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How coherence measurements of a qubit steer its quantum environment

Chu-Dan Qiu ,1,2,* Yuan-De Jin ,3,* Jun-Xiang Zhang,4 Gang-Qin Liu,4,5 and Wen-Long Ma 1,2,†

1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

3Department of Applied Physics, University of Science and Technology Beijing, Beijing 100083, China
4Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

5Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 10 April 2024; revised 26 June 2024; accepted 27 June 2024; published 15 July 2024)

A qubit suffers decoherence when coupled to a classical or quantum environment, and characterizing the
qubit decoherence process is vital in quantum technologies. Repetitive Ramsey interferometry measurements
(RIMs) are often used to measure qubit coherence, assuming that the environment remains unaffected after
each measurement and the outcomes of all measurements are independent and identically distributed (i.i.d.).
While this assumption is valid for a classical environment, it may not hold for a quantum environment due
to the non-negligible backaction from qubit to environment, especially when the environment has a memory
time much longer than the duration of each RIM cycle. Here, we present a general theoretical framework
to incorporate the measurement backaction from qubit to environment in sequential RIMs. We show that a
RIM of a qubit induces a quantum channel on the quantum environment, and sequential RIMs gradually steer
the quantum environment to the fixed points of the channel. We reveal three distinct environment steering
effects—polarization, depolarization, and metastable polarization, depending on the commutativity of the noise
operator B and the free environment Hamiltonian He: (1) If B commutes with He, i.e., [B, He] = 0, the quantum
environment is gradually polarized to different eigenstates of B as the number m of repetitive RIMs increases;
(2) when [B, He] �= 0, the quantum environment is gradually depolarized to a maximally mixed state of its
whole Hilbert space or a Hilbert subspace; (3) when [B, He] �= 0 but one of He and B is a small perturbation
on the other, metastable polarization can happen, such that the quantum environment is first polarized for a
finite range of m but becomes gradually depolarized as m increases further. The environment steering also
makes the measurement statistics of sequential RIMs develop non-i.i.d. features, such that the measurement
result distribution can display multiple peaks for a small quantum environment, corresponding to different
fixed points of the quantum channel. Realistic examples of central spin models are presented to demonstrate
the measurement statistics and environment steering effects. Our paper not only elucidates the measurement
backaction and statistics of repetitive qubit coherence measurements, but is also useful for designing protocols
to engineer the state or dynamics of a quantum environment with a qubit ancilla.
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I. INTRODUCTION

Quantum coherence gives rise to a series of nonclassical
phenomena such as interference and entanglement and lies
at the heart of quantum information processing [1]. Realistic
physical qubits often suffer loss of coherence (or decoher-
ence) due to coupling to a classical or quantum environment.
The environment is called classical if it only imparts random
phases to superposition states of the qubit but suffers no
backaction from the qubit [2–7], and in some cases its effect
on the qubit can be well approximated as classical stochastic
noise (e.g., Gaussian noise) [8–10]. However, generally the
qubit and the environment should be regarded as a composite
quantum system, and the qubit has non-negligible backaction
on the dynamics of quantum environment, through either the

*These authors contributed equally to this work.
†Contact author: wenlongma@semi.ac.cn

qubit-environment coupling or the measurement and control
processes [11–14].

In quantum technologies, it is crucial to characterize the
qubit decoherence process by directly measuring the evolu-
tion of qubit coherence, either to characterize the quality of
physical qubits in quantum computing [6,15] or to reveal use-
ful information about the environments in quantum sensing
[16]. Qubit coherence is conventionally measured by repeti-
tive Ramsey interferometry measurements (RIMs) [17], often
with an underlying assumption that the environment remains
unaffected after each RIM and the outcomes of all RIMs are
independent and identically distributed (i.i.d.). Then a satis-
factory signal-to-noise ratio can be achieved with a relatively
large number of repetitions of such RIMs [18,19]. While this
assumption is often valid for a classical environment, it may
not hold for a general quantum environment [20–22].

Basically a single cycle of RIM slightly alters the state of
the quantum environment by inducing a quantum operation
on it. If the duration of each RIM cycle is much shorter
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than the relaxation times of the environment, with repetitive
RIMs, the environment can be gradually steered to states
quite different from its initial one, and such a steering effect
also makes the qubit measurement statistics develop some
non-i.i.d. features [23,24]. Recent experiments in solid-state
systems have reported signatures of the backaction of qubit
measurements on the quantum environment [25–27], and in
other experiments such backaction has been utilized to purify
a spin bath [28–30]. However, there is still a lack of a gen-
eral theoretical framework to address the interesting general
problems: how repetitive coherence measurements of a qubit
steer its quantum environment? What does the measurement
statistics look like when considering the environment steering
effect?

In this paper, we develop a general theoretical framework
to systematically account for the steering effect of sequential
qubit coherence measurements on a quantum environment.
The essential idea is to model the repetitive RIMs as repetitive
quantum channels on the quantum environment. We find that
the environment is gradually steered to the fixed points of
the quantum channel. More precisely, when noise operator
commutes with the environment Hamiltonian, the fixed points
of the channel often include rank-one projectors and hence the
environment is polarized into the corresponding pure states.
Otherwise, the fixed points of the channel include maximally
mixed states of the whole Hilbert space or Hilbert subspaces
of the environment, so the environment is depolarized to such
mixed states if it is initially in a pure state. For both cases,
the qubit measurement statistics can display multiple distribu-
tion peaks for a small quantum environment, with each peak
corresponding to a fixed point of the channel. For realistic
scenarios, the noise operator may not commute with envi-
ronment Hamiltonian, but is only a small perturbation on the
environment Hamiltonian. In this case, the environment can
exhibit a metastable polarization for a finite range of repetition
numbers of RIMs, before relaxing to a depolarized state in
the asymptotic limit. As examples, we illustrate the environ-
ment steering effects for a central spin embedded in a small
quantum spin bath under both RIM sequences and dynamical
decoupling (DD) sequences, and elucidate the fine structures
of measurement statistics for spin coherence measurements.

We add a comment about the term “steering” in this pa-
per. Historically, Schrödinger first realized that for a bipartite
composite quantum system, one party can influence the wave
function of the other party by performing suitable measure-
ments [31]. We use the term “steering” in this broader sense
[32], which should be distinguished from the narrower one to
denote the impossibility to describe the conditional states at
one party by a local hidden state model [33,34].

The paper is organized as follows. In Sec. II, we first
introduce the basics of qubit coherence measurement, and
then motivate and summarize the main results of the paper.
By examining the fixed points of different quantum channels
that depend on commutativity between noise operator and en-
vironment Hamiltonian, we reveal three distinct environment
steering effects—polarization, depolarization, and metastable
polarization—in Sec. III, which are manifested in the qubit
measurement statistics. To elaborate the concepts formalized
in previous sections, based on a central spin model in Sec. IV,
we provide several examples with numerical simulations and

show that different environment steering effects can be ob-
served in various practical settings.

II. PRELIMINARIES AND MAIN RESULTS

A. Basics of qubit coherence measurements

Let us consider a single qubit embedded in a d-dimensional
quantum environment with a pure-dephasing coupling as

H = σ z
q ⊗ B + Iq ⊗ He, (1)

where σ i
q is the Pauli-i operator of the qubit (i = x, y, z) with

σ z
q = |0〉q〈0| − |1〉q〈1|, B is a noise operator for the qubit, He

is the free Hamiltonian of the environment, and Iq (I) is the
identity operator for the qubit (environment). Hereafter we
denote the qubit rotation along an axis in equatorial plane
as Rφ (θ ) = e−i(cos φσ x

q +sin φσ
y
q )θ/2, where φ denotes the rotation

axis and θ is the rotation angle. Such a rotation can be gener-
ated by a strong qubit control Hamiltonian Hq = �(cos φσ x

q +
sin φσ

y
q )/2 with a duration θ/�.

The qubit coherence can be measured by the widely used
RIM sequence, as shown in Fig. 1(a). The qubit is first initial-
ized to state |0〉q, and then prepared to be in a superposition
state |ψ〉q = (|0〉q − ieiφ1 |1〉q)/

√
2 by a rotation Rφ1 ( π

2 ). Then
the qubit evolves with the pure-dephasing coupling [Eq. (1)]
for time t , undergoes another rotation Rφ2 ( π

2 ), and is finally
projectively measured in the basis {|0〉q, |1〉q}. The expecta-
tion value of σ z

q after a single RIM is〈
σ z

q

〉 = Tr
[
σ z

qU (ρq ⊗ ρ)U †
] = −Re{Tr[U1ρU †

0 ]ei	φ}, (2)

where ρq = |ψ〉q〈ψ |, ρ is the initial environment state, U =
(Rφ2 ( π

2 )⊗I)(
∑

α=0,1 |α〉q〈α|⊗Uα ) with Uα=e−i[(−1)αB+He]t ,
Tr[·] denotes the trace over the whole system, Re{·} denotes
the real part of a complex number and 	φ = φ1 − φ2.

For sequential RIMs with i.i.d. statistics, by measuring
〈σ z

q 〉 for 	φ = 0 or π/2, one can obtain the real or imaginary

part of qubit coherence |Tr[U1ρU †
0 ]| within the standard quan-

tum limit. Repetitive RIMs display i.i.d. statistics only when
the initial environment state is the same for each RIM, but
this condition is generally not met for a quantum environment
with a much longer memory time compared to the duration
of RIM sequence. In this case, the environment state will be
slightly altered by each RIM, and sequential RIMs can steer
the environment into some stable states determined only by
the structures of B and He, which can be quite different from
its initial state. Moreover, the measurement statistics can also
develop some non-i.i.d. features.

B. Environment steering of sequential qubit
coherence measurements

The environment steering effect of sequential RIMs can be
perfectly described by modeling the RIM sequence as a quan-
tum channel on the quantum environment [35,36]. A quantum
channel is a completely positive and trace-preserving (CPTP)
map, which can be written in the Stinespring representation as
[37]

�(ρ) = Trq[U (ρq ⊗ ρ)U †], (3)
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FIG. 1. Schematic of sequential RIMs of a qubit and their steering effects on a quantum environment. (a) Environment dynamics under
sequential RIMs of a qubit is modeled as sequential applications of a quantum channel �̂. In a RIM sequence, the qubit is first initialized
into state |0〉q and then undergoes a free evolution sandwiched between two qubit rotations, where Rφ (θ ) = e−i(cos φσ x

q +sin φσ
y
q )θ/2 is the qubit

rotation operator and Uα = e−i[(−1)αB+He]t is a unitary operator of the environment conditioned on the qubit state |α〉q (α = 0, 1), and is finally
projectively measured with outcome αn for the nth measurement (1 � n � m). For an initial state |ρ〉〉 of the environment, its final state becomes
�̂m|ρ〉〉 after repeating RIMs for m times. (b) Sequential channels �̂m can be decomposed as a summation of all stochastic trajectories, each
of which is defined by a sequence of measurement outcomes {α1, . . . , αm}. Here we only show a typical one. (c) Illustration of quantum
environment steering via sequential RIMs of a qubit. For a pure-dephasing coupling between a qubit (blue arrows) and its surrounding
environment (purple arrows) [Eq. (1)], sequential RIMs can result in drastically different evolutions of the environment. When the noise
operator B commutes with the environment Hamiltonian He, i.e., [B, He] = 0, the quantum environment can be polarized to a certain eigenstate
of B. But if [B, He] �= 0, the quantum environment is depolarized to a maximally mixed state of its whole Hilbert space or a Hilbert subspace.
For [B, He] ≈ 0, that is, [B, He] �= 0 but one of He and B is a small perturbation on the other, metastable polarization can happen for some finite
range of m before the environment finally relaxes to a depolarized state. (d) Monte Carlo simulations for an illustrative model where B = σz

and He = γ σx with the parameter γ = 0, 0.1, 0.025 being an indicator of noncommutativity for three effects respectively. For (i) and (iii), the
initial environment state is a maximally mixed state I/2, while for (ii) the initial state is a pure state |↑〉 or |↓〉 (eigenstates of σz).

where Trq[·] denotes the partial trace over the qubit. This
quantum channel can also be transformed to the Kraus rep-
resentation as [38]

�(ρ) = M0ρM†
0 + M1ρM†

1 , (4)

where two Kraus operators M0 and M1, corresponding to two
outcomes of qubit coherence measurements, are related to
Hamiltonian given in Eq. (1) as[

M0

M1

]
= 1

2

[
1 −ei	φ

1 ei	φ

] [
U0

U1

]

= 1

2

[
e−i(He+B)t − ei	φe−i(He−B)t

e−i(He+B)t + ei	φe−i(He−B)t

]
. (5)

Note that while � is independent of the second rotation
Rφ2 ( π

2 ), M0 and M1 depend on the phase difference 	φ be-
tween the rotation axes of Rφ1 ( π

2 ) and Rφ2 ( π
2 ).

Sequential RIM sequences correspond to sequential ap-
plications of the same quantum channel on the quantum
environment. In this case, it is convenient to use the nat-
ural representation of quantum channels [39], where the
channel can be represented by a single d2 × d2 matrix.
A linear operator on a Hilbert space is transformed to a
ket in the Hilbert-Schmidt (HS) space A = ∑

i j ai j |i〉〈 j| ↔
|A〉〉 = ∑

i j ai j |i j〉〉 with |i j〉〉 = |i〉 ⊗ | j〉, and the inner prod-
uct in HS space is defined as 〈〈A|B〉〉 = Tr(A†B). Then the

superoperator X (·)Y on the Hilbert space is equivalent to a
linear operator X ⊗ Y T on the HS space, so the channel � can
be naturally represented as

�̂ = M̂0 + M̂1 = (Û0 + Û1)/2, (6)

where M̂α = Mα ⊗ M∗
α and Ûα = Uα ⊗ U ∗

α . Note that we add
hats for operators acting on the HS space. With the natural
representation, the cumbersome m-fold nested superoperators
on the Hilbert space �( · · · �(�(·))) is reduced to the mth
power of the corresponding operator on the HS space �̂m.

Suppose the natural representation of a quantum channel
is diagonalizable, then it can be spectrally decomposed as
(see Appendix A for the general case) [40]

�̂ =
∑

i

λi|Ri〉〉〈〈Li|, (7)

where {|Ri〉〉, |Li〉〉} is a set of complete biorthonormal bases,
i.e., 〈〈Li|Rj〉〉 = δi j with δi j being the Kronecker delta. The
eigenvalues {λi} of a quantum channel are all located within
a unit disk of the complex plane [38]. The eigenvectors with
eigenvalue 1 are called fixed points [41–43] denoted as |ρ i

fix〉〉
(every quantum channel has at least one fixed point), those
with eigenvalue eiϕ (ϕ �= 0) are rotating points [44], and those
with |λi| < 1 are decaying points. We will show below that
the fixed points of the channel in Eq. (6) depend on the
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commutativity of B and He (see Appendix B): (1) If [B, He] =
0, the fixed points are spanned by a set of rank-one projections
{| j〉〈 j|}d

j=1; (2) if [B, He] �= 0, the fixed points are spanned
by a set of projection operators {� j}r

j=1 (r < d), satisfying∑r
j=1 � j = I.
With the diagonalized form of a quantum channel, it be-

comes easier for us to investigate its asymptotic behavior.
Evidently, as the number of measurements m increases, the
decaying points tend to vanish as the number of repetitions
m increases. While the states in the subspace spanned by the
fixed points and rotating points, which is called asymptotic
subspace (also known as peripheral or attractor subspace),
either remain unchanged or only acquire a phase during rep-
etition. Therefore, the asymptotic limit of sequential quantum
channels is a projection to the asymptotic subspace. If �̂

has no rotating points, the asymptotic behavior of sequential
quantum channels is determined solely by its fixed points as
[44], (see Appendix A)

lim
m→∞ �̂m =

J∑
j=1

P̂ j =
J∑

j=1

∣∣ρ j
fix

〉〉〈〈
P j

fix

∣∣, (8)

where {ρ j
fix}J

j=1 is a set of bases for the HS subspace spanned
by the fixed points, which contains positive operators with
unit trace [Tr(ρ j

fix) = 1 for any j] and orthogonal supports
(ρ i

fixρ
j
fix = 0 if i �= j), and P j

fix are a set of observables satisfy-
ing 〈〈Pi

fix|ρ j
fix〉〉 = δi j . For the channel induced by a RIM, we

have (1) if [B, He] = 0, ρ
j
fix = P j

fix = | j〉〈 j| (1 � j � d) and
(2) if [B, He] �= 0, ρ

j
fix = P j

fix/d j = � j/d j with d j denoting
the rank of � j (1 � j � r).

C. Statistics of sequential qubit coherence measurements

With the environment steering effect, the statistics of se-
quential qubit coherence measurements can develop some
non-i.i.d. features. For a single RIM cycle, the probability to
obtain the measurement result α ∈ {0, 1} is

pα = Tr(MαρM†
α ) = 〈〈I|M̂α|ρ〉〉, (9)

from which one can obtain the qubit coherence as 〈σ z
q 〉 =

p0 − p1 = 〈〈I|(M̂0 − M̂1)|ρ〉〉. The probability distribution
for result 0 and 1 is denoted as F ′ = (p0, p1). For m sequential
RIMs, we get a sequence of binary numbers {α1, . . . , αm} with
αn ∈ {0, 1} for any n ∈ [1, m], and we record the frequency of
result {0, 1} as F = ( f0, f1) = ( m0

m , m1
m ), where m0 and m1 are

the numbers of occurrences of 0 and 1 respectively satisfying
m0 + m1 = m. A sequence of measurement outcomes defines
a quantum trajectory. In practice, we often focus on the aver-
age of the m measurement results, i.e., ᾱ = 1

m

∑m
n=1 αn, which

coincides with f1 in our case. If the outcomes of different
RIMs are i.i.d., F obeys a binomial distribution

p(F ) = m!

(m f0)!(m f1)!
pm f0

0 pm f1
1 . (10)

Hence, the expectation of measurement average can be readily
obtained as 〈 f1〉 = ∑

F f1 p(F ) = p1, where p1 is determined
by Eq. (9). According to the central limit theorem, a binomial
distribution can be approximated by a Gaussian distribution
as m → ∞. In other words, the statistics of qubit coherence

measurements concentrate around the probability distribution
F ′ = (p0, p1) for large m.

However, when we consider the backaction of qubit co-
herence measurements on the quantum environment, the i.i.d.
assumption does not hold. The probability to get a specific
sequence of measurement results {α1, . . . , αm} is

p(α1, . . . , αm|ρ) = 〈〈I|M̂αm · · ·M̂α1 |ρ〉〉, (11)

Then what is the distribution of the measured frequency F?
Is it still concentrated around F ′? We will show in next sec-
tion that this is generally not the case.

More specifically, based on decomposing a channel in HS
space into two orthogonal parts as �̂ = P̂ + �̂D, where the
first term is the projection into fixed point space [Eq. (8)], we
show that the expectation of measurement average takes the
form (see Appendix C 1)

〈 f1〉 =
∑
α1

· · ·
∑
αm

f1 p(α1, . . . , αm|ρ)

=
J∑

j=1

c j〈 f1 j〉∗ + 1

m

〈〈
I
∣∣M̂1

m∑
n=1

�̂n−1
D Q̂

∣∣ρ〉〉, (12)

where

〈 f1 j〉∗ = 〈〈
I
∣∣M̂1

∣∣ρ j
fix

〉〉 = p
(
1
∣∣ρ j

fix

)
(13)

is the probability to get result α = 1 for the fixed point
ρ

j
fix, c j = Tr(P j

fixρ) denotes the length of the projection of
ρ to ρ

j
fix in the HS space, Q̂ = Î − P̂ is the projection to

the orthogonal complement of the fixed point space with Î
being the identity operator on the whole HS space. It can
be verified that in the asymptotic limit, the first term con-
tributed by the fixed point space dominates, while the second
term becomes insignificant, which is consistent with Eq. (8)
(see Appendix C 3). In other words, the distribution of mea-
sured frequency can display J peaks (without degeneracy)
that center around the expectation determined by each fixed
point {〈 f1 j〉∗}J

j=1 respectively. Each peak includes trajectories
defined by {α1, . . . , αm} with frequency f1 close to 〈 f1 j〉∗,
which can steer an arbitrary initial environment state to one
of fixed point subspaces [35] [see Fig. 1(b) and the following
sections for further discussions].

On the other hand, we can further rewrite 〈 f1 j〉∗ in Eq. (13)
as

〈 f1 j〉∗ = Tr
(
M1ρ

j
fixM†

1

) =
1 − 〈

σ z
q

〉
j∗

2
, (14)

where 〈σ z
q 〉

j∗ is the coherence given in Eq. (2) and the
subscript indicates its dependence on the fixed points of en-
vironment ρ

j
fix. This suggests that only when the environment

is initially in one fixed point ρ
j
fix or the convex combination of

fixed points, i.e.,
∑J

j=1 a jρ
j
fix with a j � 0 and

∑J
j=1 a j = 1,

the coherence obtained from m-fold sequential RIMs is equiv-
alent to the one obtained from applying a single RIM on m
identical copies of the initial environment state respectively.
And the coherence with respect to each fixed point can be
extracted from the central location of each peak 〈 f1 j〉∗.

In previous studies concerning qubit decoherence, e.g.,
cluster-correlation expansion (CCE) theory to calculate spin
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decoherence in a many-body spin bath [45–48], the envi-
ronment is implicitly assumed to remain unaffected during
qubit coherence measurements, and thus qubit decoherence
can be directly calculated from a single RIM cycle as in
Eq. (2). The results in this paper show that the calculations
with maximally mixed state as the initial environment state
are still valid even when considering the environment steering
effect, since the maximally mixed state can be represented as a
convex combination of fixed points. However, this may not the
case for an arbitrary initial environment state. So it requires
further study to explore the reasonable initial environment
states for correct prediction of qubit decoherence in complex
quantum environments. We will not address this issue in this
paper, but only focus on the steering effects of qubit coherence
measurements on a small quantum environment.

III. QUANTUM ENVIRONMENT STEERING AND
NON-I.I.D. MEASUREMENT STATISTICS

Sequential qubit coherence measurements can show differ-
ent environment steering effects and measurement statistics,
which in turn depend on the structures of the noise operator B
and the free environment Hamiltonian He [Eq. (1)]. We elab-
orate on three cases [see Figs. 1(c) and 1(d)]: (1) [B, He] = 0:
sequential RIMs polarize the environment to a pure state; (2)
[B, He] �= 0: sequential RIMs depolarize the environment in
the whole Hilbert space or a Hilbert subspace. (3) [B, He] ≈ 0
([B, He] �= 0, but one of He and B is a small perturbation on
the other): sequential RIMs induce metastable polarization for
a finite range of repetitions. In all cases, the measurement
statistics can display multiple distribution peaks for a small
quantum environment, with each peak corresponding to a
fixed point of the channel.

A. Polarization: [B, He] = 0

If [B, He] = 0, they can be simultaneously diagonalized as

B =
s∑

k=1

bkPk, He =
s∑

k=1

εkPk, (15)

where bk , εk are the kth eigenvalues of B and He respectively,
and Pk is the projection operator to the eigenspace Hk satisfy-
ing

∑s
k=1 Pk = I so that the Hilbert space of the environment

is decomposed as H = ⊕s
k=1 Hk . Then the Kraus operators

can be recast as [35]

[
M0

M1

]
=
[
λ̃01 · · · λ̃0s

λ̃11 · · · λ̃1s

]⎡⎢⎣P1
...

Ps

⎤
⎥⎦ , (16)

where λ̃αk = e−iεkt [e−ibkt − (−1)αei(	φ+bkt )]/2 is the kth
eigenvalue of Mα . Note that λ̃k = [λ̃0k, λ̃1k]T is a unit column
vector in a two-dimensional complex vector space due to∑

α=0,1 M†
αMα = I, and {λ̃k}s

k=1 is a set of such unit vectors.
Then M̂α and �̂ = ∑

α M̂α are all diagonal operators on the
HS space,

�̂ =
s∑

k,l=1

〈λ̃l , λ̃k〉Pk ⊗ Pl , (17)

where the eigenvalue of channel 〈λ̃l , λ̃k〉 is the inner product
between λ̃l and λ̃k in the Euclidean vector space, and Pk ⊗ Pl

is a projection operator on the HS space. Since |〈λ̃l , λ̃k〉| �
〈λ̃k, λ̃k〉〈λ̃l , λ̃l〉 = 1 due to the Cauchy-Schwarz inequality, all
the eigenvalues of �̂ lie within the unit disk of the complex
plane. Then sequential applications of channel �̂ produce a
projective measurement in the asymptotic limit, as given in
Eq. (8),

lim
m→∞ �̂m =

s∑
k=1

P̂k, (18)

where P̂k = Pk ⊗ Pk ↔ Pk (·)Pk corresponds to a projection to
Hk . So any state ρk ∈ Hk is a fixed point, and ρk

fix = Pk
fix in

this case (see Appendix B).
For measurement statistics, since [M̂0,M̂1] = 0, results

similar to Eq. (12) can be obtained by expanding �̂m =∑
F �̂m(F ) according to the binomial theorem,

�̂m(F ) = m!

(m f0)!(m f1)!
M̂m f0

0 M̂m f1
1 . (19)

In the asymptotic limit, �̂m can be approximated by its pro-
jections to the asymptotic space [35],

�̂m(F ) ≈
s∑

k=1

P̂k�̂
m(F )P̂k ≈

s∑
k=1

e−mS(F‖Fk )P̂k, (20)

where S(F‖Fk ) = ∑
α=0,1 fα ln( fα/pαk ) is the relative

entropy between F and Fk with Fk = (p0k, p1k ) =
(|λ̃0k|2, |λ̃1k|2). Accordingly, the measurement statistics can
be exactly obtained as

p(F ) = 〈〈I|�̂m(F )|ρ〉〉 =
s∑

k=1

e−mS(F‖Fk )Tr (Pkρ) . (21)

Compared to Eq. (10), the probability can be rewritten as
p(F ) = ∑s

k=1 p(F |Pk )p(Pk|ρ), where p(Pk|ρ) = Tr(Pkρ) is
the probability to find the environment state in Hk , and
p(F |Pk ) ≈ e−mS(F‖Fk ) is the conditional probability to obtain
a measured frequency distribution F given the environment
state Pk .

For large m, Eq. (20) can be further approximated
by s Gaussians around Fk respectively, since S(F‖Fk ) ≈∑

α=0,1( fα − pαk )2/(2pαk ). Then the expectation value of f1

can be obtained

〈 f1〉 =
∑

F

f1 p(F ) =
s∑

k=1

Tr (Pkρ) 〈 f1k〉∗, (22)

where

〈 f1k〉∗ = p1k = |λ̃1k|2 = 1
2 [1 + cos(2bkt + 	φ)] , (23)

corresponding to the expectation of f1 for the kth Gaussian, in
agreement with Eq. (13). Owing to ρk

fix = Pk
fix = Pk , Eq. (22)

is consistent with Eq. (12), where ck = Tr(Pkρ) = p(Pk|ρ).
Note that the second term in Eq. (12) is absent here since we
consider only projections to the asymptotic space in Eq. (20).
If the initial state is a fixed point ρk , the probability of obtain-
ing a sequence of measurement outcomes [Eq. (11)] can be
reduced to p(α1, . . . , αm|ρk ) = ∏m

n=1 p(αn|ρk ) = ∏m
n=1 pαn,k ,
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as if measurements were performed independently on m iden-
tical copies of the initial state ρk . This is similar to i.i.d.
measurements in the classical scenario.

Moreover, even if the initial environment state is a mixed
state, it is possible to polarize the environment to certain
fixed point ρk by selecting the trajectories with frequency
distribution close to Fk . Two distributions around Fj and Fk

are well separated if the distance between Fj and Fk is larger
than the sum of the respective half widths. If all the binomial
distributions are well separated, integration of �̂m(F ) within
a small neighborhood around Fk can approximate P̂k up to
arbitrary small error as m increases [35].

B. Depolarization: [B, He] �= 0

If [B, He] �= 0, we can simultaneously reduce B and He to a
block-diagonal form by an appropriate unitary transformation
W ,

B = W

⎛
⎝ r⊕

j=1

Bj

⎞
⎠W †, He = W

⎛
⎝ r⊕

j=1

Hj

⎞
⎠W †. (24)

This partitions the Hilbert space H of the quantum environ-
ment into the direct sum of r subspaces H = ⊕r

j=1 H j , and
Bj , Hj are operators acting on the subspace H j (here W should
be chosen so that Bj and Hj for any j cannot be reduced fur-
ther to another block-diagonal form). Then [Bj, Hj] �= 0 for at
least one subspace H j with dim(H j ) � 2, while Eq. (15) can
be regarded as a special case of Eq. (24) with dim(H j ) = 1
for all j.

One can show that the channel � is unital, i.e., �(I) = I,
so the maximally mixed state I/d is a fixed point. The full set
of fixed points can be obtained by using a theorem in [39]: ρ

is a fixed point of a unital channel if and only if it commutes
with every Kraus operator, i.e., [ρ, Mα] = 0 for any α. Then
for the noise and environment operators in Eq. (24), the fixed
points of the corresponding channel are spanned by a set of
projection operators {� j}r

j=1, where � j is the projection to the
subspace H j satisfying

∑r
j=1 � j = I (see Appendix B). Then

sequential applications of channel �̂ produce a depolarizing
operation in the asymptotic limit,

lim
m→∞ �̂m =

r∑
j=1

|� j/d j〉〉〈〈� j |. (25)

The depolarization can be understood from measurement
statistics. In this case, the probability of obtaining a sequence
of measurement results described by Eq. (11) is generally
non-i.i.d.. Nevertheless, noting that the identity is the left
eigenvector of the channel, i.e., 〈〈I|�̂ = 〈〈I|, we can obtain
the expectation [49] (see Appendix C 1)

〈 f1〉 =
r∑

j=1

c j〈 f1 j〉∗ + 1

m

〈〈
I
∣∣M̂1

m∑
n=1

�̂n−1
D Q̂

∣∣ρ〉〉, (26)

around which the peaks of measured frequency distribution
are centered, and 〈 f1 j〉∗ is given in Eq. (13). Particularly, for a
d j-dimensional subspace where [Bj, Hj] �= 0 the fixed point is
a maximally mixed state I/dj , the only one peak concentrates
around 〈 f1 j〉∗ = (1 − 〈σ z

q 〉
I
)/2, which is independent of any

initial environment state, even if the environment starts from
a pure state. As m increases, it can be demonstrated that
the first term, representing the contributions from fixed point
space, becomes dominant (see Appendix C 3). This is also
manifested in the narrowing of peak broadening, which we
will show in the Sec. IV and Appendix C 2.

C. Metastable polarization: [B, He] ≈ 0

If [B, He] ≈ 0, that is, [B, He] �= 0 but one of He and B
is a small perturbation on the other, then for the channel
[Eq. (6)] with r fixed points, it may have q − r (d � q < d2)
decaying points with eigenvalues close to one |λ j | ≈ 1 for
j ∈ [r + 1, · · · , q] (where we sort the eigenvalues in descend-
ing order). Then metastable polarization can happen such that
the quantum environment is first polarized for a finite range
of m [36,50], which is determined by the gap between λq and
λq+1,

1∣∣ ln |λq+1|
∣∣ � m � 1∣∣ ln |λq|

∣∣ , (27)

but as m increases further beyond this range, the environment
becomes gradually depolarized to maximally mixed states
in one of the subspaces {H j}r

j=1, corresponding to the fixed
points of the channel.

Accordingly, the dynamics of metastable polarization can
be observed from measurement statistics as m changes. Take
a d j-dimensional subspace as an example, whose fixed point
is the maximally mixed state of the subspace � j/d j . Within
the regime given by Eq. (27) and the initial environment
state is in this subspace, approximate projective measurements
give rise to d j peaks in measured frequency distribution.
However, when m increases beyond the metastable regime,
the depolarization gradually dominates, while peaks become
indistinguishable and finally merge into one peak, which cor-
responds to the only fixed point � j/d j .

IV. APPLICATION TO A CENTRAL SPIN MODEL

We illustrate the environment steering effects and statistics
of sequential qubit coherence measurements with a central
spin model, where an electron spin (as the central qubit) is
immersed in a small nuclear spin bath (as the environment)
with long coherence time. This model is applicable for many
electron-nuclear spin systems. For concreteness, we use pa-
rameters of a nitrogen-vacancy (NV) center with a carbon
nuclear spin bath for simulations. (All simulations in this sec-
tion contain 2×104 samples with 	φ = π/2, and the initial
state is the maximally mixed state of the whole Hilbert space.)

A. Single-spin bath

Let us first consider the simplest spin bath, namely, a bath
that has only one spin-1/2.

1. RIM sequence

For sequential RIMs of a central spin, the noise operator
and free Hamiltonian of the bath spin are

B = A · I, He = ωLIz, (28)
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where A = (Ax, Ay, Az ) is a hyperfine vector between cen-
tral qubit and bath spin with A = |A|, I = (Ix, Iy, Iz ) is the
spin-1/2 vector with Ii = σi/2, ωL is the Larmor precession
frequency of nuclear spins for an external magnetic field along
the z direction. We can tune the degree of noncommutativity
between B and He in Eq. (1) by varying the relative strength
of ωL and A [see Figs. 2(a) and 2(b)]:

(1) [B, He] = 0 for zero magnetic field (ωL = 0). In this
case, as indicated by Eq. (18), in the asymptotic limit of large
m, sequential RIMs produce a projective measurement on the
bath spin. Consequently, bath spin can be gradually polar-
ized to |↑〉 or |↓〉 (eigenstates of B). To quantify the degree
of polarization, we employ the fidelity function F(ρfix, ρ) =
Tr(
√√

ρ ρfix
√

ρ ), which describes the similarity between a
given state ρ and a fixed point ρfix that corresponds to a
polarized state [see the first column in Fig. 2(c)].

To average trajectories leading to different fixed points
separately, we divide all trajectories into distinct classes ac-
cording to peak distribution in qubit measurement statistics
with X = ( f1 − f0)/2 = f1 − 1/2 [see the first column of
Figs. 2(d)–2(f)]. For example, X ∈ [−0.5, 0) and X ∈ [0, 0.5]
label two classes of trajectories leading to ρ↑ = |↑〉〈↑| and
ρ↓ = |↓〉〈↓| respectively. Additionally, the central locations
of peaks are determined by 〈X 〉∗ according to Eq. (13).
Particularly, when [B, He] = 0, it reduces to Eq. (23) and
reads 〈X±〉∗ = cos(±At + 	φ)/2 with +(−) for ρ↑(ρ↓). As
m increases, the broadening of each peak becomes nar-
rower (see Appendix C 2). Note that, with fixed 	φ, by
tuning free evolution time t , different measurement strengths
can be tuned accordingly. Specifically, greater 〈X 〉∗ leads to
stronger measurement and faster polarization. Here we mainly
show the environment steering realized by sequential weak
measurements.

(2) [B, He] �= 0 for moderate external magnetic fields
comparable to the hyperfine field (ωL ∼ A). The noncommu-
tativity of B and He is noticeable and the fixed point of the
channel is the maximally mixed state I/2. Hence, as given
in Eq. (25), the bath is gradually depolarized to I/2 as m
increases [see the third column of Figs. 2(c)–2(f), where the
only peak corresponds to the only fixed point I/2].

(3) [B, He] ≈ 0 for either weak magnetic fields (ωL � A)
or strong magnetic fields (ωL � A). The noncommutativity
of B and He is not significant and metastable polarization
can happen. When m is small, similar to the zero-field case,
sequential RIMs approximately produce a projective measure-
ment, leading to the polarization to |↑〉 or |↓〉. However, as m
increases, the fidelity starts to drop and two peaks gradually
become indistinguishable, indicating the metastable polariza-
tion cannot persist over the long term and the bath finally
relaxes to the maximally mixed state [see the second column
of Figs. 2(c)–2(f) for weak-field case where ωL � A].

2. DD sequence

RIM sequence is a special case of DD sequence [51], which
is a commonly used method to measure qubit coherence while
decoupling certain noises. The DD sequence consists of N π -
pulses of the central spin inserted into free evolution between
two π

2 pulses. For a central spin subjected to DD sequences,

FIG. 2. Monte Carlo simulations of a single-spin bath steering
via sequential RIMs [Eq. (28)]. (a) Modulus and (b) argument of
eigenvalues of the quantum channel when varying external magnetic
field. For different Larmor frequencies (ωL/A = 0, 0.06, 0.71, la-
beled by red, blue, and green respectively), polarization, metastable
polarization, and depolarization can be observed. For each effect, we
show (c) fidelity and (d)–(f) qubit measurement statistics with dif-
ferent number of repetitions m where X = ( f1 − f0 )/2. Each peak of
measurement statistics corresponds to a fixed point of quantum chan-
nel. Fidelity F(ρfix, ρ ) = Tr(

√√
ρ ρfix

√
ρ) is obtained by averaging

trajectories leading to the same fixed points ρfix. Here trajectories
with X ∈ [−0.5, 0) (X ∈ [0, 0.5]) are regarded as the projection to
|↑〉 (|↓〉), which is an eigenstate of B. The central locations of
peaks are determined by 〈X 〉∗ according to Eq. (13). Particularly,
when [B, He] = 0, by tuning free evolution time t , the strength of
measurement, manifested in 〈X±〉∗ = cos(±At + 	φ)/2 with +(−)
for |↑〉(|↓〉), can be tuned accordingly. Here we use A = 37.7 kHz,
t = 1 µs, 	φ = π

2 .
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the noise operator and free bath Hamiltonian become

B = f (t )A · I, He = ωLIz, (29)

where f (t ) is a modulation function accounting for pos-
sible DD control of the qubit. Specifically, the N-pulse
Carr-Purcell-Meiboom-Gill (CPMG) control has the form
π
2 − (τ − π − 2τ − π − τ )

N
2 − π

2 , where a unit with period
T = 4τ = 2π/ωT is repeated N

2 times, so f (t ) = f (t + T ).
To deal with the time-dependent operator, we can

first decompose f (t ) into Fourier series as f (t ) =∑∞
n=0 Cn cos(nωT t ), where Cn is the nth-order Fourier

expansion coefficient. Furthermore, due to A � ωT , the
difference between different order components is much larger
than hyperfine coupling strength, and thus each component
can be analyzed separately [52]. We then focus on the first-
order component f (t ) ≈ C0 + C1 cos(ωT t ) = 4

π
cos(ωT t ).

In the weak coupling regime where A � ωL, moving
to the rotating frame with respect to ωT Iz, adopting the
rotating-wave approximation, the noise operator and bath
Hamiltonian are simplified as

B′ = 2

π
A⊥I⊥, H ′

e = 	ωIz, (30)

where A⊥ = √
(Ax )2 + (Ay)2, I⊥ = cos ξ Ix + sin ξ Iy with ξ =

arctan(Ay/Ax ), and 	ω = ωL − ωT is the detuning between
the DD frequency and the Larmor frequency of the bath spin.

Then we can tune the DD frequency to vary the effective
magnetic field experienced by bath spin, and in turn change
the structure of noise operator and free bath Hamiltonian:

(1) [B′, H ′
e] = 0 for resonant DD (	ω = 0). In this case, the

effective free bath Hamiltonian H ′
e disappears, which is simi-

lar to the RIM case with zero external field. Then sequential
DD sequences gradually polarize the bath spin [see the first
column of Figs. 3(c)–3(f)]. Likewise, as given in Eqs. (13) and
(23), the locations of peaks are determined by eigenvalues of
B′ in Eq. (30) as 〈X±〉∗ = cos(± 2

π
A⊥ · 4τ · N

2 + 	φ)/2, with
+(−) for |+〉 (|−〉) which is an eigenstate of B′. It implies,
with resonant τ and fixed 	φ, by tuning the number N of π

pulses, polarization of a bath spin with different strengths can
be realized [53].

(2) [B′, H ′
e] �= 0 for off-resonant DD (	ω ∼ A⊥). The rela-

tively large frequency detuning makes the noncommutativity
of B′ and H ′

e noticeable and induces depolarization of the bath
spin, which is similar to RIM case with moderate external
magnetic field [see the third column of Figs. 3(c)–3(f)].

(3) [B′, H ′
e] ≈ 0 for nearly resonant DD (	ω � A⊥). With

a small frequency detuning, the noncommutativity of B′ and
H ′

e is not significant and thus metastable polarization can
happen, which is similar to the RIM case with weak external
magnetic fields [see the second column of Figs. 3(c)–3(f)].

B. Multi-spin bath

Now we consider a multi-spin bath. We will start with
a noninteracting bath and then take account of interactions
within the bath.

FIG. 3. Monte Carlo simulations of a single-spin bath steering
via sequential DD at a strong field [Eq. (30)]. (a) Modulus and
(b) argument of eigenvalues of the quantum channel when varying
detuning between DD frequency and the Larmor frequency of the
bath spin. For different detuning (	ω/A′

⊥ = 0, 0.25, 2.92 with
A′

⊥ = 2
π

A⊥, labeled by red, blue, and green respectively), polariza-
tion, metastable polarization, and depolarization can be observed.
For each effect, we show (c) fidelity and (d)–(f) qubit measurement
statistics with different number of repetitions m. Here trajectories
with X ∈ [−0.5, 0) (X ∈ [0, 0.5]) are regarded as the projection to
|+〉 (|−〉), which is an eigenstate of B′. When [B′, H ′

e] = 0, by tuning
the number N of π pulses, the strength of measurement, manifested
in the locations of peaks 〈X±〉∗ = cos(± 2

π
A⊥ · 4τ · N

2 + 	φ)/2 with
+(−) for |+〉(|−〉), can be tuned accordingly. Here we use A =
37.7 kHz, τ = 0.47 µs, N = 8, 	φ = π

2 .
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FIG. 4. Monte Carlo simulations of a spin pair bath (K = 2)
steering via sequential RIMs at weak and moderate fields. The first
column is for the spin pair without interaction at zero field ωL =
0 [Eq. (31)] as a comparison, and the second and third columns
are for the spin pair with interaction [Eq. (32)]. (a) Eigenvalues
on the complex plane and (b) modulus of top six largest eigen-
values of the quantum channel for the spin pair when varying
external magnetic field. For different Larmor frequencies (ωL = 0,

26.8 kHz), metastable polarization and depolarization can be ob-
served. For each case, we show (c) fidelity, (d) sample ratio, and
(e)–(g) qubit measurement statistics with different number of rep-
etitions m. Here trajectories are divided into four classes X ∈

1. Noninteracting multi-spin bath

The discussions in the above subsection for a single-spin
bath can be directly generalized to a bath containing K in-
dependent nuclear spins, with the noise operator and bath
Hamiltonian

B =
K∑

k=1

Ak · Ik, He = ωL

K∑
k=1

Iz
k . (31)

Since these nuclear spins are noninteracting, we can analyze
the steering effect of sequential RIMs on each bath spin sep-
arately according to the relative strength of Ak and ωL. If
ωL = 0 and the coupling strengths {Ak} are inhomogeneous,
the measurement statistics show 2K distribution peaks and the
bath can be fully polarized if these peaks are all well separated
(see the first column of Fig. 4). For a constant ωL, the bath
spins near the central spin (Ak � ωL) can show metastable
polarization, while the bath spins farther away (Ak ∼ ωL and
Ak � ωL) are mostly depolarized (depolarization for the latter
case is often due to the indistinguishable distribution peaks for
the measurement statistics).

For sequential DD sequences, the noise operator and bath
Hamiltonian become B′ = 2

π

∑K
k=1 A⊥

k I⊥
k , H ′

e = ∑K
k=1 	ωIz

k
in the rotating frame with respect to He. Then the analysis is
similar to the case for sequential RIMs except that we replace
Ak , ωL with A⊥

k , 	ω.

2. Interacting multi-spin bath

We now take dipolar interactions among bath spins into
account. For a K-spin interacting bath,

B =
K∑

k=1

Ak · Ik, He = ωL

K∑
k=1

Iz
k +

∑
j<k

I j · D jk · Ik, (32)

where D jk = Djk (1 − 3rT
jkr jk/r2

jk ) is the dipolar coupling
tensor between the jth and kth bath spin with Djk =
μ0γ

2
n /(4πr3

jk ), r jk = [rx
jk, ry

jk, rz
jk] being the displacement

row vector from the jth spin to the kth spin, μ0 being the vac-
uum permeability, γn being the gyromagnetic ratio of nuclear
spins.

For zero or very weak external magnetic fields (ωL � Djk),
the channel induced by a RIM often has a single fixed point
I/2K and 2K − 1 metastable points, so sequential RIMs can
still cause metastable polarization of the strongly coupled bath
spins (Ak � ωL, Djk) (see the second column of Fig. 4). While
similar to the noninteracting bath, at a moderate magnetic
field (Ak ∼ ωL), an interacting bath can be depolarized (see
the third column of Fig. 4), and the fluctuation of fidelity in
Fig. 4(c) results from low sample ratio in Fig. 4(d).

With a strong external magnetic field (ωL � Ak, Djk), the
bath Hamiltonian is dominated by those energy-preserving

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[−0.5, −0.2), [−0.2, 0), [0, 0.2), [0.2, 0.5], corresponding to pro-
jections to |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉, respectively. Here we use A1 =
37.7 kHz, A2 = 29.9 kHz, D12 = 4.1 kHz, t = 2 µs.
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FIG. 5. Monte Carlo simulations of bath steering via sequential RIMs at strong fields for interacting spin baths [Eq. (33)] with (a) two
qubits (K = 2) and (b) three qubits (K = 3), respectively. Stronger field reduces the noncommutativity between B and He and can lead to
longer metastable regime, where (K + 1) peaks corresponding to (K + 1) subspaces for an interacting K-spin bath can be observed. The
dashed-vertical lines indicate theoretical prediction of locations of peaks. Noncommutativity is quantified by η = ||[H+, H−]||/(||H+|| · ||H−||)
with H± = He ± B, where ||A|| =

√
Tr(A†A) is the Frobenius norm of a matrix. Note for the single-qubit example shown in Fig. 1(d),

η = 2
√

2γ /(1 + γ 2 ). (a) Parameters of interacting spin pair are the same as Fig. 4, with ωLt = 3π, 9π for two different external magnetic
fields. (b) For the interacting three-spin bath, we use A1 = 24.45 kHz, A2 = 22.28 kHz, A3 = 21.67, kHz, D12 = 0.95 kHz, D13 = 0.33 kHz,
D23 = 0.86 kHz, with ωLt = 7π, 17π for two different external magnetic fields.

terms,

He ≈ ωL

K∑
k=1

Iz
k +

∑
j<k

Djk

2

(
I+

j I−
k + I−

j I+
k − 4Iz

j I
z
k

)
(33)

with I±
k = Ix

k ± iIy
k . Since the total spin Iz

tot = ∑K
k=1 Iz

k com-
mutes with He, Iz

tot is a conserved quantity. Then the Hilbert
space of bath can be decomposed into (K + 1) subspaces
H = ⊕K/2

l=−K/2 Hl according to (K + 1) components of total
spin [54]. The dimension of each subspace Hl is determined
by dl = ( K

K/2−l

) = K!
(K/2−l )!(K/2+l )! , corresponding to the degen-

eracy of each component of total spin Iz
tot = l . Accordingly,

there are (K + 1) fixed points, each represented by a rank-dl

projector to the corresponding subspace Hl , and the measure-
ment statistics can display (K + 1) peaks. However, in the
presence of hyperfine interactions with central spin, repre-
sented by noise operator B in Eq. (32), transitions among these
subspaces can occur, as hyperfine difference A j − Ak breaks
the conservation of total spin. Then metastable polarization
can happen for those bath spins (|A j − Ak| � Djk). If mag-
netic field strength is increased further, the metastable regime
can be extended (see Fig. 5(a) [Fig. 5(b)] for an interacting
bath with two (three) qubits).

Here we consider a small spin bath and and choose the
maximally mixed state of the whole Hilbert space as the initial
bath state. The main feature of non-i.i.d. statistics is the emer-
gence of multiple distribution peaks. However, for a relatively
large spin bath with a large K , the density of peaks become

very high, and therefore different neighboring peaks may be-
come indistinguishable for a finite number of repetitions. In
this case, it is possible that the summation of all overlapping
distribution peaks is reduced to the classical case with i.i.d.
statistics. Moreover, the probability of finding final state in
each fixed point subspace [c j in Eq. (12)] is proportional to
the dimension of each subspace. Thus, higher-dimensional
subspaces (dl > 1), e.g., the subspaces with Iz

tot = l close to
0 with much higher degeneracy, have greater probability to be
detected.

C. Noisy spin bath

Finally, we show that quantum polarization and metastable
polarization is robust even when the environment suffers some
additional noises. For simplicity, we assume that the noise of
each qubit in a K-spin bath is independent of each other. In
this case, the evolution of the composite systems ρtot, gov-
erned by Hamiltonian given by Eq. (1), can be described by
the following Lindblad master equation,

dρtot

dt
= −i[H, ρtot]

+
K∑

k=1

22−1∑
α=1

�α
k

(
Lα

k ρtot
(
Lα

k

)† − 1

2

{(
Lα

k

)†
Lα

k , ρtot
})

,

(34)

where {A, B} = AB + BA is the anticommutator, �α
k and Lα

k
are noise strength and dissipator for the αth type of noise
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FIG. 6. Monte Carlo simulations for a single-qubit bath steering via sequential RIMs in the presence of (a), (b) dephasing noise (σ z
k ) and

(c), (d) relaxation noise (σ−
k ) respectively, with the same parameters used in Fig. 2 with ωLt = 0π, 0.004π, 3π for three different external

magnetic fields. �1
k (�2

k ) is the noise strength for dephasing (relaxation) noise on the kth bath spin. [(a), (b)] The polarization (first column)
is unaffected by dephasing noise, while the metastable polarization at both weak and strong fields (second and third columns) regime can
be extended by stronger dephasing noise. [(c), (d)] However, relaxation noise can cause peak shift in qubit measurement statistics for both
polarization and metastable polarization.

on the kth bath spin, respectively. Here we mainly focus
on the transverse dephasing error L1

k = σ z
k and longitudinal

relaxation errors L2
k = σ−

k and L3
k = σ+

k . Specifically, let us
take Eq. (31) as an example. If we further set the external
magnetic field to zero, i.e., He = 0, then three dissipators

can be constructed by the eigenstates of B for each spin as
L1

k = |↑〉k〈↑| − |↓〉k〈↓|, L2
k = |↓〉k〈↑| and L3

k = |↑〉k〈↓|.
We first perform Monte Carlo simulations for each type

of noise separately. The effect of dephasing noise can be
regarded as the rotation about the quantization axis, which

FIG. 7. Monte Carlo simulations for a two-qubit bath (K = 2) steering via sequential RIMs in the presence of (a) dephasing noise (σ z
k ) and

(b) relaxation noise (σ−
k ) respectively, with the same parameters used in Fig. 4 with ωLt = 0π, 21π for two different external magnetic fields.

The first column is for the spin pair without interaction at zero field ωL = 0 as a comparison, and the second (third) column is for the spin pair
with interaction at zero (strong) field.
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FIG. 8. Monte Carlo simulations for bath steering with (a) a single spin and (b) two spins via sequential RIMs in the presence of relaxation
noise (σ−

k and σ+
k ), with the same parameters used in Figs. 6 and 7, respectively. In the presence of both jump operators with balanced noise

strength, the qubit measurement statistics behave like the depolarization case.

mixes superposition states of eigenstates while the eigenstates
remain unchanged (up to a phase). Consequently, for polar-
ization effect where [B, He] = 0, qubit measurement statistics
remain unaffected in the presence of dephasing noise [see the
first column of Figs. 6(a) and 6(b) for a single-qubit bath at
zero field, and compare it with the first column of Figs. 2(e)
and 2(f)]. Interestingly, the metastable polarization regime can
be extended under stronger dephasing noise. The reason may
be that the noncommutativity of B and He originating from
the transverse components that mixes the eigenstates can be
suppressed by dephasing noise [see the second (third) column
of Figs. 6(a) and 6(b) for a single-qubit bath at a weak (strong)
field].

However, the jump-down error σ−
k of bath spin k maps one

eigenstate |↑〉k to the other |↓〉k , so the peaks of measurement
statistics can be shifted, for both polarization and metastable
polarization [see Figs. 6(c) and 6(d) for a single-qubit bath].
Similar results for a two-qubit bath are shown in Fig. 7. The
case with only jump-down error σ− is a special case when
the temperature of “true” environment Tenv is near absolute
zero, and hence the noise strength of the jump-up error σ+ is
suppressed by a Boltzmann factor e−ωβ with β = 1/(kBTenv)
[6]. For general relaxation processes with both jump-up and
jump-down operators, due to the mixing of bath spin eigen-
states induced by both errors, the qubit measurement statistics
corresponding to the polarization case can be destroyed and
behave like the depolarization one as the number of repetitions
m increases {see Fig. 8(a) [Fig. 8(b)] for a bath with one (two)
spin(s)}. Nevertheless, for the central spin model we consider
here, the spin bath usually has a memory time much longer
than the duration of each RIM cycle, i.e., the noise strength is
relatively low, so the steering effects can still be observed.

V. SUMMARY AND OUTLOOK

We have developed a general theoretical framework to
describe the steering effect on a quantum environment by
sequential qubit coherence measurements, based on modeling
repetitive such measurements as sequential quantum channels.

By examining the structures of the noise operator and the
environment Hamiltonian, we discover three distinct environ-
ment steering effects, including polarization, depolarization,
and metastable polarization, and elucidate the corresponding
qubit measurement statistics. We have also performed exten-
sive numerical simulations to demonstrate all kinds of steering
effects by RIM and DD control sequences in a central spin
model. Specifically, by varying the external magnetic field
strength or frequency detuning in DD sequences, we are able
to tune the noncommutativity between the noise operator and
the environment Hamiltonian, and in turn tune the polarizing
capability of the channel on the environment. Our rigorous
analysis of the measurement statistics also clarifies what we
truly measure in repetitive qubit coherence measurements.

The model discussed in our paper is applicable to a broad
class of spin qubits immersed in a nuclear bath with a rela-
tively long coherence time, such as color centers in diamond
[55,56], quantum dots (QDs) in semiconductors [57], single
rare-earth ion qubit [58], which are crucial resources for
quantum information processing [59]. Our model also pro-
vides a theoretical foundation for several recent experiments,
in which an ancilla qubit was used to polarize a quantum
environment. For example, experimental realizations of po-
larization to a pure state via RIMs [60] and via DD sequence
[61], as well as polarization to a subspace of Hilbert space via
RIMs [62] are all special cases of our model. On the other
hand, the techniques of sequential quantum channels in our
model may be also applicable to the analysis of other polariza-
tion techniques using repetitive control of a central spin, e.g.,
repetitive dynamical nuclear polarization in GaAs QDs and
NV centers [63–65]. In a broader sense, our paper also points
out a potential issue in building a large-scale quantum pro-
cessor, that is, characterizing the coherence of a specific qubit
can seriously decrease the purity of other qubit states for most
cases if there exists residual coupling between these qubits.

There are quite a few open problems related to the subject
of our paper. First, we have concentrated on the steering effect
on a relatively small quantum environment (i.e., a few-spin
bath), so that the qubit measurement statistics show obvious
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non-i.i.d. features. It will be interesting to extend the study
to a medium or large quantum environment. Second, we have
assumed ideal pulse control and measurement of the ancilla
throughout this paper, while further researches are required
to study the effect of the finite-duration control pulses and
the imperfect ancilla measurements, which should guide the
optimization of ancilla control for improving the polarization
efficiency in practical systems. It is also worthwhile to study
the adaptive RIM control for further accelerating the polar-
ization process [66–69]. Third, it is possible to generalize
the formalism in this paper to study the environment steer-
ing effect induced by a more general coupling Hamiltonian
between the ancilla qubit and the environment, of which an
interesting example is preparation of exotic many-body states
in a spin ensemble [32,70]. Finally, it will also be meaning-
ful to consider the environment steering effect caused by a
more general ancilla, such as a multi-dimensional qudit or an
infinite-dimensional bosonic mode [71,72].
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APPENDIX A: DECOMPOSITION OF A QUANTUM
CHANNEL AND THE ASYMPTOTIC SUBSPACE

The quantum channel has four different representations
[39]: the Kraus representation, the Stinespring representation,
the natural representation, and the Choi representation. In
this paper, we use the first three representations of quantum
channels (see Appendix A of [36] for a brief introduction).

As a square matrix, the natural representation of a quantum
channel on HS space can be decomposed into a direct sum
of Jordan blocks [40]. Precisely, with some proper invertible
d2×d2 matrix S, we have

�̂ = S

(
κ⊕

k=1

Jdk (λk )

)
S−1

= S

⎛
⎜⎝ ∑

|λ j|=1

λ jP j +
∑

|λk |<1

(λkPk + Nk )

⎞
⎟⎠ S−1

=
κ⊕

k=1

Ĵdk (λk )

=
∑

|λ j|=1

λ jP̂ j +
∑

|λk |<1

(λkP̂k + N̂k ), (A1)

where Jdk (λk ) represents a dk-dimensional Jordan block cor-
responding to the eigenvalue λk , P j is a projection operator,
Nk is a nilpotent operator satisfying N dk

k = 0 and Ĵdk =
SJdk S−1, P̂ j = SP jS−1, N̂k = SNkS−1. Note that the Jordan
blocks corresponding to the fixed points and rotating points
(with eigenvalues |λ j | = 1) are all rank-one projectors [73].

We can decompose the channel into two parts as

�̂ = P̂ + �̂D, (A2)

with

P̂ =
∑
λ j=1

P̂ j,

�̂D =
∑

λ j=eiφ

λ jP̂ j +
∑

|λk |<1

(λkP̂k + N̂k ), (A3)

where P̂ denotes the projection to the HS space spanned by
the fixed points, and �̂D denotes the projection to the HS
subspace spanned by the rotating points and decaying points.
Considering that

∑κ
k=1 dk = d , so if κ = d the channel is in a

diagonalized form,

�̂ =
∑

i

λi|Ri〉〉〈〈Li|, with 〈〈Li|Rj〉〉 = δi j (A4)

where |Ri〉〉 and |Li〉〉 are right and left eigenvectors re-
spectively with biorthogonality, satisfying �̂|Ri〉〉 = λi|Ri〉〉,
�̂†|Li〉〉 = λ∗

i |Li〉〉.
When considering sequential quantum channels, we should

take a closer look at the HS subspace spanned by the fixed
points and rotating points, called asymptotic subspace (also
known as peripheral or attractor subspace). As the number
of measurements m increases, the projection to the decay-
ing points (|λi|) gradually vanishes due to limm→∞ λm

i → 0
(the nilpotent part vanishes for m � di). Conversely, for those
eigenvalues lying on the periphery of the unit disk |λi| = 1,
their Jordan blocks are all one-dimensional, and they either
remain unchanged or only acquire a phase during repetitions.
Thus, projection on the asymptotic subspace would gradually
become dominant, and the quantum channel on asymptotic
subspace can be represented as

�̂m ≈
∑

|λ j |=1

λm
j |Rj〉〉〈〈Lj |. (A5)

If the channel has no rotating points, we can have the
asymptotic limit

lim
m→∞ �̂m = P̂ =

∑
λ j=1

|Rj〉〉〈〈Lj |. (A6)

So the behaviors of sequential channels are solely determined
by the fixed points {Rj} with λ j = 1. For the HS subspace
spanned by the fixed points, we can always find a basis {ρ j

fix},
which are all positive operators with unit trace [Tr(ρ i

fix) = 1
for any i] and orthogonal supports (ρ i

fixρ
j
fix = 0 if i �= j) [43].

The set of left eigenvectors corresponding to {ρ j
fix} are a set of

observables {P j
fix}, satisfying 〈〈Pi

fix|ρ j
fix〉〉 = δi j . The problem

now is to determine the exact form of the fixed points {ρ j
fix}

and the observables {P j
fix} for the channel induced by a RIM.
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APPENDIX B: FIXED POINTS OF THE CHANNEL
INDUCED BY RIMS

The fixed points {ρ j
fix} of the channel �̂ induced by RIMs

have been analyzed in [36] to study the metastability phenom-
ena in sequential RIMs. For completeness of the presentation,
below we first reproduce the results in [36].

Proposition 1. The fixed points of the channel in Eq. (6)
depend on the commutativity of B and He. If [B, He] = 0,
the fixed points are spanned by a set of rank-one projec-
tions {| j〉〈 j|}d

j=1; if [B, He] �= 0, the fixed points are spanned
by a set of projection operators {� j}r

j=1 (r < d), satisfying∑r
j=1 � j = I.
Proof. It has been proven that ρ is a fixed point of a unital

channel if and only if it commutes with every Kraus operator
(see Theorem 4.25 in [39]), i.e., [ρ, Mα] = 0 for any α. In
view of Eq. (5), this implies that [ρ,U0] = [ρ,U1] = 0. If the
above condition is always satisfied for any α, then [ρ, B] =
[ρ, He] = 0.

If [B, He] = 0, then B and He can be diagonalized simulta-
neously, B = ∑d

j=1 b j | j〉〈 j| and He = ∑d
j=1 ε j | j〉 〈 j|. So the

fixed points must include the rank-one projections {| j〉〈 j|}d
j=1

and their linear combinations.
For a general case, we can block diagonalize them simul-

taneously by unitary transformation,

B = W

⎛
⎝ r⊕

j=1

Bj

⎞
⎠W †, He = W

⎛
⎝ r⊕

j=1

Hj

⎞
⎠W † (B1)

where r � d is the number of blocks (with equality occurring
only when [B, He] = 0 and all of blocks are one dimensional),
W is a unitary matrix and should be chosen so that Bj and
Hj for any j cannot be reduced further to have more blocks.
There must be at least one subspace H j in which [Bj, Hj] �= 0
to make [B, He] �= 0. Such a block diagonalization partitions
the Hilbert space of the environment into a direct sum of r
subspaces H = ⊕r

j=1 H j , and [Bj, Hj] �= 0 for at least one
subspace H j with dim(H j ) � 2. Thus, the Kraus operator is
also transformed to a block-diagonal form as Mα = ⊕r

j=1 M j
α .

Then the fixed points must include the set of projections
{� j}r

j=1 (r � d) and their linear combinations, where � j =
W PjW −1 with Pj being the projector to H j . Note that the case
[B, He] = 0 can be regarded as a special case of [B, He] �= 0.

Now we prove that there are no other fixed points for
the case [B, He] �= 0, where there is at least one block with
[Bj, Hj] �= 0 and [M j

0 , M j
1 ] �= 0. Suppose there is another den-

sity matrix satisfying [ρ ′, M j
α] = 0. If rank(ρ ′) = d j , then

[ρ ′, M j
0 ] = [ρ ′, M j

1 ] = 0. Since the positive operator ρ ′ can
be diagonalized, this implies that [M j

0 , M j
1 ] = 0, which con-

tradicts the condition [M j
0 , M j

1 ] �= 0. If rank(ρ ′) < d j , then
formulate another fixed point ρ ′′ = ρ ′ + gI with g being a
positive number such that rank(ρ ′′) = d j , then the proof is
similar to the former case.

The observables {P j
fix} actually correspond to the fixed

points of the dual channel �† = ∑r
α=1 M†

α (·)Mα , which
can easily be derived from its definition Tr[B�(A)] =
Tr[�†(B)A]. Since the channel is trace-preserving, so
�̂†(I) = I is unital. Then we can use similar reasoning to

show that the fixed points of �̂† are the same as �̂. However,
due to the constraint 〈〈Pi

fix|ρ j
fix〉〉 = δi j , P j

fix is different from
ρ

j
fix by a normalization factor. Specifically, we have

lim
m→∞ �̂m = P̂ =

∑
j

∣∣ρ j
fix

〉〉〈〈
P j

fix

∣∣, (B2)

with P j
fix = d jρ

j
fix with d j being the rank of ρ

j
fix.

APPENDIX C: STATISTICS OF SEQUENTIAL QUBIT
COHERENCE MEASUREMENTS

For m sequential coherence measurements, one obtains
a set of measured data {α1, . . . , αm}. For any n ∈ m, αn ∈
{ar}1

r=0, corresponding to outcomes of two Kraus operators
{Mr}1

r=0 respectively. We are interested in the average of all
outcomes ᾱ = 1

m

∑m
n=1 αn. If we specify {a0 = 0, a1 = 1}, it

coincides with f1.

1. Expectation

With the probability given in Eq. (11), the expectation of
f1 is then determined by

〈 f1〉 =
∑
α1

· · ·
∑
αm

f1 p(α1, . . . , αm|ρ)

= 1

m

∑
α1

· · ·
∑
αm

m∑
n=1

αn〈〈I|M̂αm · · ·M̂α1 |ρ〉〉. (C1)

In general, the Kraus operators may not commute with each
other. Fortunately, there are two facts that can be used to
simplify calculations

〈〈I|�̂ = 〈〈I|�̂m = 〈〈I|,
∑

αn∈{a0,a1}
M̂αn =

1∑
r=0

M̂r = �̂,

(C2)

where the first one says the identity of the whole Hilbert space
is a left eigenvector of the channel, and the second one says the
summation of operators for each measurement can be reduced
to the summation of two possible Kraus operators. If we first
split the summation as

〈 f1〉 = 1

m

∑
α1

· · ·
∑
αm−1

m−1∑
n=1

αn

⎛
⎝∑

αm

p(α1, . . . , αm|ρ)

⎞
⎠

+ 1

m

∑
α1

· · ·
∑
αm−1

∑
αm

αm p(α1, . . . , αm|ρ), (C3)

then in view of Eq. (C2), two terms can be simplified using

∑
αm

p(α1, . . . , αm|ρ)=〈〈I|
⎛
⎝∑

αm

M̂αm

⎞
⎠M̂αm−1 · · ·M̂α1 |ρ〉〉

= 〈〈I|M̂αm−1 · · ·M̂α1 |ρ〉〉
= p(α1, . . . , αm−1|ρ) (C4)

024311-14



HOW COHERENCE MEASUREMENTS OF A QUBIT STEER … PHYSICAL REVIEW B 110, 024311 (2024)

and ∑
α1

· · ·
∑
αm−1

∑
αm

αm p(α1, . . . , αm|ρ)

= 〈〈
I
∣∣(∑

αm

αmM̂αm

)(∑
αm−1

M̂αm−1

)

· · ·
(∑

α1

M̂α1

)∣∣ρ〉〉

= 〈〈
I|
( ∑

r=0,1

arM̂r

)
�̂m−1

∣∣ρ〉〉, (C5)

respectively. With these simplifications, it yields

〈 f1〉 = 1

m

∑
α1

· · ·
∑
αm−2

m−2∑
n=1

αn

⎛
⎝∑

αm−1

p(α1, . . . , αm−1|ρ)

⎞
⎠

+ 1

m

∑
α1

· · ·
∑
αm−2

∑
αm−1

αm−1 p(α1, . . . , αm−1|ρ)

+ 1

m
〈〈I|

⎛
⎝∑

r=0,1

arM̂r

⎞
⎠ �̂m−1|ρ〉〉. (C6)

In this iterative way, we find

〈 f1〉 = 1

m

〈〈
I
∣∣ 1∑

r=0

arM̂r

m∑
n=1

�̂n−1
∣∣ρ〉〉

= 1

m

〈〈
I
∣∣M̂1

m∑
n=1

�̂n−1
∣∣ρ〉〉, (C7)

where in the second step we specified {a0 = 0, a1 = 1}.
To factor out the contributions of fixed points, we use

the decomposition of quantum channel in Eq. (A2) and the
following orthogonality relation:

P̂ j�̂D = �̂DP̂ j = 0, (C8)

then the summation of the channel in Eq. (C7) becomes

1

m

m∑
n=1

�̂n−1 =
J∑

j=1

P̂ j + 1

m

m∑
n=1

�̂n−1
D Q̂, (C9)

where Q̂ = Î − P̂ is the projection out of the fixed point
space with Î being the identity operator on the HS space.
Plugging the above equation into Eq. (C7), we reach the
equation in Eq. (12)

〈 f1〉 =
J∑

j=1

c j〈 f1 j〉∗ + 1

m

m∑
n=1

〈〈I|M̂1�̂
n−1
D Q̂|ρ〉〉, (C10)

where c j = Tr(P j
fixρ) amounts to the probability of obtaining

jth fixed point given initial state ρ, and

〈 f1 j〉∗ = 〈〈
I
∣∣M̂1

∣∣ρ j
fix

〉〉 =
1∑

r=0

ar
〈〈
I
∣∣M̂r

∣∣ρ j
fix

〉〉 = 〈α j〉∗.

(C11)

where for the last step we used Eq. (9) so that it is equiv-
alent to

∑1
r=0 ar p(ar |ρ j

fix) = 〈α j〉∗, which is the expectation
of a single measurement on jth fixed point. This is similar
to the expectation obtained in a classical scenario where the
measurement statistics are i.i.d., satisfying 〈ᾱ j〉∗ = 〈α j〉∗.

2. Variation

To estimate the peak broadening of measurement distribu-
tion as repetitions increase, we further examine the variation
with respect to each fixed point. As discussed in the Sec. III
in main text, for each round of m-fold repetitions, an arbitrary
initial state of environment will be projected to the subspace
of one of fixed points with probability c j = Tr(P j

fixρ) given in
Eq. (12). Without loss of generality, we examine the variation
obtained in the subspace of each fixed point ρ

j
fix,

Var[ f1 j]∗ = 〈
( f1 − 〈 f1 j〉∗)2

〉
∗

= 1

m2

〈
m∑

n=1

[(δαn) j]
2 + 2

m∑
n=1

m∑
q>n

(δαn) j (δαq) j

〉
∗
,

(C12)

where (δαn) j = αn − 〈 f1 j〉∗, we added the asterisk ∗ as sub-
script to indicate that the probability is obtained when the
initial state is a fixed point, i.e., p(α1, . . . , αm|ρ j

fix). Again,
using two useful facts given in Eq. (C2), the summation can
be simplified as∑

α1

· · ·
∑
αn

· · ·
∑
αq

· · ·
∑
αm

(δαn) j (δαq) j
〈〈
I
∣∣M̂αm · · ·M̂αq · · ·M̂αn · · ·M̂α1

∣∣ρ j
fix

〉〉
= 〈〈

I
∣∣Ê (1)

j �̂q−n−1Ê (1)
j �̂n−1

∣∣ρ j
fix

〉〉
, (C13)

where

Ê (n)
j =

1∑
r=0

[(δar ) j]
nM̂r, (δar ) j = ar − 〈 f1 j〉∗. (C14)

Then it turns out

Var[ f1 j]∗ = 1

m2

m∑
n=1

〈〈
I
∣∣Ê (2)

j �̂n−1
∣∣ρ j

fix

〉〉

+ 2

m2

m−1∑
n=1

m−1∑
q=n

〈〈
I
∣∣Ê (1)

j �̂q−nÊ (1)
j �̂n−1

∣∣ρ j
fix

〉〉
.

(C15)

Plugging Eq. (C9) into Eq. (C15), exploiting two orthogonal-
ity given in Eqs. (C8) and (A4) to eliminate terms containing
�̂DQ̂|ρ j

fix〉〉 and to simplify
∑J

i=1 P̂i|ρ j
fix〉〉 = |ρ j

fix〉〉 respec-
tively, it follows

Var[ f1 j]∗ = 1

m

〈〈
I
∣∣Ê (2)

j

∣∣ρ j
fix

〉〉

+ 2

m2

m−1∑
n=1

m−1∑
q=n

(
J∑

i=1

〈〈
I
∣∣Ê (1)

j

∣∣ρ i
fix

〉〉〈〈
Pi

fix

∣∣Ê (1)
j

∣∣ρ j
fix

〉〉

+〈〈I∣∣Ê (1)
j �̂

q−n
D Q̂Ê (1)

j

∣∣ρ j
fix

〉〉)
.

(C16)
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According to Eq. (C11), noting that

〈〈
I
∣∣Ê (1)

j

∣∣ρ j
fix

〉〉 = 〈
α j − 〈 f1 j〉∗

〉
∗ = 0, (C17)

then the terms containing 〈〈I|Ê (1)
j P̂ j vanish, and the summa-

tion
∑J

i=1 should be replaced by
∑J

i �= j . However, for i �= j,

〈〈Pi
fix|M̂r |ρ j

fix〉〉 = 0 for every M̂r due to orthogonality of
fixed points, which follows 〈〈Pi

fix|Ê (1)
j |ρ j

fix〉〉 = 0 and

Var[ f1 j]∗ = 1

m

〈〈
I
∣∣Ê (2)

j

∣∣ρ j
fix

〉〉

+ 2

m2

m−1∑
n=1

m−1∑
q=n

〈〈
I
∣∣Ê (1)

j �̂
q−n
D Q̂Ê (1)

j

∣∣ρ j
fix

〉〉
. (C18)

We can further expand the series using

m−1∑
n=0

�̂n
D = Î − �̂m

D

Î − �̂D
, (C19)

which is valid as �̂D has no unit eigenvalue (λ = 1), and then
there exists the inverse (Î − �̂D)−1 with Î being the identity
of the whole HS space. Then we obtain

Var[ f1 j]∗ = 1

m
σ 2

j − 2

m2

〈〈
I
∣∣Ê (1)

j

�̂D − �̂m
D

(Î − �̂D)2
Q̂Ê (1)

j

∣∣ρ j
fix

〉〉
(C20)

with

σ 2
j = 〈〈

I
∣∣Ê (2)

j

∣∣ρ j
fix

〉〉 + 2
〈〈
I
∣∣Ê (1)

j

Q̂
Î − �̂D

Ê (1)
j

∣∣ρ j
fix

〉〉
. (C21)

This indicates the broadening of each peak shrinks as 1
m . And

note the first term in Eq. (C21) is similar to the variation of an

i.i.d. variable,〈〈
I
∣∣Ê (2)

j

∣∣ρ j
fix

〉〉 = 〈
α2

j

〉
∗ − 〈α j〉2

∗ = Var[α j]∗. (C22)

It should be noted that the above results only show that
the variation scales as 1

m when the initial environment state
is some fixed point of the channel, while it is still an open
problem to extend these analyses to an arbitrary initial envi-
ronment state, although we have numerical evidence that the
above conclusion holds for this general case.

3. Asymptotic limit

In this section, we show that the expectation of mea-
surement average is only determined by fixed points in the
asymptotic limit, which means the second term in Eq. (12)
will vanish as m → ∞. To deal with the series

∑m
n=1 �̂n−1

D ,
we can further divide �̂D in terms of rotating points (|λl | = 1
but λl �= 1) and decaying points (|λk| < 1) as in Eq. (A2). For
each rotating point,

lim
m→∞

1

m

m∑
n=1

einϕl = lim
m→∞

1

m

1 − eimϕl

1 − eiϕl
= 0. (C23)

For the decaying points, each Jordan block Ĵk with dimen-
sion dk has no eigenvalue equal to one, and then there exists
(Îdk − Ĵk )−1, where Îdk is the identity on the dk-dimensional
HS subspace. By noting that each Ĵ m

k is convergent due to
|λk| < 1 [74], it yields

lim
m→∞

1

m

m∑
n=1

Ĵ n
k = lim

m→∞
1

m

Îdk − Ĵ m
k

Îdk − Ĵk
= 0. (C24)

Therefore, as m → ∞, the second term in Eq. (12) vanishes,
implying that the contributions from outside the fixed point
space cannot survive, so we have

lim
m→∞ 〈 f1〉 =

J∑
j=1

c j〈 f1 j〉∗. (C25)
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