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Interplay between charge and spin noise in the near-surface theory of decoherence and relaxation
of C3v symmetry qutrit spin-1 centers
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Decoherence and relaxation of solid-state defect qutrits near a crystal surface, where they are commonly used
as quantum sensors, originate from charge and magnetic field noise. A complete theory requires a formalism for
decoherence and relaxation that includes all Hamiltonian terms allowed by the defect’s point-group symmetry.
This formalism, presented here for the C3v symmetry of a spin-1 defect in a diamond, silicon carbide, or similar
host, relies on a Lindblad dynamical equation and clarifies the relative contributions of charge and spin noise to
relaxation and decoherence, along with their dependence on the defect spin’s depth and resonant frequencies. The
calculations agree with the experimental measurements of Sangtawesin et al. [Phys. Rev. X 9, 031052 (2019)],
and corroborate the importance of charge noise.
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I. INTRODUCTION

Coupling of a spin-1 center in a solid, usually associ-
ated with a dopant or defect, to electric and magnetic fields
provides a direct method of sensing nanoscale fields [1–13],
of tuning the optical emission linewidth for optically active
defects [14–16], and of coupling to electric or magnetic ex-
citations to realize hybrid quantum coherent systems [17–29].
Conversely, this coupling also makes the defect spin dynamics
very susceptible to charge and magnetic noise, contribut-
ing to decoherence and relaxation of the spin qubit states
[2,9,30–43], and increasing the photoluminescence linewidth
[14–16,44]. Many approaches have been explored to diminish
the effect of charge noise on defects, e.g., controlling the ter-
mination of the diamond surface [31], embedding diamonds
in materials with a high dielectric constant [33], covering the
diamond surface with an extra layer [34], and placing the spin
center in the depletion region of a p–n diode [15,44]. Nev-
ertheless, surfaces present a useful laboratory for the study
of noise sources, as the nature of these fluctuations can be
specific to the surface type and also to the depth below the
surface. For spins acting as quantum sensors for nanoscale
fields, the surface noise limits how near to the surface a spin
can be placed while still retaining experimentally resolvable
coherent dynamics, and thus the spatial resolution achievable
with the sensor. Thus a complete formalism for decoherence
and relaxation will permit the surface properties to be opti-
mized within practical parameters and will enable the optimal
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depth of a spin to be determined when it is acting as a quantum
sensor for nanoscale fields.

In this paper we provide a complete quantitative theory for
the influence of the charge and magnetic noise on the dephas-
ing and relaxation processes of the three states (|T+〉, |T0〉,
and |T−〉, corresponding to the spin-1 projection along the
symmetry axis) of shallow spin-1 (qutrit) solid-state spin cen-
ters with C3v symmetry, embedded in hosts such as diamond
and silicon carbide (Fig. 1). Our paper includes all electric
(d‖Ez, d⊥E±, and d ′E±) and magnetic (γ⊥B± and γ‖Bz) terms
allowed by symmetry (see Fig. 1). We derive a Lindblad dy-
namical equation [45] for our qutrit containing eight different
Lindblad operators, which captures the resulting dephasing
and relaxation processes. We then calculate the population
and dephasing dynamics of the spin, and describe several dif-
ferent regimes and scenarios for these processes, suggesting
improved conditions for the experimental utilization of qutrits.
For example, the three-state character of our spin-1 qutrit can
improve the ability to probe “flat” (frequency-independent)
regions of the spectral noise density. We also show that the
relaxation between the spin-defect states |T±〉 and |T0〉, usu-
ally attributed to magnetic noise (via the γ⊥B± term), also
has a significant contribution from the charge noise via the
commonly ignored dipole term d ′E±.

We then apply this theory to study the surface noise aris-
ing from the fluctuations of charges and magnetic moments
on the diamond surface. For both hydrogen (H) and oxygen
(O) terminated diamond, the bonds between carbon atoms of
the diamond and these other atoms effectively create either
acceptor (hydrogen) or donor (oxygen) levels at the diamond
surface [46,47]. These acceptor (donor) levels are occupied by
the electrons (holes) provided by nitrogen dopants (so-called
P1 centers) in the diamonds, which also contain negatively
charged nitrogen-vacancy (NV−) centers. The electrostatic
effect of this charge transfer bends the host bands and creates
an effective, very low mobility, surface two-dimensional (2D)
hole (electron) gas [13,47–53]. Similar effects also emerge
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FIG. 1. Schematic plot of a spin-1 negatively charged nitrogen-
vacancy (NV−) center within diamond in the presence of fluctuating
surface charges (gray spheres) and magnetic moments (ruby arrows).
(Lower right) NV− center’s spin levels and response to the magnetic
field. Dephasing and relaxation processes are indicated schematically
by double arrows associated with the electric dipole terms d⊥E±,
d‖Ez and d ′E± and the magnetic dipole terms γ⊥B± and γ‖Bz.

from imperfections in the crystal termination [52]. The hop-
ping motion of trapped electrons (holes) and the charge
motion within the confined 2D surface hole (electron) gas
produce fluctuating electric and magnetic noise that influences
our shallow defects, causing relaxation and decoherence of the
spin center’s quantum state.

The distinct character of the sources of charge and their
fluctuations requires different theoretical descriptions of their
effect on the defect spin. The trapped charges can be modeled
as electric dipole fluctuators [34,41], whereas the confined
surface charged gas should be treated as the fluctuation
of point-like charges [2,13,30,31,41] (with charge neutrality
maintained by the fixed charges of donors). We derive analyt-
ical formulas for both types of fluctuating electric fields as a
function of the areal density of fluctuating dipoles or fluctu-
ating charge densities, of dipole length and defect depth. We
analyze the competition between these two sources of charge
noise, and compare them with their bulk noise counterparts
[9,44]. For completeness, we include as well the magnetic
noise produced by both the fluctuations of the spins’ magnetic
moments and the movement of charged particles (Biot-Savart
law) [9,35–40]. We also identify the scenarios for which the
magnetic noise dominates. Our quantitative theory for both
magnetic and charge noise enables the study and analysis of
the competition between electric (charge) and magnetic noise
in different scenarios and environmental conditions.

Finally, combining our quantitative theory for the surface
charge and magnetic noise with our complete formalism for
relaxation and dephasing of a spin-defect with C3v point-
group symmetry, we report calculations of the decoherence
and relaxation of the spin center as a function of the surface
charge density, the defect depth, and the frequency separation
between the spin center’s energy levels. The dependence of
the decoherence and relaxation on the spin center’s energy

levels will thus allow us to identify the dominant source of
noise if these quantities are studied as a function of magnetic
field. Our results show good agreement with experimental
reports of the dependence of the decoherence time on the
defect depth [31]. Thus we propose such studies will enable
the dominant noise sources to be assigned for various surface
treatments.

Section II presents the ground-state Hamiltonian for a
spin-1 defect with C3v point-group symmetry, along with its
coupling to external electric and magnetic fields. Assuming
that the magnetic and charge noise will manifest as classical
electric and magnetic fields, we derive the Lindblad opera-
tors followed by the Lindblad dynamical equation for this
Hamiltonian. The general expressions produced for the spin
population dynamics yield the different relaxation times and
decoherence times associated with the loss of information
among different spin-1 subspaces. Section III focuses on the
specific case of point-like and dipole charge noise, and ex-
plores the competition between these two sources. Different
sources of magnetic noise are also calculated, and their contri-
bution compared to that of charge noise. From this we clarify
the charge and magnetic noise dependence of the relaxation
and decoherence rates on the frequency separation between
the spin center’s levels. Section IV compares our theoretical
findings with experimental results for the decoherence of shal-
low NV− centers.

II. SPIN-1 (QUTRIT) DECOHERENCE FOR C3v

POINT-GROUP SYMMETRY

Here we establish the general features required for a cal-
culation of the decoherence and relaxation of the quantum
state of a spin-1 qutrit due to electric and magnetic noise.
We first present the complete Hamiltonian for qutrits with
C3v point-group symmetry in the presence of electric and
magnetic fields. We then find eight Lindblad operators that
produce decoherence and relaxation of the three states of the
qutrit. The dynamics of the spin in the presence of fluctuating
electric and magnetic fields are obtained from a Lindblad
[45] dynamical equation. Finally, we identify features of the
population dynamics of our spin-1 qutrit, including relaxation
rates, which have been previously interpreted as being dom-
inated by magnetic noise, but which may actually be due to
electric noise.

A. Spin center Hamiltonian

Semiconductor spin-1 centers with C3v point-group sym-
metry [2–4,14,54–68] do not possess inversion symmetry
and therefore permit linear coupling of the spin’s energy
levels to an electric field (Stark effect [2,14–16,60,63,69–
71]) and to strain. The spin is also coupled to a magnetic
field via the Zeeman effect with an anisotropic gyromag-
netic ratio. The ground-state (GS) Hamiltonian, with all these
terms, in the triplet basis |T−〉, |T0〉, |T+〉 (where +, 0 and
− are defined along the symmetry axis), for spin-1 centers
with a C3v point-group symmetry is, from a group theory
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analysis [55,61,64,72,73]

H
h

= B · ←→γ · S + (D + d‖Ez )

(
S2

z − 2

3

)
+ d⊥Ex

(
S2

y − S2
x

) + d⊥Ey{Sx, Sy} + d ′Ex{Sx, Sz} + d ′Ey{Sy, Sz}, (1)

where h is Planck’s constant, ←→γ = diag(γ⊥, γ⊥, γ‖) is the gyromagnetic ratio tensor, S are the triplet spin-1 matrices,
E = (Ex, Ey, Ez ) is the electric field, B = (Bx, By, Bz ) is the magnetic field, {A, B} = AB + BA, D is the zero-energy splitting
between the triplet states |T0〉 and |T±〉, and d‖, d⊥ and d ′ are electric dipole constants. The z direction here corresponds to the
defect symmetry axis.

The temporal fluctuations of magnetic and electric fields generate decoherence and relaxation of the quantum state of the
spin. To understand the role of individual terms within the corresponding decoherence and relaxation processes, we rewrite the
Hamiltonian in matrix form,

H
h

=

⎛
⎜⎜⎜⎝

D
3 + d‖

3 Ez + γ‖Bz
d ′√

2
E− + γ⊥√

2
B− −d⊥E+

d ′√
2
E+ + γ⊥√

2
B+ − 2D

3 − 2d‖
3 Ez − d ′√

2
E− + γ⊥√

2
B−

−d⊥E− − d ′√
2
E+ + γ⊥√

2
B+ D

3 + d‖
3 Ez − γ‖Bz

⎞
⎟⎟⎟⎠, (2)

where E± = Ex ± iEy and B± = Bx ± iBy. From the Hamil-
tonian, Eq. (2), the magnetic field produces a frequency split
∝ γ‖Bz between the |T±〉 states, in addition to a coupling ∝
γ⊥B± between the |T0〉 and |T±〉 states. Similarly, the electric
field yields a frequency splitting ∝ d‖Ez between |T±〉 and
|T0〉, in addition to a coupling ∝ d ′E± between the |T0〉 and
|T±〉 states. However, unlike the magnetic field, the electric
field also couples the |T−〉 and |T+〉 subspaces, with a strength
proportional to d⊥E±. These different terms appear schemat-
ically in Fig. 1. As relaxation processes (1/T1) occur when
different levels are coupled to each other through random
temporal fluctuations, the d ′, d⊥, and γ⊥ terms will contribute
to relaxation processes. Conversely, the dephasing processes
can also occur due to any terms responsible for relative fluctu-
ations of the energy of the levels, namely d‖ and γ‖ in addition
to d ′, d⊥, and γ⊥.

We stress that although prior study has neglected the
presence of the d ′ electric dipole terms within the spin cen-
ter’s Hamiltonian, these are important when charge noise
dominates. They are also important to characterize correctly
processes involving photoluminescence and spin dynamics
near the level anticrossing of the electronic ground state
(GSLAC) [74–83], as well as for acoustical driving experi-
ments of the |T0〉 ↔ |T±〉 spin transition [73,84]. Moreover,
although up to this point there is no precise experimental veri-
fication for the value of d ′, Ref. [84] suggests d ′/d⊥ ≈ √

2/2,
whereas an ab-initio calculation finds d ′ ≈ d⊥ [64].

B. Lindblad formalism for C3v spin-1 (qutrit) decoherence
and relaxation

To obtain the Lindblad dynamical equation describing de-
coherence and relaxation of our qutrit we begin by considering
a dc magnetic field along the spin center symmetry axis z,
i.e., Bdc

z , which controls the frequency separation between the
initially degenerate |T+〉 and |T−〉 subspaces (see Fig. 1). We
further assume that all the spatial (x, y, and z) components of
the electric and magnetic fields can fluctuate, so we rewrite
our Hamiltonian, Eq. (2), as the sum of a time-independent
part and a time-dependent one, i.e., H = H0 + V (t ) with
H0/h = (γ‖/2π )SzBdc

z + D(S2
z − 2/3), and V (t ) produced by

the remaining terms of Eq. (2). In the absence of these (weak,
relative to the value of D) fluctuating fields the spin center’s
frequencies are ω0 = 0 and ω±/2π = D ± γ‖Bdc

z .
In order to solve the dynamics of the spin center, we move

to the interaction picture with respect to H0, which leads to

VI(t )|ψ (t )〉I = ih̄
∂

∂t
|ψ (t )〉I, (3)

where |ψ (t )〉I ≡ ei H0
h̄ t |ψ (t )〉 and

VI(t ) = ei H0
h̄ tV (t )e−i H0

h̄ t . (4)

The evolution of the density matrix in the interaction picture
associated with Eq. (3) is

ρ̂I(t ) = T e−i
∫ t

t0
dτ VI (τ )/h̄

ρ̂I(t0)T ei
∫ t

t0
dτ VI (τ )/h̄

, (5)

where T is the time-ordering operator. The solution to Eq. (5)
can be obtained through a perturbative (Dyson) expansion of
the propagator 	(t, t0), namely,

ρ̂I(t ) = 	(t, t0)ρ̂I(t0), (6)

with 	 = 	0 + 	
	0 where 
 is the self-energy. This
yields the general dynamical equation for ρ̂I(t ) [85,86],

d ρ̂I(t )

dt
= 1

ih̄
[VI (t ), ρ̂I(t )] +

∫ t

t0

dτ
(t − τ )ρ̂I(τ ). (7)

Mapping this equation onto a Lindblad equation [45] requires
some assumptions and approximations. The equation is ex-
panded in a diagrammatic perturbation series to second order,
and the average is taken over different realizations, namely,
〈· · · 〉. We further assume the correlation time of the noise τc

is much smaller than the time interval t − t0, i.e., t − t0 � τc.
A further Markovian approximation yields the result [87,88]

d〈ρ̂I(t )〉
dt

= − 1

h̄2

∫ ∞

0
dτ 〈[VI (t ), [VI (t − τ ), ρ̂I(t )]]〉. (8)

The identity

[A, [B, C]] = 1
2 [[A,B], C]

− (
ACB + BCA − 1

2 {AB, C} − 1
2 {BA, C})

(9)
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is of great use; the first right-hand side term produces new
contributions to the coherent evolution e.g., Stark shifts and
Lamb shifts; however, the remaining ones produce the terms
associated with Lindblad operators. We then rewrite VI (t )
as a sum of different operators multiplying fluctuating clas-
sical fields εi(t ), i.e., VI (t ) = ∑

i εi(t )V̂i(t ) = ∑
i ε

∗
i (t )V̂ †

i (t ),
where it is convenient to designate V̂i(t ) as raising and low-
ering operators within the subspaces {|T0〉, |T+〉}, {|T0〉, |T−〉},
and {|T−〉, |T+〉}, and the diagonal operators Sz and 13×3. In
the Appendix and the Supplemental Material [89] we present a
detailed derivation of our Lindblad equation. In short, defining
Heff,I = (−i/2h̄)

∫ ∞
0 dτ 〈[VI(τ ),VI (0)]〉, and using the fact

that for our case V̂j (t ) = e−iω j tV̂j , we obtain

d〈ρ̂I(t )〉
dt

= 1

ih̄
[Heff,I (t ), 〈ρ̂I(t )〉] + 1

h̄2

∑
i, j

∫ ∞

0
dτe−i(ω j−ωi )t

× [〈ε j (τ )ε∗
i (0)〉e−iωiτ + 〈ε∗

i (τ )ε j (0)〉eiω jτ ]

×
[
V̂j〈ρ̂I(t )〉V̂ †

i − 1

2
{V̂ †

i V̂j, 〈ρ̂I(t )〉}
]
. (10)

The secular approximation ωi = ω j [88] (or rotating wave
approximation) for the frequency separations between the spin
center’s energy levels, ωμν = ωμ − ων with μ, ν = {0,±}
simplifies Eq. (10) if the coupling between the spin center
and the fluctuating fields is weaker than the smallest en-
ergy separation between states. Thus this approximation fails
if two of the states become degenerate. We use Novikov’s
theorem [90–94] together with the weak coupling between
our spin center states and the fluctuating fields [88,92–
94]. We further assume temporal translational symmetry
for the fluctuating fields (stationary regime), 〈Ei(t )Ej (t ′)〉 =
〈Ej (t − t ′)Ej (0)〉 and 〈Bi(t )Bj (t ′)〉 = 〈Bj (t − t ′)Bj (0)〉, and
also 〈Ei(τ )Ej (0)〉 = δi j f (τ ) with 〈Bi(τ )Bj (0)〉 = δi j f̄ (τ ) for
i = x, y, z, which follows for fluctuating fields lacking a
preferential direction. The corresponding noise spectral
densities are

SEi (ω) =
∫ ∞

−∞
dτ 〈Ei(τ )Ei(0)〉eiωτ , (11)

SBi (ω) =
∫ ∞

−∞
dτ 〈Bi(τ )Bi(0)〉eiωτ , (12)

where due to the classical character of our fluctuating fields
we have SE (B)(ω) = SE (B)(−ω). This holds for h̄ω � kBT
since SE (B)(ω)/SE (B)(−ω) = eh̄ω/kBT . For the NV− the largest
frequency split is ≈2.5 GHz, so the approximation holds
for T � 0.1 K. Another consequence of the frequency-
symmetric noise spectral density is the absence of an effective
coherent Hamiltonian arising from the noise, i.e., no Stark nor
Lamb shift, so Heff,I = 0. Three rates are usefully associated
with the charge noise spectral density, namely

�d⊥ (ω) = d̃2
⊥
[
SEx (ω) + SEy (ω)

]
, (13)

�d ′ (ω) = d̃ ′2[SEx (ω) + SEy (ω)
]
, (14)

�d‖ (ω) = d̃2
‖ SEz (ω), (15)

with d‖ = d̃‖/2π , d⊥ = d̃⊥/2π , d ′ = d̃ ′/2π . Two rates are
correspondingly associated with the magnetic noise spectral

densities,

�γ⊥ (ω) = γ̃ 2
⊥
[
SBx (ω) + SBy (ω)

]
, (16)

�γ‖ (ω) = γ̃ 2
‖ SBz (ω), (17)

with γ⊥ = γ̃⊥/2π and γ‖ = γ̃‖/2π . Finally, all the considera-
tions above yield the Lindblad dynamical equation

d〈ρ̂I(t )〉
dt

=
8∑

k=1

[
Lk,I〈ρ̂I(t )〉L†

k,I − 1

2
{L†

k,ILk,I, 〈ρ̂I(t )〉}
]
,

(18)

with Lindblad operators in the interaction picture Lk,I

given by

L1,I =
√

�d‖ (0)
(
S2

z − 2/3
)
, (19)

L2,I = 1
2

√
�d⊥ (ω+−)S2

+, (20)

L3,I = 1
2

√
�d⊥ (ω+−)S2

−, (21)

L4,I = 1
2

√
�d ′ (ω+0) + �γ⊥ (ω+0) SzS+, (22)

L5,I = 1
2

√
�d ′ (ω+0) + �γ⊥ (ω+0) S−Sz, (23)

L6,I = 1
2

√
�d ′ (ω−0) + �γ⊥ (ω−0) S+Sz, (24)

L7,I = 1
2

√
�d ′ (ω−0) + �γ⊥ (ω−0) SzS−, (25)

L8,I =
√

�γ‖ (0) Sz. (26)

Here the operator SzS+ (S−Sz) represents the raising (low-
ering) operator within the subspace spanned by {|T+〉 , |T0〉},
while S+Sz (SzS−) represents the raising (lowering) operator
within the subspace spanned by {|T0〉 , |T−〉}. Additionally, the
operator S2

+ (S2
−) is the raising (lowering) operator within the

subspace spanned by {|T+〉 , |T−〉}.
Using the Lindblad operators [Eqs. (19)–(26)] within the

Lindblad equation [Eq. (18)], we can also obtain the following
differential equation that governs the dynamics of the density
matrix 〈ρ̂I(t )〉μν = ρμν (t ), namely,

d

dt

⎡
⎢⎣

...

ρμν (t )
...

⎤
⎥⎦

1×9

= L9×9

⎡
⎢⎣

...

ρμν (t )
...

⎤
⎥⎦

1×9

, (27)

with μ, ν = {0,±} and the corresponding Lindbladian or Li-
ouvillian matrix, L9×9. For our case, L9×9 is composed of
a 3 × 3 block diagonal matrix that governs the relaxation
process of our quantum states, and a diagonal 6 × 6 matrix
governing the dephasings between different subspaces. Both
processes will be investigated in the next two subsections.

1. Spin center relaxation

The part of the Lindbladian governing the relaxation pro-
cess is described by the evolution of the diagonal elements of
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〈ρ̂I(t )〉, namely,

d

dt

⎡
⎣ρ++(t )

ρ00(t )
ρ−−(t )

⎤
⎦ =

⎡
⎣− 1

2�γ d ′ (ω+0) − �d⊥ (ω+−) 1
2�γ d ′ (ω+0) �d⊥ (ω+−)

1
2�γ d ′ (ω+0) − 1

2�γ d ′ (ω+0) − 1
2�γ d ′ (ω−0) 1

2�γ d ′ (ω−0)
�d⊥ (ω+−) 1

2�γ d ′ (ω−0) − 1
2�γ d ′ (ω−0) − �d⊥ (ω+−)

⎤
⎦

⎡
⎣ρ++(t )

ρ00(t )
ρ−−(t )

⎤
⎦, (28)

where we define �γ d ′ (ω) = �d ′ (ω) + �γ⊥ (ω). The solution of this equation is obtained through the ansatz⎡
⎣ρ++(t )

ρ00(t )
ρ−−(t )

⎤
⎦ =

3∑
i=1

ci

⎡
⎣a+

i
a0

i
a−

i

⎤
⎦eλit . (29)

Here, λi are the three eigenvalues of the 3 × 3 matrix within Eq. (28), and [a+
i a0

i a−
i ]T are the corresponding eigenvectors.

In principle, the three eigenvalues (λi) define three different relaxation rates, namely, T i
1 = −λi, which are

1/T +
1 = γ + �− + �+ +

√
γ 2 + γ (�+ + �−) − �+�− + �2+ + �2−, (30)

1/T −
1 = γ + �− + �+ −

√
γ 2 − γ (�+ + �−) − �+�− + �2+ + �2−, (31)

1/T 0
1 = 0, (32)

with �± = (1/2)�γ d ′ (ω±0) and γ = �d⊥ (ω+−), defined similarly in Refs. [37,41]. Accordingly, the general solution for the
evolution of the diagonal density matrix elements is⎡

⎣ρ++(t )
ρ00(t )
ρ−−(t )

⎤
⎦ = c1

⎡
⎣1

1
1

⎤
⎦ + c2

⎡
⎢⎣

γ+2�−−1/T +
1

γ−�−
2�++�−−1/T −

1
γ−�−

1

⎤
⎥⎦e−t/T +

1 + c3

⎡
⎢⎣

γ+2�−−1/T −
1

γ−�−
2�++�−−1/T +

1
γ−�−

1

⎤
⎥⎦e−t/T −

1 . (33)

Using Tr[〈ρ̂I(t )〉] = 1 we obtain c1 = 1/3, and the remaining
coefficients c2,3 are determined by the initial condition of the
density matrix. For the initial condition ρ−−(t = 0) = 1,

c2 = γ + �− − 2/3T −
1

1/T +
1 − 1/T −

1

(34)

and

c3 = −γ + �− − 2/3T +
1

1/T +
1 − 1/T −

1

. (35)

Interestingly, and differently from the spin-1/2 case, here we
obtain a biexponential relaxation. This biexponential behavior
was already discussed and presented in the literature for spin
center dephasing [44] and relaxation processes [37,41].

Now we analyze some cases of particular interest. The
first one corresponds to ω+0 ≈ ω−0 ≡ ω±0, which produces
�γ d ′ (ω+0) ≈ �γ d ′ (ω−0). Accordingly, this leads to �+ =
�− ≡ �, which was already discussed in the literature [41]
and produces the relaxation times

1

T +
1,eq

= 2γ + � = 2�d⊥ (ω+−) + 1

2
[�γ⊥ (ω±0) + �d ′ (ω±0)],

(36)
1

T −
1,eq

= 3� = 3

2
[�γ⊥ (ω±0) + �d ′ (ω±0)]. (37)

Importantly and contrary to Tetienne et al. [37] and Myers
et al. [41], we can see that when we consider all symmetry-
allowed terms within our Hamiltonian Eq. (2), the charge
noise also contributes to the � rate. Therefore, this rate does
not have an exclusively magnetic noise origin. Associating

� to the magnetic noise is only accurate for �γ⊥ (ω±0) �
�d ′ (ω±0). The identification of a significant role for electric
field noise in these rates can only be obtained due to the in-
clusion of the d ′ dipole terms allowed within the Hamiltonian
for spin centers with C3v symmetries.

Furthermore, these quantities T +
1,eq and T −

1,eq are com-
monly referred to as “double quantum” and “single quantum”
relaxation rates. Despite the expectation, motivated by the
appearance of only electric field terms in the Hamiltonian
connecting the |T+〉 and |T−〉 states, that double quantum
relaxation will depend only on electric field noise, the double
quantum relaxation in Eq. (36) depends on both electric and
magnetic noise.

We stress that the assumption, �γ d ′ (ω+0) ≈ �γ d ′ (ω−0)
[37,41], which results in �− = �+, depends strongly on the
charge and magnetic noise spectral densities. It can only
hold if the corresponding spectral noise densities are nearly
“flat” (in frequency) between ω = ω−0 and ω = ω+0. More
specifically, if we assume SEi (ω) = 〈δE2〉τe,c/(1 + ω2τ 2

e,c)
[SBi (ω) = 〈δB2〉τb,c/(1 + ω2τ 2

b,c)], �− ≈ �+ holds typically
for ω � 1/τe,c [ω � 1/τb,c] as SEi (ω) [SBi (ω)] becomes fre-
quency independent. On the other hand, for ω � 1/τe,c [ω �
1/τb,c], we have SEi (ω) ∝ 1/ω2 [SBi (ω) ∝ 1/ω2], resulting
in a very sensitive spectral noise density with respect to the
frequency, and violation of �− ≈ �+.

Experimental comparison of the measured rates, �+ and
�−, indicates whether the noise spectral density is constant
within the ω−0 < ω < ω+0 region. As a consequence, the
difference between the nominal values of �+ and �− can
be used to obtain information about the flatness of any noise
spectral density. Hence the spin-1 relaxation mechanisms of
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(b) (c)(a)

FIG. 2. Population dynamics for the spin-defect energy levels as a function of time for γ � �±, γ = �±, and γ � �±, respectively.
(a) Solid (dot-dashed) lines: γ = 20 × 103 s−1 with �+ = �− = 0.1 × 103 s−1 (�+ = �−/5 = 0.1 × 103 s−1), (b) solid (dot-dashed) lines:
γ = 2 × 103 s−1 with �+ = �− = 2 × 103 s−1 (�+ = �−/2 = 2 × 103 s−1) and (c) solid (dot-dashed) lines: γ = 0.1 × 103 s−1 with �+ =
�− = 10 × 103 s−1 (�+ = �−/2 = 10 × 103 s−1).

C3v spin-defects can also be used to probe the presence of flat
regions of the spectral noise density.

In Fig. 2, we plot the three-level population dynamics of
our spin center as a function of time. We use three differ-
ent regimes of parameters with the same initial condition,
ρ−−(t = 0) = 1. In Fig. 2(a), we have the corresponding
dynamics for γ � �±. Although this regime is usually at-
tributed to the dominance of the charge noise, the rate �±
also contains charge noise contributions via �d ′ (ω±0). As a
consequence, this attribution is only accurate for �d ′ (ω±0) �
�d⊥ (ω+−). Since different studies suggest d ′ ≈ d⊥ [64,84],
this translates to small values of magnetic fields satisfying
ω+− � ω±0 for SEi (ω) ∝ 1/ωα . Nevertheless, in this case we
see that a system initially prepared in the |T−〉 state will start
to increase the population of its |T+〉 state due to the faster
γ relaxation rate. The corresponding relaxation is character-
ized by the T +

1 timescale, Eq. (30), plotted as a vertical-gray
line. We see that in this process, the system first reaches an
approximately equal population of |T−〉 and |T+〉. After this,
the �± rate starts playing a role, and we see an increase in
the population of |T0〉, with a characteristic timescale given
by T −

1 , Eq. (31) (vertical-gray line). Finally, for long times
t � T ±

1 , we obtain an equal population for all the levels.
Similarly, the dot-dashed lines represent the same process but
for �− �= �+.

In Fig. 2(b), the solid lines represent the plot for the pop-
ulation dynamics corresponding to γ = �± = �. Here both
the initially unpopulated levels, |T0〉 and |T+〉, experience a
population increase with equal rate, and with a characteristic
timescale defined by T ±

1 = (3�)−1 [Eqs. (30) and (31)] (see
vertical-gray line). As a consequence, the populations of the
states |T0〉 and |T+〉 increase equally. Similarly, the dot-dashed
lines represent the same process but for γ = �+ < �−. As a
consequence of �− > γ , we see that the population of |T0〉
increases faster than the population of |T+〉.

Lastly, in Fig. 2(c) we plot the population dynamics for
γ � �±, usually associated with the dominance of magnetic
noise. However, as �± = �γ d ′ (ω±0) also contains a charge
noise contribution [since �γ d ′ (ω±0) = �d ′ (ω±0) + �γ⊥ (ω±0)]
we stress this identification of magnetic noise dominance
will only be accurate if �d ′ (ω±0) � �γ⊥ (ω±0). We first see
�− as responsible for the increase of population of |T0〉,
with characteristic timescale T +

1 . At this point, as we have a

finite population of |T0〉, the rate �+ will begin to contribute,
increasing the population of |T+〉. Depending on the relative
value of γ and �+, γ can also contribute to the increase of the
|T+〉 population.

2. Spin center dephasing

Dephasing within different subspaces is a
consequence of the time dependence of the off-
diagonal density matrix elements ρ

dep
μν (t ) = {ρ+0(t ),

ρ−0(t ), ρ0+(t ), ρ0−(t ), ρ+−(t ), ρ−+(t )}. Accordingly, our
Lindblad operators [Eqs. (19)–(26)] lead to three different
dephasing rates within the three corresponding subspaces
{|T0〉 , |T+〉}, {|T0〉 , |T−〉}, and {|T−〉 , |T+〉}, namely,

d

dt
ρdep

μν (t ) = − 1

T μν
2

ρdep
μν (t ), (38)

with corresponding dephasing times

1

T 0+
2

= 1

2
[�γ‖ (0) + �γ d ′ (ω+0) + �d⊥ (ω+−) + �d‖ (0)]

+ 1

4
�γ d ′ (ω−0), (39)

1

T 0−
2

= 1

2
[�γ‖ (0) + �γ d ′ (ω−0) + �d⊥ (ω+−) + �d‖ (0)]

+ 1

4
�γ d ′ (ω+0), (40)

1

T −+
2

= 2�γ‖ (0) + �d⊥ (ω+−) + 1

4
[�γ d ′ (ω−0) + �γ d ′ (ω+0)].

(41)

We stress that here we report this expression for the deco-
herence times including all the symmetry-allowed fluctuating
terms. We see from these expressions that dephasing within
{|Tμ〉 , |Tν〉} is not solely originating from fluctuating terms
within the same subspace. For example, even though d ′E±(t )
does not appear within the {|T−〉 , |T+〉} subspace (so-called
double-quantum decoherence), the decoherence times T −+

2
depend on d ′E±(t ). This shows that an indirect loss of co-
herence between coupled subspaces also happens. The same
feature also occurs for the {|T0〉 , |T±〉} subspace, and was
already discussed in Ref. [44]. In short, this shows the
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importance of taking into account fluctuators over the whole
spin-defect manifold when calculating dephasing times.

An identification of the dominant source of noise, elec-
tric or magnetic, can be achieved by analyzing the measured
values of the different T2’s defined in Eqs. (39)–(41). For
instance, if the magnetic noise is the dominant source, T 0+

2 =
T 0−

2 ≈ 4T −+
2 as �γ‖ (0) � �γ d ′ (ω±0) (assuming the spec-

tral noise density is, as assumed, monotonically decreasing
with frequency). Conversely, for dominant electric noise and
ω−+ < ω±0, we find T 0+

2 = T 0−
2 ≈ 2T −+

2 .

III. THEORY OF THE FLUCTUATING ELECTRIC
AND MAGNETIC FIELDS

Unintentional impurities within crystals can either donate
electrons or accept electrons, leading to free electrons or holes
in the crystal. As already discussed in Refs. [13,41,44], these
particles do not distribute uniformly and are also nonstatic,
due to the thermal fluctuations of the electron and hole posi-
tion, collisions between them, continual capture and release
by donors or acceptors, among other processes. Moreover, as
the read-out and initialization of the spin center’s state are
performed with laser illumination, the measurement process
additionally agitates the particles, increasing these fluctua-
tions. As different types of bulk noise were already discussed
in Refs. [9,44], here we calculate the fluctuating surface fields
arising from all the possible types of charge [2,9,30–34,41]
and magnetic noise [35–41]. We also provide an analysis for
the competition between surface and bulk contributions. We
emphasize here that surface charge noise δE(t ) can occur due
to (1) electrons, holes or impurities trapped at the crystal sur-
face, giving rise to a fluctuating dipole electric field [95–97],
(2) confined hole or electron gases produced by band bend-
ing near the surface [47,50–52], which produce a point-like
fluctuating electric field, (3) electrons that are excited to the
conduction band and therefore also contribute to a point-like
fluctuating electric field, and (4) phonon-induced transitions
between different vibrational states of impurities at the crystal
surface [98–100]. We calculate the magnetic noise arising
from fluctuating magnetic moments at the surface, in addition
to the magnetic noise produced by a random movement of
charged particles (Biot-Savart law). For both charge and mag-
netic noise, we analyze the competition between their bulk
and surface counterparts.

The temporal difference of both electric and magnetic
fields with respect to their averaged value, δE(t ) = E(t ) −
〈E〉 and δB(t ) = B(t ) − 〈B〉, respectively, causes decoher-
ence of a prepared state [2,9,30–42], and also the increase
of the photoluminescence linewidth of the defect emission
[14–16,44]. This relevant quantities for the external fields are
the magnetic and electric field correlations, 〈Bμ(t )Bμ(0)〉 and
〈Eμ(t )Eμ(0)〉, respectively, presented in Eqs. (11) and (12).

A. Coordinate system

The z axis used in both Eqs. (1) and (2) is defined with
respect to the main symmetry axis of our defect spin cen-
ter. This axis, however, can assume different directions with
respect to the surface normal vector n̂. Examples include dia-
mond with surfaces perpendicular to either the [111] or [001]

crystallographic axis [101], and for the different orientation
of divacancies in SiC [44]. For general results we keep an
arbitrary direction of the spin center main axis with respect
to the surface normal, defined by n̂ = ẑ′. Accordingly, for the
spin center and the surface, we have the axis {x̂, ŷ, ẑ}, and
{x̂′, ŷ′, ẑ′}, respectively. They are related to each other via a
rotation of θ around the x axis, Rx̂(θ ),⎛

⎝x̂
ŷ
ẑ

⎞
⎠ =

⎛
⎝1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠

⎛
⎝x̂′

ŷ′
ẑ′

⎞
⎠. (42)

This distinction is important as the fluctuations of both
charges and magnetic moments at the surface produce a large
fluctuating field along ẑ. Accordingly, we define our surface as
S = {(x′, y′, z′), −L/2 � x′, y′ � L/2, z′ = 0}, and our de-
fect position as rdef = (0, 0,−zdef ) = −zdef ẑ′.

B. Analytical calculation for the surface fluctuating
point-like electric field

We now calculate the electric field correlation func-
tion 〈E p

μ(t )E p
μ(0)〉 arising from fluctuating surface point-like

charges [2,30,31,41]. First, for the point-like charges we
assume the electric field at r = rdef produced by the ith point-
like charge is

Ep
i

(
Rp

i

) = Qi

4πε

Rp
i(

Rp
i

)3 , (43)

where Qi are both positive and negative trapped surface
charges localized at rp

i ≈ (x′p
i , y′p

i , 0) with Rp
i = rp

i − rdef

and Rp
i = |Rp

i |. Assuming now a total number of point-like
charges given by Np, the total electric field experienced by the

defect is E = ∑Np

i=1 Ep
i (Rp

i ), and the correlation is

〈
E p

μ(t )E p
μ(0)

〉 =
Np∑

i, j=1

〈
E p

i,μ(t )E p
j,μ(0)

〉
. (44)

We can obtain compact expressions under the condition that
the electric fields produced by different point-like charges are
not correlated, i.e.,〈

E p
i,μ(t )E p

j,μ(0)
〉 = δi j

〈
E p

i,μ(t )E p
i,μ(0)

〉
. (45)

Reference [13] treated spatially correlated electric fields ex-
tensively. However, we assume that the electric field from
one point-like charge at time t is correlated with the same
electric field at t = 0 via a correlation function f (t ) i.e.,
〈E p

i,μ(t )E p
i,μ(0)〉 = (E p

i,μ)2 f (t ). We can now evaluate the field
correlation [Eq. (44)] by assuming a continuous probability
distribution for the positions ri, pS (r) = nS (r)/Np with a
surface density of particles of type i that is nS (r), yielding

〈
E p

μ(t )E p
μ(0)

〉 =
( e

4πε

)2
∫
S

dS nS (r′)
R2

μ f (t )[
R2

x + R2
y + R2

z

]3

(46)

where S is the surface containing the fluctuating charges,
and Rx = x′, Ry = y′ cos θ − zdef sin θ and Rz = y′ sin θ +
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zdef cos θ . Using an uniform probability distribution for the
positions of the point-like charges, we obtain〈

E p
x (t )E p

x (0)
〉 =

( e

4πε

)2 πnS
4z2

def

f (t ), (47)

〈
E p

y (t )E p
y (0)

〉 =
( e

4πε

)2 πnS
8z2

def

(3 − cos 2θ ) f (t ), (48)

〈
E p

z (t )E p
z (0)

〉 =
( e

4πε

)2 πnS
8z2

def

(3 + cos 2θ ) f (t ). (49)

For this type of noise, the time correlation f (t ) (and corre-
sponding frequency dependence of spectral noise density) can
be obtained from many different processes, e.g., absorption
release of electrons and holes by different traps and diffusion
of electron and holes within our crystal. We consider random
processes, for which f (t ) will follow exponential behavior
with a characteristic time τp, i.e., f (t ) = e−t/τp [102], yielding
the corresponding spectral noise density

SEp
x
(ω) =

( e

4πε

)2 πnS
4z2

def

2τp

1 + ω2τ 2
p

, (50)

SEp
y
(ω) =

( e

4πε

)2 πnS
8z2

def

(3 − cos 2θ )
2τp

1 + ω2τ 2
p

, (51)

SEp
z
(ω) =

( e

4πε

)2 πnS
8z2

def

(3 + cos 2θ )
2τp

1 + ω2τ 2
p

. (52)

For convenience, we define

SEp
i
(ω) = ∣∣δE p

i

∣∣2
2τp/

(
1 + ω2τ 2

p

)
. (53)

We now assess an important characteristic of our system,
namely, how does the surface charge noise compete with the
bulk noise arising from the fluctuating charges within the
bulk of the sample [44]. This becomes important when spin
centers are used for sensing, which requires maximizing the
signal-to-noise ratio. The depth at which both contributions
are nearly equal sets the optimal defect depth zopt. To perform
this analysis, we assume that the bulk noise comes predomi-
nantly from the near-noise contribution of Ref. [44], namely,

|δEb| = e√
2πε

n2/3
V , (54)

where n2/3
V is the volume density of fluctuating charges and

|δEb| =
√

|δEx
b |2 + |δEy

b |2 + |δEz
b |2 with |δEx

b | = |δEy
b | =

|δEz
b |. Assuming that the surface noise arises from point-like

fluctuating charges, Eqs. (47)–(49), we obtain the optimal
defect depth,

zopt =
√

2π
n1/2
S

n2/3
V

. (55)

In Figs. 3(a) and 3(b) we plot the quantity |δEi| for the
surface charge noise arising from fluctuations of point-like
charges at the surface, and the bulk near noise |δEb| arising
from the fluctuation of point-like charges in bulk, Eq. (54).
Here, the solid lines represent the surface charge noise and
the dot-dashed ones represent the bulk near noise. In Fig. 3(a)
we plot both contributions for typical surface densities
nS = 1011, 1012, and 1013 cm−2 together with bulk densities

FIG. 3. Competition between fluctuating electric field for point-
like surface noise [Eqs. (47)–(49)] and bulk near noise [Eq. (54)]
as a function of depth for different surface densities (a), and as a
function of surface density for different defect depths (b). Similar
to (a) and (b), but representing the competition between fluctuating
electric field for dipole surface noise [Eqs. (60)–(62)] and bulk near
noise [Eq. (54)]. In all the graphs, the fluctuating electric field due
to the bulk near noise Eq. (54) is plotted for nV = 1014, 1015, and
1016 cm−3.

nV = 1014, 1015, and 1016 cm−3. While the surface noise con-
tribution shows a 1/z2

def depth dependence, the bulk one shows
no dependence. Assuming an approximately bulk density of
fluctuators of 1015 cm−3, the surface noise always dominates,
thus showing its critical importance for shallow defect im-
plantation. Additionally, to have a better understanding of this
competition, in Fig. 3(b) we also plot both contributions as
a function of the surface density of point-like fluctuators for
different defect depths, 5, 20, and 50 nm. We observe that
for very shallow defects with zdef ≈ 5 nm, the surface noise
will dominate even for low surface densities nS ≈ 1010 cm−2.
On the other hand, for zdef = 50 nm and assuming nV =
1015 cm−3, we obtain a dominance of the surface noise only
for nS > 1012 cm−2.

C. Analytical calculation for the surface fluctuating
dipole electric field

Here we calculate the electric field correlation function
〈Eμ(t )Eμ(0)〉 arising from fluctuating surface dipole charges
[34,41]. Hence, the electric field arising from the ith dipole,
corresponding to the displacement of charges Qi and −Qi lo-
cated at rd

i ≈ (x′d
i , y′d

i , 0) and separated by the dipole distance,
di, is written as

Ed
i = Qi

4πε
(
Rd

i

)5

[
3
(
di · Rd

i

)
Rd

i − di
(
Rd

i

)2
]
, (56)

with Rd
i = rd

i − rdef and Rd
i = |Rd

i |. Assuming a total number
of dipoles given by Nd , the total electric field experienced by
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our defect is E = ∑Nd
i=1 Ed

i (Ri
d ), and we find

〈
Ed

μ (t )Ed
μ (0)

〉 =
Nd∑

i, j=1

〈
Ed

i,μ(t )Ed
j,μ(0)

〉
. (57)

We first assume that the electric fields produced by dif-
ferent dipoles are not correlated, i.e., 〈Ed

i,μ(t )Ed
j,μ(0)〉 ≈

δi j〈Ed
i,μ(t )Ed

i,μ(0)〉. Secondly, we assume that the charge
dipole displacements di are randomly distributed along x̂′,
ŷ′, and ẑ′ with equal probability [44] and amplitude, yielding
〈di(t )di(0)〉 = 〈d (t )d (0)〉 for i = x, y, z. For a large number of
dipoles the above expression can be calculated by assuming a
continuous density for the discrete dipole charge positions ri,
nS = nS (r),

Nd∑
i=1

〈· · · 〉 →
∫
S

dS nS (r′)〈· · · 〉. (58)

Finally, we can write〈
Ed

μ (t )Ed
μ (0)

〉
=

(
e

4πε

)2 ∫
S

dS
nS (r′)

3
〈d (t )d (0)〉3R2

μ + R2

R8
. (59)

For a position-independent areal density nS (r) = nd
S and con-

sidering both surface lengths much larger than |rdef | = zdef ,
we obtain

〈
Ed

x (t )Ed
x (0)

〉 =
( e

4πε

)2 πnd
S〈d (t )d (0)〉

4z4
def

, (60)

〈
Ed

y (t )Ed
y (0)

〉 =
(

e

4πε

)2
πnd

S〈d (t )d (0)〉
8z4

def

(3 − cos 2θ ), (61)

〈
Ed

z (t )Ed
z (0)

〉 =
(

e

4πε

)2
πnd

S〈d (t )d (0)〉
8z4

def

(3 + cos 2θ ). (62)

From Eqs. (60)–(62) and Eqs. (47)–(49), we see that the
point-like and dipole field contributions yield different de-
pendences on the defect depth zdef . Whereas for point-like
charge fluctuations we obtain a dependence z−2

def , the dipole
one gives a weaker dependence z−4

def . Although these different
depth dependences could be verified experimentally, previous
experiments [39,41] did not separate the electric from mag-
netic noise, which did not permit conclusive identification of
the nature of the noise. In the last section of this paper we
will discuss how different surface treatments result in different
types of charge noise (point-like or dipole).

Single-dipole fluctuators are usually described by a
Lorentzian spectral noise density defined by [98,99]

〈d (t )d (0)〉 =
∫ ∞

−∞

dω

2π
Sd (ω)eiωt , (63)

whose inverse is

Sd (ω) = 〈d2〉 �d

ω2 + (�d/2)2
. (64)

�d is the correlation time of the dipole fluctuation, which can
be obtained from fitting experimental spectral noise densities
[39,41]. The corresponding power spectral density,

SEd
x
(ω) =

( e

4πε

)2 πnd
S

4z4
def

Sd (ω), (65)

SEd
y
(ω) =

( e

4πε

)2 πnd
S (3 − cos 2θ )

8z4
def

Sd (ω), (66)

SEd
z
(ω) =

( e

4πε

)2 πnd
S (3 + cos 2θ )

8z4
def

Sd (ω), (67)

and we define

SEd
i
(ω) = ∣∣δEd

i

∣∣2 2�d(
1 + ω2�2

d

) . (68)

Here we also obtain the optimal defect depth that defines the
depth in which the bulk near noise becomes comparable to the
surface noise, namely,

zopt =
[

π1/2d̄S
(
nd
S
)1/2

23/2n2/3
V

]1/2

. (69)

with d̄S = √〈d (t )d (0)〉 ≈
√

〈d2〉. Assuming a rough lower
bound value (∼5 Å) for d̄S , set by a few bond lengths in the
crystal lattice separating minima, we plot in Figs. 3(c) and
3(d) the competition between the surface charge noise arising
from the fluctuation of dipole charges, Eqs. (60)–(62), and the
bulk near noise Eq. (54). Because of the weaker character
of the surface dipole charge noise, we can see that for a
bulk density of fluctuators between 1014 and 1016 cm−3 and
nd
S = 1011, 1012, and 1013 cm−2, the optimal depth is always

smaller than 20 nm, showing the large contribution of the bulk
noise to the dephasing and relaxation of shallow spin centers.

Within this paper we always use values for 〈d2〉 and �d

obtained from experimental measurements or models [39,41].
Nevertheless, if we were to attempt to calculate these quan-
tities, we could model the fluctuating dipoles at the crystal
surface as arising from quantum tunneling, or from ther-
mal or laser excitation connecting different states separated
by an energy barrier. This is usually described by a two-
level fluctuator with tunneling between two different wells,
and has been extensively used to describe the low temper-
ature properties of glass [95–97]. In our system, acceptors
and imperfections of the crystal surface create minima in
the potential energy. Assuming solutions of our two-level
system to be φ0(r) and φ1(r) with corresponding ener-
gies E0 and E1, the time-dependent wavefunction would be
ψ (r, t ) = a1(t )φ1(r) + a2(t )φ2(r)eiωd t with h̄ωd = E1 − E0

and a1,2(t ) obtained by tunneling processes or thermal acti-
vation via phonons [96–100]. The corresponding fluctuating
dipole moment would then be d(t ) = −〈ψ (t )|er|ψ (t )〉 and
originate from the different dipole moment associated with
the different wavefunctions φ1 and φ2. For a single fluctuating
dipole, Sd (ω) is given by Eq. (64), where �d is the rate associ-
ated with the transition between energy levels E0 and E1. If we
assume this rate is dominated by thermal activation, the rate
will be given by �d ∝ e−(E1−E0 )/kBT . When the temperature is
not high enough to thermally activate the high-energy levels,
�d is attributed to trapped electrons that diffuse at the surface
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through quantum tunneling over an energy barrier Eb with a
corresponding width b. For the case of a double-well potential
described by a parabolic one-dimensional potential [103,104],

�d = 2ωd

π3/2

√
2Eb

h̄ωd
e−2Eb/h̄ωd , (70)

with ωd =
√

2Eb/m∗b2 assuming hopping between two 1D
parabolic double wells with an effective electronic mass m∗.
These models were originally developed and employed to
describe fluctuating dipoles in glasses and ion traps [95–100],
and unfortunately, corresponding parameters for our case are
still lacking in the literature. Therefore, despite providing
possible physical mechanisms describing the origin of the
fluctuating electric dipole moment, our plots do not con-
tain parameters obtained from these models. Instead, we use
reported values from the previous experimental results of
Refs. [38,39,41]. Microscopic calculations of these parame-
ters will be left as a future work.

D. Competition between point-like and dipole-surface
charge noise

Here we analyze the competition between the charge noise
due to point-like and dipole fluctuations, Eqs. (47)–(49) with
Eq. (52), and Eqs. (60)–(62) with Eq. (64), respectively. The
ratio

SEp
i
(ω)

SEd
i
(ω)

= nS
nd
S

z2
def

d̄ 2
S

2τp

�d

(ω − ωd )2 + (�d/2)2

1 + ω2τ 2
p

, (71)

defines the condition driving this competition. The character-
istic lengths (dipole length and defect depth) and densities of
these different mechanisms play a role in this competition;
however, the ratio of the correlation time of the fluctuations
τp and �−1

d also has a strong effect. If we assume that both
fluctuations originate from the same physical mechanisms,
we can assume τp ≈ �−1

d . For this condition, the right-hand
side of the equation above becomes nSz2

def/nd
S d̄ 2

S . Hence, if
the number of fluctuating point-like charges is approximately
the same as the number of dipole fluctuators, i.e., nS ≈ nd

S ,
the decoherence due to point-like fluctuations will dominate
for zdef � d̄S , which is usually the case as zdef � 5 nm and
d̄S � 1 nm. Although this would imply that the fluctuation
of the point-like charges are always the dominant ones, this
result relies exclusively on τp ≈ 1/�d and nS ≈ nd

S . If we
think of the fluctuating dipole charges as being described by
trapped electrons (holes) due to surface acceptors (donors),
and the point-like fluctuating charges as being produced by the
surface hole (electron) gas produced by the electrons’ (holes’)
confinement, this would yield nS ≈ nd

S .

Although different experiments [39,41] have already
shown the dominant dipole character of the surface noise,
is still not possible to conclusively determine whether these
are originating solely from electric noise. If they were, this
would suggest a violation of nS ≈ nd

S and/or τp ≈ 1/�d . For
instance, nS �= nd

S could result from chemical treatment of
the surface leading to extra charges in the system, e.g., via
dangling bonds, or contamination from the atmosphere [31].

E. Frequency dependence of the electric spectral noise density

In both previous two sections, we have used the fact that the
frequency dependence of the spectral noise density is given by
the Lorenztian

S0
Ei

(ω) ∝ τ

1 + ω2τ 2
. (72)

Generally speaking, this follows when the dynamics of the
fluctuation is characterized by only one characteristic time
given by τ . As a consequence, we have a correlation function
for the electric field produced by the fluctuators scaling as
e−t/τ , whose Fourier transform yields Eq. (72). This form
relies on a key assumption: that either dipole or point-like
charges have the same timescale associated to their fluctu-
ations (τ ). Although experimental work has supported the
validity of Eq. (72) [39,41], this is not always the case, and
as a consequence, the spectral noise density can deviate from
S0

Ei
(ω) for certain physical situations. For instance, recent

experiments on shallow NV centers suggest a SEi (ω) ∝ ω−1

dependence [31,33,41]. There are many studies [98,105,106]
explaining the origin of the ω−1 spectral noise dependence.
Here, we will use a similar approach, and apply it directly to
our case. We first assume that τ has an origin in activation
processes, either due to the continual trapping and release
of electrons and holes, or due to the diffusion of them. We
then assume τ = τ0eE/kBT where E is the energy associated
with either the tunneling between different trap centers or the
activation energy. Due to the roughness of the surface crystal
and the range of trap centers, we cannot assume only one
particular value for E but rather a distribution for it, and here
we take E1 < E < E2. Taking this into account, our spectral
density noise becomes

SEi (ω) =
∫ E2

E1

dEg(E )P(E )S0
Ei

(ω, E ), (73)

with g(E ) = dτ/dE , and P(E ) the weight associated to
S0

Ei
(ω, E ). By requiring

∫ ∞
0 dEg(E )P(E ) = 1 we obtain

P(E ) = kBT
E2−E1

τ−1
0 e−E/kBT . The integration produces

SEi (ω) = 2kBT

E2 − E1

[
tan−1(ωτ0eE2/kBT ) − tan−1(ωτ0eE1/kBT )

ω

]
,

(74)

which yields the following three different frequency
dependences

SEi (ω) =

⎧⎪⎪⎨
⎪⎪⎩

2kBT
E2−E1

τ0(eE2/kBT − eE1/kBT ) ωτ0 � e−E2/kBT ,

kBT
E2−E1

π
ω

e−E2/kBT � ωτ0 � e−E1/kBT ,

2kBT
E2−E1

τ0
ω2 (e−E1/kBT − e−E2/kBT ) ωτ0 � e−E1/kBT ,

(75)

024419-10



INTERPLAY BETWEEN CHARGE AND SPIN NOISE IN … PHYSICAL REVIEW B 110, 024419 (2024)

fr
eq

ue
nc

y
point-like dipolecharge noise(a) (b) (c)

FIG. 4. (a) Charge noise and the corresponding terms causing relaxation (d⊥ and d ′) and dephasing (d⊥, d ′, and d‖). (b) 1/T1± [Eqs. (30)
and (31)] and the rates associated with charge noise arising from point-like charge fluctuators [�d⊥ (ω+−), �d ′ (ω±0), and �d‖ (ω = 0),
Equations (13)–(15), calculated through Eq. (52) for nS = 1011 cm−2, zdef = 5 nm and τp = 5 ns] as a function of magnetic field Bdc

z . The
magnetic field controls the frequency separation between the spin-defect levels, which can be seen in the upper part of the graph. (c) Same as
(b) but for dipole charge fluctuators, i.e., calculated through Eqs. (60)–(62) with Eq. (64) using nd

S = 1012 cm−2, zdef = 5 nm, d̄S = 0.5 nm,
ωd = 0 and �d = 109 s [39,41]. For all the graphs, we have used the NV-center parameters γ‖ = γ⊥ = 28 GHz/T, d⊥ = 17 × 10−2 Hz m/V,
d‖ = 0.35 × 10−2 Hz m/V, and d ′ = d⊥/2.

which not only captures the ω−1 dependence but also shows a
ω−2 dependence at higher frequencies.

F. Charges and dipoles at the interface

Within the last sections, we have assumed that all of our
particles were always within the crystal region, thus expe-
riencing a dielectric constant ε. Conversely, if these charges
and dipoles are now placed right at the interface between our
material and the external medium, we need to perform the
following change:

1

4πε
→ 1

2π (ε + εext )
(76)

in the equations above, where εext is the dielectric constant of
the external environment. Hence, for defect spins embedded
within a high dielectric constant material a reduction of the
charge noise is expected, which was already verified through
an enhancement of the spin coherence time [33].

G. Results for charge noise

In Fig. 4 we study the response of the rates (and asso-
ciated relaxation times) generated by the charge noise as a
function of the magnetic field (Bdc

z ) controlling the separa-
tion between the spin-defect energy levels [see upper plot of
Figs. 4(b) and 4(c)]. In Fig. 4(b), we plot (dot-dashed lines) the
rates �d⊥ (ω+−), �d ′ (ω±0), and �d‖ (ω = 0) [Eqs. (13)–(15)],
assuming the charge noise is dominated by fluctuations of
point-like charges [Eq. (52)]. First, we observe that the rate
�d⊥ (ω+−) (yellow curve) decreases as a function of Bdc

z . This
happens because the larger the Bdc

z , the larger the frequency
separation between |T−〉 and |T+〉 (ω+−), thus suppressing
the relaxation rate between these states. Similarly, we see
the same behavior for �d ′ (ω+0), represented by the blue dot-
dashed line. Conversely, the rate �d ′ (ω−0), indicated by the
red plot, increases as a function of Bdc

z . This happens because
the frequency separation between |T+〉 and |T0〉 decreases
when we increase the magnetic field, until it reaches the

degeneracy point defined by Bc ≈ 0.105 T, where it starts to
increase again. When the frequencies ω− and ω0 becomes de-
generate, �d ′ (ω−0) reaches its maximum. In addition, we also
plot the relaxation times 1/T1± [Eqs. (30) and (31), here gray
and black solid lines, respectively], with 1/T1+ resembling a
sum of all the rates previously discussed. Interestingly, the
response of our levels to the magnetic field causes a nonmono-
tonic behavior of 1/T1+, which was already discussed in the
literature for different systems [107]. Finally, we see that the
only rate that does not change as a function of the magnetic
field is �d‖ (ω = 0). This rate does not give rise to an extra
relaxation process, as it does not couple levels with different
Sz. Therefore, it will not depend on the frequency difference
between the energy levels, and will only cause decoherence.

Similarly, in Fig. 4(c) we plot the same rates as a function
of Bdc

z , but assuming the charge noise is solely due to the
fluctuation of dipole charges. These are now calculated with
Eqs. (60)–(62) with a corresponding frequency-dependent
spectral noise density given by Eq. (64). For the chosen
parameters, the charge noise arising from the fluctuation of
point-like charges plotted in Fig. 4(b) is stronger, thus generat-
ing faster relaxation rates in comparison with the noise arising
from fluctuating dipoles plotted in Fig. 4(c). This is shown to
be in agreement with the predictions of Eq. (71) discussed in
Sec. III D.

Most importantly, this whole analysis shows that to achieve
the maximum suppression of the charge noise in NV center
spin defects, we must choose magnetic field values Bdc

z ≈
0.06 T as this represents the maximum value for T1±. This
value depends on the ratio of the dipole moments d⊥/d ′ of
our spin-defect, in addition to the assumption of a Lorentzian
spectral noise density [Eq. (64)].

H. Analytical calculation for surface fluctuating magnetic fields

As we saw before, the fluctuation of the charged parti-
cles (electrons) creates the surface charge noise. However,
in addition to the charge, electrons also contain spin, and
hence a fluctuation of the orientation of the particle’s intrinsic
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magnetic moment is also expected [9,35–40]. Similarly, the
magnetic field experienced by the defect at rdef due to a
magnetic dipole moment μi located at rm

i is given by

Bm
i

(
Rm

i

) = μ0

4π
∣∣Rm

i

∣∣5

[
3
(
μi · Rm

i

)
Rm

i − μi

∣∣Rm
i

∣∣2]
, (77)

with Rm
i = rm

i − rdef and |μi| = hγ /2 = gμB/2 for spin-1/2.
Assuming that the density of charged particles is equal to the
density of particles with magnetic moment, nS , we can also
determine the temporal correlation of the magnetic field with
Eq. (12), namely,〈

Bm
x (t )Bm

x (0)
〉 =

( μ0

4π

)2 πnd
S〈μ(t )μ(0)〉

4z4
def

, (78)

〈
Bm

y (t )Bm
y (0)

〉 =
( μ0

4π

)2 πnd
S〈μ(t )μ(0)〉

8z4
def

(3 − cos 2θ ), (79)

〈
Bm

z (t )Bm
z (0)

〉 =
( μ0

4π

)2 πnd
S〈μ(t )μ(0)〉

8z4
def

(3 + cos 2θ ), (80)

where we have assumed the μi’s are randomly distributed
along x̂′, ŷ′, and ẑ′ with equal probability and amplitude,
yielding 〈μi(t )μi(0)〉 = 〈μ(t )μ(0)〉 for i = x, y, z. Using the
definition of power spectral density, we obtain

SBm
x

(ω) =
( μ0

4π

)2 πnd
S

4z4
def

Sμ(ω), (81)

SBm
y

(ω) =
( μ0

4π

)2 πnd
S (3 − cos 2θ )

8z4
def

Sμ(ω), (82)

SBm
z

(ω) =
( μ0

4π

)2 πnd
S (3 + cos 2θ )

8z4
def

Sμ(ω). (83)

Similarly to the result obtained in Eqs. (65)–(67), here we
also obtain a z−4

def dependence on the defect depth due to
the dipole character of Eq. (77). Moreover, if we treat the
magnetic moments as being predominantly due to particles
with spin-1/2, the characteristic frequency of the system will
be set by �ωμ = ω+

μ − ω−
μ with h̄ω±

μ = ±(1/2)gμBBdc
z =

±(1/2)γ hBdc
z , and hence we can assume a power spectral

density corresponding to a Lorenztian peaked at ω = �ωμ,

Sμ(ω) = 2(h̄γ /2)2τ

1 + (ω − �ωμ)2τ 2
. (84)

Within the derivation above, the random character of the
magnetic moment orientation was assumed. We emphasize
this is only consistent at “high” temperatures defined by

kBT � gμBBdc
z , which gives N↑/N↓ = e− 2gμBBdc

z
kBT ≈ 1, where

N↑, N↓ are the populations of spin polarization. Hence our
results are valid for temperatures T � gμBBdc

z /kB, which
for g ≈ 2 and 0 � B � 0.1 T yields T � 130 mK. For T �
130 mK the spins starts to align and the magnetic noise starts
to be suppressed.

I. Fluctuating magnetic field due to the movement
of charged particles

In addition to the magnetic noise produced by the fluc-
tuating magnetic moments, we also have a magnetic field
noise produced by the movement of charged particles, e.g., the

Johnson-Nyquist noise in metals [43,108,109]. Accordingly,
this can be obtained through Biot-Savart law

B =
Nq∑
i=1

Bq
i =

Nq∑
i=1

μ0

4π

Qivi × Ri

R3
i

, (85)

where Qi is the charge of the ith particle, vi is its velocity,
and Nq is the total number of mobile charged particles. Since
we are assuming an areal density of charges, our velocity
components can be approximated to vi = vi,x′ x̂′ + vi,y′ ŷ′, i.e.,
no velocity perpendicular to the surface. Similarly to the
previous section, we assume no correlation between different
particles’ position, and a continuous probability distribution
for the particles’ positions nS (r), yielding〈

Bq
x (t )Bq

x (0)
〉 =

(μ0e

4π

)2〈vx′ (t )vx′ (0)〉
∫

dSnS (r′)
z2

def

R6
, (86)

〈
Bq

y (t )Bq
y (0)

〉 =
(μ0e

4π

)2〈vx′ (t )vx′ (0)〉

×
∫

dSnS (r′)
{

cos2 θ
z2

def

R6
+ sin2 θ

y′2 + x′2

R6

− sin 2θ
zdef y′

R6

}
, (87)

〈
Bq

z (t )Bq
z (0)

〉 =
(μ0e

4π

)2〈vx′ (t )vx′ (0)〉

×
∫

dSnS (r′)
{

sin2 θ
z2

def

R6
+ cos2 θ

y′2 + x′2

R6

+ sin 2θ
zdef y′

R6

}
, (88)

where we have assumed a density nS of mobile charged par-
ticles behaving as a 2D Brownian-Drude model, and hence
〈vμ(t )vν (0)〉 = δμν〈v2

ν 〉e−t/τ for μ, ν = x′, y′, z′, where τ is
the relaxation time [105]. Additionally, for particles in thermal
equilibrium we have 〈v2

ν 〉 = kBT/m∗ (equipartition theorem),
where kB is the Boltzmann constant, T is the temperature and
m∗ is the effective mass of the charged particles. Hence we
obtain

Svν
(ω) = 2 kBT

m∗ τ

1 + ω2τ 2
. (89)

Using now the definition of power spectral density, we write

SBq
μ
(ω) = μ2

0kBT σ2D(ω)

16π

1

z2
def

, (90)

for μ = x, y, z, where σ2D(ω) = nSe2

m∗
τ

1+ω2τ 2 is the 2D conduc-
tivity. These results show a stronger dependence on the defect
depth compared to the ones obtained from the fluctuation of
magnetic moments, Eqs. (81)–(83), and cannot be neglected.
This type of noise was already studied in the literature in the
context of NV-sensing the electrons within a metallic medium
[43,110].

J. Competition between dipole magnetic noise and magnetic
noise produced by charged particles

Here we compare the spectral noise density for the point-
like and dipole surface charge noise, Eqs. (81)–(83) and
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FIG. 5. (a) Magnetic (spin) noise and the corresponding terms causing relaxation (γ⊥) and dephasing (γ⊥ and γ‖). (b) 1/T1± [Eqs. (30) and
(31)] and the rates associated to the dipole magnetic noise [�γ⊥ (ω±0) and �γ‖ (ω = 0), Eqs. (16) and (17), calculated through Eqs. (81)–(83)
and (84) for nS = 5 × 1012 cm−2, zdef = 5 nm, �ωμ = 0 and τ = 0.24 ns [38]] as a function of magnetic field Bdc

z . The magnetic field controls
the frequency separation between the spin-defect levels, plotted in the upper part of the graph. (c) Same as (b) but assuming magnetic noise
due to fluctuation of a two-level system with frequency splitting �ωμ = γ hBdc

z /h̄.

Eq. (90). The ratio

SBq
μ
(ω)

SBm
μ
(ω)

= 1

nd
S

kBT σ2D(ω)

Sμ(ω)
z2

def (91)

defines the condition driving this competition. This expression
is very similar to Eq. (71).

K. Results for magnetic noise

Here we study and investigate the dependence of the rates
(and associated relaxation times) generated by the magnetic
noise as a function of the magnetic field (Bdc

z ) [see Fig. 5(a)].
In Fig. 5(b), we plot (dot-dashed lines) the rates �γ⊥ (ω±0), and
�γ‖ (ω = 0) [Eqs. (16) and (17)], assuming the magnetic noise
is dominated by fluctuations of magnetic moments [Eqs. (81)–
(83) and (84)] with �ωμ = 0. First, we observe that the rate
�γ⊥ (ω+0) (blue curve) decreases as a function of Bdc

z . This
happens because the larger the Bdc

z , the larger the frequency
separation between |T+〉 and |T0〉 (ω+0), thus suppressing the
relaxation rate between these states. On the other hand, the
rate �γ⊥ (ω−0) (red curve) increases as a function of Bdc

z . This
happens because the frequency separation between |T−〉 and
|T0〉 decreases when we increase the magnetic field. Similar
to the case of charge noise, we see that the only rate that does
not change as a function of the magnetic field is �γ‖ (ω = 0).
This rate does not give rise to an extra relaxation process, as
it does not couple levels with different Sz; thus it only causes
decoherence.

In Fig. 4(c) we plot the same rates as a function of
Bdc

z assuming �ωμ = γ hBdc
z . For this case, the maximum

of the spectral noise density is achieved when the spin-
defect frequency transition ω−0 matches the energy splitting
associated with the magnetic moments causing the noise,
i.e., ω−0 = �ωμ. This can be understood from the point of
view of energy conservation, implying that the maximum
relaxation rate happens when we have a relaxation of the spin-
defect states (|T−〉 → |T0〉), followed by the excitation of the
two-level systems defined by the spin-1/2 magnetic moments.
This behavior was already seen experimentally, with magnetic
spin noise given in terms of spin-1/2 nitrogen impurities [74].

For both cases discussed above we plot the relaxation
times 1/T1± [Eqs. (30) and (31), gray and black solid lines,

respectively]. Similar to the charge noise case we observe a
nonmonotonic behavior of 1/T1+. Here, however, the max-
imum of the rates occurs for Bdc

z such that ω+0 = �ωμ.
Finally, we also stress that the experimental Bdc

z dependence
of 1/T1 shows the same trend as the results developed in
Ref. [74].

IV. COMPARISON WITH EXPERIMENTAL DATA

In this section, we analyze and interpret the depth de-
pendence of the decoherence times of NV centers measured
within the experimental study of Ref. [31]. Using our the-
ory developed in the previous sections, we analyze these
experimental results and provide possible explanations for the
different depth dependence originating from the treatment of
different samples.

The experimental data of the NV-center decoherence time
as a function of depth (zdef ) is plotted in Fig. 6. Figures 6(a)
and 6(b) contain the decoherence time for samples A and
B, respectively, while Fig. 6(c) shows the decoherence for
other samples. To obtain the dominant character of the noise
we calculate R2 [111] between the fits for fluctuating dipole
and point-like charges. This yields a statistical measure of the
quality of our fitting. We assume the dominant source of noise
at ω → 0 is 1/ f α-like electric noise, as Ref. [31] argued. Then
our fits were obtained from [Eq. (40)]

1/T 0−
2 = 1

2 (2πd‖)2SE j
z
(ω = 0) + 1/T0 (92)

with index j representing either the point-like (p) or dipole
(d) character of the spectral noise density [i.e., Eqs. (52)
or (67)], and T0 accounting for nonsurface sources of noise.
Many samples of Ref. [31], including sample A, present a
depth dependence that is consistent with dipole fluctuations
(e.g., fluctuating dipole charges or magnetic moments), with a
T2 ∝ z4

def dependence as can be seen from Eqs. (60)–(62) [see
Fig. 6(a)]. Our conclusion that the dominant character of the
noise is dipole spectral noise is supported by an R2

d = 0.89
from the dipole spectral noise formula fit versus a R2

p = 0.76
from the point-like spectral noise formula. The corresponding
fitted parameters for the dipole are �d = 2 × 106 s−1, d̄S = 2
nm, nd

S = 1016 cm−2, and T0 = 100 µs.
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FIG. 6. Comparison between theoretical and experimental T2 decoherence time of NV-centers as a function of the depth for different
samples of Ref. [31]. (a) Sample A presents a T2 depth dependence that is better explained with dipole fluctuations (magnetic or electric), i.e.,
1/T2 ∝ 1/z4

def [Eqs. (60)–(62) and (81)–(83)]. (b) Sample B, which has been treated with high-temperature annealing and oxygen annealing,
shows T2 follows a depth dependence that is better explained with point-like fluctuations, i.e., 1/T2 ∝ 1/z2

def [Eqs. (47)–(49) and (90)]. (c) Other
samples that were not annealed present T2 depth-dependence better explained by the dipole fluctuations.

On the other hand, we see that for sample B, the
decoherence time follows better the depth dependence related
to the fluctuation of point-like charges i.e., T2 ∝ z2

def , with
R2

p = 0.96 in contrast to the dipole case with R2
d = 0.86. The

corresponding fitting parameters are nS = 6 × 1013 cm−2,
τp = 5 × 10−6 s, and T0 = 100 µs. Furthermore, we also see
that sample B is the one with the longest coherence time
for shallow NV-centers. Unlike sample A [Fig. 6(a)] and the
other samples of Fig. 6(c), sample B is the only one that
was subjected to high-temperature annealing followed by
oxygen annealing (even though it was part of the same initial
crystal as sample A). Accordingly, through the comparison
between data of sample A and sample B, we suggest that the
roughness of the crystal surface tends to produce fluctuating
dipole-like fields, which are the dominant source of noise.
This corroborates a description of fluctuating dipoles, which
may emerge from the tunneling of charges between minima of
the surface electrostatic potential, i.e., potentially caused by
roughness and imperfections of the surface. As sample B had
its surface treated, this type of noise was suppressed, leaving
only the contribution of point-like fluctuating noise due to
either surface-confined electron or hole gases, or electrons
at the conduction band excited during the laser readout or
initialization.

V. CONCLUSIONS

In this paper, we first present a complete theory for
the decoherence and relaxation of qutrit (spin-1) spin cen-
ters with C3v point-group symmetry. Accordingly, we obtain
all the Lindblad operators arising from both charge and
magnetic noise, and from that, we calculate the associated
decoherence and relaxation times. We further present the
relaxation dynamics for both charge and magnetic noise domi-
nance. In the second part, we develop a microscopic theory for
the charge noise arising from both point-like and dipole fluc-
tuating charges, as well as for the magnetic noise arising from

fluctuation of the magnetic moment and from randomness of
the movement of charged particles. Using this quantitative
theory, we study the evolution of the rates associated with both
charge and magnetic noises as a function of the energy sepa-
ration between the defect energy levels, which is produced by
a finite magnetic field along the defect main symmetry axis.
Finally, we use the theory developed in this work to analyze
the depth dependence of decoherence times for samples with
different treatments.
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APPENDIX: DERIVATION OF THE LINDBLAD
EQUATION AND OPERATORS

Here we present a detailed derivation of the Lindblad equa-
tion and operators. Our starting point is Eq. (8),

d〈ρ̂I(t )〉
dt

= − 1

h̄2

∫ ∞

0
dτ 〈[VI (t ), [VI (t − τ ), ρ̂I(t )]]〉 (A1)

which assumes the Markovian approximation and weak cou-
pling between a qubit and any fluctuating perturbations.
We then rewrite VI (t ) as a sum of different operators with
fluctuating classical fields εi(t ), i.e., VI (t ) = ∑

i εi(t )V̂i(t ) =∑
i ε

∗
i (t )V̂ †

i (t ), where it is convenient to have V̂i(t ) as rais-
ing and lowering operators within the subspaces {|T0〉, |T+〉},
{|T0〉, |T−〉}, and {|T−〉, |T+〉}, and diagonal operators Sz and
13×3. As a consequence, we have

VI (t )/h = γ‖Bz(t )Sz + γ⊥[B−(t )(eiω+0t SzS+/2 − e−iω−0t S+Sz/2) + B+(t )(e−iω+0t S−Sz/2 − eiω−0t SzS−/2)]

+ d‖Ez(t )
(
S2

z − 2/3
) − d⊥[E+(t )eiω+−t S2

−/2 + E−(t )e−iω+−t S2
+/2]

+ d ′[E−(t )eiω+0t SzS+/2 + E+(t )e−iω+0t S−Sz/2 − E−(t )eiω0−t S+Sz/2 − E+(t )e−iω0−t SzS−/2] (A2)
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with E± = Ex ± iEy, B± = Bx ± iBy. Using these definitions we can rewrite Eq. (A1), making use of
∑

i εi(t )V̂i(t ) =∑
i ε

∗
i (t )V̂ †

i (t ), as

d〈ρ̂I(t )〉
dt

= − 1

h̄2

∑
i, j

∫ ∞

0
dτ 〈[ε∗

i (t )V̂ †
i (t ), [ε j (t − τ )V̂j (t − τ ), ρ̂I(t )]]〉,

= − 1

h̄2

∑
i, j

∫ ∞

0
dτ 〈ε∗

i (t )ε j (t − τ )[V̂ †
i (t ), [V̂j (t − τ ), ρ̂I(t )]]〉. (A3)

We further use Novikov’s theorem [90–94], the weak-coupling regime [88,92–94] and the temporal translational symmetry of
the fluctuating fields [〈ε∗

i (t )ε j (t − τ )〉 = 〈ε∗
i (τ )ε j (0)〉], yielding

d〈ρ̂I(t )〉
dt

= − 1

h̄2

∑
i, j

∫ ∞

0
dτ 〈ε∗

i (τ )ε j (0)〉[V̂ †
i (t ), [V̂j (t − τ ), 〈ρ̂I(t )〉]]. (A4)

To manipulate this equation further, we use [A, [B, C]] = 1
2 [[A,B], C] − (ACB + BCA − 1

2 {AB, C} − 1
2 {BA, C}), and define

the coherent Hamiltonian

Heff,I (t ) = − i

2h̄

∑
i, j

∫ ∞

0
dτ 〈ε∗

i (τ )ε j (0)〉[V̂ †
i (t ), V̂j (t − τ )]. (A5)

yielding

d〈ρ̂I(t )〉
dt

= 1

ih̄
[Heff,I (t ), 〈ρ̂I(t )〉] + 1

h̄2

∑
i, j

∫ ∞

0
dτ 〈ε∗

i (τ )ε j (0)〉
[
V̂ †

i (t )〈ρ̂I(t )〉V̂j (t − τ ) − 1

2
{V̂j (t − τ )V̂ †

i (t ), 〈ρ̂I(t )〉}
]

+ 1

h̄2

∑
i, j

∫ ∞

0
dτ 〈ε∗

i (τ )ε j (0)〉
[
V̂j (t − τ )〈ρ̂I(t )〉V̂ †

i (t ) − 1

2
{V̂ †

i (t )V̂j (t − τ ), 〈ρ̂I(t )〉}
]
. (A6)

Furthermore, we use the Hermiticity of VI (t ), i.e., for any i defining ε∗
i (t )V̂ †

i (t ), there is a corresponding j defining ε j (t )V̂j (t ),
such that ε j (t )V̂j (t ) = ε∗

i (t )V̂ †
i (t ). Making the ε∗

i (t )V̂ †
i (t ) → ε j (t )V̂j (t ) substitution within the second line of Eq. (A6), we obtain

d〈ρ̂I(t )〉
dt

= 1

ih̄
[Heff,I (t ), 〈ρ̂I(t )〉] + 1

h̄2

∑
i, j

∫ ∞

0
dτ 〈ε j (τ )ε∗

i (0)〉
[
V̂j (t )〈ρ̂I(t )〉V̂ †

i (t − τ ) − 1

2
{V̂ †

i (t − τ )V̂j (t ), 〈ρ̂I(t )〉}
]

+ 1

h̄2

∑
i, j

∫ ∞

0
dτ 〈ε∗

i (τ )ε j (0)〉
[
V̂j (t − τ )〈ρ̂I(t )〉V̂ †

i (t ) − 1

2
{V̂ †

i (t )V̂j (t − τ ), 〈ρ̂I(t )〉}
]
. (A7)

For our case, all fluctuating operators V̂j (t ) have a single frequency dependence ω j [see Eq. (A2)], and hence we write
V̂j (t ) = e−iω j tV̂j and V̂ †

i (t ) = eiωitV̂ †
i follows. This allows us to write

d〈ρ̂I(t )〉
dt

= 1

ih̄
[Heff,I (t ), 〈ρ̂I(t )〉] + 1

h̄2

∑
i, j

∫ ∞

0
dτe−i(ω j−ωi )t [〈ε j (τ )ε∗

i (0)〉e−iωiτ + 〈ε∗
i (τ )ε j (0)〉eiω jτ ]

×
[
V̂j〈ρ̂I(t )〉V̂ †

i − 1

2
{V̂ †

i V̂j, 〈ρ̂I(t )〉}
]
. (A8)

To simplify the equation above, we use the secular approximation, which is valid due to the weak coupling between qubit and
fluctuating fields [88]. This will imply that the only nonvanishing terms happen for ωi = ω j [88]. Additionally, we will assume
that the electric noise and magnetic noise are uncorrelated due to the different physical phenomena producing their fluctuations.
Therefore, ωi = ω j only happens for i = j [see Eq. (A2)], yielding

d〈ρ̂I(t )〉
dt

= 1

ih̄
[Heff,I (t ), 〈ρ̂I(t )〉] + 1

h̄2

∑
j

∫ ∞

0
dτ [〈ε j (τ )ε∗

j (0)〉e−iω jτ + 〈ε∗
j (τ )ε j (0)〉eiω jτ ]

[
V̂j〈ρ̂I(t )〉V̂ †

j − 1

2
{V̂ †

j V̂j, 〈ρ̂I(t )〉}
]
.

(A9)

The last term within the bracket is the Lindbladian, and the first one is the relaxation rate �(ω) proportional to the spectral noise
density

�(ω j ) ≡ 1

h̄2

∫ ∞

0
dτ [〈ε j (τ )ε∗

j (0)〉e−iω jτ + 〈ε∗
j (τ )ε j (0)〉eiω jτ ] = 1

h̄2

∫ ∞

−∞
dτ 〈ε∗

j (τ )ε j (0)〉eiω jτ . (A10)
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Accordingly, the final expression for our master equa-
tion becomes the ordinary Lindblad equation (see the
Supplemental Material [89])

d〈ρ̂I(t )〉
dt

= 1

ih̄
[Heff,I (t ), 〈ρ̂I(t )〉]

+
∑

j

[
L̄ j〈ρ̂I(t )〉L̄†

j − 1

2
{L̄†

j L̄ j, 〈ρ̂I(t )〉}
]

(A11)

with Lindblad operators L̄ j = √
� j (ω j )V̂j . In the deriva-

tion below, we will assume the Gaussian character of the
noise, i.e., 〈Ez(τ )E±(0)〉 = 〈E±(τ )Ez(0)〉 = 〈E±(τ )E±(0)〉 =
0, and 〈Bz(τ )B±(0)〉 = 〈B±(τ )Bz(0)〉 = 〈B±(τ )B±(0)〉 = 0.
Additionally, we will also assume that the electric noise and
magnetic noise are uncorrelated due to the different physical
phenomena producing their fluctuations. This allows us to
derive the corresponding Lindblad operators for magnetic and
electric noise independently.

1. Magnetic noise

The fluctuating magnetic field contributes to five different
terms described in the Supplemental Material [89]. A straight
forward calculation yields Heff,I (t ) = 0,

d〈ρ̂I(t )〉
dt

=
5∑

j=1

[
L̄m, j〈ρ̂I(t )〉L̄†

m, j − 1

2
{L̄†

m, j L̄m, j, 〈ρ̂I(t )〉}
]

with Lindblad operators L̄m, j = √
� j (ω j )V̂j defined as

L̄m,1 =
√

1

2
�γ⊥ (ω+0)

SzS+√
2

, (A12)

L̄m,2 =
√

1

2
�γ⊥ (ω+0)

S−Sz√
2

, (A13)

L̄m,3 =
√

1

2
�γ⊥ (ω−0)

S+Sz√
2

, (A14)

L̄m,4 =
√

1

2
�γ⊥ (ω−0)

SzS−√
2

, (A15)

L̄m,5 =
√

�γ‖ (ω = 0)Sz, (A16)

with rates

�γ⊥ (ω) = (2πγ⊥)2
∫ ∞

−∞
dτ 〈B∗

−(τ )B−(0)〉eiωτ , (A17)

�γ‖ (ω) = (2πγ⊥)2
∫ ∞

−∞
dτ 〈B∗

z (τ )Bz(0)〉eiωτ . (A18)

2. Electric noise

To obtain the Lindblad operators associated with the fluc-
tuating electric field we proceed similarly. There are seven
different fluctuating potentials, and we obtain Heff,I (t ) = 0,

d〈ρ̂I(t )〉
dt

=
7∑

j=1

[
L̄e, j〈ρ̂I(t )〉L̄†

e, j − 1

2
{L̄†

e, j L̄e, j, 〈ρ̂I(t )〉}
]

with Lindblad operators L̄e, j = √
� j (ω j )V̂j

L̄e,1 =
√

�d‖ (ω = 0)Sz, (A19)

L̄e,2 =
√

1

2
�d ′ (ω+0)

SzS+√
2

, (A20)

L̄e,3 =
√

1

2
�d ′ (ω+0)

S−Sz√
2

, (A21)

L̄e,4 =
√

1

2
�d ′ (ω−0)

S+Sz√
2

, (A22)

L̄e,5 =
√

1

2
�d ′ (ω−0)

SzS−√
2

, (A23)

L̄e,6 = √
�d⊥ (ω+−)

S2
+
2

, (A24)

L̄e,7 = √
�d⊥ (ω+−)

S2
−
2

, (A25)

with rates

�d⊥ (ω) = (2πd⊥)2
∫ ∞

−∞
dτ 〈E∗

−(τ )E−(0)〉eiωτ , (A26)

�d ′ (ω) = (2πd⊥)2
∫ ∞

−∞
dτ 〈E∗

−(τ )E−(0)〉eiωτ , (A27)

�d‖ (ω) = (2πd‖)2
∫ ∞

−∞
dτ

〈
E∗

z (τ )Ez(0)
〉
eiωτ . (A28)
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