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Promising regimes for the observation of topological degeneracy in spin chains
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Both the Haldane spin chain and a topologically dimerized chain feature topologically protected edge states
that are expected to be robust against some kind of noise. To elucidate whether it might be feasible to create
such edge states in dimerized chains in a controlled manner in solid states environments, e.g., as spin chains
on surfaces, as has already been successfully achieved with the Haldane chain, we investigate their robustness
with respect to long-range coupling, anisotropies, and finite chain length. The theoretical investigation is based
on an alternating Heisenberg spin chain with spin-1/2, which is investigated using exact diagonalization. We
find that dimerized chains and Haldane chains have robustness against long-range coupling and anisotropies. In

particular, dimerized spin chains are significantly more robust than Haldane chains.
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I. INTRODUCTION

Topological order and symmetry-protected topological or-
der and their signatures are currently a topic of considerable
research interest [1-5], both in noninteracting and in interact-
ing systems, and in one as well as in higher dimensions. A
state with topological order can only go over into a topolog-
ically trivial one by closing a gap, and surface, edge, or end
states are thus an important feature of topologically nontrivial
states. Considerable effort is thus spent on realizing and inves-
tigating such states, whether in topological states emerging in
solids or engineered from other building blocks.

In addition to providing signatures of topological order,
surface, edge, and end states are also sought out as a potential
use of topological systems. For instance, chiral edges are
protected against backscattering [4,5], and helical edge states
transport only one spin in each direction [4,5], with uses in
spintronics [6-9]. Topological protection has been proposed
as a transport channel for quantum information [10,11], and
excitations of fractional quantum Hall states can be used in
quantum computation [12]. End states of topological spin
chains form effective spin-1/2 degrees of freedom and have
been conjectured to provide some protection from decoher-
ence [13] and have been proposed as a building block for
quantum computation [14].

The Haldane phase [1,2,15-17], a symmetry-protected
topological phase based on a conjecture of Haldane [18,19],
is an early one-dimensional example for an interaction-
based topological scenario. In this chain with spin one,
superexchange induces an antiferromagnetic (AFM) coupling
between the spins. The resulting AFM ground state is sep-
arated from the lowest excitations by a gap, which can be
measured by neutron scattering, susceptibility measurements,
and magnetization measurement [20-31].

Conceptually, the properties of the Haldane chain can be
understood by splitting each spin-1 into two spin-1/2 and then
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coupling those into singlets [2,15-17,32-40]; see Figs. 1(a)
and 1(b). One consequence of this singlet decomposition are
the leftover spin-1/2 at the edges, also seen in Fig. 1(b). These
are the topologically protected edge states, which leave mea-
surable signature in, e.g., electron spin resonance [30,37,41—
43], nuclear magnetic resonance [44], and inelastic neutron
scattering [31].

Edge states of Haldane chains were theoretically con-
cluded to also be accessible to scanning tunneling microscopy
(STM) [45] and have been successfully measured for both
spin-1 chains [46,47] and recently alternating spin-1/2
chains [48,49]. There are several reasons why the ideal
scenario can only be approximated: The two edges of fi-
nite chains, which can be realized and observed in STM,
are coupled, with the coupling between them suppressed
exponentially for longer chains. Moreover, magnetic superex-
change between spins is not strictly restricted to nearest
neighbors and longer-ranged interactions in general increase
coupling between the edge states. While they can, in some
cases, even be used to decouple edge states from each other on
finite chains, this requires delicate fine tuning [50,51]. Finally,
signatures of the edge states are rather sensitive to the z-axis
anisotropy [45].

A second well-known one-dimensional topological state
is the Su-Schrieffer-Heeger (SSH) model [52], where bonds
alternate between stronger and weaker coupling. It was orig-
inally considered for noninteracting fermions at half filling,
where the band structure likewise has zero-energy edge states
if the bonds at the ends are weak ones. These can be empty
or occupied, i.e., act like a spin-1/2 degree of freedom. For
noninteracting bosons or finite onsite interactions, these zero-
energy states likewise exist, but next-nearest-neighbor (NNN)
hopping moves them away from zero energy [53]. If onsite
interactions are infinite, i.e., for hard-core bosons that are in
one dimension largely equivalent to fermions [54], the impact
of NNN hoppings onto the coupling of the edge states [55]
is largely removed. This has recently enabled the observation
of the corresponding edge states in a dimerized Rydberg-atom
chain [55].
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FIG. 1. Sketches for the ground states of a chain of spin-1/2
with alternating Heisenberg exchange couplings J; and J,. In the
sketch for the Haldane phase (b), the dashed green ellipses are the
effective spin-1, the red arrows indicate their AFM coupling resulting
in singlets, and the blue arrows are the free edge spin-1/2. The sketch
(a) shows the effective AFM spin-1 chain. The spin-1 in the sketch
(a) are the green ellipses in the sketch (b). In the sketches for the
dimer phases (c), (d), and (e), the red ellipses are singlets, and the
blue arrows are the free-edge spins with spin-1/2.

Here, we investigate edge states of dimer-
ized [33-36,38,39,56-74] spin chains as sketched in Fig. 1.
For a strong FM coupling within dimers, the situation
becomes clearly similar to Haldane’s spin-1 chain; see
Figs. 1(a) and 1(b). Indeed, edge modes whose coupling
vanishes exponentially with system size have accordingly
been investigated [75], and the impact of NNN couplings
on the topological phase diagram has likewise been
addressed [38,56,60,63,64,67,70]. Strong AFM coupling
within as well as between dimers leads to a scenario more
similar to the SSH chain [59], sketched in Figs. 1(d) and 1(e).
The main theoretical difference to the hard-core bosonic
chain is that the latter is equivalent to X-Y spins, while the
spin model can include coupling of Z components. [76] As a
consequence, positive and negative couplings can no longer
be mapped onto each other in the spin model.

Two perfect spin-1/2 edge states imply a fourfold degener-
ate ground state, as each spin can be flipped without penalty.
To be observable, these four states need to be separated from
the rest of the spectrum by a gap. While perfect degener-
acy cannot be expected for finite chains [77-79], splitting
within the lowest four states should be much smaller than
the gap separating them from the rest of the spectrum. Since
we are here motivated by spin chains in a scanning electron

microscope, AFM superexchange couplings are easier to
achieve than FM ones. Moreover, the direction perpendicular
to the surface is clearly special, so that some z-axis anisotropy
is to be expected [13,80-87]. In addition to idealized dimer-
ized chains, we thus also include anisotropies as well as
NNN couplings and investigate how they affect ground-state
quasidegeneracy.

The paper is structured as follows: In Sec. II we discuss
the Hamiltonian of our model. In addition, we introduce our
method to distinguish between the topological and the topo-
logically trivial phases. In Sec. III we discuss the results ob-
tained by varying the different parameters in the Hamiltonian
introduced in Sec. II. First, we discuss in Sec. III A the inelas-
tic tunneling current accessible to STM. Secondly, we evalu-
ate in Sec. III B spin correlation functions to assess localiza-
tion of edge modes. Third, we elaborate in Sec. III C on how
energy gaps can be exploited as a criterion for edge states and
in Sec. III D we use this to discuss various parameter regimes
of potential chain realizations. These chains are isotropic and
interactions are limited to the nearest neighbor. We show how
to use the method, see Sec. II, to characterize topological
phase transitions by analyzing different energy gaps between
the lowest energies. In the subsequent sections, we look at
the impact of various perturbations of this ideal scenario.
We start with the NNN coupling in Sec. IIIE, investigate
z-axis anisotropy in Sec. IIT F, and combine both in Sec. III G.
Sec IV concludes the paper and gives a summary of the results
obtained as well as an outlook to promising future studies.

II. MODEL AND METHODS

We start from an idealized dimerized [33-36,38,39,56-74]
chain with nearest-neighbor (NN) couplings
N/2
H=/J Z (S;iflsgi + 8515+ AZSéi—lséi)
i=1
N/2—-1
Y (S5 S8 + ASESS), (D
i=1

where J; and J, are the inter- and intradimer couplings, A,
gives their z-axis anisotropy and N is the number of spins.
A, > 1 leads to more Ising-like spins while A, < 1 would
imply x-y anisotropy. Topological phases only occur with an
AFM [66] J, > 0, see Fig. 2, and we use J, as our unit of
energy, i.e., J = 1. Since we are interested in edge states,
we use open boundary conditions (OBC), so that edge states
equivalent to § = % [see Figs. 1(b)-1(d)] imply a fourfold
degenerate ground state [77-79].

These terms are complemented by NNN cou-
pling [38,56,60,63,64,67,70]
N-2

£ INNSIEVNSY Z (SiSin + 88, + AS;SE ). (@)
i-1

In addition, there can be an uniaxial single-ion
anisotropy [13,16,18,34,88-90] (D anisotropy),
N2
2
Hp = DZ (Séiq + Séi) ) 3

i=1

where D is the strength of the anisotropy.
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FIG. 2. Phase diagram for an even number of spins of an infinite
alternating Heisenberg spin chain with the alternating coupling con-
stants J; and J,. The dashed blue lines show the topological phase
transition. Labels (b)-(e) refer to the sketches shown in Fig. 1, which
schematically illustrate the ground states.

A standard method to distinguish between the topo-
logically trivial and nontrivial phases is the string order
parameter [34,36,38,39,56,59,66,73,91] introduced by Nijs
and Rommelse [92] and Tasaki [93]. However, it is only
cleanly defined for infinite chains, while we are here explicitly
interested in finite ones. Moreover, our focus is mostly on
the edge states in imperfect systems, where they arise, and
how robust they are. Consequently, we use the (approximate)
fourfold degeneracy of the ground state, which is an important
property of the topological state of a chain with OBC, as a
criterion.

We investigate the Hamiltonian by using exact diag-
onalization (ED) of chains, whose length is comparable
to the number of spins that can be assembled in an
STM [46,80,81,83,87,94,95]. Chains of, e.g., 12 spins are
accessible to full numerical diagonalization. In some cases,
we go to longer chains to assess finite-size effects, which
can be strong for short chains [77-79,96], and then use a
band-Lanczos algorithm [97]. In this variant of the standard
Lanczos approach, several starting vectors are used at the
same time and are mutually orthogonalized. While the plain
Lanczos algorithm cannot reliably resolve (near) degenera-
cies [97], we can thus determine them as long as the number
of starting vectors is greater than the degeneracy.

III. RESULTS

Figure 3 shows the expectation value (S7) of the singlet
and triplet states of the edge modes, see Fig. 1(d), where S7
is the spin operator of the ith spin in the chain. The triplet
states with M = %1 have, exactly as expected, (S7) ~ +1/2
at the edges and (S7) decays exponentially towards the bulk of
the chains, following a pattern analogous to that observed in
the S = 1 AFM chain [98]. The stronger the dimerization (i.e.,
the smaller |J;|/J>), the smaller the difference ||(S7)| — 1/2| at
the edges. The impact of N on (S7) is small compared to the
effect of dimerization strength.

Energy splitting as a criterion can be motivated by the goal
of observing an edge state. For instance, consider the time
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FIG. 3. Expectation value (S;) of the singlet and triplet states of
the edge modes for an isotropic chain consisting of 12 spins, with
J; = 0.5 and without NNN couplings. The properties of the four
ground states are well recognizable.

evolution of a low-energy state prepared to have spin “up”
at the left edge, which can be obtained by combining three of
the four quasidegenerate low-energy states, see Fig. 3, as

|7) =L<|S: ILM=1)

/2

1
+ﬁ(|S IM=0)4+|S=0,M O))). “)
As can be seen in Fig. 4 at time t = 0, the z component of the
spin on the right edge then averages to zero. Experimentally,
one might expect such a state if the temperature is low enough
to bring the chain into its quasidegenerate low-energy mani-
fold, but if a magnetic tip polarizes one edge. Time evolution
can then be calculated using ED.

Figure 4 shows the time evolution of (S;) and compares a
Haldane-like scenario (i.e., with a strong FM J;) to a dimer-
scenario. One sees that in both cases, the positive spin remains
on the left edge for relatively long times before tunneling to
the right edge. The tunneling time is inversely proportional
to the energy difference between the singlet and triplet states,
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FIG. 4. Expectation value |(S;)| of the time evolution of a state

Eq. (4) prepared to have (S;) = % on the left edge for (a) the dimer

scenario with J; = 0.7 and (b) the Haldane scenario with J; = —S5.
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FIG. 5. Inelastic signal Eq. (5) for isotropic chains with 12 spins
and without NNN couplings. For comparison between both phase

transition criteria, there are in the legend the values of Opr; see
Eq. (7).

i.e., directly related to the splitting within the quasidegenerate
manifold, respectively, the coupling of the edge modes. As
the gap between the singlet and triplet states decreases with
increasing N, as shown in Fig. 12, the tunneling time rises.

Due to the finite length of the spin chains, there is an energy
gap between the singlet and the triplet states; see Fig. 10. The
singlet state is the ground state if J; and J, are AFM. A chain
with FM J; and AFM J, has a singlet ground state if N/2
is even and a triplet ground state if N/2 is odd. This can be
explained by the Lieb-Mattis theorem [99,100].

A. Inelastic tunneling current and spin spectral density

Inelastic electron tunneling spectroscopy can be used to
measure edge states with an STM [46]. Excitation from the
singlet (triplet) ground state into the nearly degenerate triplet
(singlet) state is found at an energy close to zero if the edge
states are indeed independent of each other. The expected
signal is proportional to the matrix elements [45,46,84,86]
describing such transitions

Sinet = »_ [(SGISF|TP) I, )

a,j

where |SG) is the singlet state and |TP;) with j = 1,2, 3 are
the triplet states formed by the edge spins; see Figs. 1(b)-1(d).
S¥ is the spin operator for component o = x, y, z of the ith
spin in the chain.

For a spin-1 Haldane chain, the signal is indeed found to
be stronger on the first and last spin [45], by the ratio of about
four, so that it can be used to detect edge states. Figure 5
shows the matrix-element weight Eq. (5) for a 12-site chain
and varying J;. In the topological regime J; < J,, weight
is consistently concentrated on the edges, while it is found
in the bulk for the trivial J; = 5 J,. One also sees that the
localization of the edges becomes more pronounced in the
dimer regime with |J;| < J, than it is in the Haldane regime
with J; < —1; see Fig. 2. This suggests that dimerized chains
might be a good place to investigate edge states.

Figure 6 shows the impact of a z-axis anisotropy on the
inelastic signal Eq. (5) for a dimerized chain. The signal
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FIG. 6. Inelastic signal Eq. (5) for an anisotropic chain with
12 spins, without NNN couplings and D anisotropy. The coupling

constant is J; = 0.5. For comparison between both phase transition
criteria, there are in the legend the values of ®pr; see Eq. (7).

continues to be located at the edges also for strong
anisotropies A, [see Eq. (1)]. It is possible to drive the excita-
tion from the edge into the bulk, but very strong anisotropies
(e.g., A, = 10) are needed to achieve a signal (almost) uni-
formly distributed over the chain.

The most significant difference in the inelastic signal oc-
curs between the edge spins and the spin farthest from the
edges. As this distance grows with N, the disparity in the
inelastic signal between the center of the chain and its edges
increases by several orders of magnitude. Nonetheless, the
edge signal is more pronounced for dimerized chains than for
the Haldane regime at any NV.

However, even when transitions between the four lowest
states are localized at the edges, the site-dependent inelastic
signal Eq. (5) can only be useful if any bulk excitations are at
appreciably higher energies. This translates into the require-
ment that the four low-energy states are separated from the
rest of the spectrum by a gap. Information on edge states and
energy gaps is combined in Green’s functions, i.e., in dynamic
spectra of the form

Si(@) =Y _|(mlS¢I0)*8(w — (En — Eo)).  (6)

m,a

Operator S denotes as above spin component « = x, y, z at
site i and |0) is the ground state with energy Ey. In contrast
to Eq. (5) above, the sum runs over all excited states |m) with
energy E,,, not just the quasidegenerate triplet. We use the
Lanczos algorithm to numerically obtain spectra [101,102].

Spectra shown in Fig. 7 for a Haldane-like chain again
show the low-energy excitations located almost exclusively at
the end sites, with only a little weight leaking into the chain.
Higher-energy excitations into states beyond the quasidegen-
erate ground-state manifold are also seen within the chain,
their energy corresponds to the gap between the fourth and
fifth eigenstates of the chain (see Fig. 10). As found previ-
ously [45], even rather small z-axis anisotropy of ~1 % is
enough to allow a substantial part of the edge-state weight to
leak into the bulk; see Figs. 7(b) and 7(c).
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FIG. 7. Site-dependent spin-excitation spectra Eq. (6) for J, =
—5 (Haldane scenario). Panel (a) is the isotropic chain, i.e., A, = 1,
(b) A, =1.01,and (¢c) A, = 0.99. Jynny = 0 and D = 0 in all cases.

The higher-energy states that come down in energy at the
same time are, however, also found rather close to the edges.
This implies that the identification of edge states using the
inelastic signal can only be a first step: The site-dependent
low-energy weight can still be enhanced near the edges, even
though the object at the edge consists of several excitations
and is no longer similar to a spin 1/2.

Figures 7(b), 7(c) and 8(b), 8(c) compare the impact of z
anisotropy A, [see Eq. (1)] on the dimer and Haldane scenar-
ios. The low-energy edge states move into the chain already
for small deviations from A, = 1 in the Haldane scenario; see
Figs. 7(b) and 7(c). In contrast, they remain clearly localized
in the dimer cases Figs. 8(b) and 8(c), just as in the case of the
isotropic dimer scenario Fig. 8(a).

The more pronounced and robust spin-excitation spectrum
at the edges for dimerized chains, in comparison to Haldane-
like chains, is independent of N. However, there are finite-size
effects: Larger N increases spin-excitation spectra at the edges
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FIG. 8. Site-dependent spin-excitation spectra Eq. (6) for J; =
0.7 (dimer scenario). The remaining parameters are (a) Jynn = 0.0,
A, =1, (b) Jsan =0.0, A, = 1.5, and (c) A, = 1.5, Juann = 0.2
D = 0in all cases.

0.251

(s2-52)

-0.1254

(57-52)

-0.25 L ¥——+ y . v
6

a4 8 10 12
N
01(c) N=12 P
&
o,-0.125¢ © < x
L\,l X
X X
X
0.254 , e
-5 -3 10 1
1

FIG. 9. Static spin-spin correlation functions for the (singlet)
ground state. Panel (a) gives correlations depending on distance for
N = 12. Panels (b) and (c) give the edge-edge correlations depending
on N and Jj, respectively.

while it decreases them in the bulk. Additionally, spectra at
higher energies decrease with increasing N.

B. Correlation functions

To some extent, edge-state localization can also be in-
ferred from static correlation functions. Figure 9(a) shows the
correlation between one edge spin and the other sites of an
N = 12-site chain. For the uniform chain with J; = 1, their
absolute value decreases with growing distance, so that the
two edge spins are the spins least correlated to each other.
For J; = 0.1, in contrast, correlations fall off extremely fast,
remain essentially O throughout most of the chain, and recover
nearly the most correlated value possible, namely —0.25, for
the other edge.

In addition to these extreme cases with and without local-
ized edge states, correlations are shown for J; = 0.7 (dimer
phase close to the topological phase transition) and J; = —5
(Haldane regime). For J; = 0.7, correlations fall of slowly
with distance and first resemble those for J; = 1. However,
they grow again in the second half of the chain instead of
falling off further. This illustrates that some edge-state physics
can still be observed. The Haldane chain shows similar growth
in the second half, i.e., edge-state correlations are present,
albeit weak. Figure 9(b) shows the edge-edge correlations
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FIG. 10. Lowest few energies depending on J; for an isotropic
spin chain with 12 spins and Jyxy = 0. There are two important
energy gaps. First, AEs_r, the energy gap between the singlet and the
triplet states, and second AE,_s, the energy gap between the fourth
and the fifth lowest energy. The gap AEg_r is tiny in the case of a
strong dimer formation J; = 0.1. For a weak dimer formation and
in the Haldane phase, e.g., J; = —5, this energy gap is increasing,
but there remains a quasi fourfold degenerate ground state. In the
topologically trivial phase, e.g., J; =5, there is a nondegenerate
ground state.

depending on N for the four cases, with only small finite-size
effects.

Finally, Fig. 9(c) depicts the edge-edge spin correlations
depending on J;. As suggested by Fig. 9(a), they become
very strong in the dimer regime |J;| — 0, remain sizable but
smaller in the Haldane-like scenario J; < 0, and approach 0
for J; — 1. Comparing edge-edge correlations to edge-bulk
correlations can thus be used as a criterion for topological
edge states even for modest chain sizes.

C. Energy gaps as a criterion for edge states

The information on energy gaps discussed in the fig-
ures above can be summarized into a parameter given by the
ratio of gaps in the eigenvalue spectrum of the Hamiltonian.
Leftover spins § = % at the edges, see Figs. 1(b)-1(d), which
are decoupled for infinite chains, will become coupled in real-
istic short chains, which splits the fourfold degenerate ground
state into a singlet and a triplet [46,77—79]. To consider the
edge states as still “approximately decoupled,” the singlet-
triplet gap should be smaller than the gap AE,_s separating
the fourth from the fifth state; see Fig. 10.

Figure 10 illustrates the concept, see Eq. (7), to distinguish
between topological and topologically trivial phases. One sees
example spectra for two cases with an approximate ground-
state degeneracy (J; = —5 and J; = 0.1) and one without
edge states (J; = 5). We evaluate

AE; .
o 8 BB if Dos < 4, 7
pT = N herwi (
m otnerwise,

where Dgs is the (quasi)degeneracy of the ground-state mani-
fold and AEgs is the energy gap above the ground state. More

X X X X X X X X X X X 4

ground state degeneracy

FIG. 11. Lowest few energies depending on J; for an isotropic
spin chain with 12 spins and Jynn = 0. There are shown the energy
gaps AEs_t and AEy4_s, as introduced in Fig. 10. The gap AEs_t
is tiny in the case of a strong dimer formation |J;| < 1. For a weak
dimer formation and in the Haldane phase this energy gap is increas-
ing, but there remains a quasi fourfold degenerate ground state. In
the topologically trivial phase, i.e., J; > 1, there is a nondegenerate
ground state. The fourfold degeneracy resolves at the topological
phase transition at J; = 1.

generally, the singlet-triplet gap will later be replaced by the
largest gap within the lowest four states.

We then define transitions where the ratio ®pt crosses a
certain value ®p}". This serves as an indicator where edge
states might be expected to be sufficiently protected to be
observable. While the exact value of the threshold is certainly
open to debate, our primary outcomes do not qualitatively
change when OF" is varied. Here, we use OF" = 0.5. To
illustrate the use of the parameter, ®pt values [see Eq. (7)]
for each chain are given in Figs. 5 and 6. Opr < OFF" con-
sistently holds for spin chains where the inelastic signal is
localized at the edges. Spin chains with an inelastic signal con-
centrated at the edges always have a quasidegenerate ground
state, while no such degeneracy exists for spin chains with a
large inelastic signal in the bulk.

D. Gaps for the isotropic alternating chain

Figure 11 shows the two crucial energy gaps, as introduced
in Fig. 10, depending on J;. For negative (i.e., FM) value of
Ji, the AEg_7 is always much smaller than AE,_s, so that the
system remains in the topological (Haldane) phase. However,
AEs_t1 grows and AE,_s shrinks, reflected in the ratio Eq. (7)
and making the system less suitable for observation of the
edge states. For positive Jj, in contrast, we find in Fig. 12
a sudden transition from quite small ®py to Opr > 1 at the
topological phase transition, where the quasi fourfold ground-
state degeneracy is lost.

Since finite spin chains are analyzed, finite-size effects are
a concern. Figure 12 shows the energy gaps discussed in
Fig. 10 as well as their ratio ®pr, depending on the chain
length N. While the gap AFEs_s remains finite for longer
chains, AEg_t is strongly suppressed within the topological
regime once chains become longer than about eight sites. This
suggests that the edges can be considered to be approximately
decoupled even on rather short chains. The ratio given in the
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—— N=16 —— N=10 —v— N=6
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h

Opr

0.4

0.2+

FIG. 12. Edge-state interaction depending on chain length. The
results belong to an isotropic spin chain without NNN coupling.
The left inset shows the energy gap above the ground state AFEgs.
This gap has a minimum J; = 1. The right inset shows AEs_r (see
Fig. 10). The ratio, see Eq. (7), between the energy gap inside the
quasidegenerate ground state and the energy gap above the ground
state is shown in the large figure.

main panel of Fig. 12 gives accordingly a consistent picture
except for the very shortest chains.

E. Next-nearest-neighbor coupling

Since the gap ratio Eq. (7) summarizes information on the
relevant energy scales conveniently and also works for finite
chains, we use it to delineate regimes where one can hope to
observe edge states even in imperfect systems. We first look
at the impact of NNN coupling, see Eq. (2), as analogous
hopping is known to destroy ground-state degeneracy for non-
interacting bosons.

For FM NNN coupling, substantial differences between
“Haldane” and “dimer” regimes arise; see Fig. 13. In the
former, where stronger |J;| > |J;| stabilizes the quasi-spin-
1 constituents [see Figs. 1(a) and 1(b)], even rather weak
Jnnn < 0 is enough to drive a topological phase transition to
a (trivial) FM state. In the topological dimer phase (i.e., where
AFM J, is stronger than |/} |), there is no such transition. Thus,
the topological dimer phase is significantly more robust than
the Haldane phase against FM NNN coupling.

For AFM NNN coupling, finite-size effects are substan-
tial and show pronounced even/odd differences, i.e., between
even and odd N/2, especially in the Haldane phase. Depend-
ing on chain length, either small values of Jynn > O couple
edge spins, or even quite large ones leave them uncoupled. For
long chains and strong FM J;, AFM Jxnn > 0O can, however,
be allowed to become quite large without affecting edge-
state degeneracy. This fits with earlier observations that NNN
coupling can be used to tune edge-state coupling in Haldane
chains [50,51].

In addition to the Haldane phase, other topological phases
are predicted to arise in alternating FM-AFM chains with
FM NNN coupling [64,67]. Figure 13 also includes the

—— N=12 —<— N=22 —-«- N=6
e N=8 -»— N=14 —e— TL:FM

JNNN
m"t(.)“p.).(.)'llc.).gically trivial in TL

FIG. 13. Impact of NNN coupling depending on chain length. In
the topological dimer phase, much stronger FM NNN couplings are
possible than in the Haldane phase. The finite-size effects for AFM
NNN coupling show a fundamental difference between N/2 even
and N/2 odd. For comparison, phase transition out of the Haldane
phase (TL: H) and into the FM phase (TL: FM) were extracted from
Refs. [64,67] for the TL. (In the TL there are intermediate phases
between the FM and the topological phase. In the regime marked
with %, where Jxnn > Ji 2, chains with 2(2n + 1) sites have a
nearly fourfold degenerate ground state, but do not feature protected
edge states. Instead, two nearly decoupled subchains each have half-
integer spin and thus a spin-1/2 doublet ground state, combining to
four states. Coupling between chains grows with system size, so that
this approximate degeneracy is lifted in the TL. There is a topological
phase transition in the TL at J; = J,, as shown in Fig. 2. Further
discussion about finite-size effects can be found in Appendix.

thermodynamic-limit (TL) phase transitions from the Haldane
phase (“TL: H”) to intermediate spin-gap phases and the
transition from these phases to the FM phase (“TL: FM”),
extracted from Refs. [64,67]. For the chain parameters of these
intermediate phases, we mostly still observe an approximately
fourfold degenerate ground state. However, finite-size effects
are small in this regime Jyny < O.

F. Spin anisotropy A; of couplings and uniaxial
single-ion-like anisotropy D

Next, we will address spin anisotropies that select a specific
axis. The first purpose is to investigate the connection to the
hard-core bosons of Ref. [55], which correspond to A, = 0 in
our spin model. The second reason is that such anisotropies
have to be expected for spins on surfaces [13,80-87] and
have been shown to strongly affect edge states of Haldane
chains [45].

We model two sources of anisotropy: (i) coupling
anisotropy A, affecting all spin-spin couplings, see Eq. (1),
and (ii) “single-ion” anisotropy D of Eq. (3) affecting only
the J; bonds. Turning these bonds FM moves our model
into the “Haldane-like” phase and D < 0 (D > 0) then favors
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FIG. 14. z anisotropy for chains without NNN coupling or D
anisotropy depending on the chain length. The topological dimer
phase is more robust than the Haldane phase. The finite-size effects
are small. The inset shows the low energy spectrum, which is shifted
by the ground-state energy Ej. TL phase boundaries shown in black
were extracted from Ref. [103].

states with S, = £1 (S, = 0) of a local triplet, as a single-ion
anisotropy [45,78] would.

Figure 14 shows the influence of a z anisotropy on chains
without NNN coupling or D anisotropy. Due to z anisotropy
A,, see the Hamiltonian Eq. (1), the triplet splits in a singlet
and a doublet, as shown in the inset of Fig. 14. There is
thus an additional energy gap AEr within the quasidegen-
erate ground-state manifold, in addition to the energy gaps
of Fig. 10. The phase diagram in the main panel has only a
relatively minor finite-size effects, especially in comparison
to the large finite-size effects for NNN coupling, as discussed
in Fig. 13. More importantly, edge-state degeneracy can be
found for a large part of the phase diagram.

For A, = 0, which corresponds to hard-core bosons, the
topological regime with detectable edge-state degeneracy is
mostly confined to |J/;] < J,. For A, > 0 which has to be
expected for spin implementations, edge states are first sta-
bilized up to the isotropic regime A, = 1. Beyond this point,
i.e., for Ising-like anisotropy, the stability regime of edge-state
degeneracy shrinks again but remains sizable; see Fig. 14.

Figure 15 shows the impact of single-ion-like D
anisotropy; see Eq. (3). Again, finite-size effects are moderate,
although the topological phase increases with chain length.
Similar to A, (see Fig. 14), edge-state degeneracy is remark-
ably robust. Again, this robustness is most pronounced for the
dimer regime, while edge states in the Haldane-like regime at
J1 < —1 (see Fig. 2) are more easily destroyed.

The most striking and relevant result is that the topolog-
ical dimer phase is remarkably robust against both types of
z anisotropy. Similar to FM NNN coupling, this robustness
is enhanced even for FM J;. Edge-state degeneracy is here
much better protected than in the Haldane-like spin-1 regime
at large |J;| > 1; see Fig. 14. Robustness extends to A, < 1

5 4 3 2 1 0 1 2
1
FIG. 15. D anisotropy for chains without NNN coupling or z
anisotropy depending on chain length. The topological dimer phase

is more robust than the Haldane phase. The finite-size effects are
small. TL phase boundaries in black were extracted from Ref. [34].

(x-y symmetry) and A, > 1 (Ising symmetry). The latter is
particularly encouraging because spins on surfaces usually
have a z anisotropy [13,81-87].

G. z anisotropy and NNN coupling

Finally, we consider the interplay of NNN coupling and
z-axis spin anisotropy. As a result of a ‘“single-ion-like”
anisotropy affecting only J; bonds are similar to A, affect-
ing all bonds, see above in Sec. IIIF, we focus here on A,
anisotropy; see Eq. (1).

The stability regions of quasidegenerate edge states are
shown for various values of J; and eight-site chains in
Fig. 16(a) and with 16 spins in Fig. 16(b). Data inherit here
the pronounced finite-size effects observed for NNN coupling
in Sec. IITE, as well as the even/odd effects with odd or even
N/2. For visibility, the A, axis is split into small and large
regimes in Fig. 16.

For the Haldane regime with J; = —2, only relatively small
A, and FM Jynn < O are allowed, while a larger range of
AFM Jynn > 0 are acceptable, both in agreement with re-
sults discussed earlier (see Fig. 13 and Fig. 14). In the dimer
regime J; = —0.8, stability w.r.t. A, increases immediately
and markedly. Jynn must now not become quite as large,
but would still need to be unrealistically large Jxnn > J; to
destroy quasidegeneracy. Moreover, Jynn < 0 is now also
possible, which again illustrates that edge states are far better
protected in the dimer regime.

Even for very large values of A, > 1, the protected edge
states can be found for some (albeit narrow) range of JNnn &
J1/2. However, this only applies to the dimer regime, but not
to Haldane-like chains. This may be related to the frustra-
tion, caused by competing NN and NNN couplings. When
comparing the robustness between chains with and without
frustration, it can be seen that frustrated chains tend to have
more robust edge-state degeneracy, so that a larger |A, — 1] is
possible.
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FIG. 16. Combination of z anisotropy with NNN coupling for a
chain with (a) 8 and (b) 16 spins.

IV. DISCUSSION AND CONCLUSIONS

We have investigated how well edge states of topologically
nontrivial one-dimensional spin chains are protected in finite
chains and for deviations from the ideal model Hamiltonians.
To do so, we compared the energy gap(s) within the four
lowest eigenstates, which is due to coupling of the edge states
and vanishes for the ideal case, to the “topological” energy
gap separating these four states from the rest of the spectrum.

We focus our investigations explicitly on finite chains, as
we aim to identify regimes where topological degeneracy is
visible on chains short enough to be assembled in an STM.
Perfect fourfold degeneracy is not observed in the ground
state, but a quasidegeneracy in finite chains can closely ap-
proximate perfect degeneracy, especially deep in the dimer
phase. The splitting within the four lowest-energy states is
here much smaller than their separation from the rest of the
spectrum.

Spin correlation functions can be used to illustrate lo-
calization of edge modes. Even in short chains, topological
edge modes are clearly localized, as we discuss in Sec. III B.
The correlation of spins between edges is notably more pro-
nounced in the topological dimer phase compared to the
Haldane-like phase and increases with stronger dimerization.
As edge-edge correlations increase, edge-bulk correlations di-
minish. In contrast, the inelastic signal of topologically trivial

dimerized chains is more pronounced within the bulk than at
the edges.

Our main conclusion is that the topological degeneracy
is generally more robust for chains with alternating AFM
couplings, i.e., a spin variant of the SSH model, than for
models mimicking Haldane chains, i.e., for alternating FM
and AFM couplings. Higher robustness means here that, e.g.,
larger NNN couplings or stronger z-axis anisotropies can be
added to the ideal chain without significantly coupling the
edge states and thus destroying the topological phase.

We also discuss z-axis anisotropy for both alternating cou-
pling constants because we wanted to discuss spin chains
on surfaces and the direction perpendicular to the surface
is clearly special. This agrees with earlier studies based on
chains with periodic boundary conditions [33,36,73] that re-
ported a similarly clear difference in robustness between the
Haldane limit and the dimer regime for a slightly different
variant of z-axis anisotropy.

While there are significant finite-size effects when AFM
NNN couplings are involved, even relatively short chains
support parameter regimes with reasonably protected edge-
state degeneracy. Finite-size effects for FM NNN couplings
are small; see Fig. 13. For z-axis anisotropy, our criterion
of approximate ground-state degeneracy agrees reasonably
well with phase diagrams based on more sophisticated ap-
proaches applicable to the TL [34,34,103,104]; see Figs. 14
and 15. This suggests that even rather short chains, which can
be achieved in experiment, support observable signatures of
topological edge-state degeneracy.

In agreement with results for SSH models with hard-core
bosons [55] and in contrast to noninteracting bosons [53],
we find that topological degeneracy can survive substantial
NNN coupling. This can be related to the fact that our spin
model with alternating stronger and weaker AFM bonds cor-
responds to a hard-core bosonic SSH model with additional
inter-site density-density interactions. While this SSH-like
scenario is more robust w.r.t. FM NNN coupling, AFM NNN
couplings are the one aspect where the Haldane-like scenario
offers more protection. Once z-axis anisotropy and NNN cou-
plings are both active, dimerized SSH-like chains are again
more robust than Haldane chains.

Edge states of topologically nontrivial spin systems have
become an area of intense research, especially in two di-
mensions, e.g., for the Kitaev model [105-107]. In contrast
to edge states of superconducting Kitaev chains, which can
be observed in an STM [108], they are not charged, which
makes them more challenging to investigate. This comes in
addition to the fact that there is currently no clear route to
the implementation of a Kitaev spin liquid on a surface. A
new idea in this direction is the recent proposal to realize the
Kitaev honeycomb model with quantum dots [109].

Our one-dimensional model is based on available building
blocks, as the examination and manipulation of adatoms with
an STM is a widely used method [13,80-87,94,95,110-114],
and the reviews in Refs. [80,111,112] provide an overview
of this topic. Such finite and imperfect spin chains may thus
provide a feasible starting point for the observation of topo-
logically protected edge states in microscopically assembled
spin structures. This has been already exploited to measure
edge states of the Haldane chain [46], where the splitting can
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FIG. 17. Finite-size effect of the transition where ®pr = 0.5 in
the upper left part of Fig. 13.

be reduced by making the chain longer. Splitting in the dimer
scenario can be tuned by the ratio J;/J,, so that tunneling
times can potentially be made shorter or longer by placing
the dimers closer together or farther apart. Indeed, measure-
ments of edge states in alternating spin-1/2 chains have been
reported very recently [48,49].
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APPENDIX: NNN-COUPLING

Figure 13 in the main text depicts the impact of NNN
coupling on isotropic alternating chains. Here we add further
insights to this figure.

Figure 17 illustrates the finite-size effects from the upper
left part of Fig. 13. It shows the value J{,, where ®pr crosses

—< /;=0.1
—— /=03

—— /1 =0.5
—¥— /1 =07

—— J1=0.9

0.051
E/}R
N 07
)

-0.051

0.1 : 5 ,

0 0.5 1 1.5 2
Innn/a

FIG. 18. Correlation function as a delimiter between the edge-
state and the decoupled-chain origin of ground-state degeneracy in
the upper right part of Fig. 13.

e = 0.5. Since 1/JSyy decreases as 1/N decreases, the
transition in the upper left part of Fig. 13 diverges in the
thermodynamic limit.

In the upper right part of Fig. 13, for an odd number N/2,
there is a transition from a topologically fourfold degenerate
ground state characterized by edge states to a fourfold degen-
eracy of decoupled chains, each with a ground-state doublet.
Figure 18 illustrates that this transition can be identified by
a change in the sign of the correlation function (S7 - S%). For
strong dimerization J; < 1, this sign change occurs at J; =
Jann. This behavior can be attributed to frustration: when
Ji > Jnnws the AFM coupling J; is satisfied while Jynw 1S
not, resulting in (S5 - S5) > 0. Conversely, when J; < Jxn,
Jnnn s satisfied and (S5 - S5) < 0. As J; approaches J5, indi-
cating weak dimerization, the weaker dimerization becomes
the dominant contribution, shifting the transition point away
from J] = JNNNo
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