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Orientation-position coupling in the two-dimensional XY model
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The XY model is a valuable tool for analyzing spin systems. While the two-dimensional (2D) classical XY
model and its variations that only consider spin interactions have been extensively studied, limited exploration
has been conducted on the 2D XY model with orientation-position coupled (OPC) interactions. In the present
study, we extend the 2D classical XY model by making the exchange energy dependent on the spin position;
this model is referred to as the 2D compressible XY (CXY) model. Compared to the 2D classical XY model,
we find that the OPC interaction enhances the stability of the orientational structure of the system. The
deformation induced effects on the rotational degrees of freedom of the system indicates that the increase
in the stretching deformation enhances the orientational order of spins. Furthermore, the coupling between
orientation and position is demonstrated by calculating the joint probability distribution of spin orientation and
position fluctuations. This study advances comprehension of spin systems’ elasticity and provides new ideas for
controlling the stability of the orientational order of spin systems.
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I. INTRODUCTION

The XY model has been extensively studied in the fields
of statistical physics and condensed matter physics, yielding
fruitful results both theoretically and experimentally [1–3].
Notably, since Berezinskii [4], Kosterlitz [5,6], and Thouless
[5] discovered topological defects and unconventional phase
transitions in the two-dimensional (2D) classical XY model,
numerous research papers have explored phase transitions
and critical phenomena in similar models. In recent years,
the 2D classical XY model and its extensions have remained
an active area of research. For example, researchers have
utilized a nonequilibrium expansion of the XY model to in-
vestigate the static and dynamic properties of vortices and the
effect of self-spinning on the Berezenskii-Kosterlitz-Thouless
phase transition scenario [7]. Machine learning techniques
have been employed to identify the XY model’s phases struc-
ture and phase transitions [8–10]. Vision cone interactions
have also been introduced in the XY model with short-range
coupling, revealing an accurate long-range ordered phase
where the directed propagation of defects disrupts the parity
and time-reversal symmetry of spin dynamics [11]. These
studies related to the XY model and its extensions have con-
sidered only spin interactions.

It is widely acknowledged that orientation-position cou-
pling (OPC) are prevalent in nature, impacting various physi-
cal properties and dynamic behaviors of systems, such as the
phase behaviors [12–14], thermodynamic properties [15], ma-
terial microstructure [16], etc. Previous studies have investi-
gated similar scenarios, such as spin-lattice coupling [16–19],
spin-phonon coupling [20,21], magnetoelastic interactions
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[22–24], the compressible Ising model [12,25,26], and the
Doye model [27]. Among these, the compressible Ising
model, introduced by Landau et al., exhibits phase separa-
tion when the exchange energy between spins influenced by
the elastic interaction in a Lennard-Jones-like way [12]. The
Doye model, comprising a Lennard-Jones-like potential and
an anisotropic factor, offers insights into the phase transition
of 2D crystal composed of Janus colloidal particles. Elastic
effects within the Doye model lead to a first-order solid-solid
transition within the system [28,29]. Therefore, it is highly
important to consider the OPC, i.e., the lattice deformations
in spin systems. Recently, the coupling of the XY model and
the Fermi-Pasta-Ulam-Tsingou β model, a compressible XY
model, has been used to study heat conduction in a 1D chain
of particles with OPC interaction [30]. At low temperatures,
the OPC interaction reduces the thermal conductivity of the
translational degrees of freedom and makes the thermal con-
duction different between translational and rotational degrees
of freedom.

In real spin systems, it is imperative to consider elas-
tic interactions. This research focuses on studying lattice
deformation effects in a 2D spin-lattice system with OPC.
To accommodate OPC, we extend the XY model by incor-
porating a position-dependent exchange energy, similar to
approaches seen in the compressible Ising and Doye models,
resulting in the 2D compressible XY (CXY) model. We em-
ploy molecular dynamics methods to simulate both the XY
and CXY models under equilibrium condition. We find that
OPC interaction enhances the orientational order of the spins.
OPC interaction causes a rise in the distances between nearest-
neighboring spins within the system. Moreover, compression
and stretching of the CXY model are simulated by adjusting
the lattice constants a. We find that, as long as the lat-
tice structure remains intact, the stability of the orientational
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structure is enhanced during lattice stretching. Additionally,
we explore the coupling effects between spin orientation and
position by calculating the joint probability density distribu-
tion of spin orientation and position fluctuations.

The paper is structured as follows: In Sec. II, the model,
simulation method, and parameter settings are presented in
detail. In Sec. III we show the numerical results and conducts
a detailed analysis. The last section summarizes the findings
and offers a discussion in the importance of considering OPCs
in spin systems.

II. MODEL AND SIMULATION METHODS

In this context, we extend the ferromagnetic XY model on
the square lattice to include the OPC interaction, taking cues
from both the compressible Ising model [12,15,26] and the
Doye model [28,29]. The pair interaction �i j between two
neighboring spins, i and j, is

�i j (ri j, θi, θ j ) = f (θi, θ j )U (ri j ). (1)

In Eq. (1), the orientation-dependent factor f takes the
form of the XY model

f (θi, θ j ) = A − Jcos(θi − θ j ), (2)

where J is the coupling constant and θi is the orientation of
the ith spin. The position-dependent factor U takes the form
of the Lennard-Jones (LJ) potential

ULJ (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
+ B, (3)

where ri j is the distance between the nearest-neighboring
spins i and j, σ represents the characteristic length in the
spin interaction, and ε indicates the depth of the potential
well. Similar to the 2D compressible Ising model, the model
described by Eq. (1) can be referred to as the 2D CXY model.
For theoretical exploration, we introduce constants A and B,
setting values that are not too small, such as A = 40 and
B = 2.0. On the one hand, a sufficiently large A can increase
the well depth of the LJ potential, allowing the system to
maintain its lattice structure within the simulated temperature
range. On the other hand, a B value exceeding 1.0 ensures
that the potential energy minimum of the LJ potential remains
positive, ensuring the behavior of the spin system as a ferro-
magnetic system.

Rather than employing the Monte Carlo method
[11,31,32], tensor renormalization group [33] or tensor
networks [34] to study the XY model, we aim to examine
the spin system based on the its dynamical details. So, we
implement the molecular dynamics simulation [28,35] of
the CXY model by introducing the kinetic energy term. The
Hamiltonian of the CXY model is defined as

H =
∑
i, j

[
1

2
mv2

i + 1

2
Iω2

i + �i j

]
, (4)

where the sum runs over all nearest-neighboring lattice sites
of i. vi represents the velocity vector of the spins’ transla-
tional degrees of freedom. ωi denotes the angular velocity of
the spins. The first two terms within the summation on the
right-hand side of Eq. (4) correspond to the translational and

rotational kinetic energies, respectively. The NVT ensemble of
the solid state of the CXY model is simulated using periodic
boundary conditions and a Langevin thermostat [36]. The
equations of motion governing the system are given by

ẋi = vi, θ̇i = ωi,

mv̇i = −∂H

∂xi
+ (−λt vi + ξi )δi, (5)

Iω̇i = −∂H

∂θi
+ (−λrωi + ηi )δi,

where i = 1, 2, . . . , L2 (L = 128). ξi and ηi denote Gaussian
white noise and satisfy

〈ξi〉 = 0, 〈ηi〉 = 0,

〈ξi(t )ξi(t
′)〉 = 2λt kBTiδ(t − t ′), (6)

〈ηi(t )ηi(t
′)〉 = 2λrkBTiδ(t − t ′),

where 〈· · · 〉 represents the ensemble average, and λt , λr are
the coupling strengths of the system’s translational and ro-
tational degrees of freedom to the heat bath, respectively.
Throughout the simulation, we set dimensionless unit mass m,
rotational inertia I , and the Boltzmann constant kB to 1.0 for
simplicity, resulting in temperature being expressed in energy
units. Ti denotes the temperature of the heat bath.

In the simulations, we use the second-order BAOAB
algorithm [37] with a time step of t = 0.005 to solve
the stochastic differential equations in Eq. (5). We use a
homemade CUDA program to perform molecular dynamics
simulations on GPUs. In the system’s initial state, we initialize
the distance ri j = aD (a = 6

√
2σ is the equilibrium distance,

while D denotes the compression ratio) and θi = 0 for all
spins. A simulation is performed at each temperature T and
compression ratio D, with the system eventually reaching
an equilibrium state following a sufficiently long relaxation
time. All the statistics and analysis are then performed on
the system in this equilibrium state. Extra tests ensure that
the current system is large enough with no obvious finite-size
effects.

III. RESULTS

The XY model exhibits a Berezinskii-Kosterlitz-Thouless
phase transition [4–6,38], transitioning from a quasiordered
to a disordered phase as temperature rises, accompanied by
the decoupling of vortex pairs. In the absence of an external
magnetic field, the spontaneous magnetization [11] serves as
an order parameter of the XY model, delineating the shift from
a low-temperature quasiordered state to a high-temperature
disordered state. The spontaneous magnetization is described
by

M =
√(∑

cosθi
)2 + (∑

sinθi
)2

L2
, (7)

where the sum runs over all lattice sites, and L2 denotes the
size of the system. Spontaneous magnetization susceptibility

χ = 〈M2〉 − 〈M2〉, (8)
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FIG. 1. (a) Average of spontaneous magnetization 〈MXY〉 (red) and 〈MCXY〉 (blue) as function of T . (b) The spontaneous magnetization
susceptibiliaty 〈χXY〉 (red) and 〈χCXY〉 (blue) as function of T . (c) The dependence of 〈MCXY〉/〈MXY〉 on T . (d) The probability density
distribution of the mean distance between spins at different temperatures ranges from 0.7 to 1.4 with 0.1 increments. The solid and dashed
lines represent the LJ potential and the CXY model, respectively. (e) The ratio of the means of the two sets of probability density distributions
in (d) as function of T .

with a sharp peak occurring close to the critical point. For
comparison with the XY model, we employ both Eqs. (7) and
(8) to measure the transition of the orientational structure from
a low-temperature quasiordered state to a high-temperature
disordered state in the CXY model.

The average spontaneous magnetization 〈M〉 per spin and
the spontaneous magnetization susceptibility χ , against tem-
perature T , are illustrated in Figs. 1(a) and 1(b), respectively.
Averages 〈·〉 are taken over all spins and multiple realizations
in the same set of parameters. In Figs. 1(a) and 1(b), the tem-
perature dependence of 〈M〉 and χ for both the XY model and
the CXY model indicates transitions occurring within a finite
temperature range. However, the curves for the two models
do not overlap in either Figs. 1(a) or 1(b), and all values of
〈MCXY〉/〈MXY〉 greater than 1.0 persist even when the system
orientation approaches disorder, reaching a maximum value
of 1.266 [as depicted in Fig. 1(c)] at T = 1.04. This suggests
the presence of other ordered structures in the CXY model,
such as more extensive orientation spatial correlations. We
corroborated that the CXY model exhibits more extended ori-
entation spatial correlation than the XY model by calculating
the spin-spin spatial correlation function (illustrated in Fig. 2).
Additionally, in Fig. 2(b), although the peak for the sponta-
neous magnetic susceptibility for both the CXY model and
the XY model occurs at T ≈ 1.0, the trend of the curves shows
that in simulations with denser temperature points, the peak of
the spontaneous magnetic susceptibility of the CXY model is
observed at a higher temperature compared to that of the XY
model. This can be attributed to OPC interaction enhancing
the stability of the orientational structure within the sys-
tem, resulting in a higher critical temperature. Furthermore,

the probability density distribution of the average distance
between nearest-neighbor spins in the CXY model and the LJ
potential are calculated and depicted in Fig. 1(d), respectively.
Figure 1(e) illustrates how the ratio of the mean values of d

FIG. 2. Decay of spin-spin spatial correlation functions 〈Cθ (R)〉
(in log-log) with R at different temperatures. (a) and (b) denote the
decay of 〈CCXY(R)〉 and 〈CXY(R)〉, respectively.

024312-3



ZHUFEI XIAO, TAO HUANG, AND CHUNHUA ZENG PHYSICAL REVIEW B 110, 024312 (2024)

for the two models at the same temperature in Fig. 1(d) varies
with temperature. Figures 1(d) and 1(e) show that at the same
temperature, the average distance of the nearest-neighboring
spins for the CXY model is larger than that of the LJ poten-
tial, and the ratio between the two increases with increasing
temperature. The two phenomena mentioned above can be
attributed to OPC interaction, which produce more dispersion
at distances between the nearest-neighboring spins than does
the LJ potential as the temperature increases.

To further investigate the effect of OPC interaction on the
rotational degrees of freedom, we study the spin-spin spatial
correlation function defined as

〈Cθ (R)〉 = 〈cos[θi(0) − θ j (R)]〉, (9)

which is plotted in Fig. 2. R is the distance between the ith spin
and the jth spin. Figures 2(a) and 2(b) show the spin-spin spa-
tial correlation functions of the CXY model and XY model,
respectively. When comparing these figures, both the CXY
model and the XY model exhibit quasi-long-range ordering,
characterized by an algebraically decaying spin-spin spatial
correlation function at low temperatures and a completely
disordered phase with an exponentially decaying spin-spin
spatial correlation function at high temperatures. Although
the spin-spin spatial correlation functions of the CXY model
and the XY model decay similarly, the correlation function
of the CXY model declines at a slower rate than that of
the XY model. This finding suggests that the CXY model
has a stronger orientational correlation, explaining why the
CXY model is more ordered than the XY model at the same
temperature, even when the system’s orientation is approach-
ing disorder [as demonstrated in Figs. 2(a), 2(b), and 2(c)].

Systems in nature are subject to various external influ-
ences, such as deformation caused by tension or pressure.
Introducing OPC enables us to examine the behavior of
the orientational structure under system deformation by al-
tering the lattice constant. The lattice constant a = a0D
is varied, in which a0 = 6

√
2σ is the initial distance be-

tween the nearest-neighboring spins in the system, and
D = 0.99, 1.0, 1.005, 1.01, 1.015, 1.02, 1.025, 1.03 as the
compression ratios. D < 1.0 indicates that the system is com-
pressed, while D > 1.0 indicates that the system is stretched.

Figure 3 shows how 〈M〉 and 〈MD〉/〈M1.0〉 depend on
the compression ratios D and temperatures T . When the
system undergoes a 1% compression, the profile of the sys-
tem’s spontaneous magnetization versus temperature closely
resembles that without compression. This alignment corre-
sponds to the temperature dependence of the system energy
and the probability density distribution between average dis-
tance of the nearest-neighbor spins at D = 0.99 (as depicted
in Fig. 4). After compression, as the system reaches an
equilibrium state, the average distances between the nearest-
neighboring spins closely approximate those at a = 0.99a0.
Consequently, an energy competition between the transla-
tional and rotational degrees of freedom emerges, which
closely mirrors that in the absence of compression, resulting
in a spontaneous magnetization that exhibits minimal differ-
ences. However, for the stretching scenario, the behavior of
spontaneous magnetization differs. It increases with a rising
compression ratio D at the same temperature. Furthermore, at
the same compression ratio, 〈MD〉/〈M1.0〉 first increases and

FIG. 3. Average of spontaneous magnetization of CXY model as
function of T and D. (a) and (b) denote the 〈M〉 and 〈MD〉/〈M1.0〉,
respectively.

then decreases with increasing temperature. This observation
suggests that the stretching system can enhance its stability
of the orientational structure and its tolerance to temperature
fluctuations.

To delve deeper into the coupling between orienta-
tion and position, we computed the orientation fluctuation
θi = θi − 〈θi〉, and the position fluctuation xi = xi − 〈xi〉.

FIG. 4. (a) The per spin energy as function of T and D. (b)
The probability density distribution of the average distance between
nearest-neighbor spins at T = 1.0 and D from 0.99 to 1.03.
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FIG. 5. The joint probability density distributions of the spin orientation fluctuation θi and postion fluctuation xi. Rows: The
PDF (θi, xi ) as function of D. Columns: The PDF (θi, xi ) as function of T .

Subsequently, we calculated the joint probability density dis-
tributions of θi and xi, and the results are depicted in
Fig. 5. In Fig. 5, each column and row illustrate the varia-
tions in the joint probability density distribution between θi

and xi with the system temperature T and the compression
ratio D, respectively. For each column in Fig. 5, the nonuni-
formity of the joint probability density distribution between
θi and xi decreases with increasing T , indicating that the
correlation between θi and xi is weakened. This phe-
nomenon arises because, at different compression ratios
[as illustrated in Fig. 3(a)], the system’s orientational struc-
ture consistently transition from a quasiordered state at low
temperatures to a disordered state at high temperatures.

Consequently, as temperature increases, the orientations of
all spins in the system become more uniformly distributed
in (−π, π ]. Concurrently, within each row of Fig. 5, the
probability density distribution becomes more and more con-
centrated as the compression increases, indicating a stronger
correlation between θi and xi. From Fig. 5 (T = 1.0 and
D = 1.0, 1.01), smaller θi appears with higher probability as
the system is stretched, which means that the orientational de-
grees of freedom of the system has a higher order (consistent
with the findings in Fig. 3). This enhancement results from the
OPC, i.e., corporation of xi and θi in energy. In the joint
probability density distribution of the first three rows of Fig. 5,
the equal probability lines are elliptical, indicating that xi
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and θi are not independent. When the system is stretched,
the translational degrees of freedom reach a higher energy
level and the range of translational viborations decreases.
Therefore, θi will change depending on the relationship
between xi and θi. These factors contribute to a more
irregular joint probability density distribution of θi and xi

more uneven.

IV. CONCLUSION AND DISCUSSION

In this study, we extend beyond the classical XY model
and its extensions, which solely consider spin interaction,
by incorporating OPC to examine the impact of lattice de-
formation on the spin system. Results from our molecular
dynamics simulations show that the orientational structure
of the CXY model exhibits greater stability compared to
that of the XY model. This stability is observed to increase
with the stronger extensive spin-spin spatial correlation due
to the scratching deformation of the system. Our findings
suggest that systems incorporating OPC display a more com-
plicated phase structure and dynamic behavior compared to
those considering only rotational degrees of freedom. For
example, the Doye model describes a patch colloidal particle
system that undergoes a solid-solid phase transition [28]. The
spin-lattice coupling in paramagnetic materials CrN causes
nonadiabatic effects, which shorten the lifetime of phonons at
low temperatures [39]. The coupling of electromagnetic inter-
action and elastic interaction in the metamaterial lattice allows
the electromagnetic induction force to change the struc-
ture of the metamaterial and dynamically adjust its effective
properties [40]. The compressibility’s influence can modify
the domain growth exponent, leading to phase separation
in the compressible Ising model [12]. These findings under-
score the importance of considering OPC in spin systems.

Elastic interactions are common in many real spin sys-
tems and are susceptible to external forces (e.g., tension and
pressure). We use molecular dynamics simulation to study
the CXY model with OPC interaction. This exploration en-
hances our understanding of how elastic effects emerge in
spin systems. Moreover, our key finding is the significant
influence of lattice’s stretching deformation on the stability
of orientational structure in the CXY model. This conclusion
suggests that we can manipulate the stability of orientational
structure through external stress to enhance its temperature
tolerance because external stress can induce the deformation
of the spin lattice. This insight motivates us to consider spin’s
orientation-position coupling in various spin systems (such as
the magnetic skyrmions system [41–43]), and to try to adjust
the stability of the orientational structure by manipulating
external stresses. Furthermore, the coupling form described
in Eq. (1) in this study demonstrates that multiplying the
LJ potential on J is equivalent to changing the temperature
scale of the rotational degrees of freedom of the XY model;
thus, leading to the results obtained in this study. For more
complex coupling methods, such as direct coupling of particle
orientation and position [28,29], the system may exhibit even
more intriguing and diverse physical properties.
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