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Confined magnon dispersion in ferromagnetic and antiferromagnetic thin films
in a second quantization approach: The case of Fe and NiO
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We present a methodology based on the calculation of the inelastic scattering from magnons via the spin-
scattering function in confined geometries such as thin films using a second quantization formalism, for both
ferromagnetic and antiferromagnetic materials. The case studies are chosen with an aim to demonstrate the
effects of film thickness and crystal orientation on magnon modes, using bcc Fe(100) and NiO with (100) and
(111) crystallographic orientations as prototypical systems. Due to the quantization of the quasimomentum, we
observe a granularity in the inelastic spectra in the reciprocal space path reflecting the orientation of the thin film.
This approach also allows for the capture of softer modes that appear due to the partial interaction of magnetic
moments close to the surface in a thin film geometry, in addition to bulk modes. The softer modes are also
affected by crystallographic orientation, as illustrated by the different surface-related peaks of the NiO magnon
density of states at approximately ∼65 meV for (100) and ∼42 meV for a (111)-oriented film. Additionally, we
explore the role of anisotropy, revealing that anisotropy increases the overall hardness of the magnon modes. The
introduction of a surface anisotropy produces a shift of the surface-related magnon DOS peak to higher energies
with increased surface anisotropy, and in some cases leads to a surface-confined mode.

DOI: 10.1103/PhysRevB.110.024410

I. INTRODUCTION

The study of the collective dynamics of magnetic systems
has attracted a great deal of attention, due to the promise of
using spin waves to deliver an energetically efficient way to
meet the data processing requirements of modern society. This
has led to a body of knowledge in a field generally known as
magnonics, which encompasses the production, transmission,
storage and processing of information using spin-waves [1,2].
Spin waves are dynamic eigen-excitations of magnetically
ordered materials, often described in terms of their quanta,
or “magnons,” much like photons or phonons are the quanta
of light or lattice waves, respectively.

The design and optimization of magnonic devices heavily
rely on the careful use of specific geometries, particu-
larly emphasizing lower dimensionality, such as thin films.
In this context, it becomes imperative to extend current
computational methods, traditionally applied to the study of
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magnons in bulk materials, to take into account effects aris-
ing from confined geometries associated with thin films and
heterostructures.

As a result, investigations of magnetism in low dimensions
serve a dual purpose. First, it offers valuable insights into how
the magnetic properties of a solid evolve when transitioning
from a three-dimensional (3D) bulk crystal to two, one, or
zero-dimensional structures, which often leads to the emer-
gence of unique phenomena not observed in bulk magnets.
Second, from a technological standpoint, the incorporation
of magnetic materials into modern technologies necessitates
their presence in the form of thin films or wires. In fact,
low-dimensional magnetic structures play a pivotal role in the
broader field of spintronics [3–7].

Previous computational work on magnons has focused on
utilizing atomistic spin dynamics [8], or on solving the lin-
earized equation of motion that derives from the Heisenberg
Hamiltonian via a so-called confined ansatz [9,10]. Using the
latter approach, a study of magnon confinement effects in
low-dimensional magnetic structures was recently reported
[11]. Furthermore, in this work, the authors utilized the
Holstein-Primakoff transformation [12] and the Bogoliubov
transformation [13] to rewrite the spin-scattering function in
confined geometries, with calculations performed for a model
1D spin chain.

In the current work, we extend this approach and provide a
generalized method for calculating the effect of confinement
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in films using the Holstein-Primakoff-transformed Heisenberg
Hamiltonian, for systems with known ground states. We note
that finding the ground state is a rather challenging task, espe-
cially with the introduction of Dzyaloshinskii-Moriya (DM)
interaction which is relevant for ultrathin films [14]. We will
demonstrate the approach assuming a tensorial exchange for-
mulation and explicitly taking into account anisotropy terms.
We note that the dipolar interaction plays an important role
in the magnon dispersion for thin films [15,16]. Importantly,
the lower symmetry in the dipole-dipole interaction term
means that in this case, the Goldstone theorem does not apply,
opening the possibility of a nonzero gap in the excitation
spectrum [17], that would lead to changes near the � point.
Here, we are in the short wavelength limit for the magnons,
a region dominated by the exchange spin waves [3], hence,
the dipolar interaction is omitted in the current work. This
approach allows the application of the second quantization
to thin films with any spin order, including ferromagnets and
antiferromagnets with known ground states. This will open
a pathway for calculations that support the broad range of
probing methods used to study magnons in technologically
relevant thin film systems. We demonstrate this methodology
for the prototypical systems of ferromagnetic films of bcc
Fe(100) and antiferromagnetic NiO with (100) and (111) crys-
tallographic orientations with varying thicknesses.

II. METHODS

We start by expressing the Heisenberg Hamiltonian with
a tensorial exchange parameter Jj j′ and a magnetocrystalline
anisotropy K :

H = −1

2

∑
j j′

S j · Jj j′ · S j′ − K
∑

j

(m · S j )
2, (1)

where we are modeling an atomistic spin-lattice, usually
justified by averaging the fast electron dynamics under an
adiabatic approximation [18], assuming that the ground-state
is known, with magnetic moments at lattice points labeled
by indices j and j′ that are represented mathematically by
the spin operators, S j and S j′ . To make explicit the spatial
orientation of the spin magnetic moments in the lattice, we
will employ the so-called “Kübler’s trick” [19–21], whereby
we will define the spin operator in the local reference frame
(S̄ j), connected to the laboratory reference frame (S j), by
the unitary matrix Rj that defines the spin operators in the
local reference frame in which the z direction is parallel to
the direction of the expectation value of the local magnetic
moment in the ground state, i.e., the quantization axis is de-
fined for each site individually and follows the local classical
macrospin orientation, given by

R j =

⎛
⎜⎝

cos θ j cos φ j cos θ j sin φ j − sin θ j

− sin φ j cos φ j 0
sin θ j cos φ j sin θ j sin φ j cos θ j

⎞
⎟⎠, (2)

such that, S̄ j = R j · S j , where θ j and φ j are the polar and
azimuthal angles, respectively, of the spin magnetic moments
in the laboratory reference frame. Then, the exchange term of

the Heisenberg Hamiltonian, the first term in Eq. (1), can be
written as

Hex = − 1

2

∑
j j′

S j · Jj j′ · S j′

= − 1

2

∑
j j′

∑
α,β,γ ,δ

(
R−1

j

)
αγ

S jγ (Jj j′ )αβ

(
R−1

j′
)
βδ

S j′δ

= − 1

2

∑
j j′

∑
α,β,γ ,δ

S jγ (R j )γα (Jj j′ )αβ

(
R−1

j′
)
βδ

S j′δ

= − 1

2

∑
j j′

S j · FJ ( j, j′) · S j′ , (3)

where we have defined

FJ ( j, j′) = (
R j · Jj j′ · R−1

j′
)

(4)

and have used Latin letters to note the lattice sites, and Greek
letters for cartesian orientations x, y, and z. Note that this
enables us to define a different orientation for each site of a
chosen lattice, allowing studies of ferromagnetic and antifer-
romagnetic materials as well as different spin textures such as
spin canting at the surface.

The second component in the Hamiltonian of Eq. (1)
characterizes the magnetocrystalline anisotropy, where m
denotes a unit vector specifying the orientation of the mag-
netocrystalline anisotropy axis. This vector can be expressed
in spherical coordinates in the laboratory reference frame as
follows:

m = (sin η cos δ, sin η sin δ, cos η), (5)

where η and δ are the polar and the azimuthal angles, respec-
tively.

The use of a tensorial exchange parameter allows the in-
teraction to be modeled in a more general way, where the
diagonal terms can be recognized as representing the usual
constant exchange interaction, while the off-diagonal terms
represent the DM interaction. Therefore, the tensor terms must
follow (Jj j′ )αβ = −(Jj j′ )βα for α �= β. In other words, the
exchange anisotropy manifests itself as an asymmetry in the
diagonal terms of the tensorial exchange tensor.

A. Holstein-Primakoff transformation

In the Heisenberg Hamiltonian in Eq. (1), the magnetic
moments are modeled by spin operators, S j and S j′ , which
satisfy a SU (2) algebra. A usual step to obtain the magnon
dispersion is to rewrite the SU (2) operators as bosonic field
operators aj and a†

j [20,22,23], which satisfy the following
commutation relations:

[a j, a†
j′ ] = δ j j′ , (6)

[a j, a j′ ] = [a†
j , a†

j′ ] = 0. (7)

The corresponding Fourier transformed operators aq and
a†

q correspond to the creation and annihilation of collective
oscillations of the magnetic moments, which are interpreted
as quasiparticles, the so-called magnons.
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The Holstein-Primakoff transformation [12] uses this ap-
proach to express the spin operators as

S
x
j =

√
2S j

2
(φ(n̂ j )a j + a†

jφ(n̂ j )), (8)

S
y
j =

√
2S j

2i
(φ(n̂ j )a j − a†

jφ(n̂ j )), (9)

S
z
j = S j − n̂ j, (10)

where we set h̄ = 1 by convention, Sj is the spin quan-
tum number, and n̂ j = a†

j a j is the number operator. Note
that we are defining the transformation for the spin oper-
ators in the local reference frame. Furthermore, we define

φ(n̂ j ) =
√

1 − n̂ j

2S j
as shorthand notation for convenience.

Considering that the eigenstates of Sz
j are |S j, msj 〉 with

eigenvalues msj = S j, S j − 1, ...,−S j , the number operator
n̂ j has eigenstates |m′

s j
〉 where m′

s j
= S j − msj with eigen-

values n j = 0, 1, 2, ..., 2Sj . A physical interpretation of this
representation is that an increase in the number of magnons
signifies a decrease in the z-direction projection of the mag-
netic moment at a particular site.

The transformation involves the square root of the opera-
tors. Formally, this requires an expansion of the form

φ(n̂ j ) = 1 − n̂ j

4S j
− n̂2

j

32S2
j

− · · · . (11)

This leads to a Hamiltonian with an infinite number of
terms:

H =
∞∑

n=0

Hn, (12)

where Hn represents a term that involves n operators, e.g.,
H4 ∝ a†

j a j′a
†
kal . In this summation scheme, H0 represents the

ground state, H1 is zero in systems without DM interaction,
and H2 is the term that carries the spin-wave approximation.
Every subsequent term gives rise to multimagnon interactions.

For simplicity, we truncate this series using the linear
spin-wave approximation, where only the n = 2 term is used,
i.e., considering only terms that are quadratic in the opera-
tors such that H2 ∝ a†

j a j′ . This approximation is justified for
temperatures well below the magnetic ordering temperature
since it leads to removing interactions between magnons, and
in cases where S � 1, allowing us to neglect higher-order
terms in Eq. (11) [23].

B. Fourier transform of bosonic operators

Using the results in the previous subsection we can rewrite
the Heisenberg Hamiltonian in the second quantization for an

arbitrary magnetic moment orientation. Performing the trans-
formation outlined in Sec. II A, i.e., substituting Eqs. (8)–(10)
into Eq. (3), expanding and keeping only terms that involve
pairs of creation and annihilation operators, since we are in-
terested in the H2 term of the Hamiltonian which represents
the creation of a single magnon, or a set of noninteracting
magnons, we get

H2 = −1

2

∑
j j′

{−S jFJ ( j, j′)zza
†
j′a j′ − S j′FJ ( j, j′)zza

†
j a j

+
√

S jS j′

2
[G1( j, j′)a†

j a
†
j′ + G∗

2( j, j′)a†
j a j′

+ G2( j, j′)a ja
†
j′ + G∗

1( j, j′)a ja j′ ]}, (13)

where we have defined the following short-hand notation:
G1 = FJ ( j, j′)xx − iFJ ( j, j′)xy − iFJ ( j, j′)yx − FJ ( j, j′)yy and
G2 = FJ ( j, j′)xx + iFJ ( j, j′)xy − iFJ ( j, j′)yx + FJ ( j, j′)yy, for
the terms of the projection matrix.

Next, we take the Fourier transform of the bosonic op-
erators to exploit the periodicity of the system. In the bulk
case, the Fourier transform is applied in all three dimensions
of the system. In contrast, in the case of thin films, only two
dimensions are Fourier transformed,

a(r)
q‖ = 1√

N‖

(r)∑
j

e−iq‖·R j a j,

a(r)†
q‖ = 1√

N‖

(r)∑
j

eiq‖·R j a†
j ,

a j = 1√
N‖

∑
q‖

eiq‖·R j a(r)
q‖ ,

a†
j = 1√

N‖

∑
q‖

e−iq‖·R j a(r)†
q‖ . (14)

The wave vector q‖ is only defined in directions within the
plane of the film, and the normalization constant N‖ is the
number of magnetic moments in the system, where r labels
the sites within the unit cell and R j is the position vector of
the jth site. Substituting Eq. (14) within Eq. (13) and using
the following identity for the Kronecker δ,

∑
j

ei(q‖−q′
‖ )·R j = N‖δq‖q′

‖ , (15)

for q‖, q′
‖ any two wave vectors, R j a position vector for a site

j in a system with N sites. The resulting Hamiltonian matrix
is given by

H2 = 1

2

∑
q‖

∑
rs

∑
u

zu

{{
SrFJ (r, s)zza

(s)†
q‖ a(s)

q‖ + SsFJ (r, s)zza
(r)†
q‖ a(r)

q‖ −
√

SrSs

2

[
G1(r, s)�∗(u)

rs (q‖)a(r)†
q‖ a(s)†

−q‖

+ G∗
1(r, s)�(u)

rs (q‖)a(r)
−q‖a

(s)
q‖ + G2(r, s)�(u)

rs (q‖)a(r)†
q‖ a(s)

q‖ + G∗
2(r, s)�∗(u)

rs (q‖)a(r)†
q‖ a(s)

q‖

]}}
. (16)

Equation (16) is then symmetrized, so that the terms contribute equally to all four quadrants of the resulting matrix [20].
This is achieved by duplicating every term, taking the Hermitian conjugate of the duplicate terms and dividing the overall result
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by two. The fact that the Hamiltonian is Hermitian allows us to take these steps without any change in the result. This is the
so-called “spread it around” trick, giving us

H2 = 1

4

∑
q‖

∑
rs

∑
u

zu

{{
SrFJ (r, s)zza

(s)†
q‖ a(s)

q‖ + SsFJ (r, s)zza
(r)†
q‖ a(r)

q‖ −
√

SrSs

2

[
G1(r, s)�(u)

rs (q‖)a(r)†
q‖ a(s)†

−q‖

+ G∗
1(r, s)�∗(u)

rs (q‖)a(r)
−q‖a

(s)
q‖ + G2(r, s)�∗(u)

rs (q‖)a(r)†
q‖ a(s)

q‖ + G∗
2(r, s)�(u)

rs (q‖)a(r)†
q‖ a(s)

q‖

]}

+
{

SrFJ (r, s)zza
(s)
−q‖a

(s)†
−q‖ + SsFJ (r, s)zza

(r)
−q‖a

(r)†
−q‖ −

√
SrSs

2

[
G∗

1(r, s)�∗(u)
rs (q‖)a(r)

−q‖a
(s)
q‖ + G1(r, s)�(u)

rs (q‖)a(r)†
q‖ a(s)†

−q‖

+ G∗
2(r, s)�(u)

rs (q‖)a(r)
−q‖a

(s)†
−q‖ + G2(r, s)�∗(u)

rs (q‖)a(r)
−q‖a

(s)†
−q‖

]}}
, (17)

where �(u)
rs = (1/zu)

∑
du

e−iq‖·du and du represents one of the
zu different distance vectors denoting the uth nearest neigh-
bors, e.g., first, second, etc. The labels r and s are used to
distinguish between various magnetic moments within the
unit cell. The magnetocrystalline term can also be rewritten
using similar steps. Since every term in Eq. (17) has a pair
of creation and annihilation operators, we can write it as a
multiplication of a matrix with the numerical values of the
system-dependent parameters FJ (r, s) and �(u)

rs (q‖), with two
vectors composed of the creation and annihilation operators.
We can then write Eq. (17) in a compact form as follows:

H2 =
∑

q‖

v†
q‖ · L(q‖) · vq‖ , (18)

where we defined

v†
q‖ = (

a(1)†
q‖ , ..., a(M )†

q‖ |a(1)
−q‖ , ..., a(M )

−q‖

)
, (19)

which has the commutation relation[
vq‖ , v

†
q′

‖

] =N δq‖,q′
‖[

vq‖ , vq′
‖

] = [
v†

q‖ , v
†
q′

‖

] = 0, (20)

where

N =
(

I 0
0 −I

)
, (21)

with I being the identity matrix with rank half the length of
v†.

To diagonalize the Hamiltonian we will use the Bogoli-
ubov transformation. Taking into account the commutation
relations in Eq. (20), we obtain the equation of motion
for vq,

i
dvq‖

dt
= −[H2, vq‖ ] = L(q‖) · vq‖ , (22)

where L(q‖) = L(q‖) · N where we used h̄ = 1.
Assuming that the unit cell has M magnetic moments, the

matrix L(q‖) will be 2M-dimensional, such that εn(q‖) =
ωn(q‖)/2 � 0 for n = 1, · · · , M and εn(q‖) = −ωn(q‖)/2 �
0 for n = M + 1, · · · , 2M, with h̄ = 1, i.e., the eigenvalues of
L are related to the eigenenergies of the magnon modes that
are allowed in the system for each q. There will be M positive
and M negative eigenvalues due to particle-hole symmetry.

We diagonalize L(q‖) with the unitary transformation
L′(q‖) = UL(q‖)U †, where U † is a matrix which columns are
the eigenvectors of L(q‖), this allows us to write

H2 =
∑

q‖

�v†
q‖U

†UL(q‖)U †U �vq‖ =
∑

q‖

w†
q‖L

′(q‖)wq‖ , (23)

having defined w†
q‖ = �v†

q‖U
† such that

w†
q‖ = (

α(1)†
q‖ , ..., α(M )†

q‖ |α(1)
−q‖ , ..., α

(M )
−q‖

)
. (24)

Comparing with Eq. (19) we can define

α(r)†
q‖ =

N∑
n=1

(
U †

r,na(n)
q‖ + U †

r,n+N a(n)†
−q‖

)
, (25)

α
(r)†
−q‖ =

N∑
n=1

(
U †

r+N,na(n)
q‖ + U †

r+N,n+N a(n)†
−q‖

)
, (26)

while in real space we have

a j =
N∑

n=1

(U †
j,nαn + U †

j,n+Nα†
n ), (27)

a†
j =

N∑
n=1

(U †
j+N,nαn + U †

j+N,n+Nα†
n ). (28)

Expanding H2 in the new diagonal basis with the eigenfre-
quencies obtained from the diagonalization of L(q‖), H2 can
be written as

H2 =
M∑

n=1

∑
q‖

ωn(q‖)

[
α(n)†

q‖ α(n)
q‖ + 1

2

]
. (29)

This approach allows the calculation of observables such
as the spin-scattering function, magnetization, etc., for both
bulk or thin films, by projecting the second quantized spin
operators onto the diagonalized basis of the Hamiltonian αn

and α†
n , using Eqs. (27) and (28).

C. Spin-scattering function

The spin-scattering function is a proxy for neutron-
scattering measurements also sometimes called the dynamic
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structure factor. It is given by the space and time Fourier trans-
form of the time-dependent spin-spin correlation function:

Sαβ (q, ω) = 1

2πN

∑
j, j′

∫
dte−iωt e−iq·(r j−r j′ )

〈
sα

j (0)sβ

j′ (t )
〉
T .

(30)

Here we are noting N as the total number of spins in the
lattice. Once more, we employ Latin letters to designate lattice
sites, while Greek letters are utilized for denoting Cartesian
directions. This way the spin operator sα

j represents the α

component of a spin located at position r j . The 〈·〉T denotes
the quantum and thermal average at temperature T .

In this section, the spin-scattering function is connected
to the eigenvalues and eigenvectors of L, which give us the
frequencies and their spectral weights for the magnons in the
system, respectively.

The spin operators in real space can be expressed as

sα
j (t ) =

√
S j

2
{V −

jαa j (t ) + V +
jαa†

j (t )}, (31)

noting that a j (t ) = e−iωnt a j , with

V ±
jα = (R j )xα ± i(R j )yα. (32)

By substituting Eqs. (31), (27), and (28) in the scattering
function Eq. (30), noting that 〈α†

nα
†
n′ 〉T = 〈αnαn′ 〉T = 0 and

〈α†
nαn′ 〉T = nB(ωn)δnn′ , where nB is the Bose-Einstein distri-

bution, we perform the Fourier transform on the scattering
function and focus on the positive energies of the spectrum,
to obtain

Sαβ (q, ω) = 1

2M

M∑
n=1

∑
r,s

√
SrSs

2
e−iq⊥·(rr−rs )

× (
W (n)

r

)
α

(
W (n)

s

)
β
[1 + nB]δ(ω − ωn), (33)

where we have defined q⊥, as the component of the wave
vector in the confinement direction, and defined the shorthand
notation: (

W (n)
r

)
α

= (V −
r,αU †

r,n + V +
r,αU †

r+N,n), (34)

(
W (n)

s

)
β

= (V −
s,βU †

s,n+N + V +
s,βU †

s+N,n+N ). (35)

To account for finite instrument δ(ω − ωn) is replaced by a
Gaussian broadening given by

δ(ω − ωn) → 1√
2π2

e− (ω−ωn )2

22 . (36)

It is important to emphasize that with this method we
can evaluate thin films and heterostructures, and also use the
parameters such as Ji j and anisotropies K for each different
layer and between different layers, as required by the physics
of the system.

For colinear spins, the calculation of Sαβ , where α and β

are the Cartesian directions x, y, and z, aligned with the z axis,
for cubic unit cells, we have Sxx(q, ω) = Syy(q, ω) �= 0, while
Sαβ (q, ω) = Szz(q, ω) = 0 for α �= β.

The spin-scattering function gives a relative measurement
of the amount the magnetic moment changes in a particular
direction, i.e., if all magnetic moments in the system are

pointing in the z direction and start to precess, then only
the magnetic moment projections in the x and y directions
change, under the spin-wave approximation, which leads to
a nonzero value for the Sxx(q, ω) and Syy(q, ω) and zero value
for Szz(q, ω), assuming the spin-wave approximation.

D. Magnon density of states

To compute the magnon density of states (DOS), a method-
ology akin to that utilized in the derivation linking the velocity
correlation function to the vibrational density of states for
phonons [24,25] is used. Analogously, this approach is ex-
tended to the spin-spin correlation function. Employing the
Holstein-Primakoff transformation, and the change of basis
given in Eqs. (31), (27), and (28) in the time-dependent form
αn(t ) = αne−iωnt . where ωn are the eigenfrequencies of the
magnons in the system, the density of states is given by

ρ(ω) ∝
M∑

n=1

∑
q

∑
r,s

e−iq⊥·(rr−rs )
(
W (n)

r

)
α

(
W (n)

s

)
α
δ(ω − ωn(q)),

(37)

where Einstein’s summation convention is used for the Carte-
sian orientations labeled by α, and the constants in front were
omitted. This approach ensures uniformity in the density of
states (DOS), irrespective of the number of magnetic moments
within the unit cell representing the system. Each magnetic
moment in the unit cell contributes to a distinct mode in
the magnon dispersion, with no guarantee of degeneracy. By
deriving the DOS through the spin-spin correlation function,
distinct weights are assigned to each mode, with a preference
for those associated with the primitive cell. This weighting
scheme ensures a consistent solution, rendering the final DOS
independent of the chosen unit cell for calculation purposes.

III. RESULTS

In this section, examples are provided to show the physics
that is captured by the method outlined above. We calculate
three different cases of thin films, ferromagnetic bcc Fe (100),
antiferromagnetic NiO(100) and NiO(111). We will evaluate
numerically the spin-scattering function using Eq. (33), and
the magnon DOS by calculating the contribution to the spin-
scattering function of all modes on a grid in reciprocal space.

A. bcc Fe(100)

We start with the prototype ferromagnetic material bcc Fe,
a well-known and broadly studied system [8,18,26,27].

The calculations performed in this section have used the Ji j

parameters proposed in Ref. [18], where 25 nearest neighbors
are taken into account, for the value of S we used the magnetic
moment taken as 2.26 µB [28] which is then divided by the
Landè g-factor for a pure spin system.

Figure 1 shows Sxx where we used a temperature of 2K,
for films of bcc Fe (001) of varying thickness. The sample is
assumed to be infinite in the (x, y) plane, and confined to a
limited number of monolayers in the z direction, as indicated.
As bcc Fe is a cubic system, Sxx is the same as Syy. The
spin-scattering functions are evaluated for thin films with sizes
ranging from 10 to 50 monolayers (ML). In addition, we show
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FIG. 1. Spin-scattering function of bcc Fe thin films with (a) 10, (b) 20, (c) 30, (d) 40, and (e) 50 monolayers. (f) 50 monolayers with an
added 20 meV of anisotropy in the crystallographic direction of confinement (100), with 25 nearest neighbors and a temperature of 2K was
used for all calculations. For comparison, the bulk dispersion is shown as a black/white line. A broadening of  = 6.5 meV was used.

the bulk magnon dispersion, calculated using our formulation
but for an infinite model in 3D, as a dashed black/white
line. The effect of confinement is clearly observed by the
emergence of granularity in the spin-scattering function plot,
arising from quasimomentum quantization for q‖ resulting
from the finite nature of this direction, as shown along the
path traversing the finite z direction (� − P − N). We observe
that, since the trajectory deviates from the q‖ direction, which
is the direction of confinement in our thin film geometry, the
quantization does not yield symmetrical shapes for the gran-
ular features. Instead, they exhibit distinct shapes attributable
to the trajectories in reciprocal space that are nonparallel to
the finite direction. As we increase the number of monolayers,
these granular features become increasingly densely packed,
ultimately converging towards a continuous line in the limit of
a bulk solid. The thin film calculations therefore tend towards
the bulk when the system size increases, as expected in the
limit of a large number of layers. We note that the calculated
bulk spin-scattering function using our approach agrees well
with previous calculations of the magnon dispersion and ac-
companying experiments for bulk bcc Fe [8,18]. In particular,
our results appear to capture the onset of the Kohn anomalies
in the path between �-H and between H-N , albeit less promi-
nently than in references [8,18], which can be explained due to
the fact that we have employed parameters representing next
nearest neighbours up to a distance of five times the lattice
constant a, whereas prior research had considered parameters
extending up to 7a as discussed in Refs. [8,18].

The treatment of the Heisenberg Hamiltonian as presented
in the methods section above captures the fact that the top
and bottom layers (i.e., the surfaces) have fewer neighbors
than bulklike layers, resulting in a reduction of interactions,
which leads to the appearance of softer modes that are less
intense and decrease in intensity as the system increases in

size; see Fig. 1. Furthermore, in Fig. 1(f) we show that the
addition of K = 20 meV of magnetocrystalline anisotropy in
the (001) direction parallel to the magnetic moments in the 50
monolayers case, results in a rigid shift in energy for all the
modes to higher energies.

The existence of the additional softer surface-related
modes can be clearly seen in the magnon DOS calculated
using Eq. (37), as shown in Fig. 2, for a thin film of 10
monolayers. This manifests itself by the appearance of a peak
around 180 meV, which is not present in the bulk DOS, high-
lighted by the blue arrow in Fig. 2.

The confined peak in the DOS is dependent on the surface
properties. This is illustrated in Fig. 3, where on the top and
bottom surfaces of the 10 monolayer Fe film an artificial

FIG. 2. Density of states of Fe bcc comparing Bulk with varying
sizes of thin films with 25 nearest neighbors. A broadening of  =
6.5 meV was used.
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FIG. 3. Density of states of bcc Fe thin film with size 10 mono-
layers, for varying intensities of Ksurf with 25 nearest neighbors. A
broadening of  = 6.5 meV, was used.

surface-only anisotropy (Ksurf) is added. As Ksurf increases, the
confined DOS peak shifts to higher energies, and eventually
becomes localized at energies above the bulk dispersion.

B. NiO(100) and NiO(111)

Next, we consider NiO to demonstrate the applicability of
our method to antiferromagnetic thin films. The flexible abil-
ity to set the magnetic moments’ modulus and directions in-
side the unit cell allows for the study of both colinear and non-
colinear systems, as well as at the interfaces between them.

Exchange parameters from inelastic neutron-scattering ex-
periments suggest that the first-neighbor J1,p = 1.39 meV
and J1,ap = 1.35 meV, where J1,p is the interaction be-

tween parallel first neighbors and J1,ap is the interaction
between antiparallel first neighbors [29,30]. Similarly, the
second-neighbor antiferromagnetic exchange interaction was
determined to be J2 = −19.01 meV. The small difference be-
tween J1,p and J1,ap was attributed to lattice distortion, as
previously pointed out in Refs. [29,30]. The magnetic moment
of Ni used in the calculations is 1.4 µB [31].

Figure 4 shows the spin-scattering function for NiO(100)
with 5, 10, 15, 20, and 30 monolayers, alongside the bulk NiO
case, again represented by the black/white line.

As expected, and similar to bbc Fe, we confirm the ten-
dency to match the bulk case in our calculations as the number
of monolayers is increased. A softer energy mode related
to the reduced interaction of the magnetic moments at the
surfaces also appears for the thin film cases.

In Fig. 4(f) we show that adding K = 5 meV of mag-
netocrystalline anisotropy in the direction of the magnetic
moments in the 20 monolayers case results in a shift in energy
for all the modes to higher energies. In contrast to the bcc Fe
case, this change is not rigid: the lower energies of the modes
are affected more than the higher ones.

As with Fe, the magnon DOS of NiO(100) was calculated
and is shown in Fig. 5. The calculation confirms the appear-
ance of the confined modes and their relation to the bulk
case. The general tendency is of a pronounced confinement-
related peak that continuously decreases in intensity with the
increase in the number of layers and eventually merges with
the bulklike peaks. We note that in the presented range of DOS
calculations, only in ultra-thin films, below 10 ML, are the
confined modes comparable to or larger than their bulklike
counterparts.

The effect of crystallographic direction on confinement is
illustrated by a set of complementary calculations carried out

FIG. 4. Spin-scattering function of NiO (100) thin films with (a) 5, (b) 10, (c) 15, (d) 20, and (e) 30 monolayers. (f) 20 Monolayers with
an added 5 meV of anisotropy in the direction of the Néel vector which is set to be in the crystallographic direction of confinement, and a
temperature of 2K was used for all calculations. A broadening of  = 1.5 meV was used.
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FIG. 5. Density of states of NiO (100) comparing Bulk with
varying sizes of thin films. A broadening of  = 6.5 meV, was used.

on NiO(111) thin films. Figure 6 shows the spin-scattering
function of NiO(111) for 10, 20, 30, 40, and 50 monolayers,
alongside the bulk spin-scattering function. We also have in-
cluded the effect of anisotropy in the case of a 30 ML film
with an added anisotropy of 10 meV in the same direction
as the Néel vector which is set to be in the crystallographic
direction of confinement.

Confinement-induced granularity, due to quasimomentum
quantization, appears in different regions of the Brillouin
compared to the NiO(100) case, reflecting the crystallographic
direction of the confinement. The softer partial interaction
mode also appears at lower energies than in NiO(100), with
a flatter dispersion. This effect becomes even more apparent
when we add an anisotropy in the direction of the Néel vector.
A K = 10 meV anisotropy leads to the hardening of all modes

FIG. 7. Density of states of NiO (111) for various film thick-
nesses. A broadening of  = 6.5 meV, was used.

and a separation between the bulk mode and a confined mode
at lower energies, and we observe a flat dispersion across the
� − L path corresponding to the out-of-plane direction, which
can therefore be interpreted as a surface-confined mode.

We note also the stark difference between (100) and (111)
oriented films in the �-X direction. While we see a strong dip
in the bulk dispersion for the (100) films, in the (111) films this
dip is not present, showing that the direction of confinement
can drastically change some of the features of the inelastic
response.

Finally, a comparison of the calculated NiO(111) magnon
DOS for different film thicknesses is given in Fig. 7. The
same tendency as in the NiO(100) films, where the magnon
DOS peaks due to the surface-related modes are reduced in
intensity and merge into the main bulklike response for (111)

FIG. 6. Spin-scattering function of NiO (111) thin films with (a) 10, (b) 20, (c) 30, (d) 40, and (e) 50 monolayers. (f) 50 monolayers with
an added 10 meV of anisotropy in the direction of the Néel vector, and a temperature of 2K was used for all calculations. Broadening used was
 = 0.5 meV.
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films above 10 ML is observed. The main difference with
Ni(100) appears in the energy position (42 versus 65 meV)
of the surface-related peak which is due to the direction of
confinement.

IV. CONCLUSION

We outline a methodology to calculate the spin-scattering
function, useful for the calculation of the inelastic scattering
by magnons, using a second quantization approach. This al-
lows for a Hamiltonian that includes lower dimensionalities
in the systems considered, which is applicable to relevant thin
film geometries. The method was used to study thin films
of bcc Fe(100) and for NiO the (100) and (111) crystal-
lographic orientations. The calculated results reveal distinct
characteristics that emphasize the significance of film thick-
ness and crystal orientation on the magnon modes in these
systems. In all cases, the emergence of softer modes related
to the partial interaction of the magnetic moments close to
the surfaces of the material is observed. The appearance of
these softer modes related to confinement is evident in the
evaluated magnon density of states, through the emergence
of peaks at lower energies, which we ascribe as being related
to confinement. Comparing the magnon density of states for
two different crystallographic orientations of NiO we observe
that the confinement-related peak appears at different energies
[65 meV for (100) and 42 meV for (111)], showing the impor-
tance of the direction in which dimensionality is reduced. The
finite crystal size leads to granularity in the spin-scattering

function across various directions in the Brillouin zone, due to
the quantization of the quasimomenta. This effect is compara-
ble in the two different crystallographic orientations of NiO,
where the granularity appears in the path in reciprocal space
that is oriented in the direction of the thin film. Additionally,
we demonstrate the role of magnetocrystalline anisotropy in
both Fe and NiO films, which leads to an overall hardening
of the magnon modes. When anisotropy is only included in
surface layers, illustrated in the case of bbc Fe, a shift of
the confinement-related magnon DOS peak to higher energies
with the increase of the surface anisotropy is seen. Overall,
this study contributes to the growing body of knowledge in
the field of magnonics and serves as a foundation for future
research endeavours aimed at harnessing the unique proper-
ties of confined magnon modes for fundamental studies and
technological applications.
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