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Phase diagram of the quantum spin-1
2 Heisenberg-� model on a frustrated zigzag chain
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We investigate the quantum spin-1/2 zigzag chain with frustrated J1-J2 Heisenberg interactions, incorporating
additional off-diagonal exchange interactions known as the � term, both with and without an applied magnetic
field. Based on the density-matrix renormalization group calculation, we map out the ground-state phase diagram
that shows a variety of magnetic and nonmagnetic phases including multicritical points and several exactly
solvable points. Upon introducing a finite � term, we observe the persistent dimer-singlet state of the J1-J2

Heisenberg model, sustaining a nonzero spin gap, while also hosting a gapless nonmagnetic excitation that
manifests in the substantial zero-energy peak in the nematic dynamical structure factor. This gapless peak-mode,
remaining almost as a fluctuation to the ground state, induces a dilute but robust concentration of nematicity on
top of singlets on dimers, which we call the nematic singlet-dimer phase. When the whole nematic excited mode
condenses and replaces the singlet, the nematic-dimer phase transforms into the Ising-type ferromagnetic or
antiferromagnetic long-range orders. The � term spontaneously selects magnetic easy axes, and their orientations
dictate the type of magnetic order under geometric frustration effects as predicted by Landau’s mean-field
theory. These theoretical findings provide insights into the exotic low-temperature phase observed in YbCuS2,
characterized by gapless excitations and seemingly nonmagnetic behavior.
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I. INTRODUCTION

Exploring interesting quantum-disordered phases in ma-
terials stands as a major challenge in condensed-matter
physics. Longstanding intense investigations into triangular
and kagome quantum spin liquids [1–3] were recently spurred
by the discovery of Kitaev spin liquids featuring Majorana
quasiparticle excitations [4], and it motivated the detailed
examination of new types of quantum anisotropic exchange
interactions in 4d , 5d , and 4 f insulating magnets [5–8].
These interactions are influenced by strong spin-orbit cou-
pling, moderate crystal field effects, and electron correlations,
which play a crucial role in the emergence of Kitaev and �

terms alongside the previously studied Dzyaloshinskii-Moriya
and ring exchange interactions.

Spin liquids are, however, not the sole focus of non-
magnetic disordered phases in quantum magnets. There are
valence-bond solids in the spin-1 chain known as symmetry-
protected topological phase [9], valence-bond crystals based
on singlets in Shastley-Sutherland model [10,11], and spin
nematic phases or a quadrupolar order triggered by the
condensation of two-magnon bound state for S = 1 models
[12–14] and S = 1/2 or S = 1 spin ladders [15,16]. No-
tably, some of these phases break lattice symmetry while
suppressing magnetic orderings, making them experimen-
tally more accessible compared to spin liquids. Fortunately,
there exist material platforms that host these phases, such as
κ-ET2Cu2(CN)3 [17] and ZnCu3(OH)6Cl2 [18,19], for spin
liquids, NENP for Haldane chain [20], and SrCu2(BO3)2 [21]
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for orthogonal dimer phases, providing crucial insights into
the nature of these intriguing phases governed by strong quan-
tum fluctuations and correlations.

Despite these advancements, the role of off-diagonal sym-
metric � terms, which have recently been observed in Yb and
other 4 f -based magnets, remains largely unexplored [7,8].
Initially discussed as secondary terms in Kitaev magnets,
the � term, in conjunction with the Heisenberg interaction,
destabilizes Kitaev spin liquids in two dimensions [22]. In the
one-dimensional analog, known as the Kitaev-Heisenberg-�
chain [23], the � term significantly alters the ground-state
phase diagram, leading to SU(2) symmetric points and mag-
netic orderings with spontaneously oriented easy axes.

This paper elucidates the role of the � term in a geomet-
rically frustrated zigzag Heisenberg spin-1/2 chain, whose
potential platform is the 4 f insulating magnet, YbCuS2. Pre-
viously, we have microscopically derived the quantum spin
model for this material based on the �6 Kramers doublet of
Yb ions that forms a zigzag chain, revealing nearly isotropic
J1 ∼ J2 Heisenberg interactions and small but finite �-type
exchange couplings [24].

Experimentally, YbCuS2 undergoes a first-order transi-
tion to a low-temperature phase lacking clear long-range
magnetic ordering, with NMR suggesting gapless nonmag-
netic excitations [25,26]. The experimental magnetic-field-
temperature phase diagram does not conform to the previous
theory of the simple J1-J2 Heisenberg model [27]. Our
theoretical parametrization considers the J1-J2 and �1-�2

zigzag chain, and unveil the entire phase diagram with
and without a magnetic field, incorporating ferromagnetic,
antiferromagnetic, or mixed Heisenberg exchange couplings.
We employ techniques such as density matrix renormalization
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FIG. 1. (a) Ground-state phase diagram of a spin-1/2 zigzag spin chain shown in the right panel, where the z axis is parallel to the legs
and the y axis perpendicular to the triangular plane. We take J1 = cos φ cos θ, J2 = sin φ cos θ, �1 = cos φ sin θ and �2 = sin φ sin θ . Three
nonmagnetic phases are denoted as the nematic-singlet dimer (ND) phase, the Tomonaga-Luttinger liquid (TLL) phase, and the vector chiral
(VC) phase. Magnetically long-range ordered phases are ferromagnetic (FM), antiferromagnetic (AFM) UD, or UUDD phases. Four circles
represent the exact solution points (tricritical Lifshitz point, nematic product state, RVB state, fully polarized ferromagnet), and the bold
lines (Majumdar-Ghosh line and θ = 0 line) are the exact solution lines. Pink and dark phase boundaries are determined by the change of
magnetization and the energy crossing, respectively, and the VC and TLL-ND phases are from the scaling and vector chiral correlations,
respectively. (b) Characteristics of phases in terms of magnetic order, correlation functions, and spin gap, to be detailed in Figs. 2–5.

group (DMRG), exact diagonalization, TEBD, bond-operator
approach, and mean-field analysis on Ising competing orders.
The key finding is the emergent nonmagnetic gapless excita-
tions introduced at an infinitesimally small value of � inside
the robust magnetic spin gap of the dimer-singlet long-range
ordered phase. On top of that, the competing various mag-
netically and nonmagnetically ordered phases appear as the
complex interplay of geometrical frustration effect of zigzag
structure and the competition of Heisenberg and � terms.

The paper is structured as follows: Section II presents the
model Hamiltonian and the ground-state phase diagram in
detail. Section III focuses on antiferromagnetic cases and the
effect of the � term using the bond-operator approach and
mean-field analysis. Section IV outlines the magnetic phase
diagram, and Sec. V discusses materials and experimental
implications.

II. MODEL AND THE GROUND-STATE PHASE DIAGRAM

A. Model Hamiltonian

We consider a quantum spin-1/2 Hamiltonian on a zigzag
chain given as

H =
∑

j

∑
η=1,2

JηS j · S j+η + �η

(
Sx

j S
y
j+η + Sy

j S
x
j+η

)
, (1)

where Jη and �η are the Heisenberg and anisotropic exchange
interactions between nearest (η = 1) and next-nearest (η = 2)
spins. We consider both the antiferromagnetic (AFM) and
ferromagnetic (FM) couplings of Jη and set

J1 = cos φ cos θ, J2 = sin φ cos θ,

�1 = cos φ sin θ, �2 = sin φ sin θ, (2)

where dividing the parameter range into four, φ =
[0 : π/2], [π/2 : π ], [π : 3π/2], [3π/2 : 2π ] correspond to
AFM-AFM, FM-AFM, FM-FM, AFM-FM interactions of
J1-J2, respectively. The sign of �η can be converted by the
local unitary transformation and does not influence the phys-
ical state. The spin quantization axis z is taken parallel to the
chain (see Fig. 1).

The model at �η = 0 corresponds to the zigzag Heisenberg
spin chain, the phase diagram of which has been exten-
sively studied previously. In the AFM-AFM case where J1

and J2 are both positive, there exists a transition from a
Tomonaga-Luttinger liquid (TLL) phase to a dimer-singlet
phase characterized by a finite spin gap [28–30]. This transi-
tion occurs at a critical point (J2/J1)c ≈ 0.2411 (φ ≈ 0.075π )
[31,32]. Within the dimer-singlet phase, a Lifshitz point
(J2/J1)L ≈ 0.5206 (φ ≈ 0.153π ) delineates two distinct re-
gions: one with commensurate q = π short-range magnetic
correlations and another with incommensurate q < π corre-
lations at lower and higher J2/J1 values, respectively [33,34].
There is also an ongoing debate regarding a potential tran-
sition from the dimer phase to a gapless phase around
J2/J1 ≈ 2.2 (φ ≈ 0.36π ), identified through level crossing
experiments [35], exact diagonalization and density matrix
renormalization group (DMRG) studies [36]. This observation
contradicts field theory predictions, which suggest a finite gap
� ∼ exp ( − (J2/J1)η ) with η = 1 [37] or η = 2/3 [38] for
large J2/J1 values. We see shortly in our phase diagram in
Fig. 1(a) that the phase boundary has a kink, which extrap-
olates to J2/J1 ≈ 2.2, indicating that the phase changes its
nature at J2/J1 � 2.2. However, it is numerically difficult to
conclude whether there is a finite but exponentially small spin
gap or not.

In the FM-AFM case, a Haldane dimer phase exists where
ferromagnetic spin pairs form S = 1 states for J2/J1 < −1/4
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(0.922π < φ < π ) [39,40]. At the critical point J2/J1 =
−1/4 (φ = 0.922π ), an exactly solvable resonating valence
bond (RVB) state appears [41] at the boundary toward the
ferromagnetic (FM) long-range ordered phase ferromagnetic
(FM) long-range order. Similar to the AFM-AFM case, the
existence of a gap at large J2/|J1| remains a subject of contro-
versy [35,40].

For the FM-FM and AFM-FM regions, there is no frus-
tration and the ferromagnetic and TLL phases are realized,
respectively.

The zigzag XXZ chain exhibits a richer variety of phases
because of the broken SU(2) symmetry, including dimer-
singlet, spin fluid, ferromagnetic, antiferromagnetic phases
[42–46], and long-range order of vector chirality at large Ising
anisotropy [33]. Similarly, a zigzag Heisenberg ladder in an
applied magnetic field displays a Tomonaga-Luttinger liquid
(TLL), a 1/3-magnetization plateau, spin-density-wave, vec-
tor chiral, and fully polarized phases [15,27,47–49].

Here, we investigate the impact of the anisotropic exchange
interaction known as the � term on these previously studied
phases.

B. Ground-state phase diagram

1. Overview of the phase diagram

Figure 1 shows the phase diagram on the plane of φ =
arctan(J2/J1) and θ = arctan(�η/Jη ). Among four different
regions separated by the sign of exchange interactions (see
the sign of J1 and J2 in the top panel), we have previ-
ously studied the AFM-AFM region (φ � 0.5) in Ref. [50]
with a particular focus on the multicritical point observed at
J2/J1 = 1/2, �/J = √

3(φ ≈ 0.148π, θ = π/3). This point
is rigid as we find an exact solution that has degeneracy of
order-N2 as shown in Ref. [50]. It is not only a multicritical
but also a Lifshitz point, because the uniform ferromagnetic
(FM1) and the antiferromagnet with up-up-down-down period
(AFM-UUDD) meet the quantum disordered two phases, i.e.,
the TLL and nematic-singlet dimer phases. The low-energy
effective theory at around this multicritical point is shown in
Appendix B, which nicely explains the Ising types of com-
petitions among AFM-UD2 (antiferromagnet with up-down
period), UUDD, and FM1 phases, which are summarized in
Fig. 1(b). In the following subsections, we study the details of
these phases.

There are three other exact solutions (see Appendix A),
the nematic product state at (φ/π, θ/π ) = (0.852, 0.25)
(J2/J1 = −1/2, �/J = 1), the RVB solution [41], and de-
coupled ferromagnetic chain, which are linked by bold lines
and also partially host exact solutions (for nonbroken lines).
These states are obtained using the method we developed
to have the exact MPS-based solutions for frustration-free
models [51].

Here, we briefly explain how we identify the nematic prod-
uct exact ground state. At �η = Jη and J2/J1 = −1/2, the
Hamiltonian has a typical frustration-free form, H = ∑

l ĥl ,
given as the sum of operator ĥl acting on the lth triangle,

ĥl =
∑
i, j∈l

(−)|i− j|J
(
Si · S j + Sx

i Sy
j + Sy

i Sx
j

)
, (3)

where we set one AFM and two FM bonds with J ≡ J2. In
a triangular unit, ĥl has fourfold degenerate ground states
of energy −3J/4 and the four excited states with energies
±2(

√
3 + 3)J/4. Using 0/1 representing up/down spins on

[l + 1, l, l − 1] sites on the triangle in the descending order,
they are given as

|000〉 + i|011〉 = |0〉 ⊗ (|00〉 + i|11〉),

|000〉 + i|110〉 = (|00〉 + i|11〉) ⊗ |0〉, (4)

and their time reversal states, |111〉 − i|100〉, and |111〉 −
i|001〉. The energy of the Hamiltonian consisting of N tri-
angles is −3JN/4 at the lowest, and the product state
|	〉 = ∏N/2

i=1 |p1〉2i−1,2i, with |p1〉 = (|00〉 + i|11〉)/
√

2, satis-
fies such energy condition, because for all choices of triangles,
we find either of Eq. (4) to be the constituent. Its time reversal
or translational counterparts are the other degenerate ground
state. The translational symmetry is broken similarly to the
Majumdar-Ghosh (MG) singlet product state at J2/J1 = 0.5.
The other exact solutions in the phase diagram can be obtained
in the same frustration-free form, although the other nonprod-
uct state solutions are not explicitly written in the analytical
form but rely on the MPS language [51].

The phase diagram was determined using the DMRG
method [52,53] and the exact diagonalization (ED) method.
For DMRG we calculate the system typically of size N = 100
and keep up to χ = 200 states with up to 160 sweeps. Because
the model with quantum anisotropy often exhibits orders or
correlations with incommensurate or unexpected periods, we
adopt the sine-square deformation (SSD) [54] that suppresses
the numerical biases often induced in finite-size clusters; for
any given Hamiltonian H = ∑

j ĥ(r j ) based on the local op-

erator ĥ(r j ) at spatial coordinate r j = 1, · · · , N , the method
deforms its local energy scale by the envelope function as
Hssd = ∑

j ĥ(r j ) f (r j ), using the f (r j ) = sin2 (πr j/(N + 1)).
This sine-square function f (r j ) takes a maximum at the center
of the system and goes to zero at both edges. It is proved
both numerically and analytically that the SSD Hamiltonian
offers a quantum ground state equivalent to that of the pe-
riodic boundary condition (PBC) [55–57]. Additionally, it
has two advantages: the damping of the finite-size effect and
the ability to capture incommensurate orders very accurately
by avoiding the bias to wavevectors commensurate with the
system size [58,59]. The boundary effects are safely excluded
and the correlation functions as well as local quantities are
evaluated much more reliably than the open boundary ones
[60]. The DMRG using SSD also can evaluate the continuous
magnetization curve very accurately, which is particularly
useful here because the model does not conserve the total
magnetization and the standard evaluation of the spin gap
given as the difference in the energy of total S = 0 and S = 1
states is not available.

2. Phase boundaries

We first introduce the order parameters of the three mag-
netic phases and the two nonmagnetic phases in the diagram,

FM : Sα
i + Sα

i+1 + Sα
i+2 + Sα

i+3,

AFM-UD : Sα
i − Sα

i+1 + Sα
i+2 − Sα

i+3,
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AFM-UUDD : Sα
i ± Sα

i+1 − Sα
i+2 ∓ Sα

i+3,

VC : κ
(n)
i = Sx

i Sy
i+n − Sy

i Sx
i+n,

N : Qxy
i = Sx

i Sy
i+1 + Sy

i Sx
i+1. (5)

For the VC phase, we choose κ
(1)
i , which is the most sus-

ceptible to the present Hamiltonian. Regarding the nematic
(N) phase, there are five independent nematic (quadrupolar)
operators defined on a spin-1/2 pairs forming spin-1 given
as [61]

Qαβ
i = Sα

i Sβ

i+1 + Sβ
i Sα

i+1 − 2

3
(Si · Si+1)δαβ. (6)

In Eq. (1), the parameter � is coupled to the xy component
Qxy

i = Sx
i Sy

i+1 + Sy
i Sx

i+1, and it works as a “field” (or a chemi-
cal potential) to condense the nematic particle represented by
Qxy

i , and accordingly, the other four parameters are irrelevant.
The phase boundaries are determined numerically. The

first-order transition takes place between magnetic orders of
different periods and the second-order transitions are mostly
the nonmagnetic-magnetic ones. We show in Fig. 2(a) the
energy of the SSD Hamiltonian of the DMRG calculation
for N = 100 as a function of φ. The observed kinks or the
changes in the functional form provide the magnetic phase
boundaries very accurately, as has been demonstrated in previ-
ous literatures [62,63]. Namely, even if the envelope function
f (r j ) is placed, which will alter the value of the total energy of
the system itself, the comparison of energies between different
phases works out quantitatively as accurate as we do in PBC,
because the energy is an extensive quantity. We can see shortly
that they coincide with the ones we derive using the magnetic
order parameters. The boundary between the nematic-singlet
and the TLL phases is difficult to detect in standard meth-
ods. In Fig. 2(b) we show the 〈Sz

i Sz
i+1 − Sx

i Sx
i+1〉 obtained by

the Lanczos exact diagonalization method, which measures
the anisotropy of nearest neighbor spin coupling. We find
that the results for different N’s cross at the single point,
which offers accurate scale-free boundary points separating
TLL-ND phases.

The magnetic phase boundaries are clearly detected by
the magnetization of several lattice periods and magnetization
axes. Because we use the SSD, the values of magnetization
measured at the center of the system is not influenced by the
boundary effect and is free of finite-size effects. Here, we
measure the magnetization along the x′ and y′ axes, which are
obtained by rotating the x and y axes by π/4 about the z axis.
Indeed, our Hamiltonian Eq. (1) remains unchanged under the
π rotation about both the x′ = (−1, 1, 0) and y′ = (1, 1, 0)
axes, where the spins are transformed as (Sx, Sy, Sz ) →
(−Sy,−Sx,−Sz ) and (Sy, Sx,−Sz ), respectively. It is thus
natural to consider the two as magnetic easy axes. We can
introduce the order parameters of the magnetic phases as in
Eq. (5). In Fig. 3, we show these uniform and staggered mag-
netization along α = x′, y′ for two parameters across the phase
diagram. In the case of θ = 0.1π (�/J ≈ 0.32), the x′ com-
ponent of these magnetizations are exactly zero throughout φ

and are not shown. Otherwise, the magnetic phases have one
of the magnetizations being finite, and are exclusive to each
other, capturing the phase boundaries very well. The types of
magnetizations are summarized in Fig. 1(b).

FIG. 2. (a) Energy obtained by DMRG calculation and
(b) 〈Sz

i Sz
i+1 − Sx

i Sx
i+1〉 obtained by the exact diagonalization with PBC

as functions of φ. The kinks in (a) and crossings in (b) are used to
determine the magnetic and nonmagnetic phase boundaries, respec-
tively. Broken lines in panel (a) are shown as a guide to determine
one of the phase boundaries.

In Fig. 3(d) we show the peak position of the structure
factor of the two-point spin-spin correlation functions

Sαα′
(q) = 1

N − 1

N−1∑
| j− j′ |=1

eiq( j− j′ )〈Sα
j Sα′

j′
〉
, (7)

where in the calculation we performed the SSD Fourier trans-
formation using the envelope function [64]. Previous studies
for the � = 0 zigzag model reported the transition from a
q = π to q < π state of the diagonal α = α′ structure fac-
tor inside the singlet-dimer phase [33,34]. We indeed find
such a transition for θ > 0 (� = 0) in the present model. In
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FIG. 3. Uniform and staggered magnetizations in a period of two
or four sites, Sα

i + Sα
i+1 + Sα

i+2 + Sα
i+3, Sα

i − Sα
i+1 + Sα

i+2 − Sα
i+3, and

Sα
i ± Sα

i+1 − Sα
i+2 ∓ Sα

i+3, for (a) θ/π = 0.1 (�/J ≈ 0.32) in α = y′

direction and (b) θ/π = 0.4 (�/J ≈ 3.1) in x′ and y’ directions

as functions of φ. (c) Vector chiral correlation function |〈κ (n)
i κ

(n′ )
j 〉|

averaged over |i − j| = 58 − 61 as function φ. The gray region has
the relatively weak signal of chiral correlation. (d) Peak position q of
the structure factor Sαα′

(q) for αα′ = xx, zz, xy as a function of φ.
We set θ/π = 0.125 (�/J ≈ 0.41) for (c) and (d).

particular, in the ND phase at 0.15 � φ/π � 0.4 (0.5 �
J2/J1 � 3), the incommensurate q � π/2 is observed, which
transforms to the UUDD phase of period q = π/2 at larger φ.
The difference induced by the � = 0 is that the off-diagonal
xy component appears comparable to the diagonal ones.

Let us briefly discuss the types of symmetry breakings.
As mentioned above, the spins have x′ and y′ as magnetic
easy axis, namely the Z2 ⊗ Z2 symmetry is present in the
Hamiltonian. In the ND and TLL phases, the spins are not
ordered, namely this Z2 ⊗ Z2 is not broken. The ND phase
breaks the translational symmetry but TLL does not. When the

magnetic orderings take place, they break one of the Z2 ⊗ Z2

(while part of Z2 combined with lattice translation remains),
and the spins are polarized in one of the two easy axes. The
translational symmetry is broken for the AFM phases, while
kept for FM phase. The competition among different ways of
symmetry breaking generates a highly competing multicritical
point.

Going back to Fig. 1(a), we see that the phase diagram has
approximate reflection symmetry about the φ = 0.5π line. By
this reflection, the FM1 and AFM-UD1 phases are related and
so as AFM-UD2 and FM2. The �/J = √

3 tricritical point
is related to another cusp point, and the TLL-dimer singlet
transition point J2/J1 = 0.2411, �η = 0 (φ = 0.075π, θ = 0)
has as the counterpart the FM-Haldane dimer transition point
J2/J1 = −1/4, at �η = 0 (φ = 0.922π, θ = 0). The nearly
reflection symmetry of the phase diagram is described in the
Hamiltonian as the conversion of all the spins on one of the
two legs upside down. Since the spin inversion is a nonunitary
transformation for S = 1/2 it is not rigorous. Indeed, the re-
flection symmetry is not perfect, particularly when θ � 0.25π

(�/J � 1). However, considering the Ising character of the
magnetic phases at large θ or �/J , that join the low energy
effective Hamiltonian near the multicritical point (see Ap-
pendix B), it is natural to find that the phase boundaries of
large θ are explained very well in this context.

3. Correlation functions

We obtain the two-point correlation functions 〈OiOj〉, us-
ing the single-site or two-site operator Oi. For Oi, we take
spin operators, Sα

i with α = x, y, z, vector chiral operator κ
(n)
i ,

and nematic operator Qxy
i . Figure 4 shows these correlation

functions as functions of distance |i − j| obtained using SSD-
DMRG. Let us summarize the features of each phase.

TLL phase. Basically, the correlation functions all decay
algebraically up to |i − j| � 50, where we reach half of the
system size. However, at θ = 0, 〈Qxy

i Qxy
j 〉 shows a robust con-

stant value at large distances, unlike the standard TLL phase.
This is because if the system remains paramagnetic without
any other orderings, the � term works as a conjugate field to
induce a finite value of 〈Qxy

i 〉, which is obvious from Eq. (1).
In that context, the emergent Qxy

i is trivial as it does not break
any symmetry of the Hamiltonian.

Nematic-singlet dimer (ND) phase. Along the exactly
solvable MG line J2/J1 = �2/�1 = 1/2 at θ < arctan(

√
3),

we find the dimer-product singlet states as an exact ground
state, which strictly excludes other components and gives
〈Qxy

i Qxy
j 〉 → 0. While, even when we are away from the MG

line, the ND phase sustains where the magnetic correlation
functions all decay exponentially, indicating the existence of
a spin gap. Such gap opening is due to the breaking of trans-
lational symmetry in the same manner as the MG solution.
The nematic correlation 〈Qxy

i Qxy
j 〉 starts to converge to a small

but finite constant value at long enough distances, indicating
the formation of a long-range order with �η = 0, as shown in
Fig. 4, whose implication will be discussed shortly.

Vector chiral (VC) phase. In the FM-AFM Heisenberg
interaction range of the phase diagram at φ/π ∼ 0.7 − 0.8
(J2/J1 = −1.3 ∼ −0.72), we find a VC phase where the mag-
netic order is absent and 〈κ (1)

i κ
(1)
j 〉 sustains at long distances.
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FIG. 4. Two-point correlation functions 〈OiOj〉 of [(a)–(c)] spins Oi = Sαi
i of (αiα j ) = xx, zz, and xy, (d) nematic operators Qxy

i = Sx
i Sy

i+1 +
Sy

i Sx
i+1, and vector chiral operators (e) κi = Sx

i Sy
i+1 − Sy

i Sx
i+1, obtained by DMRG with N = 100. Symbols ND, VC, N, TLL indicate the nematic

dimer, vector chiral, nematic, and Tomonaga-Luttinger liquid phases, respectively. Several parameters (φ, θ ) are chosen from nonmagnetic and
magnetic phase as well as the antiferromagnetic Heisenberg chain φ = θ = 0.

Its amplitude shows a large oscillation in the period of chi-
rality over about 30 spins as can be seen from the behavior of
〈Sx

i Sx
j 〉 and 〈Sx

i Sy
j〉, while the pure magnetic components decay

as a power law.
Magnetically ordered phases. The FM phases, AFM-UD,

and UUDD phases all have their magnetic easy axis pointing
in the x′ or y′ directions perpendicular to the leg. Indeed, the
correlation functions show a clear exponential decay about
〈Sz

i Sz
j〉, while those of the in-plane elements robustly take

the constant value of order-1 throughout |i − j|. The nematic
correlation is also robust because these magnetic orderings are
the condensation of the off-diagonal S = 1 elements.

4. Spin gap

Our model does not conserve total-Sz, in which case the
spin gap cannot be evaluated by the standard treatment of
measuring the lowest-energy difference between different
total-Sz sectors. Instead, we apply a grand canonical approach
using SSD [58,59] that allows the access to the bulk mag-
netization curve for N � 20 calculations (while we adopt
N = 100). By adding a Zeeman field −h

∑
j Sz

j to Eq. (1),
and by deforming them with the sine-square function, the
magnetization M is obtained by extracting the intrinsic value,
which is the q = 0 element of the SSD Fourier transfor-
mation [64]. Figure 5(a) shows four different magnetization
curves obtained for the nonmagnetic ground states, TLL, ND,
VC, and N. Only the ND phase shows a substantially large
spin gap, � ∼ 0.3. The spin gap of J1 − J2 chain (� = 0)
was previously calculated by DMRG [37] and was evalu-
ated as � = 0.11 ∼ 0.37 for 0.14π < φ < 0.25π (0.47 <

J2/J1 < 1.0). For TLL and VC, the standard magnons con-
dense and form a standard magnetization curve. However,

the magnetization curve of the N-phase exhibits a steep
power-law increase starting from zero field, which reminds us
of the magnetization curve of the ferrimagnetic-like state [65].
Such a high sensitivity of magnetization shall appear because
the S = 1 and Sz = 1 gapless excitation from the N phase may
exist.

To confirm the presence of a finite spin gap, we exam-
ined the field-dependent magnetization in the direction of
−h

∑
j Sα

j , where α = x, y, and x′, y′ (π/4 rotation of x, y
about the z axis) as shown in Appendix C; in the ND phase, the
spin gap is finite and does not depend much on the direction
of a field.

5. Nematic order parameter

We have shown in Fig. 4 that the nematic correlation
〈Qxy

i Qxy
j 〉 starts to converge to a robust constant value once

we introduce finite �/J = 0. To examine how they behave at
around �/J ∼ 0, we plot in Fig. 5(b) the averages of 〈Qxy

i Qxy
j 〉

over |i − j| = 58 − 61 to exclude the strong oscillation effect
[58]. Numerically, there is no “gap” in the onset value of
(〈Qxy

i Qxy
j 〉)

1/2
, i.e., it increases immediately from � = 0 in

power of � for all displayed parameters of φ. As mentioned,
� in Eq. (1) works as chemical potential of nonmagnetic
quasiparticle represented by the operator Qxy

i .
The AFM-UUDD has the staggard magnetic moment

pointing in the y′ direction, which is nothing but the “magneti-
zation” represented by Qxy. Namely, the doped quasiparticles
condense and form a regular fourfold periodic structure break-
ing the translational symmetry. In the ND phase, the twofold
periodic breaking of translational symmetry occurs but there
is no magnetic order. The spin gap is open, which is distinct
from the AFM-UUDD and TLL phases.
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FIG. 5. (a) Magnetization curves for field h applied along the
z direction. We choose (φ, θ )/π = (0.05, 0.05) [(J2/J1, �/J ) ≈
(0.16, 0.16)] for TLL, (0.2, 0.05) [(0.72,0.16)] for ND, (0.75, 0.1)
[(–1.0,0.32)] for VC, and (0.85, 0.3) [(–0.51,1.4)] for N phases.
Among them, only the ND phase has a spin gap � ≈ 0.3. (b) Ne-
matic parameter 〈Qxy

i Qxy
j 〉 averaged over |i − j| = 58 − 61 as a

function of �/J for the choices of φ/π corresponding to those of
panel (a). All of them behave in power of �/J .

For these reasons, we understand that “field” effect � gen-
erates a finite nematic correlation but it appears in different
ways depending on the degree of frustration dictated by φ. As
we see shortly in Sec. II C, the ND phase hosts gapless excita-
tion mode due to � that gives the finite but small distribution
of 〈Qxy

i 〉 in real space on top of the singlets, and at large �

the nematic particles finally condense into the magnetically
ordered phases, AFM-UD2, AFM-UUDD. The TLL phase,
although hosting finite nematic correlation, shall be trivial.

C. Dynamical structure factor

As we found in Fig. 5(b), the long-distant value of 〈Qxy
i Qxy

j 〉
increases in power of �/J , suggesting that the nematic order

parameter 〈Qxy〉 ∼
√

〈Qxy
i Qxy

j 〉 becomes finite by the introduc-

tion of infinitesimally small �/J , even for the ND phase where
the singlet long-range order is present. When regarding � as
a “field” coupled to Qxy, this indicates that the ground state is
gapless. To confirm it, we calculate the dynamical structure

factors using the standard time-evolving block decimation
(TEBD) technique [66] as

Sm/Q(q, ω) = 1

N

N∑
j=1

∫
dt

2π
ei(ωt−qr j )−η2t2

Gm/Q(r j, t ), (8)

Gm(r j, t ) = 〈0|S j (t ) · SN/2(0)|0〉 ,

GQ(r j, t ) = 〈0|Qxy
j (t ) · Qxy

N/2(0)|0〉, (9)

where |0〉 the ground state of the Hamiltonian and r j =
j − N/2 is the one-dimensional coordinate of site j mea-
sured from the center site N/2. We consider two types
of dynamical structure factors, Sm(q, ω) and SQ(q, ω), that
takes account of the magnon and nematic excitations [67,68],
respectively. The nematic excitations are indeed detected
in resonant inelastic x-ray scattering (RIXS) [69,70]. No-
tice that since we take the lattice spacings between j and
j + 1 for (m) and j and j + 2 for (Q) as a unit in the
Fourier transformation, the reciprocal number q is defined
accordingly.

We prepare an initial state SN/2|0〉 and Qxy
N/2|0〉 and perform

the TEBD with a timestep of δt = 0.1 up to the maximum
time, Tmax = 34 ∼ 37 for N = 400 with open boundary using
the maximum bond dimension, χ = 400, and the Gaussian
broadening, η2 = 0.004.

Figures 6(a)–6(d) show Sm and SQ in the pure dimer
(φ/π, θ/π ) = (0.2, 0) and ND (0.2,0.1) phases. The spin dy-
namical structure factors in panels Figs. 6(a) and 6(b) clearly
show a finite gap �/J1 ∼ 0.2 − 0.3 and the peak wave num-
ber q ∼ 0.7, 1.3, which is consistent with the spin gap in
Fig. 5(a) and the incommensurate period qpeak in Fig. 3(d),
demonstrating that the single magnon dispersion is insensitive
to � terms. A strong peak structure is observed near ω = � at
q = qpeak, which is consistent with the results for the Heisen-
berg zigzag ladder in Ref. [71] at J2/J1 = 1, �/J = 0.

Regarding the nematic dynamical structure factor in
Figs. 6(c)–6(f), there is a the distinct difference between those
of zero and finite �. When � = 0 in panel (c), the spectrum
has a gap up to ω ∼ J1, whereas in introducing � = 0 in
panel (d), there appears a new weight at ω ∼ 0 and q = π/2
indicated by an arrow. In Fig. 6(e), the intensity of SQ(ω, q)
for fixed q is given as a function of ω, where the ω = 0 peak
is found to be robust. We confirmed that the peak positions
are located at q = π for J2/J1 < 0.5 and at q = π/2 for
J2/J1 > 0.5, which are consistent with the ordering periods
of AFM-UD2 and UUDD phases, respectively, that appear in
the larger � part of the phase diagram.

We thus find that there is a substantial gapless low-energy
component carried by 〈Qxy〉, which is less dispersive and con-
forms to the translational symmetry broken structure of single
dimers. This gapless weight is the precursor for the magnetic
long-range orderings that take place at large �/J .

III. BOND-OPERATOR MEAN-FIELD THEORY

In this section, we examine the effect of � term in the
AFM-AFM zigzag chain (J1, J2 > 0, 0 � φ � π/2) by us-
ing bond-operator mean-field theory [72]. We see that in the
Hamiltonian Equation (1) � works as a “field” (or a chemical
potential) to condense the nematic particle represented by Qxy

i .
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FIG. 6. (a), (b) Spin and (c)–(f) nematic dynamical structure factors, Sm(q, ω) and SQ(q, ω). For the density plots given in (a)–(d),
we take φ/π = 0.2 corresponding to J2/J1 ≈ 0.73 with θ/π = 0 (� = 0) and 0.1(�/J ≈ 0.32) for the pure singlet dimer and ND phases,
respectively. (e) The frequency dependencies of SQ are shown for fixed wave numbers, q = π/2 (solid line) and π (broken line), where we
take (φ/π, θ/π ) = (0.2, 0), (0.2, 0.1), (0.12, 0.1). The green and blue arrows indicate the q = π/2 and q = π peaks at ω ∼ 0, respectively.
(f) The density plot of SQ at (φ/π, θ/π ) = (0.12, 0.1) (J2/J1 ≈ 0.40, �/J ≈ 0.32) is shown, which is to be compared with panel (d).

This situation is similar to doping a magnon to the gapped
singlet state [72]. The condensation of nematic particles is
discussed previously, where a ring exchange interaction or
frustrated interactions work as a chemical potential [73–75].
All these cases take a gapped singlet ground state as a starting
point, which is approximated by the product state of dimers
(or tetramers), and the effect of the applied “field” is examined
using the bond-operator approach or its analog.

We consider a model shown in Fig. 7(a) consisting of
dimers (rungs) where the intradimer interaction is J1, �1

and the interdimer interactions are λJη, λ�η, (η = 1, 2) with
0 � λ � 1. The λ = 1 limit corresponds to Eq. (1). We

start from λ = 0 having decoupled dimers, whose ground
state is the product state of the isolated dimers. By us-
ing the three excited eigenstates of the dimer represented
by the three bond operators, we rewrite the Hamiltonian
including the nonzero λ terms and examine the nature of
the low-energy excitations by the bond-operator mean-field
theory.

A. Single dimer

The Hamiltonian of a single dimer is ĥ = J1(S1 · S2 +
γ (Sx

1Sy
2 + Sy

1Sx
2 )), where we parametrize γ = �1/J1 = �2/J2.

FIG. 7. (a) Zigzag lattice based on the dimer unit with the interdimer interactions scaled by λ, and the eigenenergy levels of a single isolated
dimer as a function of �1/J1 ≡ γ . Phase diagrams obtained by the bond-operator mean-field theory (b) θ − φ plane for λ = 0.1, 0.5, 1, and
(c) θ − λ plane for several choices of φ. Symbols S and S+N indicate the (s̄2 = 1) phase and the (s̄2 < 1) phase.
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Its eigenstates are given as

|s〉 = (| ↑↓〉 − | ↓↑〉)/
√

2,

|p0〉 = (| ↑↓〉 + | ↓↑〉)/
√

2,

|p1〉 = (| ↑↑〉 + i| ↓↓〉)/
√

2,

|p−1〉 = (| ↑↑〉 − i| ↓↓〉)/
√

2, (10)

and the corresponding eigenvalues as εs = 0, εp0 = J1, and
εp1/−1 = J1(1 ± γ /2) [see Fig. 7(a)], where we dropped the
constant term −3J1/4 for simplicity. At γ = 0, the excited
states are threefold degenerate. The spin-singlet ground state
|s〉 shows a level crossing at γ = 2 and |p−1〉 replaces the
ground state.

Now, we introduce the boson operators on an nth dimer,
pα,n, α = x, y, z, together with the singlet operator sn, which
describes the four eigenstates as

|s〉n = s†
n|0〉,

|p0〉n = p†
z,n|0〉,

|p1〉n = ei3π/4

√
2

(p†
x,n − p†

y,n)|0〉,

|p−1〉n = e−3π/4

√
2

(p†
x,n + p†

y,n)|0〉, (11)

where |0〉 is a vacuum. These operators satisfy the local
constraint

s†
nsn +

∑
α

p†
α,n pα,n = 1. (12)

and the commutation relations, [sn, s†
n′ ] = δnn′ , [pα,n,

p†
β,n′ ] = δαβδnn′ , [sn, p†

α,n′ ] = 0, etc.

B. Effect of interdimer interaction

We start from λ = 0 and 0 < γ < 2, whose ground state is
given as ⊗N/2

n=1|s〉n. We consider the system consisting of Nd =
N/2 dimers with periodic boundary. The spin operators are de-
scribed in terms of boson operators on the nth dimer (pα,n) as

Sα
n,1 = 1

2 (s†
n pα,n + p†

α,nsn − iεαβγ p†
β,n pγ ,n),

Sα
n,2 = 1

2 (−s†
n pα,n − p†

α,nsn − iεαβγ p†
β,n pγ ,n), (13)

and using them the interaction terms between the nth and
(n + 1)th dimer consisting of three bonds are rewritten in the
form of two- and four-body.

Here, we consider a small λ, assuming γ < 2 (θ < 0.35π ),
expecting that the ground state is dominated by singlets and
the population of pα,n bosons are dilute. The condensed sin-
glets are replaced by its expectation value 〈s〉 = s̄, and by
dropping off the terms consisting of three or four p opera-
tors, we obtain the interactions between the nth and (n + 1)th
dimers as

ĥMF
n = −J1 + 2J2

4
s̄2{(pα,n + p†

α,n)(pα,n+1 + p†
α,n+1)

+ γ (px,n + p†
x,n)(py,n+1 + p†

y,n+1)

+ γ (py,n + p†
y,n)(px,n+1 + p†

x,n+1)}. (14)

C. Bond-operator mean-field Hamiltonian

To fulfill the condition Eq. (12) we introduce the Lagrange
multiplier μ common to all dimers, assuming the translation
invariance of the system in a unit of dimer, and add the chem-
ical potential (μ) term to the Hamiltonian. Then, we finally
reach the form of the mean-field Hamiltonian consisting only
of bilinear terms as

Hbo =
Nd∑

n=1

(
ĥd

n + ĥMF
n

)

ĥd
n = J1

⎛
⎝ ∑

α=x,y,z

p†
α,n pα,n + γ /2(p†

x,n py,n + p†
y,n px,n)

⎞
⎠

− μ

⎛
⎝s̄2 +

∑
α=x,y,z

p†
α,n pα,n − 1

⎞
⎠. (15)

Here, the mean-field parameters (μ, s̄) ∈ R are determined
within the physically meaningful range to minimize 〈Hbo〉.

By performing a Fourier transformation, p†
α,n =

N−1/2
d

∑
k eikn p†

α,k , we obtain the form,

Hbo =
∑

k

{u†
kA(k)uk + v†

kB(k)vk}

+ Nd

(
5

2
μ − 3

2
J1 − μs̄2

)
, (16)

where uk = (px
k, py

k, px†
−k, py†

−k )T , vk = (pz
k, pz†

−k )T , and A(k),
B(k) are the 4 × 4 and 2 × 2 real symmetric matrices (see
Appendix D).

By performing a Bogoliubov transformation, we can diag-
onalize Hbo, which then yields

Hbo =
∑

k

3∑
l=1

ωl (k) p̃†
k,l p̃k,l + EMF

GS , (17)

where the dispersion relations and the mean-field ground-state
energy are given as

ω1(k) = [(εp1 − μ)(εp1 − μ + λ(1 − γ )ε(k))]1/2,

ω2(k) = [(εp−1 − μ)((εp−1 − μ) + λ(1 + γ )ε(k))]1/2,

ω3(k) = [(εp0 − μ)(εp0 − μ + λε(k))]1/2,

ε(k) = (−J1 + 2J2)s̄2 cos k. (18)

D. Phase diagram

The phase diagrams obtained by the bond-operator mean-
field theory are shown in Figs. 7(b) and 7(c) for several fixed
values of λ = 0.1, 0.5, 1.0 and φ/π = 0.08 to 0.4 (J2/J1 =
0.26 − 3.1), respectively. The corresponding set of mean-field
parameters (μ, s̄2) are shown in Fig. 8 at λ = 1 as functions
of θ . For these parameters, there is a range of small θ that
the ground state is fully occupied by singlets, s̄2 = 1, which
we call S-phase. The phase transition from S-phase to (S+N)-
phase takes place at finite θ , where s̄2 starts to decrease from 1,
and the chemical potential μ reaches the singlet (zero) energy
level. When increasing λ, the S-phase shrinks because the p
particles gain the kinetic energy due to interdimer interactions,
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FIG. 8. The rate of singlet-particle condensation s̄2 and the
chemical potential μ for λ = 1.

but at φ = atan(1/2), i.e., J2/J1 = �2/�1 = 0.5, which corre-
sponds to the Majumdar-Ghosh line, the singlet phase remains
stable throughout the whole range of θ . This fact is trivial as
we find that the interdimer interaction in Eq. (14) is ĥMF

n = 0,
or equivalently, the dispersion in Eq. (18) yields ε(k) = 0 for
J1 = 2J2. Indeed, along this line, the singlet product state is
the exact solution of the original Hamiltonian Equation (1)
without any approximation.

We plot in Figs. 9(a)–9(d) the energy dispersions ωl (k)
at λ = 1 for several choices of φ and θ inside the S-phase.
Remarkably, all of them are gapless. Indeed, the energy gap
� of Hbo shown in Fig. 9(e) is zero for all parameters of φ

at small θ . This shows that the singlet phase is robust but
at the same time, the p particles are always able to join the
ground state. This result is rather unusual; the standard bond-
operator approach is used to provide the instability toward
the condensation of these excited p state that replaces the
ground state, and the gap-closing point usually indicates the
phase transition. However, in the present case, the zero gap
of Hbo does not mean the instability of the singlet ground
state. We emphasize that the instability takes place not at
the gap closing point but when s̄2 starts to deviate from
1, and the chemical potential μ reaches the singlet energy
level. For clarification, we plot in Fig. 8(b) the bare ex-
cited energy εp−1 of the isolated dimer. We see that μ is
located in between εs and εp−1 . This result is consistent with
numerical results in the previous section; the coexistent ne-
matic and singlet orders that break the translational symmetry
sets in immediately when θ > 0, which corresponds to the
S-phase.

The ω2 branch in Fig. 9 has a gapless point at k = 0 [(a)
and (b) J2/J1 < 0.5] and k = π [(c) and (d) J2/J1 > 0.5] in

FIG. 9. (a)–(d) Dispersion relation, ωl , l = 1, 2, 3 of Hbo ob-
tained for several choices of φ, θ . (e) Energy gap � of Hbo

normalized by
√

J2
1 + J2

2 + �2
1 + �2

2 as a function of θ for four
choices of φ.

periods of dimer. They agree with the gapless nonzero weight
of the dynamical structure factor q = π (J2/J1 < 0.5) and
q = π/2 (J2/J1 > 0.5) defined in the unit of lattice sites in
Fig. 6, respectively. When θ reaches the phase boundary, the
whole ω2 branch condenses and replaces the singlet, and the
magnetic long-range order in a period of the dimer (two sites)
and two dimers (four sites) appear for J2/J1 < 0.5 and >0.5,
respectively. Indeed, the phase diagram obtained by DMRG
in Fig. 1(a) has AFM-UD2 and AFM-UUDD phases, respec-
tively, which are the states corresponding to S+N of different
periodicity.

We may interpret that the dispersiveness of ω2 around the
gapless point shall be the artifact of the mean-field approxi-
mation to one-body because the higher-order interactions and
many-body effects are discarded (see Appendix D). Due to
the correlation effects the weight of dispersions off the gap-
less point shall be weakened to form the gapless peak in the
dynamical structure factor in Fig. 6.

The p†
1,n and p†

−1,n are the creation operators on the nth
dimer in Eq. (12) of the states that give 〈Qxy

n 〉 = 1 and −1, re-
spectively. Therefore, we evaluate the number operators with
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respect to the eigenstate |k, 2〉 of ω2(k), finding that

〈k, 2|p†
1,n p1,n|k, 2〉 = 0, 〈k, 2|p†

−1,n p−1,n|k, 2〉 = 2/N,

(19)

for all k. This indicates that each k point carries a single
p−1,n particle. The gapless excitation that contributes to the
ground state as fluctuations thus yield the dilute order-1/N
concentration of p−1,n, in agreement with the DMRG value of
〈Qxy

i 〉 ∼ 0.01 in Figs. 4(d) and 5(b).

IV. EFFECT OF MAGNETIC FIELD

It is known that the J1-J2 Heisenberg model in the AFM-
AFM and FM-AFM regions exhibits a rich phase diagram in
an applied magnetic field [15,27]. Here, our � term changes
these phase diagrams a lot. We consider an external magnetic
field along the z axis whose Hamiltonian is given as H + H f

using Eq. (1) with

H f = −h
∑

j

Sz
j . (20)

A. Magnetic phase diagram

Figure 10 shows the magnetic phase diagram at
fixed values of θ = 0.05π, 0.1π, 0.3π, 0.5π (�/J ≈
0.16, 0.32, 1.4,∞). We first focus on small �, namely
θ = 0.05π, 0.1π . Compared to the zigzag Heisenberg
model, the � term transforms some of the nonmagnetic
phases to magnetically ordered ones. For example, the
fluctuating-FM phase at around (φ, θ, h) ∼ (0.2, 0.05, 1.8)
(J2/J1 ≈ 0.73, �/J ≈ 0.16) in Fig. 10(a) was originally a
TLL2 phase [27] but was stabilized as an emergent small
magnetic order in the xy plane. Furthermore, in the FM-AFM
region 0.5π < φ < π , the canted UUDD phase where
up-up-down-down magnetic order emerges in the xy plane,
was originally a vector chiral, nematic, and other multipolar
phases when � = 0.

At large �, i.e., θ = 0.3π, 0.5π in Figs. 10(c) and 10(d),
the nonmagnetic phases like TLL and ND are almost wiped
out. Magnetic phases, FM and UD, that appeared in the h = 0
phase diagram are preserved while the moments are canted off
the xy plane because of h.

B. Magnetic structures

We now summarize the features of each phase based on the
two-point correlation functions shown in Fig. 11.

TLL1 and TLL2 phases. TLL1 phase is adiabatically con-
nected to the TLL at h = 0. In both TLL1 and TLL2, the
spin-spin correlations 〈Sα

i Sα′
j 〉 show algebraic decay. The

difference from those of the pure Heisenberg case is a fi-
nite 〈Qxy

i Qxy
j 〉 = 0 at long distances because of � = 0. The

structure factors Sxx(q) and Szz(q) of TLL2 show peaks at
incommensurate wave numbers, whereas that of Sxx(q) in
TLL1 is commensurate. It was shown that TLL2 phase with
� = 0 is described as two Gaussian conformal field theory
with central charge c = 1 + 1 [27].

SDW phase. At large J2/J1 (φ ≈ 0.3π ), there is a
phase characterized by the incommensurate and quasi-long-
ranged longitudinal correlation, 〈Sz

i Sz
j〉 − 〈Sz

i 〉〈Sz
j〉, and the

FIG. 10. Ground-state phase diagram in an applied field h
at (a)–(d) θ = 0.05π, 0.1π, 0.3π, 0.5π (�/J ≈ 0.16, 0.32, 1.4, ∞).
We find ferromagnetism (FM), Canted up down (UD) or up-
up-down-down (UUDD), fluctuated-ferromagnetism (Fluct-FM),
vector chiral (VC), Tomonaga-Luttinger liquid (TLL), spin-
density wave (SDW) phases, 1/3-plateau (P), and nematic-singlet
dimer (ND).

short-ranged transverse correlation 〈Sx
i Sx

j 〉. Here, we find
〈Qxy

i Qxy
j 〉 → 0, meaning that this type of nematic order does

not exist. In the pure Heisenberg case � = 0, the magne-
tization shows a stepwise structure by �Sz

tot = 2, and the
exponential decay of 〈Sx

i Sx
j 〉 suggests a finite energy gap

to single-spin-flip excitations; they are the signature of the
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FIG. 11. Two-point correlation functions 〈OiOj〉 of nematic op-
erators Oi = Sx

i Sy
i+1 + Sy

i Sx
i+1, vector chiral operators Oi = Sx

i Sy
i+1 −

Sy
i Sx

i+1, and 〈OiOj〉 − 〈Oi〉〈Oj〉 of spins Oi = Sαi
i of (αiα j ) = xx, zz,

and xy, obtained by DMRG with N = 100 with θ = 0.05π (�/J ≈
0.16). Symbols ND, VC, TLL, SDW, and Fluct-FM indicate the ne-
matic dimer, vector chiral, Tomonaga-Luttinger liquid, spin-density
wave, and fluctuating-Ferromagnetic phases, respectively. Several
parameters are chosen from nonmagnetically ordered or fluctuating
FM phase.

nematic state. However, these features are no longer observed
at � > 0.

1/3-plateau phase. In Figs. 10(a) and 10(b), we find a 1/3-
plateau phase at around φ/π ∼ 0.2 (J2/J1 ∼ 0.73), which has
a typical up-up-down configuration of spins. Figure 12(a)
shows the wave number q at which the Fourier transform
of 〈Sz

j〉 shows a peak. In our analysis, we applied the SSD

Fourier transform 〈Sz
q〉 = ∑N

j=1 f (r j )〈Sz
j〉e−iqr j /

∑N
j=1 f (r j )

FIG. 12. (a) Local magnetization 〈Sz
i 〉 (upper panel) in the 1/3-

plateau phase, clearly showing the up-up-down spin configuration.
The peak wave number q of Szz(q) is shown as a function of h,
where, within 0.5π � k � π we find q = 2π/3. (a) The spin-spin
correlation function, 〈Sx

i Sx
i+N/2〉 = 0 (i = 25), as a function of h that

takes finite value in the fluctuating-FM phase at 1.5 � h � 2.15.

[64], successfully detecting the plateau region yielding
q = 2π/3.

VC and ND phases. These phases are basically the same
as h = 0. It is also common to the case of � = 0 except that
〈Qxy

i Qxy
j 〉 = 0. The VC phase at � = 0 is a one-component

TLL [27]. The ND phase sustains up to finite h whose value
corresponds to the spin gap at h = 0.

Fluctuating FM phase. The fluctuating FM phase has a fer-
romagnetic order with its moments pointing in the z direction
and the small fluctuation in the xy plane. Its origin is essen-
tially a � term because it vanishes at � = 0. We determined
the boundary of this phase by 〈Sx

i Sx
i+N/2〉 = 0 [see Fig. 12(b)].

Canted magnetic phases. The FM1, FM2, UD1, UD2, and
UUDD phases at h = 0 developed magnetic orders in the
xy plane. In a magnetic field, these moments cant in the z
directions.

V. SUMMARY AND DISCUSSION

We have elucidated the ground-state phase diagram of the
zigzag Heisenberg-� chain across the regions of ferromag-
netic, antiferromagnetic, and mixed couplings. Furthermore,
we have depicted the magnetic phase diagram in an applied
magnetic field oriented along the chain perpendicular to the
�-type fluctuations.

In the regime where the � term dominates, the model ex-
hibits strong magnetic anisotropy, resulting in ferromagnetic
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(FM) and antiferromagnetic (AFM-UD, UUDD) orderings
with moments aligned along (x, y, z) = (1,±1, 0) directions,
namely, in-plane and perpendicular to the chain. The applica-
tion of a magnetic field tilts these moments off the plane.

In contrast, for small �, we observe a nematic-singlet
dimer (ND) phase characterized by long-range nematic corre-
lations and a finite spin gap. This phase features an additional
nonmagnetic gapless excitation arising from the nematic cor-
relations, as clarified by the bond-operator mean-field theory,
consistent with numerical results from TEBD simulations.
The emergence of the ND phase stems from the intricate
interplay between strong geometrical frustration and the �

term; the formation of spin singlets breaks lattice transla-
tional symmetry and impedes dominant nematic orders, while
robust nematic correlations develop due to the nonmagnetic
gapless nature. Ultimately, the ground state is predominantly
governed by the singlets. At larger and finite �, condensa-
tion of nematic S = 1 particles wipes out the singlet and
leads to magnetic long-range order, with spins oriented in the
xy plane.

We now explore the relevance of our findings to the
ytterbium-based rare-earth magnet, YbCuS2. The Yb ion in
this material is surrounded by S6 octahedra [76], leading to
the formation of a Kramers �6 doublet effectively carrying
spin-1/2 due to the interplay between octahedral crystal fields
of S ions and strong spin-orbit coupling interactions [25]. The
crystal structure of YbCuS2 is orthorhombic with space group
Pnma [77], where octahedra share edges along the a direction
and every two octahedra share a corner along the c direction,
forming a one-dimensional zigzag chain of Yb ions, whose
details are shown in Ref. [24]. Experimental observations
of the magnetic susceptibility χ (T ) reveal antiferromagnetic
interactions among the spins. At low temperatures, YbCuS2

undergoes a first-order transition at TO = 0.95 K, charac-
terized by a pronounced divergence in the specific heat
[25]. In the low-temperature phase, incommensurate mag-
netic structures are detected through 63/65Cu-nuclear magnetic
resonance (NMR) and nuclear quadrupole resonance (NQR)
measurements on polycrystalline samples [26]. The nuclear
spin-lattice relaxation rate 1/T1 of 63/65Cu-NQR exhibits a
T -linear behavior at T < 0.5 K, suggesting the presence
of gapless excitations [26]. Additionally, the magnetic-field-
temperature phase diagram obtained experimentally shows
a transition of the low-temperature phase to an up-up-down
(UUD) phase at around 5 T [25].

The 1/3-plateau with up-up-down (UUD) magnetic struc-
ture is a common feature observed in triangular-based mag-
nets, including NaYbSe2 [78,79], CsYbSe2 [80], RbYbSe2

[81], and KYbSe2 [79,81]. This state is typically explained by
the two-dimensional S = 1/2 XXZ model [82]. However, in
the spin-1/2 zigzag Heisenberg chain, the parameter values
required for the appearance of the robust 1/3-plateau in a
finite field at h ∼ J1 is J2/J1 ∼ 0.5 − 1 that lead to a ground
state dominated by the dimer-singlet state in the absence of
a magnetic field. This dimer singlet is fully gapped both
magnetically and nonmagnetically [27]. Consequently, this
model alone cannot explain the observed nonmagnetic gapless
behavior in the material.

The motivation to understand the nonmagnetic gapless be-
havior in YbCuS2 led us to derive the quantum spin model of

this material using perturbation theory [24]. Specifically, we
evaluated the super-exchange interactions between Yb spins
mediated by S ions through fourth-order processes. Our anal-
ysis revealed that the diagonal exchange interaction is nearly
Heisenberg-like with a small off-diagonal �-type term.

The presence of this off-diagonal anisotropic interaction
can be attributed to two main factors. Firstly, the large split-
ting of f 12 states selects a particular orbital momentum
to join the perturbation process. Secondly, slight distor-
tions of the octahedron result in anisotropic Yb-S orbital
overlap. Both effects work together to select specific spa-
tially anisotropic orbitals that participate in electron exchange
processes.

Our analysis yielded an average ratio of J2/J1 = 0.9 ∼ 1.0
and a typical ratio of �η/Jη = 0.01 ∼ 0.05. However, the
precise values may vary due to potential ambiguities in the
lattice parameters of the material. The resulting Hamiltonian,
expressed as Eq. (1), is a simplification of the derived Hamil-
tonian XYZ+(off-diagonal) to the XXX+(xy+yx) model
with �1/J1 = �2/J2. Despite this simplification, we believe
that our findings provide a sound explanation for the experi-
mental observations in YbCuS2.

Based on our calculations with reference parameters φYb =
0.23π -0.25π and θYb = 0.003π -0.016π for YbCuS2, and by
comparing the phase diagram in Fig. 1(a), we conclude that
YbCuS2 indeed hosts the nematic-singlet dimer (ND) phase,
which comprehensively explains the experimental features
reported thus far. Firstly, our calculations at φYb and θYb re-
veal the structure factors of longitudinal 〈Sz

i Sz
j〉 and transverse

〈Sx
i Sy

j〉 correlations with an incommensurate wave number
q ∼ 0.55π -0.6π , which closely matches the experimentally
reported wave number [83]. It may be worth noting that such
incommensurate diagonal zz, xx correlations exists for � = 0
[33,34] but the xy ones are not and may have relevance to the
rotating magnetic structure in the xy plane.

Most importantly, our ND state exhibits a robust spin-
gapped singlet coexisting with a fluctuating nematic com-
ponent, giving rise to the observed nonmagnetic gapless
excitation that explains the T -linear behavior of 1/T1 in the
63/65Cu-NQR. Furthermore, this state transforms into a 1/3-
plateau phase at a critical field h ∼ J1/2 in our phase diagram.
In the experimental context, the average Curie-Weiss tempera-
ture is approximately 30 K, and the critical field of the plateau
phase is 5 T, aligning well with our numerical predictions.

Finally, we emphasize the theoretically intriguing aspect of
the ND phase in our phase diagram. In the standard nematic
phase observed in spin ladders, the one-particle magnon ex-
citation is gapped while the two-magnon excitation is gapless
[15,16]. It typically occurs due to the localization of magnons
caused by frustration-induced hopping cancellation. In such
cases, the two-magnon bound state tends to condense earlier
than the individual magnons, particularly near the saturation
field [84]. In our model, the spin gap or a quasi-one-magnon
gap in the nonconserved Sz indeed occurs by the localiza-
tion of spin-1/2 singlet pairs due to the frustration effect,
breaking the lattice symmetry. However, the corresponding
one-magnon instability does not compete with the quasi-two-
magnon instability, as the corresponding Sz-oriented magnetic
order never occurs in our phase diagram. This fact allows
the unusual coexistence of the spin gap and the nonmag-
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netic gapless excitation in a wide range of parameters in
the phase diagram. As we have discussed in Sec. II B 2, the
ND phase has Z2 ⊗ Z2 but breaks the translational symme-
try. The former breaks at the magnetic phase transition, and
the latter further breaks or recovers, depending on which of
the magnetic phases to enter. This kind of phenomena may
have similarity with the layers of discussions on the several
symmetry-breakings reported in the Heisenberg spin ladder
with the Dzyaloshinskii-Moriya interaction [85].
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APPENDIX A: EXACT SOLUTIONS

The phase diagram in Fig. 1(a) has multiple exact solu-
tions: the MG line, MPS solution at the multicritical point
[50], the nematic product state, the resonating valence bond
state (RVB) [41], the fully polarized ferromagnetic state, and
the product of the fully polarized ferromagnetic states of the
decomposed two chains.

Majumdar-Ghosh (MG) line and multicritical point. The
J2/J1 = �2/�1 = 1/2 is a MG line hosting singlet product
state as an exact eigenstate, |	MG〉 = ∏N/2

j=1 |s j〉 with |s j〉 =
(| ↑↓〉 − | ↓↑〉)/

√
2 on [2 j − 1, 2 j] sites. The θ = 0 limit is

the Majumdar-Ghosh model [28,29], and the upper endpoint
at �γ /Jγ = √

3 is the multicritical point (φ = 0.1476π, θ =
π/3), with a ground-state degeneracy of (N + 2)2/4 (even N),
(N + 1)(N + 3)/4 (odd N) for an open boundary. The exact
ground state can be obtained up to N ∼ 100, with ∼3000-fold
degeneracy. The details of the method are given in Ref. [51].

Nematic product state. The exact ground state is found
at the isolated point �γ /Jγ = 1 and J2/J1 = −1/2, (φ =
0.852π, θ = 0.25π ), at the center of the nematic (N) phase.
Its form is given as |	〉 = ∏N/2

i=1 |p1〉2i−1,2i. Here, |p1〉 =
(|00〉 + i|11〉)/

√
2 is the eigenstate of the nematic order pa-

rameter Qxy = Sx
1Sy

2 + Sy
1Sx

2 with an eigenvalue 1/2.
� = 0 exact solutions. We briefly review the previ-

ously known exact ground state at J2/J1 = −1/4, � =
0 (φ = 0.9220π, θ = 0). This point is at the bound-
ary of the Haldane-dimer and ferromagnetic phases, and
for PBC, the fully polarized Stot = N/2 state coexist
with the nontrivial UDRVB state with Stot = 0, which
is analytically described by the equal weight superposi-
tion of all different choices of dimer-covering states as
|ψUDRVB〉 = ∑

i< j

∑
k<l · · ·∑m<n[i, j][k, l] · · · [m, n] where

[i, j] = (|01〉i, j − |10〉i, j )/
√

2. Along the line 0.9220π <

φ < 1.5π with PBC the Stot = N/2 state continues to be the
ground state. At the point φ = 1.5π the zigzag chain is de-
composed to the two ferromagnetic Heisenberg chains and the
ground state is the product of two ferromagnetic chains.

FIG. 13. (a) Schematic illustration of coarse-graining a model
with four sublattices. (b) Mean-field phase diagram obtained by the
competition of energies in Eq. (B11).

Consider a unit triangle consisting of three sites, [l −
1, l, l + 1], and define a Hamiltonian hl as

hl = J1

2
(Sl−1 · Sl + Sl · Sl+1) + J2

2
Sl−1 · Sl+1,

+ �1

2

(
Sx

l−1Sy
l + Sy

l−1Sx
l + Sx

l Sy
l+1 + Sy

l Sx
l+1

)
+ �2

2

(
Sx

l−1Sy
l+1 + Sy

l−1Sx
l+1

)
. (A1)

When diagonalizing hl , we find that the lowest-energy state
has degeneracy of Dg = 6 for the exactly solvable multicritical
or UDRVB points and Dg = 4 for the broken lines including
the nematic exact-solution point discussed in Sec. II B 1. The
points with Dg = 6 are connected by the line with Dg = 4.
Along the solid lines the system has exact solutions and its
subspace is the Dg lowest-energy state. The broken lines do
not have the exact solutions. The relevance with Eq. (A1) and
the exact solutions are explained in detail in Ref. [51], while
we can explain here that the exact solution points are related
and are not isolated.

APPENDIX B: MEAN-FIELD APPROACH AROUND
A MULTICRITICAL POINT

At around the multicritical point in the phase diagram, the
J1-J2-�1-�2 model described by Eq. (1) suffers a competition
among several orders. The magnetic orders to be consid-
ered here are ferromagnet (FM), two antiferromagnets with
UD2 and UUDD configurations, and to accommodate all of
them on equal footing, we need to consider the periodicity
of magnetic moments up to four sites. The coordinate of
the lattice sites are taken as R = (4n − 3)a, · · · , 4na with
lattice constant a where n = 1, · · · , N/4 is the unit-cell index
as shown in Fig. 13(a). We rely on the philosophy that the
fluctuations around each order take place in a way that the
magnetic moments belonging to the same magnetic sublattice
are predominantly ferromagnetic.

We implement a scheme following Nelson and Fisher [86]
that takes a continuum limit, S j → S(R), by retaining distin-
guishable four sublattices. The Hamiltonian in Eq. (1) in the
main text is rewritten as

H = 1

2

∑
R,R′

{J (R − R′)S(R) · S(R′)

+ �(R − R′)(Sx(R)Sy(R′) + Sy(R)Sx(R′))}. (B1)
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Then, we transform the spins as

Sx = Sx′
cos(π/4) + Sy′

sin(π/4), (B2)

Sy = −Sx′
sin(π/4) + Sy′

cos(π/4), (B3)

which is the rotation of xy plane by π/4 about the z axis where
we adopt x′y′z axes for spin coordinates in the following to
distinguish from the original xyz axes. Then, we find

Hπ/4 = 1

2

∑
R,R′

{J (R − R′)S(R) · S(R′)

− �(R − R′)(Sx′
(R)Sx′

(R′) − Sy′
(R)Sy′

(R′))}. (B4)

We now introduce the following unitary transformation about
the spin operators inside the unit cell as⎛

⎜⎜⎝
S1,n

S2,n

S3,n

S4,n

⎞
⎟⎟⎠ = 1

4

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

S((4n − 3)a)
S((4n − 2)a)
S((4n − 1)a)
S(4na)

⎞
⎟⎟⎠.

(B5)

The Fourier transformation for these new spin variables are

Sν (q) =
N/4∑
n=1

eiq4naSν,n, (B6)

where q runs over a folded Brillouin zone,

|q| � π

4a
. (B7)

When 〈Sν (q)〉 = 0 we have magnetic orderings, where ν =
1, 2, 3, and 4 correspond to ferromagnet (ν = 1), UD antifer-
romagnet (ν = 2), and UUDD antiferromagnet (ν = 3, 4).

Substituting Eqs. (B5) and (B6) into Eq. (B4) we find

Hπ/4 = 4

N

∑
i, j

∑
q

∑
α

{ri j,α=x′,y′,z(q)Siα (q)S jα (−q)}, (B8)

with couplings given as

r11,x′ (q) = (J1 − �1)(3 + cos(4qa))

+ (J2 − �2)(2 + 2 cos(4qa)),

r22,x′ (q) = −(J1 − �1)(3 + cos(4qa))

+ (J2 − �2)(2 + 2 cos(4qa)),

r33,x′ (q) = (J1 − �1)(1 − cos(4qa))

− (J2 − �2)(2 + 2 cos(4qa)),

r44,x′ (q) = −(J1 − �1)(1 − cos(4qa))

− (J2 − �2)(2 + 2 cos(4qa)),

r12,x′ (q) = −r21,x′ (q) = (J1 − �1)i sin(4qa),

r13,x′ (q) = −r31,x′ (q) = (J1 − �1)i sin(4qa)

+ (J2 − �2)2i sin(4qa),

r14,x′ (q) = r41,x′ (q) = −(J1 − �1)(1 − cos(4qa)),

r23,x′ (q) = r32,x′ (q) = (J1 − �1)(1 − cos(4qa)),

r24,x′ (q) = −r42,x′ (q) = (J1 − �1)i sin(4qa)

+ (J2 − �2)2i sin(4qa),

r34,x′ (q) = −r43,x′ (q) = (J1 − �1)i sin(4qa). (B9)

The other couplings are related to those above; ri j,y′ (q) are
obtained from ri j,x′ by taking �η → −�η, and the ri j,z(q) are
given by taking �η → 0.

At the multicritical point, we have J1 = 2J2 ≡ J , �1 =
2�2 = 2J . The remarkable feature of Eq. (B8) is that different
spin components do not couple, which means that the com-
petitions among different Ising orders take place. They are
exclusive and the ones that contribute to the lowest-energy
modes are r11,x′ (q), r22,y′ (q), r33,y′ (q), and r44,y′ (q). Therefore,
we can only leave these modes around the critical point and
taking the q ∼ 0 modes, we find

Hπ/4 ∼ 1

N
(r11,x′S1x′S1x′ + r22,y′S2y′S2y′ + r33,y′S3y′S3y′ )

(B10)

where we dropped off r44,y′ because the UDDU is equivalent
to UUDD of r33,y′ , related by the translation. Here, we regard
the spins as classical fields in the range −N/4 � Siα � N/4,
and they take the minimum or maximum at Siα = 0,±N/4.
We thus have only three modes that contribute to the low
energy excitation at the multicritical point.

The energies of the ordered state iα are given as Eiα =
rii,α (0)N/16, which are explicitly written as

E1x = N

4
(J1 − �1 + J2 − �2), (FM)

E2y = N

4
(−J1 − �1 + J2 + �2), (AFM-UD)

E3y = N

4
(−J2 − �2).(AFM-UUDD) (B11)

The competition of these three energies yields the phase dia-
gram shown in Fig. 13(b). Combined with the Fig. 7(b), it will
explain the basic feature of the numerically accurate phase
diagram in Fig. 1(a).

We note that Eq. (B11) provides the same energies as the
energy expectation values of the original Hamiltonian Eq. (1)
about the trial product wave functions of the corresponding
FM1 phase, the AFM-UD2 phase, and the UUDD phase, e.g.,
E1x = 〈	FM|H|	FM〉,

|	FM〉 =
N∏

j=1

| f 〉 j, |	UD〉 =
N/2∏
j=1

|u〉2 j−1|d〉2 j,

|	UUDD〉 =
N/4∏
j=1

|u〉4 j−3|u〉4 j−2|d〉4 j−1|d〉4 j, (B12)

where |u〉 j = | ↑〉 j + eiπ/4| ↓〉 j , |d〉 j = | ↑〉 j − eiπ/4| ↓〉 j ,
| f 〉 j = | ↑〉 j + ei3π/4| ↓〉 j in which the spin orientations are
described in the xyz frame and their magnetic moment points
in the (±1,±1, 0) and (±1,∓1, 0) directions, respectively.
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APPENDIX C: SPIN GAP FOR VARIOUS DIRECTIONS
OF MAGNETIC FIELD

Because the z axis is a magnetic easy axis, the application
of a magnetic field to the z direction shown in Fig. 5 may
naturally open a spin gap. However, the field applied inside the
xy plane may not necessarily be the case because the system
does not magnetically order inside the xy plane in the ND
phase. We thus apply a field in the four different directions,
α = x, y, x′, and y′, where the latter two are the magnetic
easy axes of the FM1,UD1 (x′) and FM2, UD2, UUDD(y′).
We add the Zeeman term in these directions, −h

∑
i Sα

i , and
measure Mα using SSD-DMRG. Figure 14 shows the mag-
netization curves for the four cases. We find that ND phase
has a robust spin gap, which does not depend much on the
field direction, confirming the finite spin gap. We also show
that TLL and UUDD phases are gapless. In the FM1 phase,
the finite magnetization in the x′ direction from h = 0 is
observed.

APPENDIX D: DETAILS OF BOND-OPERATOR
MEAN-FIELD CALCULATION

We present here the details of the bond-operator mean-field
calculation in Sec. III.

1. Derivation of Hbo

We first show the approximation we made in deriving the
mean-field Hamiltonian Hbo. From Eq. (13), the commutation
relations, and the constraint Eq. (12), we can rewrite the three
intradimer spin-spin coupling terms as

[
Sα

1 , Sβ

1

] = iεαβγ Sγ

1 ,
[
Sα

2 , Sβ

2

] = iεαβγ Sγ

2 ,[
Sα

1 , Sβ

2

] = 0, (D1)

Sα
1 Sα

1 = 3

4
+ 1

4

⎛
⎜⎜⎝s†s† pα pα + ssp†

α p†
α −

∑
β =γ
x,y,z

p†
β p†

β pγ pγ

⎞
⎟⎟⎠

− 1

2
iεαβγ (s† pα p†

β pγ + sp†
α p†

β pγ ),

Sα
2 Sα

2 = 3

4
+ 1

4

⎛
⎜⎜⎝s†s† pα pα + ssp†

α p†
α −

∑
β =γ
x,y,z

p†
β p†

β pγ pγ

⎞
⎟⎟⎠

+ 1

2
iεαβγ (s† pα p†

β pγ + sp†
α p†

β pγ ),

Sα
1 Sα

2 = −3

4
s†s + 1

4
p†

α pα − 1

4

⎛
⎜⎝s†s† pα pα + ssp†

α p†
α

+
∑
β =γ
x,y,z

p†
β p†

β pγ pγ

⎞
⎟⎠, (D2)

FIG. 14. Magnetization curves for field h applied along the (a) x,
(b) y, (c) x′, and (d) y′-directions. We choose (φ, θ )/π = (0.05, 0.05)
for TLL, (0.2, 0.05) for ND, (0.15, 0.4) for FM1, and (0.45, 0.4) for
AFM-UUDD phases.

2. Diagonalizing Eq. (16)

We explicitly show the form of the matrices consisting
Eq. (16) as

A(k) =

⎛
⎜⎜⎝

a(k) c(k) b(k) d (k)
c(k) a(k) d (k) b(k)
b(k) d (k) a(k) c(k)
d (k) b(k) c(k) a(k)

⎞
⎟⎟⎠, (D3)

B(k) =
(

a(k) b(k)
b(k) a(k)

)
, (D4)
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a(k) = J1 − μ

2
+ λ

−J1 + 2J2

4
s̄2 cos kẑ, (D5)

b(k) = λ
−J1 + 2J2

4
s̄2 cos kẑ, (D6)

c(k) = −J1

4
γ + λ

−J1 + 2J2

4
γ s̄2 cos kẑ, (D7)

d (k) = λ
−J1 + 2J2

4
γ s̄2 cos kẑ, (D8)

Using a 4 × 4 real matrix Lk and a 2 × 2 real matrix Mk ,
we can diagonalize A(k) by the Bogoliubov transformation,

Lkuk = u′
k, u′

k = ( p̃k,1, p̃k,2, p̃†
−k,1, p̃†

−k,2)T , (D9)

Mkvk = v′
k, v′

k = ( p̃k,3, p̃†
−k,3)T . (D10)

Then, we find that

∑
k

u†
kA(k)uk =

∑
k

(
ω1(k) p̃†

k,1 p̃k,1 + ω2(k) p̃†
k,2 p̃k,2

+ ω1(k) + ω2(k)

2

)
, (D11)

ω1 = 2
√

(a + c)2 − (b + d )2, (D12)

ω2 = 2
√

(a − c)2 − (b − d )2, (D13)

and

∑
k

v†
kB(k)vk =

∑
k

(
ω3(k) p̃†

k,3 p̃k,3 + ω3(k)

2

)
, (D14)

ω3 = 2
√

a2 − b2. (D15)

The ground-state energy is given as

EMF
GS =

∑
k

(
5

2
μ − 3

2
J1 − μs̄2 + ω1(k) + ω2(k) + ω3(k)

2

)

= Nd

(
5

2
μ − 3

2
J1 − μs̄2 +

3∑
l=1

Cl E (Xl )

)
,

C1 = 1

π
(|εp1−μ|(|εp1 − μ|+|λ(1 − γ )(−J1 + 2J2)s̄2|))1/2,

X1 =
(

2|λ(1 − γ )(−J1 + 2J2)s̄2|
|εp1 − μ| + |λ(1 − γ )(−J1 + 2J2)s̄2|

)1/2

,

C2 = 1

π
(|εp−1−μ|(|εp−1 − μ|+|λ(1+γ )(−J1+2J2)s̄2|))1/2,

X2 =
(

2|λ(1 + γ )(−J1 + 2J2)s̄2|
|εp−1 − μ| + |λ(1 + γ )(−J1 + 2J2)s̄2|

)1/2

,

C3 = 1

π
(|εp0 − μ|(|εp0 − μ| + |λ(−J1 + 2J2)s̄2|)1/2,

X3 =
(

2|λ(−J1 + 2J2)s̄2|
|εp0 − μ| + |λ(−J1 + 2J2)s̄2|

)1/2

, (D16)

where we use the complete elliptic integral of the second kind
with 0 � m � 1,

E (m) =
∫ π

2

0

√
1 − m2 sin2 θ dθ, (D17)

We searched for the solutions (μ, s̄2) numerically over the
parameter space that gives ωl ∈ R for minμ,s̄2 EMF

GS ,

|εp1 − μ| � |λ(1 − γ )(−J1 + 2J2)s̄2|,
|εp−1 − μ| � |λ(1 + γ )(−J1 + 2J2)s̄2|,
|εp0 − μ| � |λ(−J1 + 2J2)s̄2|,

0 � s̄2 � 1,

0 � μ � 1. (D18)
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