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Peculiar corner states in magnetic fractals
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Topological excitations in periodic magnetic crystals have received significant recent attention. However, their
fate once the lattice periodicity is broken is an open question. In this paper, we theoretically study the topological
properties embedded in the collective dynamics of magnetic texture array arranged into a Sierpiński carpet
structure with effective Hausdorff dimensionality df = 1.893. By evaluating the quantized real-space quadrupole
moment, we obtain the phase diagram supporting peculiar corner states that are absent in conventional square
lattices. We identify three different higher-order topological states, i.e., outer corner state and type-I and II inner
corner states. We further show that all these corner states are topologically protected and are robust against
moderate disorder. Full micromagnetic simulations are performed to verify theoretical predictions with good
agreement. Our results pave the way to investigating topological phases of magnetic texture based fractals and
bridging the gap between magnetic topology and fractality.
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I. INTRODUCTION

Due to the potential applications of topological insulators
(TIs) in information transmission and quantum comput-
ing [1–3], researching the topological phase of matter has
become one of the central topics in physics and engineering.
Moreover, the discovery of higher-order TIs (HOTIs) [4–10]
has further extended the scope of the topology family. In
condensed matter physics, the natural and artificial mate-
rials are generally characterized in the context of crystals
which consist of periodically arranged atoms with trans-
lational symmetry. The quantized topological invariants in
momentum space can therefore be conveniently computed
to describe the topological states, which constitutes the so-
called bulk-boundary or bulk-corner correspondence [11–14].
Interestingly, there also exist some other materials which have
ordered structure but do not support translational symmetry,
such as quasicrystals [15,16] and fractals [17,18]. Fractals
can be divided into two categories, i.e., random and deter-
ministic fractals [19]. The most distinct features of fractals
are self-similarity and fractional dimensions. The effective
noninteger Hausdorff dimensionality of a fractal is defined
by d f = ln a/ln b [20,21], where a denotes how many fractal
structures of the previous generation are needed to build the
next generation, and b represents the ratio of the geometrical
size for two adjacent generations. Very recently, the study
of the topological phenomena in fractal lattices has begun
to attract attention [22–28]. Because the fractal lattice lacks
translational symmetry and Bloch’s theorem is not applicable
anymore, the topological invariants thus should be determined
in real space [29–31]. Owing to the existence of the multiple
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internal edges and corners, the fractal geometries can support
fascinating topologically protected inner edge states and cor-
ner states, which have been demonstrated experimentally in
acoustic and photonic systems [32–34].

In magnetic systems, spin waves (or magnons) and mag-
netic textures (which can also be viewed as bound states of
infinite magnons) are two important excitations. By utilizing
the nonlinear effect, Wu et al. [35] and Richardson et al. [36]
experimentally observed a spin-wave fractal in the frequency
domain when the power of the input microwave exceeds a crit-
ical value. Additionally, it has been shown that the spin-wave
spectra can be tuned over a wide range of frequencies in mag-
netic deterministic fractals, such as Sierpiński carpets [37,38]
and triangles [39,40]. On the other hand, over the past decade,
various topological states in magnon- and texture-based crys-
tals with integral dimensions have been reported, for example,
the first-order TIs (FOTIs) [41–44], HOTIs [45–48], and
topological semimetals [49–52]. However, the exciting com-
bination of magnetic fractals and topological physics is yet to
be explored. One can expect that magnetic fractal geometry
can be used to localize topologically protected spin waves (or
texture oscillations), which are particularly helpful for design-
ing magnonic devices with robust multimode transmission
channels.

In this paper, we study the topological properties of a
fractal lattice based on magnetic textures. We take a Sierpiński
carpet as an example to demonstrate the principle. The vortex
is considered a typical magnetic texture to show the exotic
fractal higher-order topological states. By solving Thiele’s
equation, we obtain the band structure of the magnetic texture
fractal lattice. The phase diagram of the system is derived
by evaluating the real-space quadrupole moment, from which
we conclude that, when d1/d2 > 1.5 (<1.5), the system is
in second-order topological (trivial) phase. Here, d1 and d2
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FIG. 1. Illustration of the Sierpiński carpet array of magnetic
vortices. G(n) (n = 1, 2, 3, ...) denotes the nth generation fractal lat-
tice. d1 and d2 represent the alternating geometric lengths. The inset
plots the micromagnetic structure of a single vortex with topological
charge Q = + 1

2 .

denote the alternating lengths between neighboring vortices,
as shown in Fig. 1. Interestingly, when the system is in the
HOTI phase, we discover three different topologically pro-
tected corner states with the oscillations confined at outer or
inner corners. Our model mimics the two-dimensional Su-
Schrieffer-Heeger (SSH) model of higher-order topology, as
discussed in other systems [53–55]. We also perform micro-
magnetic simulations to confirm theoretical predictions with
good agreement. Our results show that magnetic texture frac-
tal lattices have potential applications for providing abundant
topological modes in information processing, which should
greatly promote the development of topological spintronics.

II. MODEL

In deterministic fractals, a Sierpiński carpet is one of the
key structures, which has been widely considered for dis-
cussing topological phenomena [28,33,34]. In this paper, we
focus on the second-generation Sierpiński carpet consisting of
magnetic vortices, as shown in Fig. 1. For an nth-generation
lattice, the total number of vortices is N = 4 × 8n. The cor-
responding Hausdorff dimensionality can be calculated as
d f = ln 8/ln 3 ≈ 1.893, which does not depend on the value
of the generation.

The collective dynamics of the vortex lattice can be char-
acterized by the massless Thiele equation [56,57]:

Gẑ × dU j

dt
+ F j = 0. (1)

Here, G = −4πQwMs/γ is the gyroscopic coefficient, Q =
1

4π

∫∫
dxdym · ( ∂m

∂x × ∂m
∂y ) is the topological charge, m is the

unit vector of the local magnetic moment, w is the thickness of
the nanodisk, Ms is the saturation magnetization, and γ is the
gyromagnetic ratio. The displacement of the vortex core from
the equilibrium position can be expressed as U j = R j − R0

j .
The conservative force F j = −∂W/∂U j , with W being the
total potential energy (including the contributions from the

confinement of disk boundary and the interaction between
nearest-neighbor vortices): W = ∑

j KU2
j/2 + ∑

j �=k Ujk/2,

where Ujk = I‖U
‖
j U ‖

k − I⊥U ⊥
j U ⊥

k [58,59]. Here, K is the
spring constant, and I‖ and I⊥ are the longitudinal and trans-
verse coupling constants, respectively.

Imposing U j = (u j, v j ) and ψ j = u j + iv j , and adopting
the rotating wave approximation, Eq. (1) can be recast as [60]

−iψ̇ j =
(

ω0 − ξ 2
1 + ξ 2

2

ω0

)
ψ j +

∑
k∈〈 j〉,l

ζlψk

− ξ1ξ2

2ω0

∑
s∈〈〈 j〉〉1

exp(i2θ̄ js)ψs

− ξ 2
2

2ω0

∑
s∈〈〈 j〉〉2

exp(i2θ̄ js)ψs

− ξ 2
1

2ω0

∑
s∈〈〈 j〉〉3

exp(i2θ̄ js)ψs, (2)

where ω0 = K/|G|, ζl = (I‖,l − I⊥,l )/2|G|, ξl = (I‖,l + I⊥,l )
/2|G|, l = 1, 2 denotes the different bond, θ̄ js is the relative
geometric angle, and 〈 j〉 is the set of nearest neighbors
of j. For any site j, there exist three different routes to
couple next-nearest neighbor sites, i.e., d1 → d1, d2 → d2,
and d1 → d2 (or d2 → d1) hoppings, which correspond
to 〈〈 j〉〉3, 〈〈 j〉〉2, and 〈〈 j〉〉1, respectively (see Fig. 1). By
solving Eq. (2), one can obtain the spectra and eigenmodes
of the vortex lattice. In this paper, we use the parameters of
a Permalloy (Py) [61,62] nanodisk with thickness w = 10
nm and radius r = 50 nm. Then we get the gyrotropic
frequency ω0 = 2π × 0.939 GHz, gyroscopic coefficient
G = −3.0725 × 10−13 J s rad−1 m−2, and spring constant
K = 1.8128 × 10−3 J m−2 [10]. The explicit expressions for
I‖ and I⊥ as a function of d have been determined in our previ-
ous work [10]: I‖ = μ0M2

s r(−1.72064 × 10−4 + 4.13166 ×
10−2/d3−0.24639/d5+1.21066/d7 − 1.81836/d9) and I⊥ =
μ0M2

s r(5.43158×10−4−4.34685×10−2/d3 + 1.23778/d5 −
6.48907/d7 + 13.6422/d9), where d is the dimensionless
distance parameter normalized by the nanodisk radius r, and
μ0 is the vacuum permeability.

III. CORNER STATES IN FRACTAL LATTICES

The spectrum of the second-generation Sierpiński carpet
(see Fig. 1) as a function of d1/d2 is depicted in Fig. 2(a). We
can see that the system supports several different bands, indi-
cating abundant states emerging in this structure. When d1/d2

is greater than a critical value, an isolated band with fixed fre-
quency ω/2π = 0.939 GHz (gyrotropic frequency of a single
vortex) appears, which is the typical feature for corner states
[marked by the purple arrow in Fig. 2(a)]. To analyze localized
states in detail, we choose the geometric parameters d1 = 194
nm and d2 = 106 nm (d1/d2 = 1.83), with the eigenfrequen-
cies shown in Fig. 2(b). By plotting the spatial distribution of
the eigenfunctions, we identify five different states: bulk state,
edge state, outer corner state, type-I inner corner state (with
oscillations spreading to all three vortices at the inner corner),
and type-II inner corner state (only two nonadjacent vortices
oscillate), marked by black, blue, red, magenta, and cyan dots
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FIG. 2. (a) The eigenfrequencies of the second generation Sierpiński carpet lattice of magnetic vortices for different values of d1/d2. Here,
we fix d1 + d2 = 6r. (b) The eigenfrequencies of the system with d1/d2 = 1.83 as marked by dashed red line in (a). (c) Four different basic
elements of Sierpiński carpet lattice when d1 → ∞. The spatial distribution of vortex oscillations for the (d) bulk, (e) edge, (f) outer corner,
(g) type-I inner corner, and (h) type-II inner corner states.

in Fig. 2(b), respectively. The emergence of these states can
be intuitively understood by considering the zero-correlation
length limit, i.e., d1 → ∞ (d1 = 1.83d2 and d1 → ∞ are
in the same topological phase, as discussed below). In this
case, the system has four different basic elements: monomer,
dimer, trimer, and tetramer, as shown in Fig. 2(c). Therefore,
when the vortex oscillations are localized to monomer posi-
tion, the lattice exhibits the outer corner state [see Fig. 2(f)].
If the oscillations are confined to dimer and tetramer positions,
the system, however, supports the edge state [see Fig. 2(e)]
and bulk state [see Fig. 2(d)], respectively. Interestingly, when
the trimer positions dominate the oscillations, the vortex lat-
tice shows two different inner corner states, i.e., type I [see
Fig. 2(g)] and type II [see Fig. 2(h)]. This characteristic is
reminiscent of the corner states emerging in obtuse-angled
corners of a breathing honeycomb lattice [47].

Since the fractal lattice lacks translational symmetry, the
topological invariant should be calculated in real space to
characterize HOTIs. One of the appropriate topological invari-
ants is the real-space quadrupole moment Qxy, which is given
by [30,31,34]

Qxy = − i

2π
ln[det(S)] mod 1,

Sn,m = V ∗
n exp

(
i2π x̂ŷ

lxly

)
Vm, (3)

where Vn is the nth wave function [by solving Eq. (2)] of
the fractal lattice with periodic boundary conditions in both
x and y directions, x̂ (ŷ) is the position operator along the x (y)
direction, and lx (ly) is the length of the lattice in the x (y) axis.
Interestingly, we note that the second-generation Sierpiński
carpet can be constructed from a square lattice by removing

nine subsquares (see Fig. 1). Comparing the band structure
of an infinite square lattice [60] with Fig. 2(b), one finds that
the corner states of the fractal lattice mainly emerge between
the third and fourth energy bands. We therefore consider 3

4
band filling (i.e., the bands below the outer corner states are
filled) to calculate the real-space quadrupole moment. Fig-
ure 3(a) plots the dependence of Qxy on the ratio d1/d2 with
red dots. For comparison, the topological invariant Z4 Berry
phase of the square lattice is also plotted with black dots. We
can clearly see that Qxy is quantized to 0 when d1/d2 < 1.5
and to 0.5 otherwise, indicating that d1/d2 = 1.5 is the phase
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d1/d2. (b) The eigenfrequencies of collective vortex oscillations for
fractal lattice under different disorder strengths. Here, the value of
d1/d2 is fixed to 1.83.

024402-3



ZHIXIONG LI AND PENG YAN PHYSICAL REVIEW B 110, 024402 (2024)

0.5 1.0 1.5 2.0

0.0

0.5

1.0

Q
xy

d1/d2

1.5

0.5 1.0 1.5 2.0

0.0

0.5

1.0

Q
xy

d1/d2

1.26

0.5 1.0 1.5 2.0

0.0

0.5

1.0

Q
xy

d1/d2

1

0.5 1.0 1.5 2.0

0.0

0.5

1.0
Q
xy

d1/d2

1.15

(a) (b) (c) (d)

(e) (f) (g) (h)

G(1)

G(1)

G(2) G(2) G(3)

FIG. 4. (a)–(d) Illustrations of vortex lattices with more and more voids. (e)–(h) Corresponding topological invariant quadrupole moments.

transition point separating the trivial and higher-order topo-
logical phases.

Additionally, we identify that the quadrupole moment is
origin independent, which is like the case in an electronic
system [27]. It is well known that the phase transition point is
d1/d2 = 1 for a square lattice. In such a case, we can say that
the nontrivial standard region is squeezed from a square lat-
tice [d1/d2 ∈ (1,+∞)] to fractal cases [d1/d2 ∈ (1.5,+∞)].
This squeezing phenomenon can be explained by the spatial
translational symmetry breaking resulting from the voids. We
further verify that the more severe the spatial translational
symmetry breaking, the larger the value of topological phase
transition point d1/d2, as shown in Fig. 4. One can naturally
expect such a case: If the spatial translational symmetry is
totally broken, the system cannot support any topological
phases, i.e., phase transition point d1/d2 → ∞. Moreover, we
find that the phase transition point is independent of the num-
ber of the carpet generations [see Figs. 3(a) and 4(h)], which
can be qualitatively understood by the fact that, because of the
self-similarity, different generations have the same degree of
spatial translational symmetry breaking [34]. Moreover, we
must point out that the first (second)-generation Sierpiński
carpets emerging in Figs. 4(c) and 4(d) are different due to
the distinct duty cycle.

For conventional periodic lattices, at the topological phase
transition point, the band gap closing/opening can be clearly
observed in momentum space, while we can only obtain
the real-space spectrum for fractals owing to the fact that
Bloch’s theorem fails to describe the bands. The real-space
spectrum exhibits great width for different bands (bulk, edge,
and corner). Although it is difficult to identify the gap
closing/opening at a topological phase transition point, we
can find that the corner and bulk [red and black arrows in
Fig. 2(a)] bands begin to separate in frequency when d1/d2 =
1.5, which corresponds to the topological phase transition
point.

To further examine whether the corner states emerging
in Fig. 2(b) are topologically protected, we calculate the

eigenfrequencies of the fractal vortex lattice under different
disorder strengths, with the result being plotted in Fig. 3(b).
Here, the disorders are introduced by supposing that the cou-
pling parameters ζ and ξ suffer a random change, i.e., ζ →
ζ (1 + δZ ) and ξ → ξ (1 + δZ ), where δ denotes the strength
of the disorder, and Z is a random number uniformly dis-
tributed between −1 and 1, which apply to all vortices. We
average the numerical results for 100 realizations to avoid
the error from a single calculation. From Fig. 3(b), we can
see that both frequencies of the outer and inner corner states
are robust for moderate disorder strength. Interestingly, we
find the critical value of disorder strength for shifting the
frequencies of the outer corner states is larger than those for
the inner corner states, which indicates that the outer corner
state has stronger topological stability than the inner ones.

Additionally, if we introduce random empty sites in the
square lattice, localized states around the empty sites may
appear. However, these local modes are not protected by
symmetry and therefore are trivial. As a result, the critical
difference between a fractal and a conventional square lattice
with random empty sites is that the corner states are topolog-
ically protected in fractals while not in a conventional square
lattice with random empty sites.

Our model can also be mapped to the tight-binding model
with the following Hamiltonian:

H =
∑

j

(
ω0 − ξ 2

1 + ξ 2
2

ω0

)
ψ∗

j ψ j + ζ
∑
〈 jk〉

ψ∗
j ψk

−ξ1ξ2

2ω0

∑
〈〈 jk〉〉1

exp(i2θ̄ jk )ψ∗
j ψk

− ξ 2
2

2ω0

∑
〈〈 jk〉〉2

exp(i2θ̄ jk )ψ∗
j ψk

− ξ 2
1

2ω0

∑
〈〈 jk〉〉3

exp(i2θ̄ jk )ψ∗
j ψk + c.c. (4)
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FIG. 5. (a) The temporal Fourier spectra of the vortex oscilla-
tions at different positions as marked in Fig. 1. (b)–(f) The spatial
distribution of fast Fourier transform (FFT) intensity for different
modes.

Comparing with the two-dimensional SSH model [53–55],
our Hamiltonian contains an extra on-site term

∑
j[ω0 −

(ξ 2
1 + ξ 2

2 )/ω0]ψ∗
j ψ j , which breaks the chiral symmetry. As

a result, the corner and bulk states are spectrally sepa-
rated in our model, while for the SSH system, these states
spectrally overlap with each other. Remarkably, this feature
provides advantages to distinguish different modes in our
system. Additionally, the mechanism for generating higher-
order topology is analog to the SSH model. The higher-order
topological states emerging in our model are protected by C4

symmetry.

IV. MICROMAGNETIC SIMULATIONS

To verify the theoretical predictions about the fractal
higher-order topological states, we perform full micromag-
netic simulations [63]. The second-generation Sierpiński
carpet array consisting of 256 identical magnetic vortices is
considered, as shown in Fig. 1. We compute the temporal
fast Fourier transform (FFT) spectrum of the vortex oscilla-
tions at different positions, labeled 1, 10, 40, 64, and 65 in
Fig. 1. Figure 5(a) plots the numerical results, with black,

blue, red, cyan, and magenta curves representing the positions
of bulk (No. 40), edge (No. 10), outer corner (No. 1), inner
corner 1 (No. 64), and inner corner 2 (No. 65) bands, re-
spectively. From Fig. 5(a), we find that, near the frequency
of 0.94 GHz, the outer corner band has a very strong peak,
while other bands do not, which is an obvious feature of
an outer corner state with oscillations confined only at four
outer corners. The frequency range supporting other states
can be obtained through a similar principle. The spatial dis-
tributions of the FFT intensity with representative frequencies
are plotted in Figs. 5(b)–5(f) to visualize the characteristics
of different modes. We can identify the bulk, edge, outer
corner, and inner corner states of both type-I and II with vortex
oscillation localized at the tetramer [see Fig. 5(b)], dimer [see
Fig. 5(c)], monomer [see Fig. 5(d)], and trimer [see Figs. 5(e)
and 5(f)], respectively. Interestingly, due to the absence of
dimers in the smallest vacant squares, the type-I inner corner
states exhibit exotic characteristics with oscillation spreading
over all vortices in these regions. These results agree well with
the theoretical calculations presented in Fig. 2.

V. DISCUSSION AND CONCLUSION

From an experimental perspective, the fabrication and
detection of HOTIs in magnetic texture fractal are fully
within the reach of current technology. On the one hand,
artificial fractals of magnetic nanodisks (it is convenient to
obtain vortex or skyrmion states when appropriate parameters
are chosen) can be created with electron-beam lithogra-
phy [65,66] or x-ray illumination [67]. On the other hand,
the nanometer-scale magnetic texture positions can be tracked
by using a biased conductive scanning nanoscale tip [68] or
ultrafast Lorentz microscopy technique [69]. The magnetic
texture arrays thus provide an ideal platform for studying
fractal topology. In addition, higher-order topological states
emerging in magnetic texture fractal lattices are expected to
have a lot of potential applications for information processing.
For example, the topologically protected inner corner states in
fractal geometry provide massive oscillation sources, which
can be used to design multifrequency robust nano-oscillators.
Additionally, by constructing fractal lattice with different
generations, one can achieve the localization of magnetic tex-
ture oscillations (information) at desired positions for display
application.

Comparing with a two-dimensional square lattice with
translational symmetry, our model exhibits several unusual
properties, apart from some similarities. Firstly, the Sierpiński
carpet is constructed by cutting numerous subsquares from
the two-dimensional square lattice. Therefore, the unit cell
contains four sites both for fractal and square lattices. Sec-
ondly, due to the existence of multiple internal edges and
corners, the fractal lattices have more edge and corner states
than conventional square lattices. Thirdly, when considering
the second-order topological phase, there only exist three
basic elements for square lattices, i.e., monomer, dimer, and
tetramer; however, the fractal lattice has an additional trimer.
As a result, the fractal lattices can support exotic inner cor-
ner states, while square lattices cannot. Finally, both corner
states emerging in fractal and square lattices are protected by
fourfold rotation symmetry.
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In this paper, we only focus on the Sierpiński carpet
array, while other fractal lattices, for example, Sierpiński
gaskets [28,32] and Koch curves [22], should support exotic
localized topological modes too. In addition to the magnetic
vortex, there exist several other magnetic textures, such as
skyrmions [70,71], magnetic bubbles [72,73], and domain
walls [74,75]. The study of fractal TIs based on these mag-
netic textures is an appealing research topic, from which one
can expect the multichannel propagation of magnons and
topologically protected multimode oscillators. To accurately
describe the dynamics of a vortex, the higher-order terms,
like the mass term and non-Newtonian gyration term, should
be added to Thiele’s equation [10,43]. In such a case, the
system then may provide more topologically protected outer
and inner corner states, which is also an interesting issue for
study.

To summarize, we have investigated the higher-order topo-
logical phases in a second-generation Sierpiński carpet of
magnetic vortices. The band structures of the collective vortex
oscillations were calculated by solving Thiele’s equation. We
found that the fractal lattice can exhibit one type of outer
corner state and two different types of inner corner states

under proper geometric conditions. By evaluating the real-
space quadrupole moment as the topological invariant, we
obtain the full phase diagram. We showed that both outer and
inner corner states are topologically robust against moderate
disorder. Full micromagnetic simulations were performed to
verify the theoretical predictions with great agreement. Our
findings provide important theoretical reference to investi-
gating the in-gap states in magnetic texture based fractals,
which also represent a crucial step for combining fractal and
topological physics.
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