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We revisit the nature and impact of both the chiral damping (CD) and Dzyaloshinskii-Moriya interaction
(DMI) in uniaxial chiral ferromagnetic nanowires with broken inversion symmetry. We propose that CD, akin
to its chiral energy counterpart (DMI), can be described in terms of the Lifshitz invariants permissible by the
underlying symmetry of the system. This representation offers a clearer foundation for integrating CD into the
dynamics of various chiral magnetic textures. We theoretically investigate the current-induced motion of chiral
domain walls (DWs), driven by both spin-transfer torque and the spin Hall effect in the presence of CD. We
demonstrate that it is possible to unambiguously separate the influence of CD from that of DMI by analyzing the
current-induced dynamics. In particular, below the Walker breakdown (WB), the DMI does not affect the DW
velocity, whereas increases in the strength of CD result in a decrease in the DW velocity. Moreover, for the spin-
orbit torque driven motion, while the DMI enhances both the WB current density and the maximum attainable
velocity below the WB, the CD only enhances the WB without affecting the maximum attainable velocity below
the WB. Our findings open up intriguing opportunities for exploitation in exotic magnetic textures.
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I. INTRODUCTION

Nature often produces swirling or twisting objects with a
preferred rotation sense, which affects their energy, making
it lower for one rotation sense than the other. In condensed-
matter systems, such a preference is governed by terms
containing the Lifshitz invariant [1,2]

L(γ )
μν = mμ

∂mν

∂xγ

− mν

∂mμ

∂xγ

, (1)

in the energy functional, where m is a unit vector in the
direction of the local magnetization. The invariant given by
Eq. (1) is inherent in systems with intrinsic and/or induced
chirality. Magnets with broken inversion symmetry is a typical
example of the latter, where spin-orbit interaction (SOI) in the
crystal with inversion-broken symmetry mediates an asym-
metric exchange interaction called the Dzyaloshinskii-Moriya
interaction (DMI). This interaction is a central mechanism for
stabilizing the spatially modulated structures of local mag-
netic moments and even determines their rotation sense [3–5].
It turns out that there exists a dissipative counterpart of DMI,
called chiral damping (CD). Despite being demonstrated
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experimentally [6–8] and supported by various theoretical
studies [9–12], the impact of CD on the dynamics of domain
walls (DWs) and skyrmions has been challenging to determine
unambiguously partly due to the difficulty of distinguishing its
effect from that of DMI. Therefore, it is necessary to explore
different approaches and techniques to determine whether the
chirality-induced asymmetry in the current and field-driven
behavior of magnetic textures is predominantly linked to CD
or DMI.

Furthermore, it is important to note that magnetization
dissipation not only significantly influences how magnets
respond to external stimuli but also plays a fundamental
role in understanding magnetic phenomena like switching,
DW dynamics, and spin transport. Although there have been
investigations into CD in ferromagnets, spanning from phe-
nomenological descriptions to microscopic models [6–12],
existing literature has lacked a systematic examination of CD
in exotic systems like ferri- and antiferromagnets. Indeed,
damping and spin pumping studies in two-sublattice magnets
suggest that the previously overlooked interactions between
sublattices have a significant influence on the effective damp-
ing [13–15]. It turns out that since the dynamics of itinerant
electrons (that mediate damping in metallic systems) is dis-
tinct from those of the local magnetization (that controls the
magnetostatics), one expects an asymmetry in the sublattice’s
effective damping via the CD contribution even in the case of
an antiferromagnet with equivalent sublattices.

However, the phenomenological manner in which CD has
been incorporated presents challenges in extending it to these
exotic systems. This sets the groundwork for the present study.
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The outstanding question raised for chiral magnetic textures
is whether one can unambiguously separate the effect of CD
from the effect of DMI. Indeed, up until now, there is no clear
consensus on isolating the impact of CD on the dynamics
of magnetic texture from that of the DMI [16–19]. This can
be attributed partly to the fact that a microscopic derivation
of the CD, which was originally introduced phenomenolog-
ically, involves many free parameters. Moreover, there is no
experimental method to verify or measure the effect of CD
directly. It is thus expected that the systematic treatment and
a closer examination of the nature of CD in exotic systems
would provide a guide and open new avenues to investigate
and eventually unambiguously isolate the effect of CD from
DMI.

In this study, we use heuristic symmetry considerations,
backed by recent studies, to introduce a more elucidating
description of CD and establish a comprehensive framework
for analyzing the distinct effects of CD and DMI in chiral
magnetic systems. We suggest that CD, just as its chiral
energy counterpart (DMI) can be described in terms of the
Lifshitz invariants permissible by the underlying symmetry of
the system. We theoretically investigate the current-induced
motion of chiral DWs, driven by both spin-transfer torque and
the spin Hall effect in the presence of CD. We demonstrate
that it is possible to unambiguously separate the influence
of CD from that of DMI by analyzing the current-induced
dynamics. Our findings open up intriguing opportunities for
exploitation in exotic magnetic textures.

II. THEORETICAL MODEL

The damping tensor α(r, t ), similar to the free-energy den-
sity of magnetic systems, can be expressed in terms of the
spatial magnetization gradient, with an expansion up to first
order as [20]

αμν = α(0)
μν + α(1)

μνγρmγ mρ + α
(2)
μνγρλmγ ∂λmρ, (2)

where the tensors α(0)
μν , α(1)

μνγρ , and α
(2)
μνγρλ are invariant under

the point group of the system in accordance to Neumann’s
principle [21]. α

(2)
μνγρλ is the CD term that only appears in

chiral magnets characterized by broken spatial inversion sym-
metry. This simple heuristic symmetry argument suggests
that just like the DMI (chirality-dependent energy), the CD
(chirality-dependent dissipation) can be described by the Lif-
shitz invariants in Eq. (1) in accordance with previous studies
[6,8–12,20,22,23]. It is well known that magnetic damp-
ing affects magnetization dynamics and not magnetostatics,
whereas the DMI has been shown to influence both the static
and dynamics of magnetization.

Moreover, since it has been established that the DMI and
CD are intricately linked to the nature of the SOI [12,18]
in the system, in what follows, we consider, without loss
of generality, the interplay between Rashba and Dresselhaus
SOI, inherent in systems with interfacial and bulk inver-
sion symmetry breaking [24,25], respectively. We provide
such comprehensive treatment to allow for extension to other
systems such as magnetic skyrmions, hopfions, and antifer-
romagnets. Additionally, we provide a qualitative analogy
between chirality-dependent energy and chirality-dependent

dissipation, which are intimately connected by virtue of sym-
metry and microscopic origin—SOI.

Let us first consider a one-dimensional magnetic texture
varying along the x-direction such as a DW. The chiral energy
density reads

Ec = DRL(x)
zx + DDL(x)

zy , (3)

where DR(D) denotes the Dzyaloshinskii-Moriya constant spe-
cific to the material [23]. To derive a similar expression for
chiral dissipation, we start by acknowledging that the CD
described in Eq. (2) generally takes the form of a second-
rank tensor. Nonetheless, in an isotropic scenario (i.e., αμν ∼
αδμν), the chiral dissipation can be expressed in terms of the
Lifshitz invariants in Eq. (1) using Eq. (2) as [26,27]

αc(x) = 	RL(x)
zx + 	DL(x)

zy . (4)

Here, 	R(D) represents material constants with dimensions
of length, which are proportional to the strength of Rashba
(Dresselhaus) SOI. Obviously, a major challenge is the design
of experiments to measure 	R(D) which is outside of the
scope of this work. However, we suggest a setup and possible
material realization in which one could acquire a qualitative
assessment of the latter. Moreover, experimental evidence has
shown that by applying an external gate voltage, it is possible
to alter the inversion symmetry of a crystalline lattice structure
[28,29]. This presents an avenue to adjust the strength of the
CD in materials, whether they exhibit bulk inversion sym-
metry breaking or interfacial inversion symmetry breaking.
Quasi-two-dimensional material systems with interfacial sym-
metry breaking such as LaAl03/SrTiO3, SrIrO3/SrRuO3, or
SrRuO3/SrTiO3 are promising materials of interest. Another
avenue worth exploring involves systems exhibiting B20 sym-
metry like MnSi and FeCoSi, as well as strained zinc-blende
structures like MnNiSb [30], which exhibit bulk inversion
symmetry breaking. Before we proceed, it is necessary to
address some key points regarding the proportionality con-
stant associated with chirality-dependent dissipation. First, it
is important to acknowledge that 	R(D) varies in proportion to
the strength of the SOI [8,12] just as the DMI [18]. Second,
one would anticipate the sign of 	R(D) to be opposite to the
sign of DR(D) because a decrease in magnetic energy due
to the DMI should correspond to an increase in magnetic
damping. This aligns with prior studies indicating that the
combined impact of spin mixing and momentum scattering
around the DW leads to an enhancement of the damping
[31–33]. However, it is worth noting that the possibility of the
influence of Hund’s rule coupling in some heavy metals and
inhomogeneity-induced anisotropic effects in real materials
cannot be ruled out. In such cases, it is plausible for DR(D)

and 	R(D) to have the same sign, potentially resulting in an
overall decrease in the effective damping. This scenario is
particularly relevant in metallic systems where conduction
electrons play a dominant role in angular momentum transfer.
In such systems, the induced chirality in these electrons may
inherit certain anisotropic properties due to intrinsic material
inhomogeneities.

To elucidate the influence of CD on the dynamics of
DWs, we make two specific assumptions. First, we presume
that strength of the CD can be tailored separately from the
DMI. This assumption is inferred from the understanding that

024420-2



DECOUPLING THE INFLUENCES OF CHIRAL DAMPING … PHYSICAL REVIEW B 110, 024420 (2024)

damping in metallic systems is mediated by the spins of con-
duction electrons [34–38], whose dynamics is distinct from
that of the local magnetizations interacting through the DMI.
As a result, it should be feasible to manipulate the CD without
necessarily impacting the DMI. Essentially, while DMI gov-
erns both the dynamic and static characteristics of magnetic
textures, CD solely affects their dynamics. Alternatively, an-
other plausible perspective arises from the notion that both CD
and DMI can be tuned simultaneously and coherently. This is
because they stem from a shared microscopic mechanism—
the SOI with broken inversion symmetry—and both are linear
in the strength of the SOI. Hence, to minimize the number of
free parameters, we introduce the following correlation:

	R(D) = χ cd
R(D)DR(D). (5)

In this manner, the DMI and CD are treated on equal footing,
with χ cd

R(D) representing a material-specific scaling factor.
Finally, it is important to highlight that a recent study

indicates that the CD term similar to the form and symmetry
in Eq. (4) emerges from the interplay of broken inversion
symmetry, SOI, and magnetic texture through multibody scat-
tering processes [23]. Furthermore, since dissipation does not
significantly affect magnetostatics, the stabilizable magnetic
texture in the system is not critically influenced by the nature
of CD. In the subsequent section, we explore the effects of CD
on the dynamics of DWs driven by electric currents via both
the spin-transfer torque and spin-orbit torque mechanisms.

III. CURRENT-DRIVEN DW DYNAMICS

In this section, we examine the current-induced dynamics
of a chiral magnetic DW subjected to a nonlocal CD. This
is modeled via a modified Landau-Lifshitz-Gilbert equation,
given as

∂t m = −γ m × Heff + αeffm × ∂t m − bJ∂xm

+βbJm × ∂xm + γ Hshm × (y × m), (6)

where Heff is the effective field that includes anisotropy, ex-
change, DMI, and demagnetizing fields.

αeff = α0 + αc(x) (7)

is the effective damping that consists of the constant Gilbert
damping constant α0 and the nonlocal CD contribution αc

given by Eq. (4). The third and fourth terms on the right-hand
side of Eq. (6) are the adiabatic and nonadiabatic spin-transfer
torque terms, where bJ = uBP je/(eMs) is the magnitude of
the adiabatic torque, P is the spin polarization, je is the
current density flowing through the ferromagnetic layer, e
is the magnitude of electron’s charge, Ms is the saturation
magnetization, μB is the Bohr magneton, and β is the conven-
tional nonadiabaticity parameter. The last term in Eq. (6) is
the contribution from spin-orbit torque arising from spin Hall
effect with Hsh = h̄θsh je/(etF μ0Ms), where h̄ is the reduced
Planck’s constant, θsh is the spin Hall angle for current polar-
ization along the y-direction, μ0 is the vacuum permeability,
and tF is the magnetic film thickness. For the remainder of
this article, we simplify our focus to a Rashba system char-
acterized by the breaking of interfacial inversion symmetry
along the z-direction. This results can be readily extended to

the case of systems with bulk inversion symmetry breaking
in which the Desselhauss SOI is dominant. Furthermore, we
consider, without loss of generality, the analytical ansatz for
a one-dimensional case DW along the x-direction parameter-
ized by its collective coordinates for the wall center X and tilt
angle φ:

m(x, t ) = (cos φ sin θ, sin φ sin θ, cos θ ) (8)

and

θ = 2 tan−1{exp[s(x − X )/λ]}, (9)

where λ is the DW width, and s = ±1 describes the DW
chirality (↑↓ or ↓↑, respectively). Integrating of Eq. (6) over
this DW profile and following standard procedure based on
Thiele’s formalism of rigid structure [39], we obtain the fol-
lowing set of equations:

s∂t X

λ
− ᾱeff∂tφ = sbJ

λ
+ γ Hxy sin 2φ − sπ

2
γ Hdm sin φ

(10a)

and

∂tφ + ᾱeff
s∂t X

λ
= sβbJ

λ
+ π

2
γ Hsh cos φ, (10b)

where Hdm = DR/μ0Msλ is the effective field due to DMI and
Hxy = (Ny − Nx )Ms/2 is the in-plane demagnetizing field. ᾱeff

represents the total effective damping such that ᾱeff ≡ α0 +
ᾱc, and contains both the contribution from Gilbert damping
α0 and the average nonlocal CD contribution ᾱc calculated as
ᾱc ≡ ∫ +∞

−∞ dx αc(x) ∂xm · ∂xm/
∫ +∞
−∞ dx ∂xm · ∂xm given as

ᾱc = sπ	R

4λ
cos φ. (11)

Notice that the spatial average of the CD contribution is not
a constant and depends on the DW tilt angle φ, which de-
termines the chirality of the DW, hence its name. Moreover,
in considering the ansatz of the DW profile above, we have
neglected the effect of DW canting due to the application
of in-plane magnetic field [40,41], since such canting does
not affect the physics under consideration. The solution of
Eqs. (10a) and (10b) yield

s∂τ X

λ
= (1 + βᾱeff )

sbJ

λγ
+ Hxy sin 2φ

+ ᾱeff
π

2
Hsh cos φ − sπ

2
HR

dm sin φ (12a)

and

∂τφ = (β − ᾱeff )
sbJ

λγ
+ π

2
Hsh cos φ

− ᾱeff Hxy sin 2φ + sᾱeff
π

2
HR

dm sin φ, (12b)

where τ = γ t/(1 + ᾱ2
eff ). The direct implication is that de-

pending on the type of application, one can smartly tune
(reduce or enhance) the damping parameter of the material via
smart material engineering. As a result the so-called Walker
breakdown (WB) field [42] can be tuned accordingly since
it is proportional to the strength of the effective damping.
Below the WB, the DW tilt angle is considered to be on
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FIG. 1. The dependence of DW velocity on the current density in the presence of DMI and/or CD driven by spin-transfer torque. (a) In the
absence of chiral contribution to the damping (ᾱc = 0), both the jWB

e and vWB
max increase with an increase in the strength of DMI. (b) For a fixed

DMI strength (D = 0), an increase in the strength of CD and thus the effective damping leads to an increase in the jWB
e , but only slightly alters

vWB
max. (c) In the scenario where both DMI and CD are present, an increase in the strength of the SOI—and consequently an increase in both the

strength of DMI and CD—results in an increase in both the vWB
max and the jWB

e .

average stationary, i.e., ∂tφ = 0, we obtain the expression of
the velocity of the DW as

∂t X = 1

ᾱeff

(
βbJ + sπ

2
λγ Hsh cos φ

)
. (13)

We can immediately see that one can drive the DW much
faster or slower, depending on the relative contribution from
the CD. Our findings does not only corroborate previous
studies on the subject matter [6,8–12,20,22,23] but also (i)
serves as a transparent and more general basis for integrat-
ing CD in magnetic systems for arbitrary type of SOI and
underlying symmetries, and (ii) provides a solid background
and framework for exploring this phenomenon in more exotic
systems, such as two-sublattice antiferromagnets, skyrmions,
and hopfions.

IV. NUMERICAL RESULTS

To gain further insight into the interplay between CD and
DMI on the current-induced dynamics of chiral DWs, we con-
sider the numerical integration of the coupled equations given
by Eqs. (12a) and (12b). For the simulations, we chose typical
micromagnetic parameters, namely A = 12.5 pJ/m, μ0Ms =
1 T, and K = 0.495 MJ/m3, which give rise to a DW width
of λ ≈ √

A/(K − μ0M2
s /2) = 10 nm. Furthermore, a Rashba

SOI strength of 1.67 × 10−11eV m translates to a character-
istic length scale of 	R = 0.25 nm [43] and corresponds to
a CD strength of ᾱc = 0.02. Moreover, for all of our simula-
tions, we used γ = 2.21 × 105 m/(A.s), α0 = 0.1, β = 0.8,
P = 0.69, θsh = 0.15, tF = 2 nm, and demagnetizing factors
of Ny = 0.0723, Nx = 0, and Nz = 0.9277, which depends
on the geometry of the system [44–46]. These values corre-
sponds to an in-plane demagnetizing field strength of μ0Hxy ≈
10 mT, and a WB field strength of μ0H0

wb ≈ 1 mT (in the
absence of both DMI and CD).

It is important to note that the chirality of the DW is
determined by the sign of the DMI, meaning that we establish
the chirality corresponding to the lowest energy state. First,
we present a control simulation in which the dependence of
DW velocity on current density resulting from the conven-
tional spin-transfer torque is probed in the absence of CD for

different strengths of the DMI as depicted in Fig. 1(a). The
latter shows that the effect of DMI is threefold: (i) fixes the
DW chirality, (ii) enhances the WB current density ( jWB

e ),
and (iii) increases the maximum attainable DW velocity be-
low WB (vWB

max), consistent with previous studies [46]. It is
noteworthy that at a fixed current density below jWB

e , DMI
does not affect the DW velocity. However, above jWB

e , an
increase in the strength of DMI leads to an increase in the
DW velocity. Next, we re-examine the DW velocity versus
current density behavior, this time for different strengths of the
CD [12] as shown in Fig. 1(b). We immediately identify two
distinctive features between CD and DMI, namely (i) unlike
DMI, the CD has a negligible effect on vWB

max, and (ii) at a fixed
current density below jWB

e , the DW velocity decreases with an
increase in the strength of the CD. Conversely, above jWB

e , the
opposite trend is observed: the DW velocity increases with an
increase in the strength of the CD. This stems from the fact
that the CD can be understood as an additional damping [i.e.,
αeff = α0 + ᾱc(φ)], and as such, it enhances both the damping
and jWB

e [i.e., jWB
e ∝ αeff/(β − αeff )]. From Eq. (13), we can

infer that vWB
max shows a weak dependence on the CD via αeff

[i.e., vWB
max ∝ 1/(β − αeff )]. Moreover, by extracting the values

of vWB
max and jWB

e for varying strengths of CD and DMI, our
findings can be effectively illustrated, as depicted in Fig. 2.
This weak enhancement as depicted in Figs. 1(b) and 2(a)
is obviously insufficient to physically and/or qualitatively
separate the effect DMI from that of CD because the reported
change in vWB

max are within the typical error bars involved in
such measurements.

In Fig. 1(c), we show the dependence of the DW velocity
as a function of current density in the system in which DMI
and CD are incorporated coherently via Eq. (5). As expected,
we observed a simultaneous enhancement of the jWB

e due to
a combination of DMI and CD and an enhancement of vWB

max
predominantly due to DMI. In summary, a key distinguish-
ing feature between CD and the DMI in the current-induced
dynamics of chiral DWs driven by spin-transfer torque is
their velocity dependence below the WB. Specifically, below
the WB, the DMI does not affect the DW velocity, whereas
increase in the strength of CD results in a decrease in the DW
velocity.
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FIG. 2. The dependence of vWB
max and jWB

e on the strengths of ᾱc

(blue) and D (red), driven by spin-transfer torque. (a) For a fixed
CD (ᾱc = 0), increasing D leads to an increase in vWB

max. Conversely,
with a fixed DMI (D = 0), increase in ᾱc only slightly modifies vWB

max.
(b) With a fixed DMI strength (D = 0), increasing ᾱc and thus the
effective damping results in an increase in jWB

e . Similarly, when the
CD is fixed (ᾱc = 0), an increase in D leads to an increase in jWB

e .

To address the question of whether it is possible to clearly
distinguish the influence of the DMI from that of CD, we
thoroughly examine the dynamics of the DW driven by spin-
orbit torque originating from the spin Hall effect. The DW
velocity (c.f. Néel DW, φ = 0) as a function of the current
density for various strengths of CD and DMI is summarized in
Figs. 3 and 4. Similar to the dynamics driven by spin-transfer
torque as presented above, Fig. 3(a) (see also red curves in
Fig. 4) demonstrates that in the absence of CD, the dynamics
driven by spin-orbit torque for different strengths of the DMI
lead to an enhancement in both jWB

e and vWB
max, consistent with

Eqs. (12a) and (12b). Moreover, the symmetry of the spin-
orbit torque, which is proportional to cos φ, renders it most
effective in driving Néel DWs. Coupled with the influence of
the DMI on the tilt angle φ of the DW, vWB

max indeed represents
the maximum achievable velocity even beyond the WB limit.
Additionally, similar to the scenario with spin-transfer torque,
below the WB, the DMI does not influence the DW velocity,
whereas an increase in the strength of CD leads to a decrease
in the DW velocity.

FIG. 4. CD (blue) and DMI (red) dependence of vWB
max and jWB

e for
spin-orbit torque-driven DW dynamics. (a) For a fixed CD (ᾱc = 0),
increasing D leads to an increase in vWB

max. However, with a fixed DMI
(D = 0), increase in ᾱc does not affect vWB

max. (b) With a fixed DMI
strength (D = 0), increasing ᾱc leads to an increase in jWB

e . Similarly,
when the CD is fixed (ᾱc = 0), an increase in D also results in an
increase in jWB

e .

Another notable finding in this study is depicted in
Fig. 3(b) (see also blue curves in Fig. 4), where we identify
another distinctive feature between CD and the DMI: unlike
the DMI, CD does not impact vWB

max. Specifically, for a fixed
strength of the DMI (D = 0, for simplicity), varying strengths
of the CD only lead to an enhancement of jWB

e while keeping
vWB

max unchanged. This not only facilitates the unambiguous
separation of the effects of DMI from CD in chiral magnets
but also provides a method through which one can estimate
the contribution of CD in the system. In particular, by driving
a chiral Néel DW using spin-orbit torque generated from the
spin Hall effect at various gate-tuned strengths of the SOI
[47–49], one can measure the change in the WB current den-
sity � jWB

e . From this measurement, the strength of the CD in
the system can be estimated as

ᾱc ≈ � jWB
e

jWB0

e

α0, (14)

where jWB0

e is the WB current density at zero voltage. More-
over, having knowledge of the value ᾱc provides us with

FIG. 3. The dependence of DW velocity on the current density in the presence of DMI and/or CD driven by spin-orbit torque. (a) In the
absence of chiral contribution to the damping (ᾱc = 0), both the jWB

e and vWB
max increase with an increase in the strength of DMI. (b) For a fixed

DMI strength (D = 0), an increase in the strength of CD and thus the effective damping enhances the jWB
e but does not alter vWB

max. Above the
WB, both the CD and the spin-orbit torque vanish due to their inherent φ-dependence (i.e., ∝ cos φ). (c) In the presence of both DMI and
CD, an increase in the strength of the SOI—and consequently an increase in both the strength of DMI and CD—results in an increase in both
the vWB

max and jWB
e . Above the WB, a nonzero DMI induces a finite DW tilt φ, resulting in both CD and spin-orbit torque remaining finite and

producing a nonzero DW velocity.
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FIG. 5. The dependence of DW velocity on the current density
in the presence of DMI driven by spin-orbit torque for various CD
strengths. (a) An increase in the strength of CD and thus the effective
damping leads to an increase in the jWB

e but does not alter vWB
max.

Above the WB, the DMI induces a finite DW tilt φ, resulting in
both CD and spin-orbit torque remaining finite and consequently
producing a nonzero DW velocity.

access to the material parameters such as 	R and χ cd
R . By

coherently incorporating both the DMI and CD, we achieved
analogous results to the spin-transfer torque case, as illus-
trated in Fig. 3(c). Here, we observe an enhancement in jWB

e
attributable to a combination of DMI and CD, whereas an
enhancement in vWB

max is predominantly driven by the DMI. An
argument advocating for the coexistence of CD and the DMI is
warranted, even though their relative strengths are likely to be
strongly influenced by the precise crystallographic structure.
This raises concerns about the validity of our calculations pre-
sented in Fig. 3(b) (see also blue curves in Fig. 4), where we
neglected the DMI (D = 0). Therefore, we conducted further
simulations considering nonzero DMI, as depicted in Fig. 5.
This approach is supported by the understanding that in metal-
lic systems, damping is mediated by conduction electrons,
which can inherit tunable induced chirality due to inherent
inhomogeneities in real materials and Hund’s rule coupling.
As illustrated in Fig. 5, our findings indicate that even in the
presence of DMI, CD does not affect vWB

max. Additionally, it
is noteworthy that distinguishing between DMI and CD is
possible by artificially adjusting the tilt angle. This adjustment
can be achieved using an external in-plane field, allowing for
a switch between different chiralities. By doing so, one can
analyze how the current-driven velocity slope alters in the
presence of either DMI alone or CD alone, as outlined in
Ref. [8].

V. DISCUSSION AND CONCLUSIONS

We employ simple heuristic arguments guided by recent
microscopic theories to suggest that CD can be expressed
in terms of Lifshitz invariants, similar to the energy density
for the DMI. This formulation offers a clearer foundation
for integrating CD into current and field-driven dynamics of
chiral magnetic DWs, and, by extension, into other exotic

magnetic textures such as skyrmions, hopfions, and anti-
ferromagnets. Our findings have been presented under the
understanding that a reduction in the magnetic energy density
induced by DMI would correspond to an overall increase
in damping (i.e., a positive value for ᾱc), as suggested by
Eqs. (3) and (4), and supported by previous studies [31–33].
However, as discussed earlier, this does not preclude the
possibility of inhomogeneity-induced anisotropic effects that
are prevalent in real materials. Such effects could lead to an
overall reduction in damping (i.e., a negative value for ᾱc

while still maintaining overall positive damping). This sce-
nario would be particularly intriguing in higher-dimensional
magnetic textures, where such an anisotropy could result in
directional variations in effective damping across different
crystallographic directions. Additionally, since the dynamics
of conduction electrons and magnetization occur at different
timescales, in two-sublattice antiferromagnetic systems, such
anisotropy could result in sublattice-dependent tunable chiral
contributions to damping. As a matter of fact, investigations
on Gilbert damping and spin pumping in two-sublattice mag-
nets [13–15] indicate that the damping across sublattices can
facilitate such an asymmetry. It is anticipated that differences
in effective damping between the two sublattices could lead to
asymmetry, thereby generating an additional drag force that
may affect the dynamics of magnetic textures, particularly
those strongly bound by robust antiferromagnetic exchange
interactions.

In summary, we revisited the nature and effects of CD
and the DMI in chiral ferromagnetic nanowires with broken
inversion symmetry. We found that CD, like DMI, can be
described in terms of Lifshitz invariants derived from the sys-
tem’s symmetry. This formulation facilitates the integration
of CD into the dynamics of various chiral magnetic textures.
Through theoretical analysis, we explored the impact of CD
on current-induced motion of chiral DWs driven by spin-
transfer torque and the spin Hall effect. We demonstrated the
ability to distinguish CD’s influence from that of DMI by
studying current-induced dynamics. Specifically, below the
WB, DMI does not affect DW velocity, whereas increased
CD strength decreases DW velocity. Moreover, for spin-orbit
torque-driven motion, DMI enhances both the jWB

e and vWB
max,

whereas CD only enhances jWB
e without affecting vWB

max. It
is important to highlight that, within Thiele’s formalism as
described, the impact of an out-of-plane external magnetic
field Hz on DW dynamics is very similar to the effect of
nonadiabatic spin-transfer torque. Consequently, Hz is antic-
ipated to yield comparable results without introducing any
novel physics. These findings present exciting prospects for
exploration in exotic magnetic textures, offering opportunities
for experimental validation and further understanding of their
dynamics.
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