
been validated in several material systems like Fe2Mo3O8,
WSe2, and α-HgS [4–7]. The angular momentum of phonons
plays a crucial role in the Einstein–de Haas effect [8] and
Barnett effect [9]. The phonon angular momentum has been
demonstrated to play a significant role in the magnon-phonon
coupling [10–13]. Circular rotations of charge-carrying ions
generate magnetic moments [14,15]. The magnetic moments
of phonons are smaller than those of electrons by a factor of
the mass ratio between an ion and an electron. The calculated
magnetic moments of phonons are on the order of 10−3 µB or
less [16–18].

A large phonon magnetic moment on the order of µB has
been identified in nonmagnetic and paramagnetic materials
[19–22]. The large magnitude of phonon magnetic moments
cannot be attributed to solely the circular motions of ions [17];
instead the interactions with the spin of conducting electrons
play a dominant role [18]. The chiral phonons possessing
angular momentum interact with the spin of conducting elec-
trons [7,23]. Theory and experiment observed the angular
momentum transfer between phonons and magnons [24–26].
The transient chiral phonon in KTaO3 acquires a magnetic
moment of 0.1 µB due to coupling with electron spin [27]. The
coupling with cyclotron motion of electrons results in a giant
magnetic moment of 2.7 µB in Dirac semimetallic Cd3As2
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[19]. A quantum mechanical theory of phonon magnetic mo-
ments has been developed in which the adiabatic correction to
electronic wave functions dominates over the contributions of
momentum-resolved Born effective charges [28–30].

The coherent hybridization with magnons is another mech-
anism for phonons to acquire a magnetic moment [31].
Magnon polarons [32–37] emerging from strong magnon-
phonon coupling have mixed characteristics in normal modes.
The phonon-dominated modes also possess a sizable magnon
component which brings a finite magnetic moment. The mag-
netic moment of phonon is ubiquitous in magnetic materials;
that is, there is no symmetry requirement for the emergent
phonon magnetic moment. A sizable magnetic moment of
phonons only requires a sizable magnon-phonon coupling
strength. We anticipate that magnetic materials with active
orbital degrees of freedom, such as FePS3 and Fe2Mo3O8,
probably possess strong magnon-phonon coupling, hence
large phonon magnetic moments. We chose the hexagonal
lattice as the model because materials with strong magnon-
phonon coupling usually have a hexagonal lattice. We also
discuss the existence of phonon magnetic moments in kagome
and square lattices; this discussion is in the Supplemental
Material [38].

In this paper, we introduce a model to demonstrate the
mechanism responsible for the magnon-induced phonon mag-
netic moments. A simple hexagonal lattice model was utilized
to demonstrate the consequence of selective magnon-phonon
coupling on the magnitude of phonon magnetic moments.

A two-dimensional hexagonal lattice carries magnons and
phonons which are coupled with each other. We assume the
electronic orbital degree of freedom is frozen. The Hamilto-
nian [39–41] consists of three parts, namely the spin, lattice,
and magnetoelastic coupling,

H = Hm + Hp + Hmp. (1)

2469-9950/2024/110(2)/024423(6) 024423-1 ©2024 American Physical Society

https://orcid.org/0009-0006-8370-4952
https://orcid.org/0000-0002-3082-0400
https://ror.org/00f1zfq44
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.024423&domain=pdf&date_stamp=2024-07-17
https://doi.org/10.1103/PhysRevB.110.024423


WANG, LONG, AND WANG PHYSICAL REVIEW B 110, 024423 (2024)

The spin Hamiltonian reads

Hm = −J
∑
〈i, j〉

Si · S j − Jz

∑
〈i, j〉

Sz
i Sz

j − Bz

∑
i

Sz
i . (2)

The first term represents the isotropic Heisenberg exchange
with the strength of J , where J > 0 prefers the ferromagnetic
(FM) state, but J < 0 prefers the antiferromagnetic (AFM)
state. The second term stands for the uniaxial anisotropic ex-
change with the strength of Jz > 0 which favors out-of-plane
spins, while the last term is the effect of an external magnetic
field Bz along the z direction.

The Hamiltonian describing the lattice vibrations reads

Hp = m

2

∑
i

v2
i + k

2

∑
〈i, j〉

(ui − u j )
2, (3)

where m is the atomic mass and k is the elastic constant among
neighboring atoms. ui and vi are respectively the displacement
and the velocity vector of the ith atom. We ignore the out-of-
plane vibrations of atoms since these modes are not coupled
with magnons.

The spin-lattice coupling bilinear in terms of the spin and
the displacement is expressed as

Hmp = λ
∑

i

∑
e

[(Si · e)(ui − ui+e)]. (4)

This form was proposed by Kittel [42,43], and was also
adopted in recent works [39–41], where λ is the magnon-
phonon coupling strength and e refers to the three unit vectors
connecting one atom to its three nearest neighbors.

The linearized equation of motion [44,45] for magnon and
phonon in the classical regime is

d

dt

⎛
⎝V

U
S

⎞
⎠ =

⎛
⎝F/m

V
T

⎞
⎠ =

⎛
⎝0 D A

1 0 0
0 B C

⎞
⎠ ·

⎛
⎝V

U
S

⎞
⎠; (5)

here V , U , and S are the velocities, displacements, and local
magnetic moments; F and T refer to the forces on atoms
and torques on spins. D ≡ d (F/m)/dU is the force-constant
matrix, and C ≡ dT /dS describes the spin-spin interaction.
A ≡ d (F/m)/dS and B ≡ dT /dU stand for the spin-lattice
coupling. The equation of motion derived by Ren et al. [45]
has a quite similar form, except they also considered the
Berry curvature such that the dependence on atomic velocity
is nonzero. The Berry curvature terms involve the electronic
degree of freedom; they are ignored in our method. The spec-
tra of magnon and phonon modes are solved using the method
of equations of motion in our previous work [10,46].

Figure 1 shows the calculated dispersion relations of
magnons and phonons in a hexagonal lattice. The magnon and
phonon band structure with the magnon-phonon coupling is
illustrated in Fig. 1(a) for the AFM case. An external mag-
netic field along the z direction with Bz = 0.01J splits the
degenerate magnon. According to their normal modes, the two
magnon bands are labeled as MR and ML, respectively. There
are four phonon bands (the blue line), and two acoustic and
two optical phonon bands since the out-of-plane vibrations are
not considered. The two optical phonon bands are degenerate
at the � point when magnon-phonon coupling is turned off
λ = 0. Once the magnon-phonon coupling is turned on, an

FIG. 1. Calculated magnon-phonon dispersion relation in (a) the
antiferromagnetic and (b) the ferromagnetic configurations. The
anisotropic exchange strength is set to Jz = 0.1J , coupling strength
is λ = 0.01J , and the external magnetic field Bz = 0.01J . The char-
acteristics of normal modes are represented by pseudocolors: red for
pure magnons and blue for pure phonons.

anticrossing feature emerges where the uncoupled magnon
and phonon bands cross each other. These anticrossings are
characteristics of the resonant coupling between magnon and
phonon [10].

Moreover, the originally degenerated optical phonon bands
at the � point are lifted in the presence of magnon-phonon
coupling, as illustrated in Fig. 1(a) and its inset. They split
into two chiral phonons moving in opposite directions, labeled
PR and PL. Note that the splitting of optical phonons only
occurs under magnetic fields. The splitting of optical phonons
at � is different from the above-mentioned band anticrossing;
in fact these phonons at � are in the nonresonant condition
with magnons with a large frequency difference. For the case
of FM, there are two nondegenerated magnon modes cor-
responding to the in-phase and out-of-phase precessions of
spins at the two sublattices. The frequency of the acoustic
magnon (denoted as MA) at � is nonzero due to the magnetic
anisotropy of Jz = 0.1J . The optical magnon is denoted as MO

shown in Fig. 1(b).
When coupled with the magnon, the two optical phonon

bands are no longer degenerate at the � point, as illustrated
in Fig. 1(b) with λ = 0.01J . The splitting of degenerated
optical phonons at the � point again results from nonres-
onant coupling with magnons. As will be discussed later,
through magnon-phonon coupling, magnons contaminate the
two phonon modes by different degrees, which causes phonon
splitting. The contamination by magnons introduces magnetic
moments to the phonon modes. Hereafter, we will focus on
the magnon and phonon modes at the � point, which could be
observed using the Raman spectra [47,48].

We apply a magnetic field along the z direction and observe
frequency shifts of the magnons and the phonons modes at
the � point. The shifts in the frequency of a quasiparticle due
to magnetic fields can be attributed to its magnetic moment.
For the case of AFM, the frequency of magnon mode MR

increases while the frequency of ML decreases, as illustrated
in Fig. 2(a). This is because the two AFM resonance modes
possess magnetic moments with opposite directions.

The frequencies of optical phonon modes also shift
under magnetic field. At Bz = 0 the two optical phonons are

024423-2



MAGNETIC MOMENTS OF CHIRAL PHONONS INDUCED BY … PHYSICAL REVIEW B 110, 024423 (2024)

FIG. 2. The frequency of magnons and phonons under the exter-
nal magnetic field and the coupling strength at the � point. (a) The
frequency splitting of the two pairs of AFM magnons and phonons
with λ = 0.05J . (b) The energy as a function of the coupling strength
with Bz = 0.02J in AFM. (c) and (d) are the frequency changes of
magnons and phonons in the case of FM.

degenerate, but their frequencies shift in opposite directions
under magnetic field; see Fig. 2(a). The frequency shift is
linear with respect to the magnetic field. Therefore one can as-
sign well-defined magnetic moments to these optical phonon
modes; their magnetic moments therefore have opposite
signs.

One can calculate the magnetic moments of magnons and
phonons from the slope of their frequencies with respect to
the magnetic field. For instance, at magnon-phonon coupling
strength of λ = 0.05J , the calculated magnetic moments of
magnons are reduced from ±2 µB to ±1.95 µB while the opti-
cal phonons have magnetic moments of ±0.05 µB.

The situation of frequency shifts in the FM case is different
from the aforementioned AFM case, as illustrated in Fig. 2(c).
The frequencies of both acoustic magnon MA and optical MO

shift linearly as the magnetic field increases, because the two
FM resonance modes possess the same magnetic moment of
about 2 µB. For the two optical phonon modes, one of them,
denoted as PR, shifts to higher frequency as the magnetic field
increases, while the frequency of the other, denoted as PL,
remains unchanged. Therefore, the phonon mode PR has a
finite magnetic moment, while PL is not magnetic.

In order to understand the different magnetic moments
of phonons in the FM case, we tune the magnon-phonon
coupling strength and trace the evolution of the frequencies
of magnon and phonon modes. When one magnon mode
is coupled with a phonon, their frequencies would repulse
each other; as the coupling strength increases, the degree of
repulsion is enhanced. As shown in Fig. 2(d), the MA magnon
and the PL phonon are almost inert. Therefore, the acoustic
magnon MA is not coupled to any phonon; the PL phonon is
not coupled to any magnon. The other two modes, namely the
optical phonon PR and optical magnon MO, repulse each other,
so they are coupled. Now we can understand the different
magnetic moments of phonon modes PL and PR. The phonon
PL is not coupled with any magnon so it has no magnetic

FIG. 3. Sublattice polarizations of phonon and magnon modes in
AFM and FM at the � point. The hexagonal lattice has two atoms
A and B represented in red and blue, respectively. (a) PR is a right-
handed phonon, and the angular momentum of the phonon is +1.
(b) PL is a left-handed phonon that has a phonon angular momentum
of −1. (c) MR is a right-handed magnon with the magnon angular
momentum of +1 and ML is a left-handed magnon in AFM with the
magnon angular momentum of −1. (d) MA is the acoustic magnon
mode, and MO is optical magnon mode in FM.

moment; instead the phonon PR is coupled with magnon MO

so it has a finite magnetic moment.
The repulsion among magnon and phonon in the AFM case

is also illustrated in Fig. 2(b). Under a finite magnetic field of
Bz = 0.02J , both AFM magnons shift to lower frequencies
and both phonons shift to higher frequencies as the magnon-
phonon coupling becomes stronger. The frequency curves of
both magnons are nearly parallel; thus their effective coupling
strengths with phonons are nearly the same. The same effec-
tive coupling strength also explains the same magnitude of
magnetic moments of the two phonons. The magnon-phonon
coupling requires the matching of their angular momenta
[10,11]. A magnon and a chiral phonon are effectively coupled
if their normal modes rotate along the same direction. The
selective coupling between magnon and phonon can be under-
stood by examining their normal modes shown in Fig. 3. Both
optical phonon modes are composed of circular motions of
atoms and there is a π -phase difference between sublattices.
Atoms rotate in the clockwise manner for the PL mode, while
counterclockwise for the PR mode, as illustrated in Figs. 3(a)
and 3(b). For the magnon mode ML in the AFM case, the
in-plane component of local magnetic moments rotates in a
clockwise manner [see Fig. 3(c)]; it is consistent with that
of the phonon PL mode, but opposite to PR. As discussed in
our previous work [10], phonons and magnons with opposite
motion directions fail to couple with each other. Therefore
the magnon ML only couples with phonon PL but not PR.
Similarly, the magnon MR couples with phonon PR but is not
coupled with PL.

The situation of magnon-phonon coupling for the FM case
is in strong contrast to the AFM case discussed above. The
local magnetic moments for the acoustic magnon mode (MA)
rotate in-phase, that is, without phase difference between sub-
lattices. Therefore, the acoustic magnon is not coupled with
optical phonons which have a π -phase difference between
sublattices. On the other hand, the optical magnon mode (MO)
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FIG. 4. Magnetic moments at (a) AFM and (b) FM. The phonon
magnetic moment and coupling strength for AFM (c) and FM
(d) with a log-log scale. Here the magnon magnetic moment is shown
in red, and the phonon magnetic moment is shown in blue.

has a π -phase difference, so it is allowed to couple with the
optical phonon mode. However, the local magnetic moments
in the optical magnon mode rotate in a counterclockwise
manner, so it couples only with the PR phonon mode but
not PL.

A phonon carrying a finite magnetic moment exhibits the
phonon Zeeman effect; that is, its frequency shifts linearly
with the magnetic field: δω = μ · δBz. The phonon Zeeman
effect thus provides a direct way to measure the phonon mag-
netic moment [31]. The magnetic moments of phonon modes
can be calculated from the dependence of their frequencies on
the magnetic field. In practice, we employ the finite-difference
method to calculate μ = �ω/�Bz. The calculated magnetic
moments of magnons and phonons are plotted in Fig. 4 as
a function of the magnon-phonon coupling strength λ. For
the AFM case [Fig. 4(a)], the magnetic moments of magnons
ML and MR are ∓2 µB in the absence of magnon-phonon
coupling. As the coupling strength λ increases, the magnitude
of the magnetic moment of the MR magnon decreases, and
so does the ML magnon. At the same time, the magnetic
moment of phonon modes PR and PL emerges and increases
as λ is enhanced. At λ = 0.15J , the phonon modes ML and
MR possess a magnetic moment of about 0.3 µB.

Our data also show that the sum of magnetic moments of
ML and PL remains 2 µB irrespective of the λ, and so does
the sum of magnetic moments of MR and PR. This result can
be interpreted as a transfer of the magnetic moments from
magnon ML (MR) to phonon PL (PR) intermediated by the
magnon-phonon coupling. The magnetic moment transfer ex-
plains the reduction in the magnon magnetic moment and the
enhancement in the phonon magnetic moment, which entails
the conservation of the total magnetic moment of magnon-
phonon pairs ML-PL and MR-PR.

The nonlinear relation between magnetic moments and the
magnon-phonon coupling strength λ as illustrated in Fig. 4
can be understood using a two-level system model. According
to the previous analysis, we only need to consider one magnon
mode coupled with another phonon mode. The Hamiltonian of

this magnon-phonon two-level system can be expressed by a
2 × 2 matrix,

Heff =
(

E0
p λ0

λ0 E0
m − μBz

)
, (6)

where E0
p and E0

m are the energies of phonon and magnon
modes in the absence of coupling; the magnon mode gains
an extra energy −µBz due to the magnetic field Bz; here
µ = 2 µB refers to the magnetic moment of a bare magnon.
The magnon and phonon is coupled and the effective coupling
strength λ0 = 4λ in Eq. (4). In the following we treat λ0 as
a small quantity with respect to |E0

m − E0
p |. The eigenvalues

of Heff give the energies of the phonon and magnon, whose
derivative over magnetic field Bz gives the magnetic moments.
The magnetic moment of the magnon at Bz = 0 is

μm ≈ μ − μλ2
0/�

2, (7)

where � = |E0
m − E0

p |. This result indicates that the magnetic
moment of a magnon is always reduced by coupling with a
phonon; this is what we have seen in Figs. 4(a) and 4(b).

The magnetic moment of the phonon at Bz = 0 is

μp ≈ μλ2
0/�

2. (8)

This indicates that the magnetic moment of the phonon is
always parallel to that of the coupled magnon. Combining
Eq. (7) and Eq. (8), one can obtain µp + µm = μ; that is, the
sum of magnetic moments of a coupled pair of magnon and
phonon is always equal to that of a bare magnon. Equation (8)
also indicates that the phonon magnetic moment is propor-
tional to the square of the coupling strength. The calculated
phonon magnetic moment versus coupling strength λ0 is plot-
ted in Figs. 4(c) and 4(d) with a log-log scale. The curves in
Figs. 4(c) and 4(d) are approximately straight and the slope is
approximately equal to 2, consistent with the µp ∞ λ2

0 relation.
Lastly, we explore the case of different atomic masses on

the two sublattices. With the inversion symmetry broken, the
chiral phonon modes at the K and K ′ points are split [2].
Interestingly, there is also a split chiral phonon at the � point
with the magnon-phonon coupling, and the phonon magnetic
moment depends on the ratio of atomic masses. We concen-
trate on the phonon magnetic moment at the � point in the
AFM case. Setting the unequal atomic masses on sublattices
A and B with mB/mA = 0.8 and setting coupling strength
λ = 0.05J , the evolution of phonon and magnon energies
with respect to the magnetic field Bz is shown in Fig. 5(a).
At Bz = 0, the magnons are degenerate, while the two op-
tical phonons are not degenerate with a tiny splitting. This
is because the different atomic masses cause different radius
of circular atomic motion, and the resulting phonon angular
momentum is different, making the effective magnon-phonon
coupling strength different.

According to Eq. (8), the magnetic moments of phonon
modes are proportional to the square of effective coupling
strength. Therefore, different magnetic moments of PL and
PR are expected. Calculations give −0.023 µB for PL and
0.021 µB for PR. As the mass ratio mB/mA decreases, the
difference in magnetic moments of phonon modes PL and PR

is enhanced. The ratio of phonon magnetic moments is plotted
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FIG. 5. Magnon-phonon coupling at different atomic masses in
AFM at the � point. (a) Phonon and magnon frequencies as a
function of the external magnetic field with mB/mA = 0.8. (b) The
relationship between phonon magnetic moment of PR/PL and atomic
masses of mB/mA.

in Fig. 5(b). The ratio of magnetic moments is approximately
proportional to (mB/mA)2.

In summary, we studied the emergence of magnetic mo-
ments of optical phonon modes brought up by selective
coupling and hybridization with magnon modes in a hexag-
onal lattice model. Not all optical phonon modes gain a
magnetic moment because magnon-phonon coupling is se-
lective. The nonresonant condition entails the magnitude
of phonon magnetic moment quadratic with the coupling
strength. The effective coupling strength could also be tuned
by changing the atomic mass on sublattices. Our results indi-
cate that chiral phonons carrying magnetic moments can serve
as an efficient carrier of spin information.
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ural Science Foundation of Hunan Province (Grant No.
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